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Abstract
Löthman, T. 2021. Robust Platforms for Superconductivity. Disorder Robustness and
Topological Density of States Peaks. Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 2030. 91 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-513-1183-8.

We explore the connection between robust material platforms for superconductivity and the
modern condensed matter physics paradigms of two-dimensional materials, topological states
of matter, and odd-frequency superconductivity. Specifically, the recent discoveries of gapless
topological matter and truly two-dimensional materials with graphene have greatly expanded
the class of materials for which topology produces large, robust, even singular, density of states
(DOS) peaks in the electronic structure that in turn are highly susceptible to new ordered states
of matter, including superconductivity.

In this thesis, we address the crucial question of superconductivity and competing orders
near such DOS peaks, in addition to the stability of unconventional superconducting orders
towards disorder. We show that DOS peaks are not only highly conducive to ordered states, but
also that they are particularly favorable for superconductivity. We show that superconducting
domes are especially likely to appear near DOS peaks. The result is fundamental, and stems
from an inherent difference between the ordering susceptibilities towards superconductivity and
all competing orders, providing a distinctive advantage for superconductivity. The result has
relevance for several concrete material platforms that we consider further, including graphene
doped to the van Hove singularity, magic angle twisted bilayer graphene, and rhombohedral
graphite with its topological protected flat bands surface states.

In both single layer and in magic angle twisted bilayer graphene, the symmetry of the lattice
promotes unconventional d-wave superconductivity with either a time-reversal-breaking d+id
chiral or a nematic symmetry. In the single graphene sheet, the chiral state is ubiquitously
favored, while as we show, using full-scale atomistic modeling capturing the long-ranged moiré
patterns, a nematic ordering is unexpectedly dominant in twisted bilayer graphene. Furthermore,
we show that that d+id-wave state in graphene close to the van Hove doping is remarkably
disorder robust, despite the unconventional pairing, with a robustness that is comparable to a
conventional superconducting state. Likewise, we show that a proximity induced odd-frequency
p-wave pairing in a normal-superconducting junction is not only robust to disorder, but is in
fact generated by such disorder, demonstrating again an unexpected interplay between order
symmetry and robustness. Alongside with method development for finite time-correlations in
superconductors, our results points towards new and unconventional platforms for realizing
robust superconductivity.

Keywords: Superconductivity, Odd-Frequency Superconductivity, Nematic superconductivity,
Topological Phases of Matter, Flat bands, Van Hove Singularity, Graphene, Twisted Bilayer
Graphene, Rhombohedral graphite

Tomas Löthman, Department of Physics and Astronomy, Materials Theory, Box 516, Uppsala
University, SE-751 20 Uppsala, Sweden.

© Tomas Löthman 2021

ISSN 1651-6214
ISBN 978-91-513-1183-8
urn:nbn:se:uu:diva-439426 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439426)



One must imagine Sisyphus happy.
Albert Camus
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Summary in English

Superconductivity is the phenomena in which a material is able to conduct
electricity without any power losses or heat generation, which is in sharp con-
trast to normal metals where electrical heating occurs due to a finite electrical
resistance. While superconductivity is not uncommon, it generally only oc-
curs at very low temperatures, requiring the use of specialized cooling equip-
ment. In fact, superconductivity was only first discovered little over a century
ago by the research group of Kamerlingh Onnes, after their earlier pioneering
work on cooling techniques that also made them the first to liquidize helium.
Upon cooling, the onset of superconductivity occurs in a sharp transition at a
given critical temperature, marking a phase transition. The transition is anal-
ogous in character to the familiar transition of when water freezes to ice. But
whereas the liquid to solid phase transition of water signals the ordering of the
water molecules, from a disordered state with freely moving molecules to an
ordered state with the molecules arranged in a regular pattern, the supercon-
ducting phase transition instead signals a reordering of the electrons within a
material. A similar type of ordering is also responsible for certain types of
magnets. Schematically, a common feature of phase transitions in both water
and in superconductors alike, is that the ordering occurs from a balance be-
tween the interactions and the thermal fluctuations. At the critical temperature
the balance is tipped and an ordered state that is better able to align with the
interactions of the system emerges.
Given the highly desirable and unusual properties of superconductors, a long

standing quest within the field of condensed matter physics has been to find
new forms of superconductivity and in new materials, preferably with high
critical temperatures. In particular, if superconductivity could be achieved at
room temperature (and atmospheric pressure) it would have far reaching tech-
nological implications, not just limited to dissipation less power distribution.
While several new classes of superconductors have already been discovered,
some with critical temperatures above the boiling point of nitrogen, the quest
still stands along with the desire to better understand, predict, and control this
unusual phase of matter. In this thesis, we theoretically consider new material
platforms for superconductivity, analyze possible superconducting orders, and
examine the disorder robustness of unconventional superconducting orders.
A natural heuristic for realizing robust platforms for superconductivity is to

identify electronic states for which the development of a superconducting or-
der will result in particularly large energy gains that are in turn able to balance
a strong thermal disorder. The total energy gain does however depend on many
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factors, including the interactions, electronic properties, and effects of disor-
der. The electronic interactions are generally challenging to treat theoretically
and difficult to engineer. This is especially true of the particular interactions
that give rise to superconductivity. Given any interaction however, the energy
gain of a system will be large if many electronic states are gathered near the
same energy. Thus, a large peak in the density of states (DOS) will in gen-
eral make a system more susceptible to ordering, so that even relatively weak
interactions can drive a transition at relatively high temperatures. The recent
high impact discoveries of both two-dimensional materials with graphene and
certain classes of topological matter have greatly expanded the class of mate-
rials with robust, large, even singular, DOS peaks. These classes of matter are
therefore one of the main focuses of this thesis.
The discovery and classification of topological phases of matter has recently

transformed much of condensed matter physics. In a topological phase the
electronic structure is characterized by having certain features that can not be
undone without significantly altering the entire electronic structure. The cer-
tain features are therefore robust to small changes of the system, such as dis-
order. Topology enters as the mathematical tool used to specify the immutable
features and sort out the difficult task of classifying which electronic struc-
tures can be smoothly transformed from one to another without abrupt changes.
A related but striking implication of topological phases is therefore that such
abrupt changes will have to occur at the interface (possibly to vacuum) between
materials of different topology. On the boundaries of topological non-trivial
matter are therefore particular electronic states that can not be removed with-
out first changing the topology of the host material. The states are therefore
exceptionally robust. Importantly for our purposes, certain topological classes
of matter have topologically protected boundary states that necessarily have
the same energy. The states are said to have a low or even flat energy disper-
sion. In these materials, including some topological semi-metals, the topol-
ogy therefore produces a very large DOS peak on the boundary that in turn
are consequently highly susceptible to ordering, inducing superconductivity.
An example of a material with flat dispersion boundary states is offered by a
restacked version of ordinary pencil lead called rhombohedral graphite, which
has recently been predicted to readily become superconducting even at high
temperatures.
A second important material class are two-dimensional materials. The iso-

lation and characterization of graphene, a single layer of graphite, in the 21th
century, demonstrated both the realization of a truly two-dimensional material
and the advances in fabrication and characterization on the nanoscale that made
it possible. Graphene has become on of the most researched materials and has
been followed by many other two-dimensional materials. For our purposes,
all two-dimensional materials have a special property; the electronic structure
of an regular atomic lattice in two-dimensions must contain locally flat energy
dispersions and must therefore also have a very large DOS peak. Such features
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are called van Hove singularities and are also expected to be highly susceptible
to ordering, further enlarging the class of materials containing DOS peaks.
While both two-dimensional materials and certain topological phases of

matter produce robust and large DOS peaks that are highly susceptible to or-
dering, a long-standing objection have been whether a flat dispersion could
support a transport phenomena like superconductivity. Recent work has how-
ever shown that even states with a flat dispersion can in fact support the re-
quired superconducting currents, due to previously unrecognized geometric
contributions that are always finite for systems with a non-trivial topology.
Consequently, superconductivity is therefore a realistic possible even within
systems that have flat dispersions. Nonetheless, the increased susceptibility
at DOS peaks enhances not only superconducting orders but also competing
states, e.g magnetic orders. In our work, we therefore consider the impor-
tant question of competing orders near large DOS peaks. We show that while
a peak in the DOS increases the susceptibility of all orders equally, the in-
creased susceptibility for superconducting orders extends over a much larger
energy range then for non-superconducting orders. Superconducting orders
are therefore more resilient to a shift away from the DOS peak by e.g electric
gating or chemical doping. Consequently, even when a superconducting order
is initially weaker than a non-superconducting competing order, the supercon-
ducting order is still highly likely to appear on the flanks of the DOS peak.
Generally therefore a large DOS peak, of e.g. topological boundary states or
van Hove singularities, will readily give rise to high critical temperatures but
also give an additional distinct advantage to superconducting orders. Such
materials are therefore very likely to be favorable for realizing exotic high-
temperature superconductivity.
For instance, a highly unconventional chiral 𝑑+i𝑑-wave superconducting

state has been predicted to emerge in doped graphene, being particularly likely
when doped close to one of its van Hove singularities. Thus, while a pris-
tine graphene sheet is a semi-metal with a vanishingly small DOS, and con-
sequently unlikely to undergo any electronic phase transition, the situation is
changed if the number of electrons in the graphene sheet is changed by dop-
ing, and there are many predictions of superconductivity in doped graphene. In
particular, the symmetry of the lattice favors the formation of the chiral 𝑑+i𝑑-
wave superconducting state that close to one of the van Hove singularities in
graphene shows exceptionally large critical temperatures even for relatively
weak interactions. The very large amount of doping required to reach one of
the singularities is however also likely to introduce a significant amount of dis-
order and defects to the graphene sheet. As a part of this thesis, we show that
despite its exotic and unconventional nature, the 𝑑+i𝑑-wave state is nearly as
robust against defects as a disorder robust conventional superconducting order.
The unconventional 𝑑+i𝑑-wave state therefore remains as a highly likely order
in doped graphene.
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Alternatively, low-energy van Hove singularities are produced in bilayers
of graphene with a relative twist angle between the two layers. On closing the
twist angle, the van Hove singularities are brought closer to the charge neu-
tral point and can therefore be easily accessed in experiments. Ever since the
discovery of both correlated insulating phases and superconductivity within
these states in 2018 there as been an immense research activity devoted to
understanding these new phases. As a highlight, we further show using full
scale atomistic modeling that a rotationally symmetry breaking nematic su-
perconducting order is favored in twisted bilayer graphene close to the magic
angle, which is in contrast to graphene where a chiral superconducting state
is favored. The nematic state is realized for experimentally observed critical
temperatures and realistic interaction strengths together with resulting unusual
features and experimental signatures that we report.
Recent developments have also demonstrated the importance of finite time

superconducting correlations. The extension of the correlations in time si-
multaneously gives rise to an extended set of possible symmetries that the
correlations can have, including odd-frequency superconductivity where the
correlations are only finite for finite time differences. Such odd-frequency
correlations have been found to appear ubiquitously, especially in systems
with reduced symmetry, such as heterostructures, where they produce unusual
experimental signatures. Spatially anisotropic superconducting correlations
have however generally been assumed to be sensitive to disorder and often
ignored. In our work, we however find the very surprising result that the
exotic odd-frequency anisotropic 𝑝-wave correlations of a disordered normal
metal-conventional superconductor junction are not only robust to disorder but
are even generated by disorder. To obtain the result for the finite time cor-
relations, we have also adapted an efficient quantum time-evolution method
from quantum chemistry, providing a generalization to treat the statistics of
many-electron systems found in condensed matter physics. The robustness of
odd-frequency 𝑝-wave correlations challenges existing views within the field,
opening up for new research directions.
In conclusion, we examine in this thesis large new classes of matter that,

as we corroborate, are robust platforms for superconductivity. In general, our
results point towards new avenues for realizing exotic unconventional forms
of superconductivity with large critical temperatures and with implications for
both experimental realizations and further research directions.
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Sammanfattning på svenska

Supraledning är framförallt ett fenomen där ett material kan leda elektricitet
utan värmeförluster, vilket är i skarp kontrast med vanliga metaller där värme-
förluster uppstår på grund av ett ändligt elektriskt motstånd. Även om supra-
ledning inte är ovanligt förekommande så sker det i allmänhet bara vid mycket
låga temperaturer som kräver specialiserad kylutrustning. I själva verket upp-
täcktes supraledning för första gången av Kamerlingh Onnes forskargrupp för
drygt hundra år sedan. Detta efter deras tidigare banbrytande arbete med kyl-
tekniker som också gjorde dem till de första att likviderade helium. Vid kylning
sker supraledningen plötsligt i en skarp övergång vid en specifik kritisk tempe-
ratur sommarkerar en fasövergång. Övergången är analog med den välbekanta
övergången mellan vatten och is. Men medan övergången mellan vätska och
fast fas hos vatten påvisar att vattenmolekylerna ordnas, från ett tillstånd med
fritt rörliga molekyler till ett ordnat tillstånd där molekylerna har ett regelbun-
det mönster, så påvisar den supraledande fasövergången istället en omordning
av elektronerna i materialet. En liknande typ av ordning sker också för vis-
sa typer av magneter. Schematiskt sett så delar både fasövergångarna i vatten
och i supraledare inslaget att ordningen sker utifrån en balans mellan interak-
tioner och värmefluktuationer. Vid den kritiska temperaturen skiftar balansen
och ett ordnat tillstånd som bättre kan anpassa sig till systemets interaktioner
framkommer.
Med tanke på de önskvärda och ovanliga egenskaperna som supraledare

har, så har en långvarig strävan inom området för kondenserade materiens fy-
sik varit att hitta nya former av supraledning och i nya material, med fördel
vid höga kritiska temperaturer. I synnerhet, om supraledning kan uppnås vid
rumstemperatur (och atmosfäriskt tryck) så skulle det ha långtgående teknis-
ka konsekvenser som inte vore begränsade till energiförsörjning. Medan flera
nya typer av supraledare redan har upptäckts, vissa med kritiska temperaturer
över kokpunkten för kväve, så kvar står den långvariga strävan tillsammans
med önskan att bättre förstå, förutsäga och kontrollera denna ovanliga fas hos
material. I denna avhandling betraktar vi teoretiskt nya materialplattformer för
supraledning, analyserar möjliga supraledande ordningar och undersöker ro-
bustheten hos okonventionella supraledande tillstånd mot orenheter.
En naturlig heuristik för att förverkliga robusta plattformar för supraled-

ning är att identifiera elektroniska strukturer i vilka ett supraledande tillstånd
skulle resultera i särskilt stora energivinster, som i sin tur kan balansera sto-
ra värmefluktuationer. Den totala energivinsten beror dock på många faktorer,
så som vilka interaktioner som finns, elektroniska egenskaper, och effekter av
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orenheter. De elektroniska interaktionerna är generellt svåra att behandla te-
oretiskt och svåra att experimentellt konstruera. Detta gäller särskilt de unika
interaktioner som ger upphov till supraledning. Däremot, med givna interak-
tioner sker stora energivinster om ett system har ett stort antal energinivåer
samlade vid samma energi. Således kommer en stor topp i tillståndstätheten
(DOS av eng. density of states) i allmänhet göra att ett system blir betydligt
mera instabilt mot ordnade tillstånd, så att även relativt svaga interaktioner
kan driva en fasövergång vid relativt höga temperaturer. Upptäckterna av bå-
de tvådimensionella material i och med grafen och vissa klasser av topologisk
materia har nyligen kraftigt utökat antalet material som har robusta, stora, till
och med singulära DOS-toppar. Dessa kategorier av material tillhör därför ett
av huvudområdena av denna avhandling.
Upptäckten och klassificeringen av topologiska faser av material har nyli-

gen haft stora konsekvenser inom kondenserademateriens fysik. En topologisk
fas kännetecknas av att den elektroniska strukturen har egenskaper som inte
kan tas bort utan att markant förändra hela den elektroniska strukturen. Egen-
skaperna är därför särskilt robusta mot små förändringar i systemet, såsom
orenheter. Topologi är det matematiska verktyget som används för att kvanti-
fiera dessa robusta egenskaper, men också för att klassificera vilka elektronis-
ka strukturer som kontinuerligt kan omvandlas från en till annan. En relaterad
men slående konsekvens av de topologiska faserna är att det vid ett gränssnitt
(eventuellt mot vakuum) mellan två material med olika topologi måste finnas
särskilda energinivåer. På ytor av topologisk icke-trivial materia finns därför
särskilda elektroniska tillstånd som inte kan tas bort utan att först helt ändra
materialets topologi. Tillstånden är därför exceptionellt robusta. Det viktiga
för våra ändamål är att vissa topologiska klasser av materia har topologiskt
skyddade yttillstånd som alla nödvändigtvis har samma energi. De sägs därför
ha en liten eller till och med en platt energidispersion. I dessa material pro-
ducerar topologin därför en mycket stor DOS-topp på ytorna, som i sin tur
följaktligen är mycket instabila mot nya ordnade tillstånd som också inklude-
rar supraledning. Ett exempel på ett material med sådana tillstånd är en variant
av grafit i viket de enskilda kollagren har en annan ordningsföljd. Det har ny-
ligen förutspåtts att tillstånden i denna variant av kol lätt kan bli supraledande
även vid höga temperaturer.
Ytterligare en viktig kategori av material är tvådimensionella material. Iso-

leringen och karakteriseringen av grafen, som är ett enda lager av grafit, på
2000-talet, förverkligade inte bara tvådimensionella material utan visade ock-
så på de framstegen inom tillverkning och karakterisering på nanoskalan som
gjorde detta möjligt. Grafen har sedan dess varit fokus av mycket forskning
och upptäckten har också följts av många andra tvådimensionella material.
För våra ändamål, så har alla tvådimensionella material en speciell egenskap;
den elektroniska strukturen hos atomgitter i två dimensioner måste innehålla
energidispersioner som är delvis platta och därför också ha mycket stora DOS-
toppar. Sådana toppar kallas för van Hove singulariteter och förväntas också
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vara mycket instabila mot ordnade tillstånd. Tvådimensionella material utökar
därför antalet material med stora DOS-toppar ytterligare.
Medan både tvådimensionella material och vissa topologiska faser av mate-

ria ger robusta och stora DOS-toppar, har en långvarig invändning varit huruvi-
da platta energidispersioner kan ge upphov till ett transportfenomen så som
supraledning. Nyare resultat har dock visat att även platta energidispersio-
ner inte är ett hinder mot supraledning, eftersom det har upptäckts att den
supraledande strömmen kan ha tidigare okända geometriska bidrag som inte
kräver någon energidispersion men som alltid bidrar i system med en icke-
trivial topologi. Supraledning är därför möjligt även för platta energidispersio-
ner. DOS-toppar är däremot inte bara fördelaktiga för supraledning utan också
för konkurrerande, t.ex. magnetiska, tillstånd. I vårt arbete betraktar vi därför
den viktiga frågan angående sådana konkurrerande ordningar i närhet av stora
DOS-toppar. Vi visar att medan DOS-toppar är lika fördelaktiga för alla vanli-
ga typer av ordnade tillstånd, så förstärker DOS-toppar alla supraledande ord-
ningar över ett mycket större energiområde än vad de gör icke-supraledande
ordningar. Som en följd av detta är supraledning mer motståndskraftigt mot
avvikelser från DOS-toppen som kan introduceras genom t.ex. spänningsfält
eller kemisk dopning. Av denna anledning kan ett initialt svagare supraledan-
de tillstånd framkomma på flankerna av DOS-toppen, där de är mer stabila än
icke-supraledande konkurrerande ordningar. Generellt kommer därför en stor
DOS-topp, t.ex. från topologiska yttillstånd eller van Hove singulariteter, lätt
kunna ge upphov till höga kritiska temperaturer men också ge en ytterligare
fördel till de supraledande tillstånden. Sådana material är därför mycket gynn-
samma för att realisera exotiska former av supraledning vid höga temperaturer.
Till exempel har ett mycket okonventionellt kiralt 𝑑+i𝑑-supraledande till-

stånd förutspåtts i dopat grafen, som också är särskilt sannolikt vid dopning
i närhet av en av grafens van Hove singulariteter. Medan ett rent grafenlager
är en metall med ett försvinnande liten DOS, och följaktligen osannolikt att
genomgå en elektronisk fasövergång, så ändras situationen markant om an-
talet elektroner i grafenarket ändras med hjälp av dopning, och flera fall av
supraledning har förutspåtts. I synnerhet bidrar symmetrin hos grafen gittret
till bildandet av det kirala 𝑑+i𝑑-våg supraledande tillståndet som också tros ha
exceptionellt höga kritiska temperaturer i närhet av van Hove singulariteterna.
Samtidigt krävs en mycket stor mängd dopning för att nå en av singularite-
terna, och det är därför mycket sannolikt att alla försök att dopa grafenarket
kommer medföra en stor mängd defekter. Som en del av denna avhandling
visar vi emellertid att trots dess exotiska och okonventionella natur är 𝑑+i𝑑-
tillståndet nästan lika robust mot defekter som en stabil konventionell supra-
ledande ordning. Det okonventionella 𝑑+i𝑑-tillståndet förblir därför som en
mycket sannolik ordning i dopat grafen.
Som ett alternativ har det också visats att van Hove singulariteter uppkom-

mer vid låga energier när två lager av grafen placeras på varandra med en rela-
tiv vridningsvinkel mellan de två skikten. När vridningsvinkeln minskas för-
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flyttas van Hove singulariteterna närmare den laddningsneutrala punkten och
singulariteterna kan därför lätt nås i experiment. Sedan upptäckten 2018 av bå-
de isolerande och supraledande faser i vridna grafenlager så har mycket stor
forskningsaktivitet ägnats åt att förstå dessa nya faser. Med hjälp av en fullska-
lig atomistisk modellering visar vi bland annat att ett nematisk supraledande
tillstånd är mest fördelaktigt i vridna grafen lager, vilket står i kontrast till det
kirala tillstånd som ä mest gynnsamt i ett ensamt grafenlager. Det nematiska
tillståndet uppkommer vid det experimentellt observerade kritiska temperatu-
rerna och för realistiska interaktionsstyrkor, som vi rapporterar tillsammans
med ytterligare ovanliga egenskaper och unika experimentella signaturer.
Den senaste tidens utveckling har också visat att supraledande korrelationer

mellan olika tidpunkter kan ha stor betydelse. Utökningen av att betrakta korre-
lationerna mellan olika tidspunkter ger samtidigt också upphov till en utvidg-
ning av de möjliga uppsättningar symmetrier som korrelationerna kan anta.
En möjlighet är udda frekvens supraledning för vilken korrelationerna endast
förkommer vid ändliga tidsförskjutningar. Sådana udda frekvenskorrelationer
har visat sig vara vanligt förkommande särskilt i system som har en nedsatt
symmetri såsom i heterostrukturer, där korrelationerna också producerar ovan-
liga experimentella signaturer. Samtidigt så har anisotropa supraledande kor-
relationer i allmänhet antagits vara mycket känsliga mot orenheter och därför
också ofta försummats. I vårt arbete finner vi däremot det mycket överraskan-
de resultatet att de exotiska udda frekventa anisotropa p-vågskorrelationerna
vid övergången mellan en supraledare och en oren metall är inte bara robusta
mot orenheterna utan kan till och med bildas med hjälp av orenheterna. För
att beräkna de ändliga tidskorrelationerna har vi anpassat en effektiv tidsut-
vecklingsmetod från kvantkemi genom en generalisering av metoden till de
mångelektronsystem som betraktas inom den kondenserade materiens fysik.
De robusta udda frekvens p-vågkorrelationer utmanar tidigare antaganden in-
om området och öppnar upp för nya forskningsriktningar.
Sammanfattningsvis så undersöker vi i denna avhandling stora nya klasser

av materia som vi bidrar med att visa också är robusta plattformar för supraled-
ning. I allmänhet pekar våra resultat mot nya vägar för att förverkliga exotiska
och okonventionella former av supraledning med stora kritiska temperaturer
som har konsekvenser både för experimentella förverkliganden och för ytter-
ligare forskningsinriktningar.
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1. Introduction

The main concern of this thesis is superconductivity. Foremost, superconduc-
tivity is one of many possible ordered states of matter. The superconducting
order is however characterized by the astonishing ability to carry a dissipa-
tionless electrical current as well as by unusual interactions with the electro-
magnetic field. While the superconducting state is rather common, it generally
only appears at low temperatures, far below room temperature. A long standing
quest within the field of condensed matter physics has therefore been the de-
sire to realize a stable superconducting phase at higher temperatures but also to
develop further theoretical understanding of the superconducting state. With-
out overstatement, if a room temperature superconducting state was realized
it would constitute a transformative breakthrough discovery with far reaching
technological applications. Just the prospect of long distance dissipationless
power transmission would transform much of how the world goes about meet-
ing its energy demands. Even existing superconductors have found important
application as high power magnets, enabling medical imaging [1], particle ac-
celerators [2], and magnetically levitating trains [3], just to name a few, and
they also form the basis of highly sensitive measurement devices [4, 5]. With
emerging application of superconductors to information technology, including
quantum computing by e.g superconducting qubits [6, 7], these examples give
just a hint of the highly desirable properties that the superconducting phase has
to offer.
While the superconducting state has proven somewhat elusive since its cen-

tury old discovery, new discoveries and predictions of new forms of supercon-
ductivity and material platforms regularly stir the field. Previous milestones
include the discovery of the high-temperature superconductors in the late 20th
century [8] and the realization of critical temperatures above the 77 K boiling
point of liquid nitrogen, a far more achievable temperature. New discoveries
continue to push boundaries. Following the very recent discovery of super-
conductivity in hydrogen sulfide at 203 K under extremely high pressures [9],
even higher critical temperatures have been observed in related hydrogen-rich
materials under similar extreme pressures [10, 11], even above room tempera-
ture [12]. While the pressures involved for these very recent superconductors
still precludes direct applications and are only achieved in a lab setting using a
diamond anvil, the discoveries demonstrate in principle the feasibility of even
room temperature superconductivity and the activity surrounding supercon-
ductivity research.
In this thesis, we theoretically explore robust platforms for superconduc-

tivity in connection with three radically new paradigms in condensed matter
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physics that only came to maturity within the 21th century: two-dimensional
materials and graphene, topological phases of matter, and odd-frequency su-
perconductivity. The experimental discovery of graphene [13–15], a single
monolayer of graphite, demonstrated the existence of truly two-dimensional
materials and at the same time the strides in both fabrication and characteriza-
tion techniques that made it possible. The unexpected discovery together with
the exotic electronic properties of graphene, has turned it into one of the most
researched materials [14, 16, 17]. While systems of low dimensionality are
generally inhospitable to ordered states due to increased fluctuations [18, 19],
two-dimensional materials must at the same time have non-analytical points
in the electronic structure, called van Hove singularities, that give rise to very
large density of states (DOS) at certain energies [20–22]. In turn, such DOS
peaks are very susceptible to ordering and new phases of matter, including
exotic superconducting phases. The simple underlying reason is that the sys-
tem can greatly reduce its energy by reordering the large number of electronic
states. Systems with large DOS peaks, including two-dimensional materials,
are therefore highly interesting venues for realizing superconductivity and are
one of the main focuses of this thesis.
The ability to host large DOS peaks is also found in certain classes of topo-

logical states of matter [23, 24], which simultaneously is only a small aspect
of the recent discovery and theoretical classification of several large classes of
topologically non-trivial states of matter [23–25]. In a topological phase, the
electronic structure is characterized by one or more global properties that are
immutable with respect to small perturbations. Likewise, it is impossible to
smoothly transform the electronic structure between two different topological
phases without an abrupt change or symmetry breaking. A striking implication
is the bulk-boundary correspondence, dictating that special topologically pro-
tected states have to appear when crossing a boundary between two different
topological phases. Topological phases of matter are therefore associated with
extraordinary robust electronic states appearing on their boundaries. One pos-
sibility of certain classes of topological matter is that the topology forces the
states to have the same energy, thus creating aDOS peak. The two-dimensional
materials and topological materials have greatly expanded the class of mate-
rials with large, or even singular, DOS peaks in the electronic structure, and
therefore also possible hosts of superconductivity.
In Paper II we considered the important question of competing orders near

large DOS peaks, and showed that DOS peaks not only favors the emergence of
new phases of matter, but that superconductivity is particularly favored close
to such DOS peaks. The underlying reason is that the ordering susceptibil-
ity towards any superconducting order is enhanced by any DOS peak over a
much wider range of energies compared to any non-superconducting order.
Our results therefore show that systems with a large DOS peak are particu-
lar interesting platforms for realizing possibly high-temperature superconduc-
tivity. In Paper II, we consider two such systems. First is the topological
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semi-metal rhombohedral graphite which has been shown to host topologi-
cally protected surface flat bands that are prone to superconductivity [25–31].
Second is graphene doped close to the van Hove filling, which has been pro-
posed to develop an exotic unconventional chiral 𝑑+i𝑑-wave superconducting
order [32–35]. In Paper I, we further showed that the unconventional chi-
ral 𝑑+i𝑑-wave superconducting state in graphene is surprisingly robust against
disorder and impurities that are likely to accompany any attempts to reach the
van Hove filling. Additionally, low-energy van Hove singularities are also
produced in twisted bilayer graphene (TBG), as seen in spectroscopy [36–38].
Recent highly impactful experimental results on TBG have also found a rich
phase diagram of competing phases, including correlated insulators and su-
perconductivity [39–42]. In Paper V, we rigorously showed using full-scale
atomistic modeling that a large inhomogeneous nematic ordering is favored in
TBG.
The third development to impact this thesis is the growing realization of the

importance of finite time dynamical electronic correlations in superconduc-
tors [43–45]. Central is how the extension in time intertwines with the possi-
ble symmetries of superconducting correlations, leading to the possibility of
odd-frequency superconductivity. While the first proposals of odd-frequency
superconductivity extend back into the 20th century [46], there has recently
been a growing recognition that odd-frequency states appear ubiquitously in
many superconductors, especially in symmetry breaking structures such as in-
terfaces, disordered states, or heterostructures, where the odd-frequency cor-
relations have been associated with unusual experimental signatures [43, 47–
52]. While odd-frequency superconductivity allows for pair correlations with
exotic symmetries, spatially anisotropic superconducting correlations have at
the same time generally been assumed to be sensitive to disorder and therefore
also often ignored. In Paper IV we however found that exotic odd-frequency
anisotropic 𝑝-wave correlations of a disordered normal metal-conventional su-
perconductor junction are not only robust to disorder but are even generated by
disorder. We establish these findings based on fully quantum mechanical cal-
culations of a large scale model, where we further used a linear scaling method
we developed in Paper III to obtain the superconducting pair correlations.
This thesis is a comprehensive summary of the accompanying original ar-

ticles, Papers I to V, that are included at the end of this thesis. Our goal is
therefore not to reproduce the main results outline above, but to make these
results more accessible and highlight the relevant connections. We focus on
providing the conceptual background and methods used to derive the results
of the original articles.
We therefore first introduce the central concept of phases within condensed

matter physics in Sec. 2, and in particular how symmetry is used to classify
phases of matter and their properties, while also leading to the concept of sym-
metry breaking phase transitions. For electronic phase transitions, a key ingre-
dient is interactions. Section 2.2 therefore outlines how to account for interac-
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tions and how they can favor certain symmetry broken ordered states, including
superconductivity which is considered thereafter in Sec. 2.3. As we point out
in Sec. 2.4 the ordering susceptibilities crucially depends on the number of
available states around the Fermi energy, directly suggesting how a DOS peak
in the electronic structure is conducive to ordering. Motivated by the fact that
topology can produce flat bands and large DOS peaks, the topological phases
of matter are introduced in Sec. 2.5, before we in Sec. 3 review how singular
DOS scenarios can give rise to higher superconducting critical temperatures
due to increased susceptibility and sensitivity to interactions. In particular,
Secs. 3.1 and 3.2 focus on the implications of van Hove singularities of two-
dimensional materials and of the flat band states that have been shown to occur
in topological semi-metals. We then go on to consider the concrete examples of
graphene, twisted bilayer graphene, and ABC-stacked rhombohedral graphite
in further detail.
Starting with Sec. 4, the second part is devoted to our main theoretical and

computational tools. First we derive a completely general mean-field theory
that corresponds to the best possible non-interacting description of an inter-
acting quantum system. In particular, the mean-fields are shown to satisfy
self-consistency equations that can spontaneously break the symmetry of the
system and give rise to new ordered states. The following Secs. 5 and 6 are
therefore devoted to a derivation of the onset of ordering, which can be de-
rived within the framework of linear response theory to produce the linearized
self-consistency equations, also know as linear-𝑇𝑐 equations, given that the
critical temperature of symmetry breaking orders are implicit in these equa-
tions. As a microscopic theory of superconductivity, the general mean-field
theory of Sec. 4 is equivalent to the original description of the superconduct-
ing state by Bardeen, Cooper and Schrieffer (BCS) [53], but involves particle
non-conserving terms in the Hamiltonian. We review their treatment within the
Bogoliubov de Gennes (BdG) formalism in Sec. 7. In connection to the micro-
scopic theory of superconductivity, we focus on the possible pairing symme-
tries in Sec. 7.1 and in particular the possibility of odd-frequency superconduc-
tivity of Sec. 7.2. Since solving the mean-field self-consistency equations or
computing Green’s functions and superconducting correlations for very large
systems is numerically challenging, we review the concept of linear scaling
electronic structure methods in Sec. 8. In the last part, we give a detailed sum-
mary of the results of the accompanying original papers and give conclusions
and outlook.
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2. Condensed matter phases

A fundamental paradigm in condensed matter physics is the existence of dis-
tinct phases of matter, in which the same constituent particles are in distinct
arrangements. Different physical properties emerge from the unique arrange-
ments and serve to define the different phases [54]. Concretely, both dia-
mond and graphite are made from carbon atoms but are in two different phases
with very distinct properties. Diamond is transparent, hard, and does not con-
duct electricity well, but with one of the largest known heat conductivities.
Graphite, in contrast, absorbs visible light, is soft, and is an electrical conductor
[55]. Thus, the prediction of phases of matter is at the heart of understanding,
predicting, and designing material properties.
The phase concept applies not only to the atomic positions of a material

but also to the electronic arrangements within for instance a crystalline phase.
Thus without necessitating a structural transition, passing above the Curie tem-
perature, a magnet will lose its net magnetic moment in a phase transition [55].
For just like water freezes to ice when cooled, changes in phase with temper-
ature is the rule rather than the exception. Such phase transitions originates
from the competition between thermal disorder and the minimization of the
internal energy 𝐸 of the system at equilibrium through the minimization of
the free energy 𝐹 = 𝐸 − 𝑇 𝑆, where 𝑇 is the temperature, and 𝑆 the entropy
[56]. At a higher temperature a more disordered phase with a larger entropy
𝑆 is preferred, even when accompanied by an additional energy cost. A phase
transition therefore depends on the delicate balance between the entropy of
the available microscopic arrangements and their energy. Phase transitions are
therefore generally hard to accurately predict; especially since there are usu-
ally several candidate phases that the material could transition to. To sort out
the complexity, symmetry is often used to characterize the different phases as
well as their properties.

2.1 Symmetry
A central tool in condensed matter physics is the classification of phases of
matter by their symmetry [56–58]. In general, at low temperatures, where the
minimization of the free energy is heavily biased towards a minimization of
the total internal energy over the entropy, the interaction of a system may pre-
fer a distinct alignment with a lower energy, resulting in a higher degree of
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order. The degree of order can be quantified by all the symmetry transforma-
tions that leave the state invariant, together forming a mathematical symmetry
group. For example, at a very low temperature, all the magnetic moments of
a ferromagnet are aligned along an arbitrary but specific axis, as this configu-
ration minimizes the total energy. In this phase, only the transformations that
leave the magnetic axis invariant are symmetry transformations. In contrast, at
a high temperature, all moments are randomly oriented and therefore any rota-
tion will leave the system invariant. At a critical temperature, a spontaneously
symmetry breaking phase transition separates the high and the low tempera-
ture phase. At the transition, even when starting from isotropic interactions, a
preferred direction emerges, defined by the axis of the net magnetic moment.
Quantities like the magnetic moment, which are non-vanishing only in the or-
dered state, are called order parameters. The symmetry breaking process can
generally be understood in terms of an effective field theory for the order pa-
rameters, as in Landau theory [56, 58, 59]. Assuming that the free energy is
smooth analytic function around the transition, the free energy can be series
expanded in powers of symmetry invariant combinations of the order param-
eters. Despite the symmetric free energy functional, the free energy minima
may still be at a finite order parameter and therefore not symmetry invariant
but symmetry breaking. The theory demonstrates the symmetry breaking pro-
cess regardless of whether the free energy function is derived microscopically
or assumed on the basis of symmetry and phenomenology [60]. In general, the
symmetries of a given phase of matter are further intimately connected to the
excitations and the properties of the phase, which gives further characteriza-
tion.

2.1.1 Quasiparticles
For most of condensed matter physics the symmetry of a phase are intimately
connected to the properties of that phase. The reason is that in most systems,
the symmetries determine the quantum numbers that label the available low en-
ergy excitations and the quantum mechanical many-body states. For instance,
translational symmetry ensures that momentum is a good quantum number
[61]. Thus, each phase usually admits a robust description of its excitations
based on the symmetry of that phase. In most systems and even in the presents
of interactions, it is therefore possible to identify independence low-lying ex-
citations or quasiparticles labels by such quantum numbers. The underlying
assumption, and the idea embodied in the Landau-Fermi-liquid theory, is that
the excitations of an interacting system are smoothly (adiabatically) connected
to those of a non-interacting system with the same quantum numbers [58].
During this imagined slow evolution from the non-interacting to the possi-
bly strongly interacting system, the quantitative properties of the excitations
may change, but retain their identity as independent particles labeled by the
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same quantum numbers. In particular, in fermionic systems the Pauli exclu-
sion principle leads to reduced scattering by interactions close to the Fermi
surface, because the particles have limited phase space for scattering to occur
[62]. The reduced scattering ensures that the low energy excitations have a
long enough life time so as to allow them to be identified as distinctive quasi-
particles with definite energies and quantum numbers. A notable exception to
this are one-dimensional systems that naturally lack an extended Fermi sur-
face which leads to non-Fermi liquid behavior [60, 63]. While the adiabatic
assumption breaks down were it to encounter a phase transition along the way,
the Landau-Fermi-liquid theory ensures that a good approximate starting point
for many electronic condensed matter system is a non-interacting model de-
scribing the quasiparticles of the system that is based on symmetries of the
system.
A staple of condensed matter physics is the crystalline phase where the con-

stituent atoms are arranged in regular periodic lattices. Assume that there is
no additional spontaneous symmetry breaking besides the underlying crystal
lattice, the lattice periodicity in the crystalline phase implies that the system is
invariant under any number of translations by the lattice vectors along which
the motif is repeated. According to Bloch’s theorem, the non-interacting quasi-
particles in a periodic lattice can therefore be labeled by the crystal momentum
𝑘, defined on the reciprocal lattice, that correspond to the different irreducible
representations of the translation symmetry group [55]. Since the reciprocal
lattice is periodic, too, the quasiparticle energies 𝜖𝑛(𝑘) form regular bands.
Collectively the energy bands are referred to as the electronic band structure.
Using the formalism of second quantization [64], the electronic structure is
therefore described by 𝐻 = ∑𝑘,𝑛 𝜖𝑛(𝑘)𝑐†

𝑘𝑛𝑐𝑘𝑛 + H.c., where 𝑛 are the band
indices that labels additional, such as spin or orbital, degrees of freedom.

2.2 Interactions and the Hubbard Model
Even if the non-interacting Bloch states are a good starting point, residual in-
teractions typically remain, and are specially important when the adiabatic as-
sumption breaks down close to a phase transition. While the bare Coulomb in-
teraction between charge particle has a long power law tail, in most condensed
matter systems and especially metals the interactions are typically much more
localized in space due to collective screening [65]. Since the interactions are
local in space they are non-local in momentum space. It is therefore desirable
to transition to a real space description where the states are localized. This can
be done by the introduction of Wannier orbitals, 𝑐†

𝑟𝑛 = 𝑁−1/2 ∑𝑘 𝑒−𝑖𝑟⋅𝑘𝑐†
𝑘𝑛

that are localized around the lattice site 𝑟, where 𝑁 is the size of the lattice
[66, 67]. In theWannier basis, the non-interacting Hamiltonian has the general
form, 𝐻 = ∑𝑟,𝑟′,𝑛,𝑚 𝑇𝑟𝑟′𝑛𝑚𝑐†

𝑟𝑛𝑐𝑟𝑛 + H.c., describing quasiparticles hopping
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between lattice sites with the amplitudes 𝑇𝑟𝑟′𝑛𝑚. Within the Wannier basis, an
arbitrary two-body interaction is easily introduced as,

𝐻int = ∑
𝑖𝑗𝑘𝑙𝑟1𝑟2𝑟3𝑟4

𝑈𝑖𝑗𝑘𝑙(𝑟1, 𝑟2, 𝑟3, 𝑟4)𝑐†
𝑟1𝑖𝑐†

𝑟2𝑗𝑐𝑟3𝑘𝑐𝑟4𝑙, (2.1)

where the expectation is that the series can be terminated after a few terms,
because of the localization of the Wannier orbitals.
Remarkably, retaining only the nearest-neighbor hopping terms of a single

band model together with the on-site interaction term still results in a highly
non-trivial but important model, the Hubbard model [68–70], that has been
broadly applied within condensed matter physics, including the areas of metal-
insulator transitions [71, 72] and high-temperature superconductivity [73–75].
The Hamiltonian of the Hubbard model,

𝐻̂Hubbard = 𝜇 ∑
𝑖

𝑛̂𝑖 − 𝑡 ∑
⟨𝑖,𝑗⟩

𝑐†
𝑖 𝑐𝑗 + 𝑈 ∑

𝑖
𝑛̂𝑖↑𝑛̂𝑖↓, (2.2)

only depends on the the ratio of the hopping amplitude 𝑡 between nearest-
neighbors ⟨𝑖, 𝑗⟩ and the on-site interaction strength, 𝑈/𝑡, in addition to the
dimensionless temperature 𝑇 /𝑡 and the filling factor that is controlled through
the chemical potential 𝜇/𝑡. The model does not have any known general solu-
tion, except in one dimension [76]. For weak coupling 𝑈/𝑡 ≪ 1, the system
described by the Hubbard model remains a metal, except at very low temper-
atures, while at stronger coupling the outcome is less certain, but theorized to
including both (Mott) insulating and superconducting behavior [74, 75]. Any
doubly occupied site has an interaction energy cost of 𝑈 . At half-filling and
strong coupling, the model is expect to describe an Mott insulating state where
each site is singly occupied without hopping. With doping the Mott insulator
is widely theorized to include a transition to a superconducting state [73, 74].
In the Hubbard model at half filling and in the strong coupling limit 1 ≪

𝑈/𝑡, the interaction energy is minimized if each site is singly occupied. The
subspace of the singly occupied states is however highly degenerate with re-
spect to the interaction terms, since the interaction does not depend on the spin
orientation. If the hopping term is included perturbatively, then the degeneracy
is expected to be lifted. The reason has to do with the Pauli exclusion princi-
ple. A particle can only hop to a neighboring site, and thereby also lower the
overall kinetic energy, if the two neighboring sites initially have the opposite
spin orientation. If instead the two sites initially have the same spin orien-
tation, then the hopping term would place two particles of same spin on the
same site, i.e. the same quantum state, which is forbidden for fermions by the
Pauli exclusion principle. The combination of the repulsive on-site interaction
and the hopping term therefore gives rise to a superexchange mechanism that
favors an anti-ferromagnetic alignment of the spins.
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Formally, the superexchange mechanism can be derived by expanding the
HubbardHamiltonian to second order in perturbation in𝑈/𝑡 using the Schrieffer-
Wolff transformation [65], resulting in a effective an effective Hamiltonian,

𝐻eff = ̂𝑃𝑆[ − 𝑡 ∑
⟨𝑖,𝑗⟩

𝑐†
𝑖 𝑐𝑗

+ 𝑡2

𝑈 ∑
𝑖,𝜉1,𝜉2,𝜎

(𝑐†
𝑖+𝜉1𝜎̄𝑐†

𝑖𝜎𝑐𝑖𝜎̄𝑐𝑖+𝜉2𝜎 − 𝑐†
𝑖+𝜉1𝜎𝑐†

𝑖𝜎̄𝑐𝑖𝜎̄𝑐𝑖+𝜉2𝜎)] ̂𝑃𝑆 + 𝒪(𝑡3/𝑈2) ,

(2.3)

where ̂𝑃𝑆 is the projection operator on to the subspacewithout double occupan-
cies and the 𝜉𝑗 are nearest-neighbor vectors. The terms with 𝜉1 ≠ 𝜉2 involve
three different sites. Since the end state has to be without double occupancies
to be non-zero after the projection, these terms are only non-zero if the end site
was initially unoccupied. Close to half-filling, the three site terms are there-
fore assumed to only have a small contribution when compared to the terms
with 𝜉1 = 𝜉2, because of the low concentration of holes. It is the terms with
𝜉1 = 𝜉2 that give rise to the superexchange, which can be seen explicitly when
these terms are expressed in the spin basis 𝑆̂ = 1/2 ∑𝜎,𝜎′ 𝑐†

𝜎𝑆𝜎𝜎′𝑐𝜎′ from the
vector of Pauli matrices 𝑆 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧),

𝑡2

𝑈 ∑
⟨𝑖,𝑗⟩,𝜎

̂𝑃𝑆 [𝑐†
𝑖𝜎̄𝑐†

𝑗𝜎𝑐𝑖𝜎̄𝑐𝑗𝜎 − 𝑐†
𝑖𝜎𝑐†

𝑖𝜎̄𝑐𝑖𝜎̄𝑐𝑖𝜎] ̂𝑃𝑆 = 𝐽 ∑
⟨𝑖,𝑗⟩

[𝑆̂𝑖 ⋅ 𝑆̂𝑗 − 𝑛̂𝑖𝑛̂𝑗
4 ] ,

(2.4)
where the exchange coupling is 𝐽 = 4𝑡2/𝑈 . Exactly at half-filling, this is the
only term that survives the projection and the Hubbardmodel in the strong cou-
pling limit at half filling therefore reduces to an anti-ferromagnetic Heisenberg
model for the spins on each lattice. More generally, restoring the projection
operators, the strong coupling limit of the Hubbard model is the 𝑡-𝐽 -model,

𝐻̂𝑡−𝐽 = −𝑡 ∑
⟨𝑖,𝑗⟩

̂𝑃𝑆𝑐†
𝑖 𝑐𝑗 ̂𝑃𝑆 + 𝐽 ∑

⟨𝑖,𝑗⟩
[𝑆̂𝑖 ⋅ 𝑆̂𝑗 − 𝑛̂𝑖𝑛̂𝑗

4 ]. (2.5)

The 𝑡-𝐽 -model has been extensively studied in the context of high-temperature
superconductivity, demonstrating both the possibility of superconducting and
insulating orders [74, 77]. The superconducting phase however requires some
further explanation that we turn to in the next section.

2.3 Superconductivity
A particularly striking phase of matter was discovered in 1911 by the experi-
mental group of Kamerlingh Onnes during experiments on the electrical con-
ductivity of metals at very low temperatures [78]. These experiments where

25



made possible by their earlier pioneering cooling techniques of gases, which
also made them the first to liquidize helium. Thus, they surprisingly found that
the electrical resistance of solid mercury abruptly vanished at a critical temper-
ature of 4.2K, marking the phase transition to a superconducting phase, as it
became known. Rather than being an anomaly of mercury, most metals have a
superconducting transition [55]. However, it was not until 1957 with the work
of Bardeen, Cooper, and Schrieffer (BCS) that superconductivity received a
widely predictive microscopic explanation [53].
Underpinning the advance in theory, was the earlier observation that the su-

perconducting critical temperature was dependent on the mass of the atoms,
through isotope replacement [79, 80]. Coupling between the electronic de-
grees of freedom and the vibrations of the lattice was therefore concluded to
be involved in the transition. The interaction between the electrons and the
lattice vibrations, was captured in a Hamiltonian by Fröhlich, describing the
absorption and emission of quantized lattice vibrations (phonons) by the elec-
trons [81]. Notably, the electron-phonon coupling could, for a certain energy
ranges close to the Fermi surface, result in an effective attractive interaction.
Crucially, as Cooper showed, the electrons near the Fermi surface are unsta-
ble towards any arbitrary weak attractive interaction, leading to bound pairs of
electrons and suggesting a mechanism for the phase transition [82]. By incor-
porating this insight to a simplified model together with a variational trial wave
function, Bardeen, Cooper, and Schrieffer put forward a theory that accurately
described the then known superconductors [53]. In particular, the theory made
definite predictions of spectral and thermodynamical and temperature depen-
dences [53].
The electronic pairing described by the BCS theory is a very general con-

cept that captures the condensation of bound fermions into a symmetry break-
ing state in presence of an effective attractive interactions. As a description of
the superconducting state, the theory is therefore more general than the par-
ticular origin of the attractive interaction. From this point of view, the central
aspect of the BCS theory is that the superconducting phase develops a macro-
scopic phase coherence that breaks the global𝑈(1) gauge symmetry. The long
range phase coherence is captured by a superconducting order parameter with
a definite 𝑈(1) phase, akin to a macroscopic wave function. Given the order
parameter symmetry, the main macroscopic properties of superconductors are
captured by an effective, Ginzburg-Landau, field theory. These diverse phe-
nomena include flux quantization and the Josephson effects [83]. Addition-
ally, the 𝑈(1) gauge field minimally couples to the electromagnetic field and
gives rise to the unusual and characteristic electromagnetic properties of su-
perconductors. Notably, through the Higgs-Anderson mechanism, an applied
magnetic field below a critical strength is entirely repelled from the interior of
a superconductor with the creation of screening supercurrents in the Meissner
effect [84–86].
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With the experimental discovery of the high-temperature cuprate supercon-
ductors in 1986 by Bednorz and Müller [8], it became clear that supercon-
ductivity could also arise from mechanisms other then the electron-phonon
coupling that could not account for the observed transitions, which is also true
of the later iron-based [87] and heavy fermion superconductors [88]. While
still highly debated, superconductivity in these materials are instead believed
to arise from correlation effects and strong electron interactions. Conceptu-
ally, this raises the question how an effective attraction can arise from purely
repulsive forces. Part of the answer, is that an effective interaction need only
develop in one symmetry channel, e.g. a fixed angular moment channel as
shown by Landau and Pitaevskii [62], for condensation to occur. To the point,
Khon and Luttinger showed early on that the screened Coulomb interaction al-
ways produces an effective attractive interaction, at least in an isotropic system
and for large enough odd angular momenta [89, 90]. The origin of the attrac-
tion is the over screening of the interactions, due to the sharp cut-off of the
Fermi surface, which in real space produces long-ranged Friedel oscillations
that are in part attractive at large distances [90, 91]. While the Kohn-Luttinger
mechanism only produces very low critical temperatures in their proposal and
by itself is unlikely to account for observed superconducting transitions [90], it
conceptually shows that attraction can arise from purely repulsive interactions.
It also shows how the superconducting pairing channel can intertwine with the
breaking of additional symmetries, such as rotational symmetry. When accom-
panied by additional symmetry breaking, the superconducting state is called
unconventional [92]. For instance, the superconducting order parameter of the
cuprate superconductors has been shown to break the rotational symmetry of
the lattice point group with a resulting 𝑑-wave symmetry [93]. While theo-
retical understanding of the superconducting glue is yet to be complet, viable
pairing mechanisms based on electronic interactions may result from coupling
to spin or charge-fluctuation and in the doped Mott insulator scenario [73–75,
94, 95].
As shown by Zhang and Rice, the copper oxide planes of the cuprate super-

conductors can bemapped to a strongly coupled single-band effective Hubbard
model on the square lattice [96]. The 𝑡-𝐽 limit therefore suggest an insulating
anti-ferromagnetic state at half-filling. But as pointed out by Anderson [97],
there is an alternative variational ground state of the Heisenberg model consist-
ing of a superposition of all configurations where singlet pairs of electrons oc-
cupy the bonds and that is favored by quantum fluctuations in low dimensions
and for small spins. This singlet configuration is reminiscent of the resonat-
ing valence bonds (RVB) used by Pauling in relationship to aromatic molecules
and the fluctuating single and double bonds of a benzene rings [97, 98], and the
configuration is therefore called the RVB state. Strikingly, Anderson showed
that doping the RVB state naturally gives rise to superconductivity [99, 100].
In fact, the RVB state is identical to the BCS wave function with any double
occupancies projected out, the so called Gutzwiller projection, for fixed par-
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ticle number [100]. While the argument is variational and does not prove a
superconducting ground state, superconductivity from an RVB state is corrob-
orated by variational Monte Carlo with a 𝑑-wave superconducting state as a
likely ground state of the 𝑡-𝐽 model [101]. The RVB state is therefore a highly
competitive state, thereby presenting a viable mechanism fro superconducting
correlations from repulsive interactions.
In practice, the Gutzwiller projection found in the 𝑡-𝐽 model that prohibits

double occupancy, is difficult to treat. Methods of enforcing the no-double-
occupancy conduction have been developed, including the slave-bosonmethod
where auxiliary-boson fields are introduced to remove the double occupancies
[99, 102]. Equivalently, in the Gutzwiller approximation, the expectation val-
ues in the projected subspace are approximated by a renormalization of the ex-
pectation values with respect to the full Hilbert space using filling dependent
statistical weighting factors, ⟨ ̂𝑃𝑆𝑂̂ ̂𝑃𝑆⟩ ≈ 𝑔𝑂⟨𝑂̂⟩ [74, 102–107]. As a conse-
quence the 𝑡-𝐽 model in the projected Hilbert space can be replaced by a renor-
malizedHamiltonian𝐻eff = −𝑔𝑡𝑡 ∑⟨𝑖𝑗⟩𝜎 𝑐†

𝑖𝜎𝑐𝑖𝜎+𝑔𝐽𝐽 ∑⟨𝑖,𝑗⟩ [𝑆̂𝑖 ⋅ 𝑆̂𝑗 − 𝑛̂𝑖𝑛̂𝑗
4 ],

in the Gutzwiller approximation scheme. In many ways returning to Pauling’s
treatment of organic molecules [108], an effective 𝑡-𝐽 model has also been
proposed as a model Hamiltonian of graphene, capable of driving a supercon-
ducting transition [32].

2.4 Susceptibilities and Instabilities
The 𝑡-𝐽 model illustrates how interactions in a material can favor a particu-
lar symmetry breaking ground state, such as an anti-ferromagnetic or super-
conducting order. Whether ordering is energetically favorable, depends on
the interplay between both the interactions and the properties of the electronic
system. From a physical point of view, the quasiparticles become correlated
in the presences of interactions and develop a collective response to an exter-
nal perturbation but also to any intrinsic fluctuation that arises. Through such
a collective response, the susceptibility in the thermodynamic limit may di-
verge, causing an instability and an order transition. Importantly, in fermionic
systems, it is the quasiparticles near the Fermi surface that have the greatest
susceptibility and therefore contribute the most to any given response, all else
being equal. This feature is due to the low excitation energy of the states near
the Fermi energy as well as the availability of both occupied and unoccupied
states necessary for scattering. Generally therefore, a large number of quasi-
particles near the Fermi energy will result in a larger response and a system
that is more prone to ordering.
As an example, consider the case ofmagnetic ordering arising from the com-

petition between the kinetic energy and Coulomb exchange interaction 𝐼 , then
the ordering occurs at a finite temperature if Stoner’s criterion, 𝐼𝜌(𝜖𝐹 ) > 1
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is satisfied, where 𝜌(𝜖𝐹 ) is the density of states (DOS) at the Fermi energy.
When the criterion is satisfied, a ferromagnetic ordering is achieved by align-
ing the spins at an increased kinetic energy cost [109, 110]. Consequently,
either a strong Coulomb interaction or a large DOS gives rise to spontaneous
ferromagnetism. Qualitatively, the criterion explains why iron and nickel are
ferromagnetic and while copper is not [55]. While magnetic ordering involves
the spontaneous breaking of spin rotational symmetry, a similar interplay be-
tween interactions and DOS also holds for other symmetry breaking orders,
including spin-density-waves, charge-density-waves, and superconductivity.
Thus, as suggested by Stoner’s criterion and the quasiparticle susceptibilities,
one way of finding quantum systems with high critical temperatures and robust
ordering is to look for electronic system with a large DOS. In this respect, the
two recent discoveries of two-dimensional materials with graphene and gap-
less topological materials have demonstrated that the topology of the electronic
structure is able to produces both robust and large, or even singular DOS peaks.
Given the central role of topology to these findings, we review its development
within condensed matter physics in the next section.

2.5 Topological Phases of Matter
The late 20th century brought about several important examples of the appli-
cation of topology to condensed matter physics. A hallmark was the discovery
of the quantum Hall effect in two-dimensional electron gases at high magnetic
fields which was revealed to be a topological state characterized by a quantized
Hall conductance. Computing the conductance from the Kubo conductivity
formula showed that the Hall conductivity was related to a topological invari-
ant, the first Chern number, known as the Thouless-Kohmoto-Nightingale-Nijs
(TKNN) invariant [111–114]. The discovery demonstrated the important and
dramatic role that topology can have in condensed matter systems.
The prediction and experimental discovery of the topological insulators in

the early 21th century brought about an unprecedented development with the
classification, prediction, and discovery of many topological materials [23, 24,
115]. In particular, the time-reversal invariant gapped topological quantum
spin Hall phase demonstrated the existence of additional topological phases
with gapless edge states in materials with strong spin-orbit coupling [115–
117], which were shortly observed thereafter in mercury telluride quantum
wells [115, 118]. The quantum spin Hall phase was then generalized to three-
dimensional topological insulators [119, 120] and observed in bismuth-antimony
compounds [121]. In both two and three dimensions these materials are time-
reversal invariant band insulators that cannot be transformed into a trivial state
without closing the band gap, and by the bulk-boundary correspondence these
materials host gapless Dirac fermion metallic edge states [23, 24].
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The general concepts underpinning the topological phases ofmatter, of course
stem from topology, a branch of mathematics concerned with the study and
classification of topological spaces [122]. In these spaces there is a notion
of locality, or what it means for points to be close by to each other. A con-
tinuous map is one that preserves the topological structure, which means that
points that are close remain close to each other in the image of the map. Two
topological spaces can be regarded as topological equivalent, if there is an in-
vertible continuous map between them. Since this definition is manifestly an
equivalence relationship, it partitions all the topological spaces into equiva-
lence classes of topologically identical spaces. A natural question in topology
is therefore which surfaces in a given dimension can be continuously deformed
into one and another, where for example the sphere in two dimensions cannot
be transformed into the torus, since the hole of the tours cannot be removed
during a continuous deformation. A standard technique in topology for classi-
fying topological spaces is to define easy-to-compute objects that nonetheless
are invariant under a continuous mapping. When such a topological invariant
attains different values for two different topological spaces it shows that the
two are inequivalent.
When applying topology to the study of condensed matter systems, a similar

fundamental question can be asked; whether two systems can be adiabatically
connected; that is, if the two Hamiltonians of the systems can be continuously
connected to each other. Without further restrictions on the allowed transfor-
mations, the non-interacting Hamiltonians of condensedmatter systems are not
topologically distinct. Thus, to achieve a more detailed classification, the set
of allowed transformations needs to be further restricted by taking symmetry
in to account. That is by only allowing the subset of continuous transforma-
tions that also preserve a set of symmetries. The restriction necessary leads to
a finer topological distinction between systems.
If two systems belong to different topological classes, then it follows by def-

inition that it is impossible to transition smoothly from one to the other with-
out a discontinuous and abrupt change in the electronic properties. It therefore
follows even from these general considerations that the surfaces and interfaces
of topological matter will have special properties. This is the so called bulk-
boundary correspondence of topological matter; that the bulk of the material
dictates distinctive features of the surfaces and interfaces [23, 24].
A complete classification of all non-interacting gapped fermionic systems

with respect to the Altland and Zirnbauer symmetry classes [123] was com-
pleted shortly after the discovery of the topological insulators [124–126]. The
ten Altland and Zirnbauer symmetry classes are obtained from the possible
combinations of the non-local symmetries: time-reversal symmetry, particle-
hole symmetry, and chiral symmetry. The classification gives the number of
distinct topological phases of gapped Hamiltonians that exist within each sym-
metry class and dimension of space. Specifically, the classification gives the
number of distinct topological phases that can not be adiabatically connected
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while preserving the imposed symmetries. The number of topological phases
depends in the spatial dimension and follows the Bott periodicity [124]. Within
each spatial dimension there are five topologically non-trivial classes of insu-
lators or superconductors [124–126]. These topological phases are character-
ized by topological invariants that are either an integer 𝒵 Chern number or a
𝒵2 number. By the bulk-boundary correspondence these topological phases
support either gapless Dirac or Majorana edge states. By imposing the con-
servation of additional symmetries, such as local crystal-lattice symmetries,
additional topological classes can be distinguished [126–130].

2.5.1 Gapless Topological Matter
Besides the gapped topological phases of matter, recently there has also been
a growing recognition of the gapless topological states of matter, such as the
topological (semi-)metals and the nodal topological superconductors [26–29].
These states of matter are characterized by a non-trivial topology inmomentum
space and of the Fermi surface [26, 27], that are the analogues to the real-space
topological defects such as magnetic skyrmions and hedgehogs, and supercon-
ducting vortices [131]. In these phases the non-trivial topology is identical with
the stability of the Fermi surface (Fermi surfaces, Fermi points, or Fermi nodal
lines) to perturbations [132, 133].
An example of a gapless topological state is given by the Weyl semimetals,

possessing band structure Weyl nodes in momentum space [134–136]. The
Weyl nodes are the momentum space analogs of the magnetic hedgehog and
carry a topological charge or chirality. By the Nielsen and Ninomiya theorem
[137] such nodes always come in pairs, but they can be separated inmomentum
space. Since the nodes can only be removed by merging two nodes of oppo-
site chirality, they are very robust. By the bulk-boundary correspondence, the
Weyl semimetals have topologically protected edge states, especially the pro-
jection of the bulk nodes on the surface momentum space are connected by
one-dimensional Fermi arcs. Likewise, in the related Weyl superconductor the
edge state are Majorana arcs [138, 139]. AWeyl semimetal, tantalum arsenide
(TaAs), was predicted in [140, 141] and experimentally discovered [142].
The gapless topological phases and stable Fermi surfaces are likewise clas-

sified with respect to the ten symmetry classes of Altland and Zirnbauer [123].
Across the symmetry classes, there are five distinct topologically non-trivial
classes for each Fermi surface dimension (e.g. line or point) with a codimen-
sion larger or equal to one in two-dimensional and three-dimensional mate-
rials. By the bulk-boundary correspondence, the gapless topological classes
have zero-energy edge states. The edge states are either dispersionless or they
have a linear dispersion. If they are dispersionless, then they either form two-
dimensional flat bands that are flat over a finite region of momentum space
or they form a one-dimensional zero energy arc. Since the dispersion inside a
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zero energy loop is restricted by the fixed loop, these states are called drum-
head states from their appearance in the band structure [143–145].
Some examples of known gapless topological states ofmatter include graphene,

nodal 𝑑-wave superconductors, and rhombohedral graphite [26]. In the 𝑑-wave
superconductors the topology of the nodal dispersion gives rise to flat bands
on the {110} edge, as shown in [27, 28, 146], and experimentally observed
in spectroscopic measurements [147, 148]. Similarly the nodal Dirac cones
of graphene causes the zigzag edges of graphene ribbons to have flat bands
that connect the two Dirac points in momentum space and are localized to the
edge [149], as shown by ab-initio calculations [150], tight-binding calculations
[151], and observed in scanning tunneling microscope experiments [152–154].
In graphene, the topology is however dependent on the chiral sublattice sym-
metry, and therefore breaking this symmetry can open a gap [155].
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3. Singular Density of States Scenarios

In BCS theory, regardless of the origin of the attractive interaction, a natural
dimensionless coupling parameter is set by 𝜆 = 𝑉 𝜌(𝜖𝐹 ) which combines the
DOS at Fermi energy 𝜌(𝜖𝐹 ) and the pairing interaction 𝑉 . In the standard BCS
theory of an isotropic metal, the superconducting critical temperature is given
by 𝑘𝐵𝑇𝑐 = 1.14ℏ𝜔 exp(−1/𝑉 𝜌(𝜖𝐹 )), where 𝑇𝐷 is the Debye phonon temper-
ature and 𝑉 the strength of the effective phonon mediated electronic attraction
[53]. The expression assumes a metal with an approximately constant DOS
near around the Fermi energy.
The relationship implies that a larger critical temperature for a larger DOS

near the Fermi energy. Importantly, a departure from the constant DOS as-
sumption has even more striking consequences for the superconducting order
transition. One such departure is produced by non-interacting quasiparticles in
any two dimensional periodic lattice that always have a logarithmic divergent
van Hove singularity in the DOS, arising from saddle points in band structure
[20]. As a consequence, the dependence of the standard BCS critical temper-
ature on the coupling 𝜆 is replace by

√
𝜆, which for weakly coupled systems,

results in an significant increase in the critical temperature [21]. This enhance-
ment due to the divergent DOS, is know as the van Hove scenario [22], and
seems to offer a direct way to increases critical temperatures of superconduc-
tors. Importantly, the guaranteed existence of van Hove singularities in peri-
odic two dimensional materials is due to topology.
The discovery of topological phases of matter and their recent classification

has further proved that topology can even produce completely dispersionless
topologically protect states. In such a flat band scenarios, the critical temper-
ature has been shown to be directly proportional to the coupling strength 𝑉 ,
suggesting an even more striking enhancement over the van Hove scenario.
But both the flat band and van Hove scenarios critically asks if a dispersion-
less spectrum is capable of supporting a transport phenomena like supercon-
ductivity. Recent results show that this is so, which is again made possible by
non-trivial topology and geometry of the band structure [156, 157]. But first,
in the next section, we review the van Hove scenario and its challenges.

3.1 van Hove Scenario
As pointed out by L. vanHove on the basis of the topological results ofM.Morse
[20, 158], the topology of a crystal lattice in two dimensions always leads to the
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existence of saddle points in the electronic dispersion which is defined on the
periodic reciprocal lattice. Further in two dimensions, the saddle points give
rise logarithmic divergent peaks in the electronic DOS, known as van Hove
singularities (VHS). As alluded to in Sec. 2.4, the divergent DOS causes an
increased susceptibility to ordering instabilities [159–162].
The possibility of a VHS enhanced order, or the so called van Hove scenario

[22], received a lot of attention after the discovery of the high-temperature
superconductors [8], since both theoretical models and photoemission stud-
ies showed that the Fermi energy is close to a VHS in most of the high-Tc
cuprates [22, 73]. In these materials the VHS appears because the cuprates
have a layered crystal structure where the electrons are largely confined to the
quasi-two-dimensional copper oxide CuO2 planes. As shown by Zhang and
Rice, the copper oxide planes can be mapped to a single-band effective Hub-
bard model on the square lattice, where the non-interacting part exhibit VHSs
around half-filling [96].
The enhancement of the critical temperature in quasi-two-dimensional lay-

ered materials due to a logarithmic VHS near the Fermi energy was pointed
out for a charge-density-wave order in Ref. [163] and for a superconducting
transition in Ref. [21]. It was also shown that Cooper pairing is enhanced
near a VHS [164], where for an attractive potential 𝑉 , the Cooper binding
energy was found to be 2ℏ𝜔𝐷 exp(−√2/𝑉 ), which is a strong enhancement
over the normal metal result of 2ℏ𝜔𝐷 exp(−1/𝑉 ) [82], especially for weaker
interactions. Consistently, the change in the binding energy is also seen in
the BCS theory when the VHS close to the Fermi energy is account for, in
which case, 𝜌(𝜖) = 𝑛 ln(𝐷/𝜖), and the critical temperature was found to be
𝑘𝐵𝑇𝑐 = 1.13𝐷 exp(−1/

√
𝜆), where 𝐷 is the width of the VHS [165]. The

enhancement is also seen for anisotropic pairing [166]. Treating the singular
behavior of the VHS of the two-dimensional Hubbard model with scaling the-
ory shows that a antiferromagnetic phase transition occurs at half-filling with
and that for small doping away from half-filling spin-fluctuations leads to the
development of a 𝑑-wave superconducting phase transition [167].
While an increase in theDOS appears to be a straightforwardway to increase

the superconducting temperature, through an enhancement of the coupling pa-
rameter 𝜆 = 𝜌(𝜖𝐹 )𝑉 , it assumes that the DOS can be adjusted independently
of the strength of the pairing interactions. In the case of phonon-driven su-
perconductors 𝑉 is largely determined by the lattice, suggesting a weak de-
pendence on the DOS or the band width. When accounting for the present of
the Coulomb repulsion in addition to the phonon-coupling, the overall cou-
pling parameter 𝜆 is reduced [168]. Even when accounting for the Coulomb
repulsion in the van Hove scenario, an enhancement is seen for phonon-driven
superconductors [169], but since the reduction in the coupling is larger for nar-
row bands the enhancement is reduced.
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3.2 Flat Band Scenario
The VHS seen in two dimensions arises from a locally flat saddle point in the
band structure, which raises the question if even more pronounced singular-
ities are possible. The well-known Landau levels that appear in an electron
gas placed in a magnetic field [170] demonstrate that possibility of completely
flat, yet non-trivial, bands that are dispersionless within a finite region of mo-
mentum space. Flat bands have also been known to occur in certain types of
lattices, including the Lieb lattice [171] and the kagome lattice [172]. Recent
developments in creating and manipulating optical lattices with cold atoms
[173, 174] have allowed the creation, and the manipulation, of lattices with
flat bands [175] including both the kagome lattice [176, 177], and Lieb lattice
[178–180].
Another distinctive mechanism of producing flat bands was found in mod-

els of graphene nano-ribbons in 1996 [150, 151]. Specifically, the zigzag edge
of graphene nano-ribbons exhibit special edge states that, depending on the
width of the nano-ribbon, are almost flat and located near the Fermi energy
at half filling. Due to the corresponding sharp peak in the DOS, the disper-
sionless edge states where also shown to readily order magnetically [151]. As
long as the chiral symmetry in maintained, the edge states were shown to have
topological origin with a corresponding topological number [27, 181]. Experi-
mentally, the edge states were observed in scanning tunneling microscopy and
spectroscopy [154, 182, 183]. The same general topological mechanism also
produces flat bands states on the {110} edge of two-dimensional d-wave su-
perconductors [27, 146, 147]. Ways of generalizing the flat bands of graphene
nano-ribbons to other lattices have been proposed in [184]. The central in-
gredient is a bipartite lattice structure, and a general construction method for
topological semimetals with flat band edge states has been given in [185]. For
instance, both the diamond and the würtzite lattice structures can be shown to
host, in the same way as graphene, flat topological surface bands [186, 187].
Similarly, a class of two-dimensional tight-binding models have been shown
to host topological flat bands [188]. Periodic strain of materials with a Dirac
spectrum have also been shown to produce flat bands [189], including graphene
[189, 190] and of the surface topological Dirac spectrum of topological crys-
talline insulators [191]. Similarly, the surface Dirac spectrum of topological
insulators have been shown to become flat in an applied Zeeman field [192]
that are large enough to be seen at room temperature in experiments [193].
The singular DOS and the associated quenched kinetic energy in flat bands

amplify the effects of many-body phenomena and increases the susceptibil-
ity towards exotic correlated phases of matter, including ferromagnetism [171,
194], Wigner crystallization [195], and superconductivity [30, 31, 196]. For
instance, the topologically protected flat bands on the zigzag edge of graphene
nano-ribbons have been shown to develop a robust magnetic order in ab-initio
calculations [197, 198], mean-fieldmodels [151, 199, 200], and quantumMonte
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Carlo calculations [201, 202]. Consistent with this, recent experiments also
show a room temperature magnetic ordering on the zigzag edge of graphene
nano-ribbons [183].
With respect to superconductivity, it was recently shown that the presence

of a flat band modifies the BCS transition temperature result so that the tran-
sition temperature 𝑇𝑐 is proportional to the pairing interaction strength 𝑉 and
the 𝑑-dimensional volume of the flat band Ω𝐹𝐵, as 𝑇𝐶 ∝ Ω𝐹𝐵𝑉 , instead of
the exponential suppression, 𝑇𝑐 ∝ exp(−1/𝜌(𝜖𝐹 )𝑉 ), found for conventional
pairing in normal metals [30, 31, 203, 204]. That is, for the same strength of
the pairing interactions, the transition temperature is much larger in the pres-
ence of a flat band, especially for weak interactions. Thus, flat bands open
up for realizing exotic phases of high-temperature superconductivity. Where a
candidate system for flat band superconductivity is the topological semi-metal
rhombohedral graphite [30, 31].

3.3 Superfluid weight
As we have seen in the previous two sections, the superconducting critical
temperatures near a singular DOS are enhanced, even a taking on a linear de-
pendence on the coupling strength in the case of flat band. While the criti-
cal temperature signals the development of a finite order parameter of bound
Cooper pairs, the criteria for a true superconducting state is instead that the
system has a finite superfluid weight [205]. The reason is that the superfluid
weight relates directly to the ability of the material to carry a dissipationless
current and to theMeissner effect [156]. Given that the Fermi velocity vanishes
at van Hove singularities and for flat bands, a crucial question is therefore if
such flat dispersions are compatible with a finite superfluid weight. In fact, for
a single-band normal metal the superfluid weight is proportional to the Fermi
velocity, which therefore vanishes for a flat dispersion, and therefore seems to
suggest the incompatibility of superconductivity with flat dispersions [156].
A very significant result was therefore provided when it was shown that a

conventional superconducting state in the flat band surface of 𝐴𝐵𝐶-graphite
has a finite superfluid weight [206]. The result was generalized in Refs. [156,
207, 208], where it was shown that in addition to the conventional dispersion
dependent contribution to the superfluid weight there is in multiband supercon-
ductor also the possibility of a geometric contribution to the superfluid weight.
The geometric contribution to the superfluid weight can in contrast be finite
even for a flat band dispersion. In fact, as shown in Refs. [156], the geomet-
ric contributions are bounded below by the Chern number, representing the
total integrated Berry curvature of the quantum metric. The geometric con-
tribution is therefore non-zero for topologically nontrivial bands with a finite
Chern number.
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A true superconducting state is therefore possible even in electronic band
with a flat dispersion, as long as the geometric contribution are finite. Gener-
ally, the superfluid weight is related to the energy cost of a phase gradient in the
superconducting order parameter and therefore also to the stability of the su-
perconducting phase. In particular, for a uniform phase twistΔ(r) = |Δ|𝑒2𝑖q⋅r

the superfluid weight tensor is directly related to the curvature of the free en-
ergy 𝐹 [156],

[𝐷s]i,j = 1
𝑉 ℏ2

𝜕2𝐹
𝜕𝑞i𝜕𝑞j

∣
𝜇,Δ,q=0

. (3.1)

Fluctuations generally prohibits true long-range orders in systems with low di-
mensionality [18, 209]. In two-dimensional systems however, there is the pos-
sibility of developing a superconducting state with a quasi-long-range order
via a Berezinskii-Kosterlitz-Thouless (BKT) phase transition of bound vor-
tex pairs [210–212]. The superfluid weight, as it relates to the phase stiff-
ness, is directly related to the superconducting BKT transition temperature as
𝑘𝐵𝑇BKT = 𝜋

8 √det [𝐷𝑠 (𝑇BKT)] [212, 213], which has been shown to give fi-
nite transition temperatures in systems with flat dispersions, including strained
and twisted bilayer graphene [214–217], partly due to finite geometric contri-
butions to the superfluid weight. In conclusion, the recently recognized possi-
bility of having geometric contributions to the superfluid weight in multiband
systems also makes it possible to realize a true superconducting state that does
not depend on a finite band dispersion, even in two-dimensions.

3.4 Graphene
First isolated in 2004 [13–15], graphene is a two-dimensional material of car-
bon atoms with a hexagonal honeycomb lattice [16]. The electronic struc-
ture of pristine graphene can accurately be described by a tight-binding model
among states corresponding to the out-of-plane 𝑝𝑧 orbitals on each carbon
atom,

𝐻 = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

𝑎†
𝑖𝜎𝑏𝑗𝜎 + H.c.,

where 𝑡 ≈ 3eV is the hopping amplitude between nearest-neighbors, the oper-
ators 𝑎†

𝑖𝑙𝜎 (𝑏†
𝑖𝑙𝜎) creates a quasi-particle in the orbital on the 𝐴 (𝐵) sublattice,

in unit cell 𝑖, with spin 𝜎. In this model the electronic structure is dominated
by two features: at a doping of the size of the hopping parameter 𝜇 = ±𝑡, the
DOS has a logarithmically divergent van Hove singularity. At the undoped
level, however, the dispersion is linear around the two high symmetry points
𝐾 and 𝐾′ in momentum space. Around these points the energy bands form
two Dirac cones with a Fermi velocity 𝑣𝐹 , and the density of states is linearly
vanishing. Thus, a low energy effective theory of graphene takes the form of
massless chiral Dirac fermions. This and the accompanying linear dispersion
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have important implications for the electronic properties of graphene [14, 16,
17].

3.4.1 Interactions and Instabilities in Graphene
The vanishing DOS of the Dirac cones at the undoped level suppresses all
phase instabilities of short-range interactions [218]. The effects of interac-
tions are therefore mainly to renormalize the quasi-particle dispersion [219],
and a critical coupling is needed to achieve a phase instability for a magnetic
semimetal-insulator transition [220–224], and superconductivity [33, 34, 225,
226]. Mean-field or random phase approximation calculations on the Hubbard
model give a critical Hubbard 𝑈/𝑡 = 2.23 for the semimetal-insulator tran-
sition [220], and quantum Monte Carlo, large-N limit, and Dynamical mean-
field theory calculations all increase this estimate by about a factor of two
[220, 222, 223]. Ab-initio estimates of the Coulomb interaction parameters
(𝑈/𝑡 ∼ 3) nonetheless show that they are close to the critical coupling [227].
The vanishing of the DOS does however also lead to a reduced screening of
the Coulomb interactions, and nonlocal Coulomb terms are therefore impor-
tant, but can readily be modified by choice of substrate [34, 227–229]. Away
from half-filling graphene acquires a finite DOS and the situation, therefore,
changes drastically and graphene show instabilities towards superconducting
[32, 33, 35, 225, 226, 230–233], charge-density-wave, and spin-density-wave
orders [33, 34, 225, 234].
Because of the sixfold symmetry of the honeycomb lattice, superconduct-

ing orders with 𝑑-wave symmetry are automatically two-fold degenerate. This
leads to a breaking of time-reversal symmetry and a very exotic unconventional
superconducting chiral 𝑑𝑥2−𝑦2 ± i𝑑𝑥𝑦-wave state below the transition tempera-
ture [32–35]. This chiral state is fully gapped and topological, and therefore it
supports edge modes at interfaces. Notably, it has been shown to emerge from
repulsive short-ranged electron-electron interactions at all finite doping levels
both at the mean-field level [33, 234], in quantum Monte Carlo simulations
[230] [231], and in renormalization group calculations for weak repulsive in-
teractions [35]. Amechanism by which a superconducting transition can occur
from repulsive electronic interactions is the Kohn-Luttinger mechanism [89],
which has also been explored for graphene [235, 236]. While plausible close
to the half-filling and for weak couplings, the Kohn-Luttinger mechanism has
been shown to be inadequate close to the VHS where the critical temperatures
are enhanced above the estimates of this mechanism [237].
The DOS increases monotonically from half filling to a 1/4-doping where

it has a logarithmic van Hove divergence, as shown by both theory and recent
experiments on highly doped graphene achieved through both chemical doping
and electrolytic gating [238, 239], or from electrostatically doped multilayer
graphene [240]. The divergent DOS significantly enhances the instability to-
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wards many different electronically ordered states such as spin-density-wave,
charge-density-waves, and pairing instabilities [232, 237, 241–244]. At the
van Hove doping the Fermi surface is a perfect hexagon with three different
nesting vectors which favors the formation of a spin-density-wave. In partic-
ular a uniaxial spin density has been identified [245]. Renormalization group
calculations of the susceptibilities of the instabilities, nonetheless indicate a
close competition between the two most relevant instabilities a spin-density-
wave and the chiral 𝑑+i𝑑-wave order at the van Hove doping [35], but where a
𝑑+i𝑑-wave order is dominant away from the van Hove doping [34, 232, 233].
A significant instability towards a 𝑓-wave pairing is however also possible
depending on the range of the interactions [34, 232, 237].

3.5 Twisted Bilayer Graphene
The VHSs in graphene are however quite far away from half-filling. They are
therefore very difficult to reach through by using standard techniques, includ-
ing gating and chemical doping. An alternative is to look systems where the
topologically dictated VHS are closer positioned in energy so as to be closer
to half-filling and therefore far easier to reach with gating and doping tech-
niques. Such low-energy Van Hove singularities are produced in twisted bi-
layer graphene and seen in spectroscopy experiments [36–38]. By adjusting
the twist angle, the Van Hove singularities can be brought arbitrarily close to
the charge natural point. In particular, the electronic structure of TBG exhibits
magical angles where the Fermi velocity completely vanishes resulting in a
flat band dispersion [246–248]. Recent highly impactful experimental results
on TBG have found a rich phase diagram of competing phases, including cor-
related insulators and superconductivity [39–42], with intriguing similarities
to the high-temperature superconductors [74, 75]. While the superconduct-
ing critical temperatures experimentally observed in TBG are relatively small
in absolute terms, around a few Kelvin, when compared to the very small to-
tal carrier density of the involved states the observed critical temperatures are
large [40], suggesting a strong-coupling. Together with the high experimental
control achieved by gating, applied pressure, and tuning of the twist angle [41,
249–251], TBG has become hot test bed of superconductivity both theoreti-
cally and experimentally.

3.6 ABC graphite
Graphite is made from stacked layers of graphene [252]. The layers can how-
ever be stacked in multiple ways. The energetically relevant positions have
one sublattice placed above the center of the hexagon with the other sublat-
tice place above one of the sublattices of the previous layer. Together with the
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direct placement there are three positions for the graphene layers, referred to
as 𝐴, 𝐵, and 𝐶. Graphite commonly has a repeating (𝐴𝐵) sequence (Bernal
stacking), but it can, as shown by experiments, also have a repeating (𝐴𝐵𝐶)
sequence which makes rhombohedral graphite [253–256].
In rhombohedral graphite, the electronic dispersion on a surface perpendic-

ular to the stacking direction have been shown to have a power-law dependence
on the 𝜖(𝑘) ∝ |𝑘|𝑁 number of layers with 𝑁 layers [257]. Thus, in the limit of
a large number of layers, the surface dispersion becomes flat over a finite re-
gion. The interlayer hybridization in𝐴𝐵𝐶-graphite morphs the Dirac cones of
graphene into Fermi spirals in momentum space that carry a non-trivial topo-
logical invariant [258]. Because of the non-trivial topological structure of the
Fermi spiral, a zero-energy dispersionless surface band is formed inside of
the projection of the spiral onto the surface Brillouin zone. Thus, on the sur-
face, the flat band gives rise to a large DOS peak at the zero-energy that are
seen in both scanning tunneling spectroscopy and angle-resolved photoemis-
sion spectroscopy experiments [255]. Moreover, because of the topological
protection the surface flat bands are robust to disorder [26] and they appear
at interfaces with topologically trivial materials, as demonstrated by ab-initio
calculations [259]. Thus, an interesting consequence of the topology is the ap-
pearance of flat bands at interfaces between a𝐴𝐵𝐶-stacked and a𝐴𝐵-stacked
sequence in a graphite sample [259, 260]. Because of the large DOS at these
interfaces, even a weak pairing interaction would, as noted above, trigger a
high-temperature superconducting transition at these interfaces. This has been
shown by large scale tight-binding Bogoliubov–de Gennes calculations that
show that the superconducting pairing is enhanced at 𝐴𝐵𝐶-𝐴𝐵 interfaces,
which through the proximity effect can support high-temperature superconduc-
tivity throughout the bulk [261]. Such a mechanism has also been invoked to
explained experimental signatures of a superconducting transition above room
temperature in natural graphite crystals [262, 263]. Along with the enhanced
superconducting transition temperature [31], the surface flat bands of 𝐴𝐵𝐶-
stacked graphite can also readily order to a strong ferrimagnetic state, as shown
by ab-initio calculations [264–267], and by mean-field analysis [265]. Thus,
as with in the VHS of graphene, the singular DOS makes for a fierce order
competition close to the flat band.
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4. Mean-field theory

The Hamiltonian of a non-interacting system is quadratic and therefore all the
information of the system can be attained by diagonalization of the Hamilto-
nian matrix. In contrast, the Hamiltonian of an interacting system has at least
one term that involve two or more particles and can therefore not be solved
by direct diagonalization due to electronic correlations. Closed solutions of
interacting problems are therefore, in general, hard to come by, and it is often
necessary to proceed by approximations. The mean-field approximation tech-
nique replaces the interacting problem with a non-interacting problem, where
the particles interact with a static potential that represents the average distri-
bution of all the other particles.
To motivate the mean-field approximation method, we note that a single

particle operator, 𝑐†
𝑖 𝑐𝑗, can be expanded around its static expectation value,

𝑐†
𝑖 𝑐𝑗 = (𝑐†

𝑖 𝑐𝑗 − ⟨𝑐†
𝑖 𝑐𝑗⟩) + ⟨𝑐†

𝑖 𝑐𝑗⟩. Thus, expanding the operators in a general
two-body interaction term, 𝑉𝑖𝑗𝑘𝑙𝑐†

𝑖 𝑐†
𝑗𝑐𝑘𝑐𝑙, around the static values,

∑
𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙𝑐†
𝑖 𝑐†

𝑗𝑐𝑘𝑐𝑙 = ∑
𝑖𝑗𝑘𝑙

2𝑛𝑖𝑗𝑐†
𝑖 𝑐𝑗 + H.c. − 𝑉𝑖𝑗𝑘𝑙⟨𝑐†

𝑗𝑐𝑘⟩⟨𝑐†
𝑖 𝑐𝑙⟩

+ 𝑉𝑖𝑗𝑘𝑙[𝑐†
𝑗𝑐𝑘 − ⟨𝑐†

𝑗𝑐𝑘⟩][𝑐†
𝑖 𝑐𝑙 − ⟨𝑐†

𝑖 𝑐𝑙⟩], (4.1)

wherewe have used the fermionic symmetry of the interaction𝑉𝑖𝑗𝑘𝑙 = −𝑉𝑗𝑖𝑘𝑙 =
−𝑉𝑖𝑗𝑙𝑘. The first term corresponds to a single particle interacting with the ex-
pectation value of the other particles through the mean-field potential, 𝑛𝑖𝑗 =
∑𝑗𝑘 𝑉𝑖𝛼𝛽𝑗⟨𝑐†

𝛼𝑐𝛽⟩. The second term is a constant energy shift from the interac-
tions of the static distribution. The last term represents an interaction between
the fluctuations away from the static averages. Assuming that these deviations
are small, the last term can be omitted, and the result is a quadratic mean-field
Hamiltonian 𝐻MF.
The expectation values that enter the mean-field Hamiltonian 𝐻MF can be

determined by two equivalent methods; the equivalence between these two
methods is shown below. In the first method, we ask that the expected values
evaluatedwith respect to the equilibrium distribution of𝐻MF be self-consistent.
In the second method we regard the expectation values as variational parame-
ters with the objective of minimizing the free energy. The stationary condition
arrived at by the second method is the self-consistent condition, which is the
basis of the equivalence between these two methods.
Despite the relative simplicity of themean-field approximation, a great virtue

is that the method is able to describe the symmetry breaking process of phase

41



transitions. Analogous to the Landau theory, at low temperatures the mean-
fields thatminimize the free energy have the possibility of reducing the symme-
try of the system and establishing a new phase. Conveniently, the mean-fields
themselves form the order parameters that also corresponds to expectation val-
ues of the system, making it easy to identify the phase. By solving for the first
onset of non-zero mean-field order parameters, it is also possible within mean-
field theory to solve for the critical temperatures of the phase transitions.
As is often the case with phase transitions, the free energy landscape may

develop more than one minima, or equivalently have several critical temper-
atures for different competing orders within the system. Mean-field theory
makes it possible to compare the critical temperatures and the free energies of
the competing orders, and the theory is therefore also able to make predictions
on when certain orders are favored. However, to capture all the interactions
and all possible conventional symmetry breaking orders, the motivating expan-
sion around the static expectation values has to be generalized so as to include
all possible mean-fields. In particular, to capture superconducting phases of
matter terms with anomalous expectation values ⟨𝑐†

𝑖 𝑐†
𝑗⟩, breaking the gauge

invariance, has to be included. To attain the suitable generalization, we show
in the next section how the fully generalized mean-field approximation is ob-
tained as a variational principle.

4.1 Generalized Mean-Field Theory
To proceed we will make use of the Bogoliubov-Peierls variational theorem of
the free energy [268, 269], which states that for any Hamiltonian𝐻 = 𝐻0+𝑉 ,

𝐹 ≤ 𝐹0 + ⟨𝑉 ⟩0 (4.2)
where

𝐹 = − 1
𝛽 ln [𝑍] = − 1

𝛽 ln [Tr (𝑒−𝛽𝐻)] . (4.3)

is the free energy of the full Hamiltonian and 𝐹0 is the free energy of the un-
perturbed Hamiltonian 𝐻0. The expectation value ⟨𝑉 ⟩0 = Tr (𝜌0𝑉 ) is with
respect to the equilibrium distribution 𝜌0 = 𝑒−𝛽𝐻0/𝑍0 of the unperturbed
Hamiltonian 𝐻0. This theorem can easy be proven in the case that 𝐻0 and
𝑉 commute. For if we let 𝐻 = 𝐻0 + 𝜆𝑉 , where 𝜆 is a free parameter and if
both 𝐻0 and 𝑉 commute, then

𝑑𝐹
𝑑𝜆 = ⟨𝑉 ⟩ and

𝑑2𝐹
𝑑𝜆2 = −𝛽⟨(𝑉 − ⟨𝑉 ⟩)2⟩. (4.4)

Because ⟨(𝑉 − ⟨𝑉 ⟩)2⟩ ≥ 0, we immediately have that 𝑑2𝐹
𝑑𝜆2 ≤ 0 for all 𝜆.

Thus, the free energy is a concave function of 𝜆, and therefore,

𝐹(𝜆) ≤ 𝐹(0) + 𝜆 𝑑𝐹
𝑑𝜆 ∣

𝜆=0
, (4.5)
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and by identifying the terms and setting 𝜆 = 1, we arrive at the Bogoliubov-
Peierls variational theorem, 𝐹 ≤ 𝐹0 + ⟨𝑉 ⟩0. The proof for the general case
when𝐻0 and 𝑉 do not commute is given in the footnote on page 48 or in [268].
If we regard this inequality as a variational statement for the density matrix 𝜌0,
then the free energy of the Hamiltonian 𝐻 is minimized for the equilibrium
distribution of 𝐻 . But more importantly, the generalized mean-field equation
will be derived by restricting the variational space to all density matrices of
equilibrium distributions of quadratic Hamiltonians. The importance of re-
stricting the variational space to the space of quadratic Hamiltonians is that
their spectrum can be found by diagonalization and that the expectation values
of an arbitrary number of particle operators can be evaluated usingWick’s the-
orem [270]. This variational procedure results in the complete Hartree-Fock-
Bogoliubov decomposition of the interactions, which through the variational
definition is the best possible quadratic approximation to the full interacting
system 𝐻 = 𝐻0 + 𝑉 [271]. Moreover, this procedure was used in [272] to
derive the generalized thermal Hartree-Fock equation without the Bogoliubov
terms. Here we offer a simplified derivation of this result by deriving the sta-
tionary condition for a quadratic Hamiltonian, for a complete solution we refer
to [271]. Thus, let 𝐻 = ∑𝑖𝑗 𝑇𝑖𝑗𝑐†

𝑖 𝑐𝑗 + H.c. + ∑𝑖𝑗𝑘𝑙 𝑉𝑖𝑗𝑘𝑙𝑐†
𝑖 𝑐†

𝑗𝑐𝑘𝑐𝑙 be the full
Hamiltonian, and let𝐻0 = ∑𝑖𝑗 ℎ𝑖𝑗𝑐†

𝑖 𝑐𝑗 +Δ𝑖𝑗𝑐†
𝑖 𝑐†

𝑗 +H.c. be a completely gen-
eral quadratic Hamiltonian that includes anomalous particle non-conserving
expectation values through the Δ𝑖𝑗 terms. From the Bogoliubov-Peierls varia-
tional theorem, 𝐹 ≤ 𝐹0 +⟨𝐻 −𝐻0⟩0, where we now can evaluate ⟨𝐻 −𝐻0⟩0
using Wick’s theorem,

⟨𝑐†
𝑖 𝑐†

𝑗𝑐𝑘𝑐𝑙⟩0 = ⟨𝑐†
𝑖 𝑐†

𝑗⟩0⟨𝑐𝑘𝑐𝑙⟩0 + ⟨𝑐†
𝑗𝑐𝑘⟩0⟨𝑐†

𝑖 𝑐𝑙⟩0 − ⟨𝑐†
𝑖 𝑐𝑘⟩0⟨𝑐†

𝑗𝑐𝑙⟩0. (4.6)

Thus from the fermionic symmetry of 𝑉𝑖𝑗𝑘𝑙,

⟨𝐻 − 𝐻0⟩0 = ∑
𝑖𝑗

[𝑇𝑖𝑗 + 2 ∑
𝛼𝛽

𝑉𝑖𝛼𝛽𝑗⟨𝑐†
𝛼𝑐𝛽⟩0 − ℎ𝑖𝑗] ⟨𝑐†

𝑖 𝑐𝑗⟩0

+ ∑
𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙⟨𝑐†
𝑖 𝑐†

𝑗⟩0⟨𝑐𝑘𝑐𝑙⟩0 − Δ𝑖𝑗⟨𝑐†
𝑖 𝑐†

𝑗⟩0 − Δ∗
𝑖𝑗⟨𝑐†

𝑖 𝑐†
𝑗⟩0 (4.7)

Thus the stationary condition is,

𝑑
𝑑𝑋𝑟𝑠

(𝐹0 + ⟨𝐻 − 𝐻0⟩0) = 0, (4.8)
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where 𝑋𝑟𝑠 is one of the parameters of 𝐻0, i.e. ℎ𝑟𝑠 or Δ𝑟𝑠. After evaluating
the derivatives, the stationary condition becomes

∑
𝑖𝑗

[𝑇𝑖𝑗 + 4 ∑
𝛼𝛽

𝑉𝑖𝛼𝛽𝑗⟨𝑐†
𝛼𝑐𝛽⟩0 − ℎ𝑖𝑗]

𝑑⟨𝑐†
𝑖 𝑐𝑗⟩0

𝑑𝑋𝑟𝑠

+ ∑
𝑖𝑗

[∑
𝑘𝑙

𝑉𝑖𝑗𝑘𝑙⟨𝑐𝑘𝑐𝑙⟩0 − Δ𝑖𝑗]
𝑑⟨𝑐†

𝑖 𝑐†
𝑗⟩0

𝑑𝑋𝑟𝑠

+ ∑
𝑘𝑙

[∑
𝑖𝑗

𝑉 ∗
𝑖𝑗𝑘𝑙⟨𝑐†

𝑖 𝑐†
𝑗⟩0 − Δ∗

𝑖𝑗]
𝑑⟨𝑐𝑘𝑐𝑙⟩0

𝑑𝑋𝑟𝑠
= 0. (4.9)

A sufficient condition for a stationary variation is that all the coefficients in-
dependently vanish, which is true if the the matrix elements of the variational
quadratic Hamiltonian 𝐻0 satisfies,

ℎ𝑖𝑗 = 𝑇𝑖𝑗 + 4 ∑
𝛼𝛽

𝑉𝑖𝛼𝛽𝑗⟨𝑐†
𝛼𝑐𝛽⟩0 = 𝑇𝑖𝑗 + 4𝑛𝑖𝑗 (4.10)

Δ𝑖𝑗 = ∑
𝑘𝑙

𝑉𝑖𝑗𝑘𝑙⟨𝑐𝑘𝑐𝑙⟩0 (4.11)

with 𝑛𝑖𝑗 and Δ𝑖𝑗 are resulting mean-fields. Since the expectation values in
the above expressions are with respect to the equilibrium distribution of 𝐻0
they depend on the matrix elements ℎ𝑖𝑗 and Δ𝑖𝑗. These equations therefore
represent a set of non-linear equations that have to be solved self-consistently.
Thus, to any interacting Hamiltonian 𝐻 , we have the associated mean-field
model 𝐻0 that depends on unknown parameters 𝑛𝑖𝑗 and Δ𝑖𝑗,

𝐻0 = ∑
𝑖𝑗

(𝑇𝑖𝑗 + 𝑛𝑖𝑗) 𝑐†
𝑖 𝑐𝑗 + Δ𝑖𝑗𝑐†

𝑖 𝑐†
𝑗 + H.c., (4.12)

with the self-consistent free energy,

𝐹𝑀𝐹 = 𝐹0 + ⟨𝐻 − 𝐻0⟩0

= 𝐹0 − ∑
𝑖𝑗𝑘𝑙

[2𝑉𝑖𝑗𝑘𝑙⟨𝑐†
𝑖 𝑐𝑙⟩0⟨𝑐†

𝑗𝑐𝑘⟩0 + 𝑉𝑖𝑗𝑘𝑙⟨𝑐†
𝑖 𝑐†

𝑗⟩0⟨𝑐𝑘𝑐𝑙⟩0] , (4.13)

where 𝐹𝑀𝐹 is the minimum over all density matrices of a quadratic Hamilto-
nian.
The above demonstrates that themean-field theory is the best possible quadratic

approximation to the free energy of the interacting system. Since measurable
quantities are calculated from the free energy (e.g. susceptibilities, particle
densities, but also fluctuations through second order derivatives), this strongly
indicates that the mean-field theory is a tractable method for calculating the
properties of condensed matter systems.
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5. Linear Response Theory

Apossibility introduced by themean-field parameters is that the self-consistent
solutions need not have the same symmetry as the original Hamiltonian. This
occurs through a process of spontaneous symmetry breaking as mentioned in
Sec. 2. In this process, expectation values, that would be prohibited from de-
veloping a non-zero values on the basis of symmetry, can after a spontaneous
symmetry breaking at some critical temperature acquire a none-zero value.
Close to the critical temperature of a second-order phase transition the param-
eters of a symmetry breaking order are by definition vanishingly small. Thus,
close to the critical temperature the formation of symmetry breaking orders can
be treated using linear response theory, which we show in the next section.

5.1 Isothermal Linear Response
The thermal equilibrium distribution of a Hamiltonian 𝐻 is 𝜌 = e−𝛽𝐻/𝑍.
The unnormalized distribution ̃𝜌 = e−𝛽𝐻 therefore satisfies the Bloch equa-
tion 𝜕𝛽 ̃𝜌 = −𝐻 ̃𝜌, with the boundary condition lim𝛽→0 ̃𝜌(𝛽) = 𝐼 . Let the
Hamiltonian 𝐻0 be perturbed by an operator 𝐵, so that the full Hamiltonian is
𝐻 = 𝐻0 + 𝐵. If 𝐵 is small, then the density matrix, 𝜌, of 𝐻 , will be close to
the unperturbed density matrix 𝜌0. Therefore it should be possible to expand
the matrix quotient ̃𝜌−1

0 ̃𝜌 = e𝛽𝐻0 ̃𝜌 in powers of the perturbation 𝐵 around the
identify matrix. From the Block equation for ̃𝜌,

𝜕𝛽 (e𝛽𝐻0 ̃𝜌) = −e−𝛽𝐻0(𝐻 − 𝐻0) ̃𝜌 = −e−𝛽𝐻0𝐵 ̃𝜌. (5.1)

Integration gives,

̃𝜌(𝛽) = ̃𝜌0(𝛽) [1 − ∫
𝛽

0
̃𝜌−1
0 (𝛽′)𝐵 ̃𝜌(𝛽′)d𝛽′]

≈ ̃𝜌0(𝛽) [1 − ∫
𝛽

0
̃𝜌−1
0 (𝛽′)𝐵 ̃𝜌0(𝛽′)d𝛽′] , (5.2)

where the last expression shows the first order expansion in the perturbation
𝐵. The redistribution due to the perturbation is therefore,

𝛿 ̃𝜌 = − ̃𝜌0(𝛽) ∫
𝛽

0
̃𝜌−1
0 (𝛽′)𝐵 ̃𝜌0(𝛽′)d𝛽′. (5.3)

45



Because of the redistribution, the expectation values of observableswill change.
The change 𝛿⟨𝐴⟩ in the expectation value of an observable 𝐴 is,

𝛿⟨𝐴⟩ = Tr ([ ̃𝜌0(𝛽) + 𝛿 ̃𝜌]𝐴)
Tr ( ̃𝜌0(𝛽) + 𝛿 ̃𝜌) − ⟨𝐴⟩0

= − ∫
𝛽

0
⟨ ̃𝜌−1

0 (𝛽′)𝐵 ̃𝜌0(𝛽′)𝐴⟩0d𝛽′ + 𝛽⟨𝐴⟩0⟨𝐵⟩0, (5.4)

where the last term comes from the expansion of the normalization factor,
and the cyclic property of the trace.

5.2 Time Dependent Linear Response
Because the time evolution operator,𝑈 (𝑡, 𝑡0) = e𝑖𝐻(𝑡−𝑡0), and the equilibrium
non-normalized density matrix, exp(−𝛽𝐻), have an near identical form, there
is a deep connection between the time evolution and the equilibrium statis-
tics. Indeed, the response to a time-dependent perturbation follows a similar
derivation to the isothermal perturbation [111].
By definition, the Hamiltonian is the infinitesimal time evolution operator,

and the states of the system evolve according to |𝑛(𝑡)⟩ = 𝑈 (𝑡, 𝑡0) |𝑛(𝑡0)⟩
where,

𝑖𝜕𝑡𝑈 (𝑡, 𝑡0) = 𝐻𝑈 (𝑡, 𝑡0) , (5.5)

with the boundary condition lim𝑡→𝑡0
(𝑡, 𝑡0) = 𝐼 . For a time independent

Hamiltonian the unitary evolution operator has the closed from 𝑈 (𝑡, 𝑡0) =
e−𝑖𝐻(𝑡−𝑡0).
If the system 𝐻0, is subject to a time dependent perturbation 𝑓(𝑡)𝐵, so

that the full Hamiltonian is 𝐻 = 𝐻0 + 𝑓(𝑡)𝐵, then if the perturbation is
small the evolution operator will be close to the unperturbed evolution operator
e−𝑖𝐻0(𝑡−𝑡0). Thus, the matrix quotient satisfies,

𝑖𝜕𝑡 (e+𝑖𝐻0(𝑡−𝑡0)𝑈 (𝑡, 𝑡0)) = e+𝑖𝐻0(𝑡−𝑡0)𝑓(𝑡)𝐵𝑈 (𝑡, 𝑡0) . (5.6)

Integrating the above equation and solving it to first order in the perturbation
gives,

𝑈 (𝑡, 𝑡0) = 𝑈0 (𝑡, 𝑡0) [1 − 𝑖 ∫
𝑡

𝑡0

𝑈0 (𝑡0, 𝑡′) 𝑓(𝑡′)𝐵𝑈0 (𝑡′, 𝑡0) d𝑡′]

= 𝑈0 (𝑡, 𝑡0) [1 − 𝑖 ∫
𝑡

𝑡0

𝑓(𝑡′)𝐵(𝑡′)d𝑡′] (5.7)

where 𝐵(𝑡′) = 𝑈0 (𝑡0, 𝑡′) 𝐵𝑈0 (𝑡′, 𝑡0) is expressed in the Heisenberg picture.
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The time evolution changes the equilibrium distribution. The density matrix
at a later time is,

𝜌(𝑡) = ∑
𝑛

𝑝𝑛|𝑛⟩⟨𝑛| = 𝑈 (𝑡0, 𝑡) 𝜌(𝑡0)𝑈 (𝑡, 𝑡0) , (5.8)

which to first order is,

𝜌(𝑡) = 𝑈 (𝑡0, 𝑡) 𝜌(𝑡0)𝑈 (𝑡, 𝑡0)

= 𝑈0 (𝑡, 𝑡0) [𝜌(𝑡0) + 𝑖 ∫
𝑡

𝑡0

[𝜌(𝑡0), 𝑓(𝑡′)𝐵(𝑡′)]d𝑡′] 𝑈0 (𝑡0, 𝑡) + 𝒪(𝐵2).

(5.9)

This redistribution from the equilibrium distribution, implies that the ex-
pectation value of an operator 𝐴 will change by an amount 𝛿⟨𝐴(𝑡)⟩ with time
according to,

𝛿⟨𝐴(𝑡)⟩ = Tr (𝜌(𝑡)𝐴) − ⟨𝐴⟩0 = 𝑖 ∫
𝑡

𝑡0

Tr ([𝜌(𝑡0), 𝑓(𝑡′)𝐵(𝑡′)]𝐴(𝑡)) d𝑡′

= − ∫
𝑡

𝑡0

𝑖⟨[𝐴(𝑡), 𝐵(𝑡′)]⟩0𝑓(𝑡′)d𝑡′ = ∫
𝑡

𝑡0

𝜒𝐴𝐵(𝑡 − 𝑡′)𝑓(𝑡′)d𝑡′,

(5.10)

where in the last step 𝜒𝐴𝐵(𝜏) = −𝑖𝜃(𝜏)⟨𝑖[𝐴(𝜏), 𝐵]⟩0 is the susceptibility of𝐴 to 𝐵 at a later time displacement 𝜏 . For a time invariant unperturbed system
the frequency response is diagonal, 𝛿⟨𝐴(𝜔)⟩ = 𝜒𝐴𝐵(𝜔)𝑓(𝜔).

5.3 Energy representation
To see the difference between the isothermal and the time-dependent response
we write both responses in an eigenstates representation (Lehmann representa-
tion). In this representation the density matrix is diagonal, and the probability
of an eigenstate with energy𝐸𝑛 is 𝑝𝑛 = exp (−𝛽𝐸𝑛)/𝑍, where𝐸𝑛 are the en-
ergies of the eigenstates of the unperturbed system 𝐻0. Because of this, both
the integral and the expectation value in the thermal response can be evaluated.
Thus, with 𝜔𝑛𝑚 = 𝐸𝑛 − 𝐸𝑚,

⟨ ̃𝜌−1
0 (𝛽′)𝐵 ̃𝜌0(𝛽′)𝐴⟩0 = ∫

𝛽

0
𝑝𝑛e𝛽′𝜔𝑛𝑚𝐵𝑛𝑚𝐴𝑚𝑛d𝛽′, (5.11)

where𝐴𝑚𝑛 = ⟨𝑚|𝐴|𝑛⟩ and𝐵𝑛𝑚 = ⟨𝑛|𝐵|𝑚⟩ are the operatormatrix elements
in the eigenvalue basis. After evaluating the integral, the response in 𝐴 is,

𝛿⟨𝐴⟩ = ∑
𝑛𝑚

(𝑝𝑛 − 𝑝𝑚
𝜔𝑛𝑚

− 𝑝𝑛𝛽𝛿𝑛𝑚) 𝐵𝑛𝑚𝐴𝑚𝑛 + 𝛽⟨𝐴⟩0⟨𝐵⟩0, (5.12)
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which shows that the response decays with the inverse of 𝜔𝑛𝑚. This form of
the perturbation is also the starting point for the proof the Bogoliubov-Peierls
inequality 1

Similarly, the expectation value in the time-dependent response can also be
evaluated in the Lehmann representation,

⟨[𝐴(𝜏), 𝐵]⟩0 = ∑
𝑛𝑚

(𝑝𝑛 − 𝑝𝑚)e𝑖𝜔𝑛𝑚𝜏𝐴𝑛𝑚𝐵𝑚𝑛. (5.13)

Therefore, the frequency response becomes,

𝜒𝐴𝐵(𝜔) = − ∑
𝑛𝑚

(𝑝𝑛 − 𝑝𝑚)
𝜔 − 𝜔𝑛𝑚 + 𝑖𝜂𝐴𝑛𝑚𝐵𝑚𝑛. (5.14)

In the adiabatic limit, 𝜔 → 0, this term becomes identical with the first term
of the isothermal response [273]. Thus, if we denote the isothermal response
of 𝐴 to a perturbation 𝐵 by 𝜒𝑇

𝐴𝐵, then the difference between the isothermal
response and the adiabatic response is,

𝜒𝑇
𝐴𝐵 − lim

𝜔→0
𝜒𝐴𝐵(𝜔) = −𝛽 (∑

𝑛
𝐵𝑛𝑛𝐴𝑛𝑛 − ⟨𝐴⟩0⟨𝐵⟩0) . (5.15)

The two responses need therefore not be the same. This is because the time-
evolution can have conserved quantities, as is evidenced by the commutator in
the time-dependent response, whereas the isothermal has no such restrictions.
If we however, consider the perturbation 𝐵 to be the initial formation of a
symmetry breaking order, then both ⟨𝐵⟩0 and 𝐵𝑛𝑛 are identically zero, and
the two responses are identical. We conclude that, when considering the initial
formation of a symmetry breaking order, we can think of the process both as an
isothermal process and as an adiabatic evolution in time. Specifically, we will
see that the condition for the development is that the response of the system
can amplify an initial small formation of the symmetry breaking order.

1 Starting from 𝐻 = 𝐻0 + 𝜆𝑉 and the free energy 𝐹 = − ln(Tr e−𝛽𝐻)/𝛽 , it holds true
that 𝜕𝜆𝐹 = ⟨𝑉 ⟩ even when 𝐻0 and 𝑉 do not commute because of the cyclic property of the
trace. The second derivative of the free energy is therefore given by 𝜕2

𝜆𝐹 = 𝛿⟨𝑉 ⟩𝜆. Using
the Lehmann representation of the first order perturbation we have that 𝜕2

𝜆𝐹 = ∑𝑛𝑚(𝑝𝑛 −
𝑝𝑚)|𝑉𝑛𝑚|2/𝜔𝑛𝑚 − 𝛽 ∑𝑛 𝑝𝑛|𝑉𝑛𝑛|2 + 𝛽⟨𝑉 ⟩2

𝜆. We also have that 0 ≤ ∑𝑛 𝑝𝑛(𝑉𝑛𝑛 −
⟨𝑉 ⟩𝜆)2 = ∑𝑛 𝑝𝑛|𝑉𝑛𝑛|2 − ⟨𝑉 ⟩2

𝜆. Applying this inequality to the last two terms in previous
expression for 𝜕2

𝜆𝐹 , we have that 𝜕2
𝜆𝐹 ≤ ∑𝑛𝑚(𝑝𝑛 − 𝑝𝑚)|𝑉𝑛𝑚|2/𝜔𝑛𝑚 ≤ 0, since the

quotient (𝑝𝑛−𝑝𝑚)/𝜔𝑛𝑚 = (𝑝𝑛−𝑝𝑚)/(𝐸𝑛−𝐸𝑚) is always negative because larger energies
have smaller probabilities. Thus, even for the general case when 𝐻0 and 𝑉 do not commute we
find that the free energy is a concave function for all 𝜆 and the proof of the Bogoliubov-Peierls
inequality follows in the same ways as for the commuting case.
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6. Mean-Field Critical Temperature

In this section we evaluate the self-consistency equations Eq. (7.1) of mean-
field theory for symmetry breaking orders using the linear isothermal response
of Eq. (5.4). The resulting equations give the critical temperatures for second-
order phase transition of symmetry breaking orders. We start from a com-
pletely general translationally invariant Hamiltonian 𝐻 with a quadratic part
𝐻0 and a general two-body interaction term 𝑉 in 𝐻int:

𝐻 = 𝐻0 + 𝐻int

= ∑
𝑘𝜎𝛼

𝜉𝛼(𝑘) 𝑐†
𝑘𝜎𝛼𝑐𝑘𝜎𝛼 + ∑

𝑘𝑝𝑞
𝛼𝛽𝛾𝛿
1234

𝑉 1234
𝛼𝛽𝛾𝛿(𝑘, 𝑝, 𝑞) 𝑐†

𝑘1𝛼𝑐†
𝑝2𝛽𝑐𝑝+𝑞3𝛾𝑐𝑘−𝑞4𝛿, (6.1)

where 𝐻0 is assumed to be both spin and particle number conserving with en-
ergy bands 𝜉𝛼(𝑘), where Greek indices are bands indices, numbers label spins,
and 𝑘, 𝑝, and 𝑞 label crystal momenta vectors. From section 4, the associated
mean-field Hamiltonian is,

𝐻MF = ∑
𝑘𝑝𝛼𝛽12

[𝑑𝛼𝛽(𝑘, 𝑝) ⋅ 𝜒]12 𝑐†
𝑘1𝛼𝑐†

𝑝2𝛽 + H.c.

+ 4 ∑
𝑘𝑞𝛼𝛿14

[𝑔𝛼𝛿(𝑘, 𝑞) ⋅ 𝜎]14 𝑐†
𝑘1𝛼𝑐𝑘−𝑞4𝛿, (6.2)

with the mean-field parameters,

𝑑𝜇
𝛼𝛽(𝑘, 𝑝) = 1

2 ∑
𝑞𝛾𝛿1234

[𝜒𝜇]†21𝑉 1234
𝛼𝛽𝛾𝛿(𝑘, 𝑝, 𝑞) ⟨𝑐𝑝+𝑞3𝛾𝑐𝑘−𝑞4𝛿⟩ (6.3)

𝑔𝜇
𝛼𝛿(𝑘, 𝑞) = 1

2 ∑
𝑝𝛽𝛾1234

[𝜎𝜇]14𝑉 1234
𝛼𝛽𝛾𝛿(𝑘, 𝑝, 𝑞) ⟨𝑐†

𝑝2𝛽𝑐𝑝+𝑞3𝛾⟩.

Here, 𝜎𝜇 are the Pauli matrices including the identity and 𝜒𝜇 = 𝜎𝜇(𝑖𝜎𝑦).
𝑔𝛼𝛿(𝑘, 𝑞) are the order parameters for the normal particle-hole (PH) channel,
and 𝑑𝛼𝛽(𝑘, 𝑝) are the anomalous particle-particle (PP) order parameters. In
this form, the first components of both 𝑑𝜇 and 𝑔𝜇 behave as scalars under spin
rotations and the last three components transform as vectors.
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Using the linear isothermal response Eq. (5.4) of the previous section, the
linearized mean-field self-consistency equation of Eq. (7.1),

𝑑𝜇
𝛼𝛽(𝑘, 𝑝) = 4 ∑

𝑞𝛾𝛿1234
𝛽𝑉 1234

𝛼𝛽𝛾𝛿(𝑘, 𝑝, 𝑞) [𝜒𝜇]†12×

𝑊 +(𝛽𝜉𝛿(𝑘 − 𝑞) , 𝛽𝜉𝛾(𝑝 + 𝑞) ) [𝑑𝛿𝛾(𝑘 − 𝑞, 𝑝 + 𝑞) ⋅ 𝜒]43

𝑔𝜇
𝛼𝛿(𝑘, 𝑞) = −8 ∑

𝑝𝛽𝛾1234
𝛽𝑉 1234

𝛼𝛽𝛾𝛿(𝑘, 𝑝, 𝑞) [𝜎𝜇]41×

𝑊 −(𝛽𝜉𝛾(𝑝 + 𝑞) , 𝛽𝜉𝛽(𝑝) ) [𝑔𝛾𝛽(𝑝 + 𝑞, 𝑞) ⋅ 𝜎]32 . (6.4)

If we gather the order parameters in vectors 𝐷± with +(−) superscript for the
PP(PH) channel, these self-consistency equations have a manifest linear form,

𝐷± = 𝛽𝕍±𝕎±𝐷±, (6.5)

where the matrix 𝕍± contains all interactions terms and 𝕎± is a diagonal po-
larizability matrix and its matrix elements,

𝑊 ±(𝛽𝜉1, 𝛽𝜉2) =
tanh (𝛽𝜉1

2 ) ± tanh (𝛽𝜉2
2 )

𝛽(𝜉1 ± 𝜉2)/2 , (6.6)

depends on both the temperature through 𝛽 = 1/𝑇 and the quasiparticle ener-
gies 𝜉1 and 𝜉2. The linear self-consistency equations have the same symmetry
as 𝐻0, and the two types of order parameters, 𝑔𝜇 and 𝑑𝜇, do therefore not mix.
The matrices 𝛽𝕍±𝕎± give the response of the order parameters to their own

perturbation. The eigenvectors of these matrices correspond to stable orders
that do not mix and they are therefore only rescaled in the response by their
eigenvalues. An eigenvalue that is larger than 1 corresponds to an order that
is self-amplifying. Such an order is therefore an instability of the system and
therefore also a viable phase transition. An eigenvalue that is smaller than 1,
on the other hand, corresponds to an unsustainable and decaying order. As
the temperature is reduced, the response tends to increase in strength, as is
evidenced by the explicit 𝛽-factor. If at some point the largest eigenvalue of
the response matrix grows to 1, then the corresponding order is self-consistent
and the first instability of the system. This order therefore appears through a
phase transition at that critical temperature.
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7. Microscopic Theory of Superconductivity

In the previous section, we derived the critical temperatures of conventional
orders within the mean-field theory. Below the critical temperature, the mean-
field of a symmetry breaking order takes on a finite value. The finite value
also imply that the full non-linear self-consistency equations have to be solved
for the mean-field. If the order is superconducting, then the mean-field cou-
ples to particle non-conserving terms in the Hamiltonian that scatter between
particle and hole states. The eigenstates of the Hamiltonian with a supercon-
ducting order will therefore be a superposition of both particles and holes. The
situation therefore requires some care, but can be generally treated within the
Bogoliubov de Gennes (BdG) formalism [274].
To simplify the discussion, we do not consider all possible pair density

waves, but focus instead on the more common case of pairing between oppo-
site momenta. Otherwise the discussion is completely general. For this case,
a general BCS pairing model Hamiltonian has the following form,

𝐻̂ = ∑
𝑘𝛼𝛽
𝜎𝜎′

𝜉𝜎𝜎′
𝛼𝛽 (𝑘) 𝑐†

𝑘𝜎𝛼𝑐𝑘𝜎′𝛽+ ∑
𝑘𝑘′

𝛼𝛽𝛾𝛿𝜎1𝜎2𝜎3𝜎4

𝑉 𝜎1𝜎2𝜎3𝜎4
𝛼𝛽𝛾𝛿 (𝑘, 𝑘′) 𝑐†

−𝑘𝜎1𝛼𝑐†
𝑘𝜎2𝛽𝑐−𝑘′𝜎3𝛾𝑐𝑘′𝜎4𝛿.

(7.1)
The model describes the scattering of opposite momenta 𝑘 quasiparticle pairs
via the potential 𝑉 among the possibly spin polarized orbital degrees of free-
domwith the energy dispersion 𝜉𝜎𝜎′

𝛼𝛽 (𝑘), where 𝛼 and 𝛽 label orbitals. As such
the model is a direct generalization of the original BCS Hamiltonian [53].
In themean-field approximation for the pairing-channels, the resulting quadratic

Hamiltonian (with a constant energy shift 𝐶)

𝐻̂MF = ∑
𝑘𝛼𝛽
𝜎𝜎′

𝜉𝜎𝜎′
𝛼𝛽 (𝑘) 𝑐†

𝑘𝜎′𝑐𝑘𝜎′ + ∑
𝑘𝛼𝛽𝜎𝜎′

Δ𝜎𝜎′
𝛼𝛽 (𝑘) 𝑐†

−𝑘𝜎1𝛼𝑐†
𝑘𝜎2𝛽 + 𝐶, (7.2)

depends on the pair potentials defined by

Δ𝜎𝜎′
𝛼𝛽 (𝑘) = ∑

𝑘′𝛾𝛿𝜎3𝜎4

𝑉 𝜎𝜎′𝜎3𝜎4
𝛼𝛽𝛾𝛿 (𝑘, 𝑘′) ⟨𝑐−𝑘′𝜎3𝛾𝑐𝑘′𝜎4𝛿⟩. (7.3)

The pair potentials are defined in terms of the anomalous particle non-conserving
expectations values that break the gauge symmetry. To minimize the free
energy of the mean-field model the pair-potential should be self-consistent,
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meaning that both sides of Eq. (7.3) are equal when the expectation values are
evaluated for the pair potentials on the left-hand side. Despite the finite anoma-
lous expectation values, it is possible to diagonalize the mean-field Hamilto-
nian using the canonical transformations introduced byBogoliubov andValatin
[275, 276]. For this purpose, we introduce the block Nambu-spinor

𝑋𝑘 = ({𝑐𝑘,↑}, {𝑐𝑘,↓}, {𝑐†
−𝑘,↑}, {𝑐†

−𝑘,↓})𝑇 , (7.4)

containing particle and hole degrees of freedom. Using the Nambu basis, the
mean-field Hamiltonian has a BdG bilinear form

𝐻̂BdG = ∑
𝑘

𝑋†
𝑘 ( 𝜉(𝑘) Δ(𝑘)

Δ†(𝑘) −𝜉𝑇
𝑁(−𝑘)) 𝑋𝑘 + 𝐶

= 𝑋†
𝑘𝐻BdG(𝑘)𝑋𝑘 + 𝐶 ,

(7.5)

where all the particle non-conserving terms enter in the off-diagonal blocks
Δ(𝑘). While it at first appears as though the total number of degrees of freedom
have been doubled in the transition to the Nambu basis, the fact is that the
BdG matrix necessarily has a particle-hole symmetry where each eigenstate
has a partner state with the opposite energy. Explicitly, the bilinear form is
diagonalized by a unitary transformation of the following block structure

𝑈(𝑘) = ( 𝑢(𝑘) 𝑣(𝑘)
𝑣∗(−𝑘) 𝑢∗(−𝑘)) . (7.6)

In the resulting diagonal representation the eigenstates are partitioned in to two
blocks of opposite energy ±𝐸.

𝑈(𝑘)†𝐻BdG(𝑘)𝑈(𝑘) = ℰ(𝑘) = diag({𝐸(𝑘)}, {−𝐸(−𝑘)}). (7.7)

As a result, there is no contradiction in the total number of degrees of freedom
within the Nambu basis. The benefit of the Nambu basis is that the model can
directly diagonalized since accompanying the diagonalization is a canonical
transformation

𝑌𝑘 = ({𝛾𝑘,↑, }{𝛾𝑘,↓, }{𝛾†
−𝑘,↑}{𝛾†

−𝑘,↓})𝑇 𝑋𝑘 = 𝑈(𝑘)𝑌𝑘, (7.8)

that defines the fermionic Bolgoliubov quasiparticles. Since the Bolgoliubov
quasiparticles are arrived at via a canonical transformation, the Bolgoliubov
quasiparticles obey the standard Fermi-Dirac statistics of fermions, such that
only the diagonal expectation values are non-zero and given by the Fermi-
Dirac distribution function ⟨𝛾†

𝑘𝛼𝜎𝛾𝑘𝛼𝜎⟩ = 𝐹𝛽(𝐸𝑘𝛼𝜎) for any inverse tempera-
ture 𝛽. Consequently, any expectation value of the mean-field Hamiltonian can
be evaluated by using the inverse transformation to express the desired expec-
tation value as a linear combination of the occupation numbers of the Bolgoli-
ubov quasiparticles. In particular, this is also true of the mean-field expectation
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values ⟨𝑐−𝑘′𝜎3𝛾𝑐𝑘′𝜎4𝛿⟩ that enter the self-consistency equation, Eq. (7.3). The
self-consistency equation can therefore be expressed for the unknown pair po-
tentials. The resulting equation is non-linear and is generally difficult to solve
beyond simple models. In practice, the self-consistency equation therefore of-
ten has to be solved numerically by iterating the equation after starting from an
initial guess of the pair potentials until a self-consistent fixed point is found.
To connect back to the previous section and the critical temperatures, it is

instructive to derive the critical temperatures of the general BCS model of
Eq. (7.1) for the rather simple case of a single band metal with a symmetric
dispersion 𝜉(𝑘) = 𝜉(−𝑘). In this case the general expression of the critical
temperature 𝑇𝑐 in Eq. (6.5) becomes

Δ𝜎𝜎′(𝑘) = ∑
𝑘𝜏𝜏′

𝑉 𝜎𝜎′𝜏𝜏′(𝑘, 𝑘′) tanh(𝛽𝑐𝜉𝑘′/2)
2𝜉𝑘′

Δ𝜏𝜏′

𝑘′ , (7.9)

up to a conventional numerical factor that can be absorbed in the definition
of the interaction 𝑉 . By taking the continuum limit, the sum over the crystal
momenta are replace by a corresponding integral. The integration over the mo-
menta can in turn be expressed as an integral over the constant energy surfaces
in reciprocal space of the band dispersion 𝜉(𝑘) and the energy. After these two
steps, the linear gap equation becomes,

Δ𝜎𝜎′
𝑘 = ∑

𝜏𝜏′
∫d𝜉 ∫

𝑆(𝜉)

d𝑆
𝑣𝐹 (𝑘′) 𝑉 𝜎𝜎′𝜏𝜏′(𝑘, 𝑘′) tanh(𝛽𝑐𝜉/2)

2𝜉 Δ𝛼𝛽
𝑘′ , (7.10)

where d𝑆 is the surface element on the constant energy surface 𝑆(𝜉), which
is weighted by the density of states that is inversely related to the Fermi ve-
locity perpendicular to the surface 𝑣𝐹 (𝑘) = ∇𝜉𝑘 ⋅ ̂𝑘. In standard BCS theory,
the potential 𝑉 is assumed to be attractive within a narrow range of energies
of the Fermi energy, consistent with an electron-phonon coupling. With this
assumption, the energy integral is restricted to |𝜉𝑘| ≤ ℏ𝜔𝑐, where the small cut-
off energy 𝜔𝑐 defines the attractive region. Assuming that 𝜔𝑐 is small and that
𝑣𝐹 is both finite and smooth, then both 𝑣𝐹 and 𝑉 can be also taken as radially
constant. With these assumptions, the energy integral can be factored in the lin-
earized self-consistency equation with the value,∫ℏ𝜔𝑐

−ℏ𝜔𝑐
tanh(𝛽𝑐𝜉/2) d𝜉/(2𝜉) ≈

ln (1.14𝛽𝑐ℏ𝜔𝑐) , for 1 ≪ 𝛽𝑐ℏ𝜔𝑐. After the factorization the self-consistency
equation

Δ𝜎𝜎′
̂𝑘 = ln (1.14𝛽𝑐ℏ𝜔𝑐) ∑

𝛼,𝛽
∫
FS

d𝑆
𝑣𝐹 ( ̂𝑘′)

𝑉 𝜎𝜎′𝜏𝜏′( ̂𝑘, ̂𝑘′)Δ𝛼𝛽
̂𝑘′ (7.11)

is clearly an eigenvalue problem. If 𝜆 is the largest eigenvalue of the kernel
containing the interactions, then the critical temperature will satisfy 𝑘𝐵𝑇𝑐 =
1.14ℏ𝜔𝑐e−1/𝜆. The original BCS result with 𝜆 = 𝜌(𝜖𝐹 )𝑉 is then obtained by
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also assuming a constant density of states 𝜌(𝜖𝐹 ) around the Fermi energy and
that the interaction 𝑉 only enters one spin channel [53]. At the same time, the
Fermi velocity 𝑣𝐹 ( ̂𝑘) enters the denominator in Eq. (7.11). It is therefore clear
that the above standard BCS result for the critical temperature is invalid when
encountering a flat band or a van Hove singularity where the Fermi velocity
vanishes, which instead leads to the alternative expressions for the critical tem-
perature detailed in Sec. 3.

7.1 Pairing Symmetry
The superconducting state is distinguished by a broken 𝑈(1) gauge symmetry
and by the associated existence of anomalous Green’s functions with of non-
zero finite values, where the time-ordered anomalous expectation values,

𝐹 𝜎1𝜎2
𝛼𝛽 (𝑟1, 𝑡1, 𝑟2, 𝑡2) = ⟨𝒯𝑐𝑟1𝜎1𝛼(𝑡1)𝑐𝑟2𝜎2𝛽(𝑡2)⟩, (7.12)

describe the bound Cooper pairs within the superconductor and is called the
pair amplitude. The quantum statistics of Fermions places a restriction on the
possible pairing symmetries. For at equal times 𝑡1 = 𝑡2 = 𝑡, the two fermionic
operators anti-commute, {𝑐𝑟1𝜎1𝛼(𝑡), 𝑐𝑟2𝜎2𝛽(𝑡)} = 0. A simultaneous inter-
change of all the indices of the anomalous Green’s function has therefore to
result in an overall sign change,

𝐹 𝜎1𝜎2
𝛼𝛽 (𝑟1, 𝑡, 𝑟2, 𝑡) = −𝐹 𝜎2𝜎1

𝛽𝛼 (𝑟2, 𝑡, 𝑟1, 𝑡). (7.13)

It is therefore evident that a finite pair amplitude can not have all indices equal,
which is just a restatement of the Pauli principle that no two Fermions are al-
lowed to occupy the same quantum state. This is also the reason why Eq. (7.13)
places a limitation on the possible non-vanishing pair-amplitudes. By intro-
ducing the separate permutation operators for each set of indices, then the con-
dition imposed by the Fermi statistic can be written succinctly as an operator
identity 𝑆𝑃 𝑂 = −1, where the operator 𝑆 interchanges the spin indices, 𝑃
the position indices, and 𝑂 the orbital indices.
The act of interchanging any pair of indices twice, necessarily brings the pair

amplitude back to its starting value, and therefore the permutations are idempo-
tent, 𝑆2 = 𝑃 2 = 𝑂2 = 1. Consequently, the eigenvalues of each permutation
are restricted to±1. In addition, because the three permutation operators act on
different non-overlapping sets of indices, the permutation operators commute,
as the order in which any two permutations are applied does not matter. The
permutations can therefore be simultaneously diagonalized. As a result, the
superconducting pair-amplitudes can be resolved according to their signature
with respect to the permutation operators. Enumerating the possibilities, it is
clear from the requirement𝑆𝑃 𝑂 = −1 that either one or all three permutations
must result in a sign change. There are therefore four distinct possibilities. The
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nomenclature for the classification is spin singlet/triplet, odd/even parity, and
orbital singlet/triplet.
An important fact is that the classification with respect to the permutation

operators intertwines with the additional symmetries of the non-interacting
system further characterizing the possible states. We first note that, as stated
in Sec. 6, the linearized self-consistency equation Eq. (6.5) has the same sym-
metry as the non-interacting part of the Hamiltonian 𝐻0, i.e is left invariant
under a group of symmetry transformations 𝒢. The symmetry operations of
𝐻0, 𝑔 ∈ 𝒢, therefore also have a representation on the space of the order pa-
rameters. Consequently, the linear self-consistency equation is block diagonal
in the irreducible representations (irrep) of the symmetry group 𝒢. All eigen-
values therefore belong to a definite irrep. Necessarily, any superconducting
order breaks the 𝑈(1) gauge symmetry since the pair potentials are not invari-
ant under a global gauge transformation. If however the superconducting order
breaks any additional symmetry beyond the 𝑈(1) gauge symmetry, i.e. trans-
forms as a higher order irrep of 𝒢, then it is called unconventional [92].
To see how the symmetries of the system affects the symmetry classification

of the pair amplitudes, we consider the concrete case of a simple single-band
metal that is additionally both spin and spatially isotropic. The relevant sym-
metry group in this case is therefore comprised of the gauge symmetry 𝑈(1),
the spatial rotations in the group 𝑆𝑂(3) (assuming three dimensions), and the
spin-rotations in 𝑆𝑈(2)which in total gives𝒢 = 𝑈(1)×𝑆𝑂(3)×𝑆𝑈(2). Be-
cause the superconducting order parameter is comprised out of two spin-1/2
particles, the action of the spin-rotations has two irreps, the one-dimensional
singlet irrep and the three-dimensional spin-triplet irrep, both arising from the
direct product of the two spin-1/2 representations. The irreps of spatial rota-
tions in 𝑆𝑂(3) are labeled by their total angular momentum 𝑙 = 0, 1, 2 … each
with a (2𝑙 + 1) dimensional basis. For historical reasons, the 𝑆𝑂(3) irreps are
also referred to as 𝑠, 𝑝, 𝑑, 𝑓, 𝑔, …-wave, starting from the lowest angular mo-
mentum representation. Because all even-𝑙 (odd-𝑙) irreps have an even (odd)
parity, it follows that a superconducting order parameter with an even 𝑙-wave
symmetry must necessarily have a spin-component that is singlet (odd under
spin index) to satisfy the statistics condition 𝑆𝑃 = −1, since 𝑂 = 1 for a sin-
gle band. The possible superconducting orders therefore include spin-singlet
𝑠-wave and spin-triplet 𝑝-wave, but for instance not triplet 𝑠-wave.
For crystals that instead have a discreet number of rotational symmetries, a

similar enumeration of the possible pairing symmetries can be made with re-
spect to the irreps of the relevant crystal point group [92]. Typically, even in
this case the orders are still referred to within the 𝑠, 𝑝, 𝑑, …-wave nomenclature
where the relevant angular momentum label is inferred from the symmetry of
the basis functions of the respective irrep to which the order belongs. An im-
portant distinction is that below the critical temperature the self-consistency
equation Eq. (7.3) is no-longer linear, due to the already finite order parame-
ters entering the Hamiltonian. Because of the non-linearity as well as the re-
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duced symmetry due to the finite order parameters, the symmetry degeneracy
found at the critical temperature can be lifted so that different irreps may mix.
Another possibility is that a further symmetry breaking occurs below the crit-
ical temperature. In such cases, multi-component orders may emerge, e.g. an
(𝑠+𝑑)-wave, or that some preferred linear combination, e.g. a time-reversal
breaking (𝑑+i𝑑)-wave, emerges.

7.2 Odd-Frequency Superconductivity
The standard BCS theory is formulated in terms of the equal time anoma-
lous expectation values. On the other hand, the pair correlations generally ex-
pressed by the pair amplitudes by Eq. (7.12) extend beyond equal times to finite
time differences. While the fermionic anti-commutation relation strictly holds
only at equal times, the properties of the time-ordering however implies that the
pair amplitudes of Eq. (7.12) can be shown to also satisfy 𝑆𝑃𝑂𝑇 = −1, where
in addition to the previously introduced operators the operator 𝑇 interchanges
the time-coordinates of the anomalous Green’s function. A direct consequence
of including 𝑇 is that the resulting classification of the superconducting pair
amplitudes is immediately doubled in size, to a total of 8 possibilities. The
additional possibilities correspond to pairing amplitudes that are odd in the
time coordinates. Historically, the two possible signatures with respect to the
operators 𝑇 are referred to as odd- and even-frequency (odd-𝜔 and even-𝜔)
superconductivity, and the idea of odd-𝜔 superconductivity was originally in-
troduced by Berezinskii [46]. At equal times, the distinction introduced by 𝑇
does not matter, because any odd-𝜔 components necessarily vanishes at equal
times, but the distinction matters for finite time correlations. In particular, the
possibility of odd parity with respect to the operator 𝑇 is able to absorb a sign
change in the 𝑆𝑃 𝑂𝑇 signature, thus allowing the remaining permutations to
take on different signatures than at equal time. As an example, a triplet 𝑠-wave
pairing state is possible but only if it is also odd in time.
The fact that the odd-𝜔 pair amplitudes can only be non-zero at finite time-

differences, does however make odd-𝜔 superconductivity somewhat elusive,
since correlations do not by themselves directly contribute to static measure-
ments. In particular, while Berezinskii proposed odd-𝜔 superconductivity as
an intrinsic order [46], the restriction of all pairing to non-equal times chal-
lenges attempts to define a corresponding order parameter, entering the free
energy, and producing an intrinsic thermodynamically stable superconducting
phase [277, 278]. Investigations into intrinsic bulk odd-𝜔 states are however
still ongoing [278]. Still, yet another possibility in which odd-𝜔 can appear
is instead by the scattering of Cooper pairs originating from an already ex-
isting superconducting order with a traditional even-𝜔 order parameter. The a
necessary condition for such pair scattering is the existence of at least some hy-
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bridization between states of different indices, e.g. spin or band index, which
in general introduces many possibilities for odd-𝜔 pairing to occur.
In fact, there is a growing realization that odd-𝜔 components are regularly

generated whenever a symmetry braking structure, such as an interface or het-
erostructure, also involves a superconductor. The underlying generative pro-
cess in such cases is that an odd-𝜔 component is generated by a simultaneous
flip of two entries in the 𝑆𝑃 𝑂𝑇 signature so that the total sign change re-
mains invariant. For instance, at the interface of a normal metal conventional
superconductor junction, the isotropic 𝑠-wave even-𝜔 pairs of the parent su-
perconductor are able to scatter in to anisotropic 𝑝-wave odd-𝜔 pairs due to the
broken translational invariance at the interface [279–282], in which case the
spatial and the time parity both undergo a compensating flip. Similarly, odd-𝜔
pairing was also shown to be induced for spin-triplet parent superconductors
with a resulting unusual Meissner effect and appearance of zero energy states
[283–286]. Instead replacing the normal metal, odd-𝜔 pairings was likewise
shown to appear in superconductor-topological insulators heterostructureswith
accompanying predicted signatures of the pairing in the density of states [287,
288].
Even without a symmetry breaking structure, it was shown that odd-𝜔 pair-

ing is always present in multiband superconductors as long as there is a fi-
nite band hybridization among at least two non-equivalent bands [289, 290].
Multiband superconductors therefore present an instance where odd-𝜔 pairing
appears homogeneously throughout the bulk of a material [45]. Examples of
odd-𝜔 pairing in multiband systems includeMgB2 when placed in an magnetic
field [291] and Sr2RuO4 for which it is is predicted that a finite Kerr effect cor-
respond to a finite odd-𝜔 pairing [48]. The general condition for odd-𝜔 pairing
to appear in multiband systems is that 𝜉(𝑘)Δ(𝑘) − Δ(𝑘)[𝜉(−𝑘)]∗ ≠ 0, where
𝜉(𝑘) and Δ(𝑘) are the diagonal and off-diagonal blocks of the BdG matrix
[45]. At the same time, the quantity is one of the recently introduced super-
conducting fitness parameters that has however been shown to reduce the su-
perconducting critical temperature [45, 292, 293]. Odd-𝜔 pairing is therefore
deleterious to the superconducting order, but given the stringent condition for
the fitness parameters to be zero also means that odd-𝜔 pairing is nonetheless
expected to be an ubiquitous feature of multiband systems.
More in line with chronology, the importance of proximity induced odd-

𝜔 pairing was however drastically demonstrated by the prediction of a long-
ranged proximity effect in conventional superconductor-ferromagnet hybrid
structures [294–296]. At the interface, the spin-isotropy of the superconduc-
tor is broken by the inhomogeneous exchange field of the magnet, resulting
in proximity induced 𝑠-wave pairs of both spin-singlet and odd-𝜔 spin-triplet
symmetry. Well inside ferromagnet the singlet pairs are adversely affected by
the exchange field, but not the triplet pairs which instead are long ranged [294].
The existence of such proximity induced odd-𝜔 pairs is experimentally corrob-
orated by spectroscopy [52, 297], as well as response of an associated charac-
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teristic paramagnetic Meissner response [47, 51, 52]. Strong evidence for long
ranged spin-triplet pairs is provided in ferromagnetic Josephson junctions, es-
pecially through particular dependence on the magnetic interface layers [298,
299]. Further replacing the ferrromagnet with a half-metal precludes the prox-
imity induced spin-singlet pairs leaving only the odd-𝜔 spin-triplet pairs [50,
300], providing a basis for inferring spin triplet supercurrents observed in a
Josephson junction of the half-metal CrO2 [301].
The preceding mentioned examples shows that odd-𝜔 pairing appears ubiq-

uitously in many systems together with unusual experimental signatures in-
cluding optical response [290], the density of states [52, 287, 288, 297], super-
currents [50, 298–301], and a paramagnetic Meissner response [47, 51, 52].
While odd-𝜔 pairing opens up for exotic pairing symmetries, how such ex-
otic pair symmetries fare in the presents of disorder is less certain. Famously,
in what has become known as Anderson’s theorem, Anderson argued that the
electron pairing of BCS theory between opposite momenta would generalize
in the presents of strong scattering between pairing between time reverse states
[302]. The implication is that isotropic conventional superconductors are ex-
pected to be very robust against disorder that does not break time-reversal sym-
metry, so that even charge impurities scattering that is large compared to the
energy gap does not significantly suppress the superconducting critical tem-
perature or destroy the superconducting energy gap, which is also seen in full
scale BdG numerical analysis [303]. Unconventional pair symmetries are how-
ever not protected in a similar way by Anderson’s theorem and are therefore
generally expected to be incompatible with strong disorder. Whether similar
conclusions holds for the exotic non-equal time odd-𝜔 pairing is a less resolved
question. For instance, the odd-𝜔 spin-singlet 𝑝-wave pair correlations that ap-
pear in normal metal-conventional superconductor junctions have largely been
ignored because of the spatial anisotropy of the pair correlations and the as-
sumption that disorder will lead to isotropization [279, 304–306]. In Paper IV,
we however show that the odd-𝜔 𝑝-wave pair correlations are not only robust
against disorder, but that the ratio between the odd-𝜔 𝑝-wave and the isotropic
even-𝜔 𝑠-wave pair correlations actually increases for stronger impurity scat-
tering in the normal region. In fact, odd-𝜔 𝑝-wave pair correlations can as we
show even be generated by disorder.
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8. Linear Scaling Electronic Structure
Methods

In this section we consider numerical methods that are need to treat large quan-
tum mechanical systems and the general underpinning that enables such meth-
ods. In particular, the focus is onmethods that achieve a so called linear scaling
by carefully targeting required quantities and using beneficial properties of the
systems involved. Such methods are also the basis for our work presented in
Papers IV and V for which we have further adapted and developed such meth-
ods.
To start, we consider challenges that comes with a quantum mechanical de-

scription of condensed matter systems from a numerical point of view. First,
the Hamiltonian always gives a complete description of any condensed matter
system. This is because by definition the Hamiltonian is the time-evolution op-
erator, describing the motion of all particles of the system via the fundamental
Schrodinger equation. Condensedmatter systems are however comprised of an
macroscopic number of interacting particles. Their fundamental quantum me-
chanical description is therefore situated within an exponentially large Hilbert
space spanned by all the product Fock states of the system. The dimensionality
of the resulting problem therefore scales as 𝑁 ∼ 𝐿𝑑𝑀 for a system with linear
dimension 𝐿, in 𝑑 dimensions, and with a macroscopic number of particles𝑀 .
Consequently, a complete quantum mechanical description of any condensed
matter systems is therefore infeasible. Alternatively, non-interacting theories
keep the problemmanageable, while at the same time often offering a good ap-
proximate description, even of interacting systems, which is in large part due
to the Fermi-liquid paradigm presented in Sec. 2.1.1, even if there are many
important exceptions where strong correlations are very important. Given the
independent motions of the quasiparticles in an non-interacting system, there is
a significant simplification in that the system can be treated as a single particle
problem, requiring only that the quantum statistics is included as an additional
step. I particular, mean-field theory, as presented in Sec. 4, demonstrates the
versatility of the independent particle pictures, extending even to the super-
conducting state as in Sec. 7.
In any non-interacting theory, the Hamiltonian is quadratic in the field op-

erators, and the problem dimension has the same scaling as single quantum
particle with a total scaling as 𝑁 ∼ 𝐿𝐷. Given the linear unitary evolution
in quantum mechanics, the problem is captured by a Hamiltonian matrix that
proportional in size to the system dimensionality. However, the size of the
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problem is typically further reduced by symmetries that immediately block
diagonalizes the Hamiltonian matrix. For instance, in the crystallize phase,
characterized by translational invariance, the non-interacting problem is block
diagonal in the Bloch wave basis. Thus, with a full set of symmetries, non-
interacting condensed matter problems are often analytically solvable. While
interactions, defects, and heterostructures that reduce the symmetry of the sys-
tem can be treated perturbatively using analytical methods [307, 308], the chal-
lenges quickly become intractable and numerical approaches become neces-
sary. Numerically, the independent particle problem is completely solved by
eigenvalue diagonalization of the Hamiltonian matrix, since it is equivalent
to identifying all the solution of the time-independent Schrodinger equation.
From the eigenvalues and eigenfunction that are obtained in diagonalization,
any expectation values and correlation functions may be evaluated. While
modern diagonalization algorithms are very efficient and available in most nu-
merical libraries, the computation cost, time complexity, of diagonalization
scales as 𝑂(𝑁3) with an 𝑂(𝑁2) memory footprint.
The time complexity of diagonalization therefore becomes significant for

large problems. Consequently, for systems that naturally lack translation in-
variance from the presents of junctions, interfaces, edges, or disorder, even
eigenvalue diagonalization may become completely unrealistic. Additionally,
advances in fabrication aswell as experimentalmeasurement techniques, e.g. Scan-
ning tunnelingmicroscopy (STM) and spectroscopy, make atomistic resolution
increasingly relevant. Likewise, a growing number of condensed matter sys-
tems of high interest go beyond a homogenous bulk description in the thermo-
dynamic limit where symmetries dominate. This is for instance exemplified
by topological phases of matter, where some of the most interesting phenom-
ena occurs at the bulk to surface boundary which are therefore crucial to cap-
ture [119, 127]. Further examples are also offered by systems such as twisted
bilayer graphene or buckled graphene where an exotic electronic structure re-
sults from twist or strain engineering but also creates large scale patterns that
reduce the translation symmetry [248, 309]. Similarly, heterostructures and
careful device geometries are proving decisive in creating extraordinary mate-
rial properties.
For these types of systems the large growth in the number of unrelated de-

grees of freedom make diagonalization very costly. Two aspects limiting as-
pects of diagonalization also suggest how to proceed to achieve a more fa-
vorable scaling. First, diagonalization simply ask for too much information,
namely all the eigenvalues together with eigenvectors. In most applications
however only a handful of expectation values are required. A general way
to achieve a better scaling is therefore to directly targeting only the required
quantities instead of a complete description. Secondly, standard diagonaliza-
tion algorithms are general purpose and do not exploit advantages properties
of the system in question. When combining both there two aspects, it is pos-
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sible to find methods that achieve a linear scaling with respect to the system
size [310].
Underpinning linear-scaling methods is the physical intuition that a local

change even to a quantum system should not be felt sufficiently far away from
the disturbance. In other words, even quantum systems should possess some
degree of locality or nearsightedness [311], which in turn implies that when
expanding an already large system the time complexity should only increase
by the added degrees of freedom. Connected to such nearsightedness is the
fact that the interactions and hybridization of most condensed matter systems
are typically short ranged in part due to screening. It therefore often possible to
construct a description that short-ranged. Popular methods for their construc-
tion include the constructed of localized Wannier orbitals on the basis ab initio
methods as well as by semi-empirical modeling of atomic orbitals [67, 312–
315]. Mathematically, the advantageous property of such models is that the
Hamiltonian matrix in such a description has a high degree of sparseness and
that the one-particle density matrix decays rapidly as a function of separation
between degrees of freedom [310, 311].

8.1 Fermi Operator Expansion Method
We do not thoroughly review the field of linear scaling electronic structure
methods and their applications, see e.g. [310, 316, 317], and focus instead on
Fermi operator expansion techniques that target the expectation values of an
non-interacting system by approximating the one-particle density matrix. In
a diagonal representation of the Hamiltonian matrix 𝐻 with eigenvalues 𝜖𝑛
and the eigenvectors |𝑛⟩, the one-particle density matrix is given by 𝐹𝛽(𝐻) =
∑𝑛 𝐹𝛽(𝜖𝑛)|𝑛⟩⟨𝑛|, where the diagonal elements 𝐹𝛽(𝜖𝑛) are the Fermi-Dirac
distribution at the inverse temperature 𝛽 which give the occupation probability
of each eigenstate in equilibrium. The general approach of Fermi operator
expansion techniques is to avoid a a transition to the diagonal representation
by instead directly approximating the one-particle density matrix 𝐹𝛽(𝐻) as a
matrix function.
To motivate such Fermi operator expansion techniques assume the exis-

tence of a polynomial approximation of the Fermi-Dirac distraction such that
𝐹𝛽(𝐻) ≈ ∑𝑀

𝑛=0 𝑐𝑛𝐻𝑛 for some coefficients 𝑐𝑛. To see the beneficial features
of such a representation, note first that individual entries of𝐹𝛽(𝐻) can be com-
puted [𝐹𝛽(𝐻)]𝑖𝑗 = ⟨𝑖|𝐹𝛽(𝐻)|𝑗⟩ requiring only that the operator is applied to
one of the corresponding state vectors and subsequently taking the inner prod-
uct. Evaluating the individual entries therefore can therefore be achieved using
only matrix-vector multiplication. Note also that when the operator 𝐹𝛽(𝐻) is
applied to an initial state vector, the increasing powers of 𝐻 will propagate the
state around in an expanding neighborhood of the initial state. These two fea-
tures make is so that the polynomial expansion method naturally uses both the
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assumed locality of the quantum system, but also targets the only the required
expectation values. If the matrix 𝐻 is spare, the the scaling will be linear,
since the required spare matrix-vector multiplication is itself linear with the
size of the matrix. In addition the multiplication step is readily parallelized.
The method therefore works exceptionally well for truly localized states such
as insulators with an insulating energy gap. While the above discussion serves
to motivate the polynomial method and its beneficial features, a straightfor-
ward power iteration of the Hamiltonian can however be numerically unstable,
but the situation is readily remedied by instead expanding the Hamiltonian in
a suitably defined set of recursively defined orthogonal polynomials [316].
Having motivated and shown the essential features of the Fermi operator

expansion techniques, we next turn our attention to our adaptations of such
techniques. Motivated in part by the desire to investigate the odd-frequency
pairing in inhomogeneous systems, we in Paper III extend and combine the
Fermi operator expansion technique with the Chebyshevmethod for single par-
ticle wave-packet propagation widely used in quantum chemistry [318–321],
resulting in a method that we call EPOCH that we also used to obtained the
results of Paper IV. Importantly, the method is formulated within the BdG
formalism of Sec. 7 and therefore applicable to superconducting systems. A
central step is to extend the one-particle density matrix in time and consider
the Equilibrium Propagator (EP) given by 𝐿𝛽(𝐻BdG, 𝑡) = e−𝑖𝐻BdG𝑡𝐹𝛽 (𝐻BdG).
As we show in Paper III, the matrix elements of 𝐿𝛽(𝐻BdG, 𝑡) are the lesser
𝒢<(𝑡), greater 𝒢>(𝑡), and anomalous Green’s functions ℱ(𝑡). The other con-
ventionally defined Green’s functions, including the retarded, advanced, and
time-ordered versions can also be found by taking the appropriate linear com-
binations of these Green’s functions. The main result of Paper IV and the basis
of the EPOCHmethod is that the EP can be directly computed from a series ex-
pansion containing the Legendre polynomials of the BdG Hamiltonian matrix
𝑃𝑛( ̃𝐻BdG).

𝐿𝛽(𝐻BdG, 𝑡) = 1
𝑖 (𝒢<(𝑡) ℱ(𝑡)

ℱ†(𝑡) [𝒢>(𝑡)]∗)

= 1
2

∞
∑
𝑛=0

(2𝑛 + 1)(−𝑖)𝑛(𝑗𝑛( ̃𝑡) + 𝑖𝑓𝑛
̃𝛽 ( ̃𝑡))𝑃𝑛( ̃𝐻BdG) .

(8.1)

A requirement is however that the Hamiltonian 𝐻BdG is rescaled so as to fit
the standard domain of the polynomial 𝑃𝑛(𝑥), achieved by a rescaling of the
Hamiltonian and time accordingly by 𝐻̃ = 𝐻/ ‖𝐻‖ and ̃𝑡 = ‖𝐻‖ 𝑡. Eq. 8.1
directly generalizes the Chebyshev method wave-packet propagation method
by extending the time-dependent part to also include the full quantum statis-
tics of fermions. In addition to the spherical Bessel functions 𝑗𝑛( ̃𝑡), the time-
dependence in the EPOCH methods therefore also contains projective tran-
sients 𝑓𝑛

̃𝛽 ( ̃𝑡) that contains all the temperature dependence and account for the
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quantum statistics. As we show, the 𝑓𝑛
̃𝛽 ( ̃𝑡) can be generated from a recurrence

relationship that we derive, so that the Green’s functions can then be efficiently
computed with a linear scaling similar to the Chebyshevmethod [318]. The ad-
ditional details of the computations are presented in Paper III and not repeated
here.
A limitation of polynomial Fermi operator expansion methods is that at

low temperature the polynomials are unable to accurately represent the sharp
cut-off of the Fermi surface in metals. The limitation generally requires that
one goes beyond the polynomial class of functions. In particular, in ratio-
nal pole expansion methods the Fermi operator 𝐹𝛽(𝐻) = (𝑒𝛽𝐻 + 1)−1 ≈
∑𝑁𝑝

𝑛=1 𝑅𝑛/(𝛽𝑧 − 𝑃𝑛) is instead approximated by a set of 𝑁𝑝 simple complex
poles, at 𝑃𝑛 with resides 𝑅𝑛 [310, 322]. While there are several pole repre-
sentations of the Fermi-Dirac distribution to choose from [323–325], recently
derived sets of poles are distinguished by the fact that the number of required
poles only scales with the logarithm of the inverse temperature [326, 327].
Such logarithmically convergent sets of poles have therefore greatly reduce
the resulting computational complexity at low temperatures. In the method
appendix of Paper V, we therefore show how to used the accompanying ratio-
nal pole expansions within the the BdG formalism of Sec. 7 to compute both
the normal and anomalous expectation values in a superconducting state from
the matrix elements of the Fermi operator 𝐹𝛽 (𝐻BdG) of the BdG Hamiltonian
matrix. A strong point of this approach is that it can also be used to compute
the static response in the expectation values due to any perturbation 𝜆 to𝐻BdG.
The reason is that for any matrix 𝐴𝜆 the derivative with respect to the 𝜆 of the
inverse matrix involves just the change 𝜕𝜆𝐴𝜆 and the product of two inverse:
𝜕𝜆𝐴−1

𝜆 = −𝐴−1
𝜆 [𝜕𝜆𝐴𝜆]𝐴−1

𝜆 As we show in Paper V, the rational pole expan-
sion can therefore be used to solve both the full non-linear and the linearized
self-consistency for the pair potentials.
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9. Summary of Results

Aswe have argued in this thesis, the recent newmaterial classes of two-dimensional
materials as well as certain classes of topological matter have greatly expanded
the total number of materials with robust, large, even singular, DOS peaks, that
have recently gathered large attention due to their extremely large ordering
susceptibility, making them exceptional hosts of exotic ordered states, includ-
ing superconductivity. In Sec. 3, we presented examples of concrete materi-
als from these new classes of materials that include graphene, rhombohedral
graphite, and twisted bilayer graphene (TBG).
Motivated by these developments, we considered the important question of

competing orders near large DOS peaks. In Paper II, we show that while all
possible conventional symmetry breaking ordered states are in fact equally en-
hanced from a large DOS peak near the Fermi level, superconductivity is in
contrast enhanced by the DOS peak over a much wider region of the phase
diagram when compared to all other possible conventional orders. A direct
consequence is the large probability by which this difference will generate su-
perconducting domes on the flanks of DOS peaks, accessible by doping or by
electric gating. Since even in the case when a non-superconducting order is
initially stronger, a shift in the chemical potential will drastically weaken the
non-superconducting order when compared to any tendency towards a super-
conducting order. Thus uncovering the superconducting order on the flanks.
We establish these results by deriving fully universal doping dependence rela-
tionships for the critical temperatures of conventional orders that are indepen-
dent of microscopic details. That the results are completely general is one of
the strong points, and we also rigorously derive criteria for when the results
are applicable, showing that the results are true as long as the DOS peak is
narrow compared to the energy scale of the interactions. We also show that the
general results hold true to a very good approximation and over wide ranges
of coupling strengths in full scale atomistic models. Specifically we consider
both the completely flat topologically protected surface flat bands of ABC-
stacked rhombohedral graphite and the van Hove singularity in heavily doped
graphene, where for both systems we consider both superconducting and com-
peting magnetic orders. In the case of rhombohedral graphite, we also show
that the tuning of the chemical potential can equally well be accomplished
by applying a displacement field on the graphite stack. The results of Paper
II therefore show that the DOS peaks arising in many newly discovered con-
densed matter platforms not only have a strong ordering tendency but that they
are also uniquely suited for unusual and high temperature forms of supercon-
ductivity.
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We also point out that the results of Paper II are consistent with both recent
renormalization group and quantum Monte Carlo calculations that explicitly
consider the competition between many-body instabilities in graphene close
to the van Hove filling [232, 233, 328], showing that superconducting orders
compete especially favorably on the flanks of the van Hove filling, where in
particular the six-fold symmetry of the honeycomb lattice ubiquitously pro-
motes an unconventional time-reversal-breaking 𝑑+i𝑑 chiral superconducting
state [32–35, 329].
In Paper I, we further show that despite its exotic and unconventional nature

the 𝑑+i𝑑-wave superconducting state proposed to appear in graphene doped
close to the van Hove singularity is surprisingly robust against defects. In fact
as we show, in the vicinity of either a single lattice vacancy or even a rota-
tional symmetry breaking bivacancy, the recovery length of the 𝑑+i𝑑 state is
comparable to that of a conventional 𝑠-wave state which is directly protected
by Anderson’s theorem [302]. Further demonstrating that the 𝑑+i𝑑-wave state
is quite resilient to defects, we show that while charge defects and lattice va-
cancies introduce a set of localized midgap states within the full energy gap of
the 𝑑+i𝑑-state, the midgap states are very localized and have an energy that is
always finite, keeping the superconducting gap intact. The impurity induced
midgap states offer simultaneously an accessible experimental signature of the
𝑑+i𝑑-wave. Thus, despite the fact that attempts to significantly dope graphene
closer to the van Hove singularity are also likely to introduce large amount of
disorder, the disorder robustness of the chiral 𝑑+i𝑑-wave state means that a
realization of this exotic topological superconducting state remains promising.
In the single graphene sheet, the chiral superconducting state is ubiquitously

favored [32, 33, 35, 329], while as we rigorously show in Paper V, using full
scale atomistic modeling, a nematic superconducting state is instead and unex-
pectedly favored in TBG close to the so-called magic twist angle. At this angle
the long scalemoiré pattern generates vanHove singularities and even flat band
states with corresponding large peaks in the density of states. Both the corre-
lated insulating and superconducting states within these flat bands have been
of immense research focus since their experimental discovery [39, 40]. Simul-
taneously, the very large moiré patterns involved have challenged attempts to
accurately describe the superconducting state in TBG. While several effective
models have previously been developed, it has also led to a proliferation of
models and predictions.
In Paper V, we therefore model each carbon atom with the added benefit

that we are able to introduce unambiguous local interactions responsible for
the superconducting state, but also that we maintain a full real space resolu-
tion. The general pairing mechanism that we employ is not only consistent
and motivated by recent experiments, it is also the same pairing mechanism
previously used for graphene, as in our Paper I. The results that we find for
TBG can therefore also be directly compared to those of graphene but also to
the high-temperature cuprate superconductors with which TBG shares many
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distinct phase diagram features. Despite the very large 104 of carbon atoms
within the moire unit cell and a dense 𝑘-point sampling, we solve both the lin-
earized and the full non-linear gap equations using the linear scaling method
described in Sec. 8. Importantly, we find experimentally relevant supercon-
ducting transition temperatures already for weak and highly realistic coupling
strengths. Our combined approach also allows us to produce new insights by
tracing the development of the nematic state. In particular, we rigorously show
the symmetry imposed degeneracy at the critical temperature (𝑇𝑐) is lifted be-
low 𝑇𝑐, leading to a nematic state with a real valued order parameter. At the
same time this analysis shows that the time-reversal-symmetry breaking 𝑑+i𝑑-
wave has the largest energy within the degeneracy manifold. The appearance
of a nematic superconducting state is consistent with recent experimental data,
showing that the nematicity between the superconducting and the normal state
is different [330]. With unprecedented resolution, we further show that the
nematic superconducting phase is fully gapped and is spatially highly inhomo-
geneous with nematic ordering both on the full moire lattice scale developing
a global 𝐶2 axis and with an intricate vortex pattern in the local orientation
of the 𝑑-wave pairing. We further tie the finite superconducting energy gap
of the nematic superconducting order to an unusual and very strong 𝜋-locked
Josephson coupling between the two layers. The atomic resolution, also al-
lows us to show that the nematic state has clear signatures directly in the local
density of states, offering a clear experimental signature that can for instance
be measured using scanning probe microscopy.
In Paper IV, we present the very surprising result that exotic odd-frequency

𝑝-wave pairing not only survives but even thrives in a disordered normal metal-
conventional superconductor (NS) junction, despite the anisotropy of the odd-
frequency pairing. In fact, the odd-frequency pairing constitutes a growing
fraction of the proximity-induced pair correlations in the N region, even com-
pared to both the local and non-local isotropic pair correlations that are as-
sumed to be disorder robust. To obtain these results, we perform fully quantum
mechanical calculations on a large scale model dirty NS junction with random
charge (Anderson) disorder. Prior to our work and given that most work has
been done with in the quasi-classical framework where the anisotropic com-
ponents automatically vanish in the dirty limit [279, 305], the odd-frequency
𝑝-wave correlations were almost completely ignored in suchNS junctions. Our
results therefore show that the true quantum mechanical behavior of such sys-
tems for both weak and very strong disorder is remarkably different, where the
anisotropic odd-frequency 𝑝-wave correlations are robust and are even gener-
ated by disorder.
To obtain the odd- and even-frequency pair correlation in Paper IV, we used

the EPOCH method that we developed and presented in Paper III (see also
Sec. 8.1). The EPOCH method is a generalization of the widely used and effi-
cient Chebyshev method for single particle wave-packet propagation method
from quantum chemistry [318–321]. Our generalization extends the method
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by incorporating the full equilibrium statistics of fermions as well as by cap-
turing both the normal and anomalous Green’s functions, where the anoma-
lous Green’s functions are required for superconducting systems and for odd-
frequency superconductivity. The very favorable computational cost of the
Chebyshev method is maintained in the EPOCH method. In fact, the prop-
agation has the same general form as in the Chebyshev method but with the
addition of a new projective part that we derive and which captures all of the
quantum statistics and all temperature dependence. Since this projective mode
is easily computed from a closed recurrence relationship and can be tabulated
ahead of time, the EPOCH method scales linearly in the system degrees of
freedom and can therefore readily and accurately be used to compute the time-
domain Green’s function even in very large systems, such as in Paper IV.

9.1 Conclusions and Outlook
In summary, the results of this thesis point towards new avenues for realizing
exotic unconventional forms of superconductivity. We have shown that super-
conducting states are generally and especially favored close to peaks in the den-
sity of states that are readily created in for instance two-dimensional materials
and in topological semimetals. Where at the same time, the recently recognized
geometric contributions to the superfluid weight allow for a true superconduct-
ing state. We have also shown that even highly unconventional superconduct-
ing orders such as the chiral 𝑑+i𝑑 in graphene and the odd-frequency 𝑝-wave
pairing at NS junctions are remarkably robust towards disorder.
At the same time the general results of Paper II were derived within mean-

field theory and do not include the effects of fluctuations. A future research
direction is therefore to explore the extent to which these results are modi-
fied when many-body correlations and the effects of quantum fluctuations are
included. Going beyond mean-field theory is in general difficult, especially
when trying to sort out competing orders. A promising fact is that the BCS
wave function is an exact ground state of certain interacting flat band mod-
els [207, 331], but one that does not directly address the order competition as
a function of the band filling. Because the results of Paper II stem from the
fundamental differences in the polarizabilities of the superconducting and non-
superconducting ordering channels, we however speculate that similar conclu-
sions will continue to hold even when beyond mean-field effects are included.
In fact, the difference between the two channels might even become more pro-
nounced, while still generally valid. A hint comes from the flow equations
seen in functional renormalization group (FRG) theory where, at least to the
one-loop corrections, the particle-particle and particle-hole channel suscepti-
bilities directly enter in the flow equations [332, 333]. FRG has the added
benefit of being in principle exact and treating the competition order between
different channels on an equal footing. For systems with a singular DOS of a
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flat dispersion, a careful choice of flow parameter is however required [334,
335].
In the case of graphene and twisted bilayer graphene (TBG), a further im-

portant question is to disentangle the factors that determine the competition
between the chiral and nematic superconducting states. These two possibili-
ties arise from the symmetry imposed degeneracy of the 𝑑-wave solutions that
belong to the𝐸 irreducible representation and that undergo a further symmetry
breaking below 𝑇𝑐. While several recent work show that coupling to another
superconducting ordering channel or a Bosonic fluctuation can lead to a fa-
voring of the nematic state in TBG [336–338], the results of Paper V show
that the Nematic state is directly favored in the 𝐸 irrep, corresponding to an
unexpected sign change in the Landau free energy functional.
At the same time, TBG already gives an example of how van Hove sin-

gularities can be engineered in two-dimensional heterostructures and the rich
physics that can emerge. The fact that periodic structures in two-dimensions
necessarily have van Hove singularities also points to the general fact that they
can be engineered or artificially created [339], pointing towards another possi-
bly fruitful research direction. Already TBG analogs have been suggested by
adding a relative twist angle in layered materials [340], such as twisted bilayer
transition metal dichalcogenides [341].
The results of paper IV shows that odd-frequency 𝑝-wave pairing is both

robust against and generated by disorder, but the finding also asks how to fur-
ther measure these correlations and their implications for the superconducting
state. A research question is therefore to develop a more general theory of
the stability of finite time superconducting pair correlations, and simultane-
ously pursuing further experimental implications of these correlation. A natu-
ral starting point for such experimental signatures are dynamic measurements
such as a the Meissner response [47] or signatures in Jospehson junctions [49,
280, 342]. Since odd-frequency pairing has been related to a superconducting
fitness parameter and a suppression in 𝑇𝑐 [293], one might even ask if odd-
frequency pairing and its generation with disorder is also related to the over all
stability of the superconducting state.
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