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Defects from impurities, edges, junctions or domain walls have local detrimental effects on the
superconducting state. Defects are also important in topological superconductors, and useful
in studying the properties of the superconducting order parameter. In the former case, gapless
edge states appear as a consequence of the bulk-edge correspondence, which relates the edge
states to the change in bulk topological invariants across the edge. In the latter case impurity
scattering of electrons modifies the density of states locally and may (or not) lead to the appear-
ance of subgap states depending on the nature of the impurity and the superconductor. Due
to these telltale effects of defects in topological superconductors, this Thesis uses defects to
probe topological superconductors. The studies are divided into two parts. In the first part Majo-
rana bound states at the ends of one-dimensional topological superconductors are studied. The
Majorana bound states at the ends of magnetic chains are found very stable in a disordered su-
perconducting medium, as long as the superconducting order parameter does not vanish locally.
Also junction formed in a nanowire in proximity to two superconductors is found to give rise
spontaneously to trivial zero-energy states that imitate Majorana bound states, due to finite
size effect of the superconductors. However, there is a sign reversal in the supercurrent when
trivial zero-energy states are present at the junction, as magnetic field is tuned, whereas the
supercur-rent does not exhibit such sign reversal when Majorana bound states are present at the
junction. Thus, supercurrent serves as a tool for distinguishing between Majorana bound states
and trivial zero-energy states. The second part is devoted to unconventional and topological
superconduc-tivity in graphene. Domain wall states formed between topological chiral d;’—y’
+ id,,~-wave states on the honeycomb lattice are studied. The results find four domain wall
states and that domain wall configurations with the lowest width in the order parameter is
favorable over other configurations. Finally, by using a single potential impurity spin-singlet gap
symmetries of superconducting graphene are explored. Investigation of the subgap states, due
to the potential impurity, of each superconducting state and their corresponding quasi-particle
interference shows that superconducting states of graphene can be identified by defects.
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1. Introduction

Superconductors are materials that conduct electric current, often at temper-
atures close to absolute zero, with zero resistance [1]. In a superconductor
bound states of electron pairs, called Cooper-pair [2], are formed. These
Cooper pairs are the carriers of dissipationless supercurrent in the supercon-
ducting phase. Below a certain temperature, called the critical temperature,
T, Cooper pairs form a condensate known as the superconducting phase. The
mechanism of pairing of the electrons into Cooper pairs characterizes the su-
perconducting state. In the simple conventional form, the interaction between
the electrons in the Cooper pair is phonon-mediated and the pairing of elec-
trons in the superconducting state is isotropic in momentum [3].

Interestingly, it has been shown that electron pairing can also be anisotropic
in momentum space. This type of pairing leads to unconventional supercon-
ductivity. Unconventional superconductivity was first discovered in heavy
fermion compounds [4] at T, =~ 0.5 K, and later in the cuprates with 7, ~
135 K [5], which led to renewed interests in unconventional superconductors.
Intense experimental and theoretical efforts has led to the discovery many
unconventional superconductors that so far are not well understood [6, 7].
Most unconventional superconductors have layered and complicated struc-
tures which contributes to the challenge of pinning down the mechanism for
unconventional superconductivity in the materials. For a better understand-
ing of unconventional superconductivity, it might be necessary to study other
materials, with relatively simpler structure, that can host unconventional su-
perconductivity.

A candidate material is graphene. When graphene was discovered, physi-
cists were dazzled by its exotic transport properties [8]. At the same time
the community was disappointed by the lack of intrinsic superconductivity in
graphene. Graphene has a linear low energy dispersion relation which forms
a cone in reciprocal space, at the corners of the Brillouin zone. The tip of
the cone, called Dirac point or node, coincides with the Fermi energy [9, 10].
The implication of this is that there is no density of states at the Fermi en-
ergy and thus no electrons to form Cooper pairs, since pairing of electrons
occurs in the vicinity of the Fermi energy. Thus, the Dirac point at the Fermi
surface in graphene inhibits superconductivity. However, theoretical studies
have suggested that graphene doped close to the van Hove singularity, far
away from the Dirac point in energy, will allow for nontrivial superconducting
states [11, 12, 13].1 Therefore, experimental research activities have been on

I'Such large doping of graphene was impossible until two years ago [14, 15].



efforts to switch on superconductivity in graphene by coupling graphene to a
superconductor, a process known as proximity effect. There have been reports
of observation of conventional [16, 17] and unconventional [18, ?, 19] super-
conductivity in graphene in scanning tunneling spectroscopy experiments.

Superconductivity in graphene is still under investigation. Theory shows
that the graphene lattice symmetry allows for different types of superconduct-
ing states [12, 20] and it is difficult to know which of the superconducting
states is observed in a spectroscopy experiment. The reason for this difficulty
is because many of the superconducting states in graphene have similar den-
sity of states, especially when doping is low. The problem can also occur at
large doping if the scanning tunneling spectroscopy lacks resolution power
to clearly distinguish between fully gapped and nodal superconducting states.
However, it is known that point defects or impurities have local effects in su-
perconductors and can lead to the emergence of low-energy states within the
superconducting gap depending on nature of the impurity and superconduc-
tor. [21] Also, the quasi-particle scattering leaves trails in the superconduc-
tor. More specifically, a potential impurity distinguishes between conventional
and unconventional superconductors: no effect on the former [22] but creates
bound states (if the superconductor is fully gapped) or virtual subgap states (if
the superconductor is nodal) in the latter [21]. By exploiting the properties of
a single potential impurity in superconducting graphene this Thesis shows that
it is possible to unambiguously ascertain the gap symmetries of the supercon-
ducting state in graphene [23], see Paper I'V.

An exotic family of unconventional superconductors with nontrivial topol-
ogy also exist. Such superconductors are termed topological superconduc-
tors [24, 25, 26]. Topology is a mathematical concept for the classification
of objects according to their shapes. Objects with different shapes can only
be continuously deformed into each other if they belong to the same topolog-
ical class and are said to remain unchanged under continuous deformation.
Similarly, topological superconductors have unchanged properties even when
parameters of the system change. Generally, the unchanged property of the
system during a continuous deformation is called topological invariant and it
is nonvanishing for a topological system. While a topological invariant is a
mathematical concept, in condensed matter physics it is also connected to the
number of edge states of a topological superconductor through the bulk-edge
correspondence [27, 28, 29, 30]. Topological superconductors host gapless
states at edges and domain walls [27, 31]. The bulk-edge correspondence
states that the number of edge modes at the boundary between two topologi-
cally distinct systems is equal to the difference of their topological invariants.
By studying domain walls states in topological chiral d—wave superconduct-
ing states in graphene are studied [31], theis Thesis shows that there are four
domain wall states irrespective of domain wall orientation, in agreement with
the bulk-edge correspondence. Also, the width of the domain wall follows a
universal inverse law, irrespective of parameters, see Paper III.
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Some topological superconductors have been theorized to host zero-energy
states called Majorana bound states,” which are particles that are their own
antiparticles, at their boundaries. Unfortunately, topological superconductors
with Majorana bound state have not been found. Physicists have, however,
found several ingenious ways to engineer a particular topological supercon-
ductor hosting Majorana bound state, and have reported signatures of Majo-
rana bound states [32, 33]. There are ongoing debates on whether Majorana
bound states have actually be seen in the experiments. This difference of opin-
ion is due to mismatch between theory and experimental data, which suggests
the possibility that topologically trivial (nontopological) zero-energy states
can appear in experiemtns. For instance, chemical potential inhomogeneity
can introduce trivial zero-energy subgap states in superconductors [34, 35, 36],
and these trivial zero-energy states can also lead to quantized conductance, a
property initially attributed to Majorana bound states [37]. This brings into
question the role of disorder, finite size effects, and other parameters of the
materials, used in engineering the topological superconductor, and more im-
portantly how to differentiate between trivial zero-energy levels and topolog-
ical Majorana bound states. This Thesis contribute to the field of topologi-
cal superconductors by showing that Majorana bound states are robust against
disorder [38], see Paper I. The Thesis also shows that spontaneous quantum
dot levels with zero energy can appear in experiments and proposes super-
current as a tool to distinguish between these trivial zero-energy states and
Majorana bound states [39], see Paper I1.

Contributions of this Thesis

In this Thesis different topological superconductors are studied. The studies
are carried out by introducing defects (disorder, junctions, domain walls, and
potential impurities) into the superconductor and then study the subgap states
of the superconductors. Apart from breaking translation invariance, electrons
are scattered at defects causing changes in the local density of states around
the defect points. This in turn influence the superconducting order parameter.
These can give rise to gapless states, or not, depending on the nature of the
superconductor.
The contributions of this Thesis are as follows:
Paper I: Majorana bound states are theorized to be robust against local pertur-
bations due to their non-Abelian nature [40, 41]. But, it is not clear
if stable Majorana fermions can exist in a disordered medium in the

%In condensed matter literature distinction between Majorana fermions, Majorana zero modes,
and Majorana bound states is not clear as they are used interchangeably. However, in the current
context these Majoranas are quasi-particles. Thus, they are different from the Majorana fermion
in particle physics, which are true particle. In this Thesis, the term Majorana bound states is
used.



Paper II:

Paper III:

first place. Furthermore, it was shown that Majorana bound states at
ends of nanowires proximitized with conventional superconductors are
susceptible to disorder in the bulk of the superconductor especially in
the strong coupling regime, suggesting that the superconductor must be
clean [42, 43]. Paper I in this Thesis shows that Majorana bound states at
the ends 1D topological superconductor, formed by a magnetic chain in
a spin-orbit coupled superconductor, are very robust and stable against
disorder, as long as superconductivity is not destroyed.

Currently, there is no consensus on whether Majorana bound states have
been observed or not. This is due to the fact that trivial zero-energy lev-
els can form due to chemical potential inhomogeneity and other sources.
Such trivial zero-energy level also produces a zero-bias conductance
peak, the same measured signature of Majorana bound states, in ex-
periments. Two important questions are (1) can an unintended trivial
zero-energy state appear in an experiment designed to create Majorana
bound states? And (2) if there is indeed trivial zero-energy level in an
experiment, how can one distinguish between trivial zero-energy state
and topological Majorana bound states? There have been several pro-
posals for the solution of the second question [44, 45, 39, 46, 47, 48, ?].
Paper II in this Thesis shows that trivial zero-energy levels can appear
spontaneously in junctions of a nanowire strongly coupled to two super-
conductors. By merely tuning the size of the superconductors the sys-
tem can move in and out of the trivial zero energy regime. Furthermore,
Paper II show that supercurrent through the junction when the trivial
zero-energy levels are present exhibits a sign reversal as magnetic field
is tuned whereas such sign reversal is not observed in the topological
phase when Majorana bound states are present. Thus, Paper II proposes
supercurrent as a potential tool for distinguishing between trivial zero-
energy levels and Majorana bound states in experiments.

It has been theorized that heavily doped graphene and generally hon-
eycomb lattice materials can condense into a topological chiral d-wave
superconducting state [20, 13, 12], which is a complex mixture of two
different pair symmetry with d-orbital angular momentum. Paper III
in this Thesis shows that domain wall states of the topological chiral
d-wave state in superconducting graphene can be used as evidence for
the existence of chiral d-wave superconducting state on the honeycomb
lattice. Creating a domain wall between the d,»_» + idyy,—Wwave state
with topological invariant N = +2 and the d,»_ » — idyy—Wwave state with
topological invariant N = —2, the results show that there are four domain
wall states irrespective of domain wall orientation, in agreement with the
bulk-edge correspondence. Paper III also shows that while the favored
domain wall direction depends on doping and phase difference across
the domain wall, the system generally chooses domain walls with the
smallest width, set by the suppression of the order parameter. Remark-



Paper IV:

ably, despite the sensitivity of the favored domain wall orientation to
several parameters, the domain wall width behavior as a function of the
bulk superconducting order parameter follows an inverse law, which is
universal. For all variation of parameters, the plot of the width of the
favored domain wall against the bulk superconducting order parameter
always falls on a single curve.

An STS experiment on low doped graphene sheet proximitized with a
cuprate superconductor reported the presence of a superconducting gap
in the graphene sheet [18]. Due to the V-shape of the spectral gap, the
induced superconductivity was attributed to p—wave pairing. However,
in theory, the myriad of superconducting states allowed by the honey-
comb lattice of graphene, some with similar density of states, makes it
difficult to identify the superconducting state through STS experiments,
especially when resolution is poor and/or when doping is low. Paper IV
in this Thesis uses a single nonmagnetic impurity to create subgap states
in superconducting graphene and the results show that the subgap states,
and accompanying quasi-particle interference, can reveal the type of su-
perconducting symmetries. This study proposes that by including a po-
tential impurity in superconducting graphene in STS the symmetry of
the superconducting in graphene can be determined.

All the above studies have been carried out numerically using a tight-binding
approach on either square or honeycomb lattice.






Part I
Background
In this part, basics of the theory of superconductivity relevant to this Thesis

are discussed. Also discussed are the numerical methods used to simulate the
systems studied in this Thesis.






2. Superconductivity

2.1 Overview

In 1911 Kamerlingh Onnes found that the resistance of mercury jumps to zero
at temperatures lower than 4.2 K [49]. It was later found that this (low temper-
ature) zero resistance is not peculiar to mercury but is exhibited by many ele-
ments. However, the critical temperature, 7., at which the resistance becomes
zero varies from element to element. This phenomenon was called super-
conductivity. When a material becomes superconducting it develops an order
parameter, which is finite below 7, but vanishes above 7. Zero resistance, that
is perfect conductivity, is not the only telltale signature of superconductivity.
Another feature of superconductivity is the so-called Meissner effect [50]: a
superconductor expels magnet field from its core thereby exhibiting perfect
diamagnetism.

At the early stages, while the community searched for a microscopic theory
of superconductivity, many of the properties of superconductivity were pre-
dicted from phenomenological theories. In 1935, the London brothers studied
the electrodynamics of the superconducting phase and derived the London
equations which explain the Meissner effect in a superconductor [51]. About
twenty years later, Pippard generalized the London equations and derived the
coherence length of the superconducting phase [52, 53]. In 1950, by assuming
a complex wave function and taking it as the order parameter of the supercon-
ducting phase, the Ginzburg-Landau theory was derived by expanding the free
energy in powers of the wave function [54]. The Ginzburg-Landau theory is
a macroscopic theory which predicts critical fields and spatial inhomogeneity
of the order parameter. Despite the success of phenomenological theories the
mechanism of superconductivity was not understood because there were still
open questions such as the microscopic constituent of a superconductor.

The celebrated Bardeen-Cooper-Schrieffer (BCS) theory, which gives mi-
croscopic explanation of superconductivity came in 1957. Noting that in the
superconducting state: (1) there is an attractive electron-phonon interaction
whose strength supersedes the repulsive Coulomb interaction [55, 56] and (2)
a pair of electrons close to Fermi energy with this attractive interaction forms
a bound electron pair called Cooper pair [2]. Below T, the Cooper pairs con-
dense into a superconducting phase. (3) Taking the superconducting ground
state as a coherent state of Cooper pairs, BCS introduced an ansatz wave func-
tion and formed the microscopic theory [57, 58]. With the assumption that
the interaction and spatial dependence of the Cooper pair are isotropic, BCS
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predicted correctly all properties of superconductivity obtained from experi-
mental data as of then. One of the ultimate triumph of the BCS theory is the
prediction of the energy gap, the minimum energy required to break a Cooper
pair, which could not be explained by phenomenological theories. The as-
sumption of spatially isotropic Cooper pairs worked because during that pe-
riod only elemental superconductors were discovered and the assumption is
valid for these type of superconductors. Today, these type of superconductors
are called conventional superconductors.

With the BCS theory, superconductivity seemed to be understood and thus
a closed chapter. This view changed when superconductors with anisotropic
momentum dependent Cooper pair arrived on the scene. These superconduc-
tors are called unconventional superconductors. Unconventional superconduc-
tivity was first discovered in a heavy fermion material in 1979 by Steglich and
coworkers [4]. But due to the low T, ~ 0.5 K of the superconductors, coupled
with the fact that they were not understood, the discovery did not generate
much attention. In 1986, unconventional superconductivity was discovered in
cuprates by Bednordz and Miiller [5] and this time with 7, ~ 135 K, which
is a very high 7, compared to other known superconductors as of then. For
this reason they are termed High Temperature Superconductors. The discov-
ery of cuprates led to intensified efforts in search for unconventional super-
conductivity in several materials including heavy fermions materials [59, 7],
graphene [11, 13, 12], twisted bilayer graphene [60] and other materials [6].
To treat unconventional superconductivity the original BCS theory has been
extended to what is now called the generalized BCS theory. The generalized
BCS theory removes the restriction that the attractive interaction responsible
for Cooper pairs is phonon-mediated, thus allowing for pure electron-electron
interaction. For the electrons to overcome the repulsive Coulomb interaction
between them, the Cooper pair would develop nontrivial spatial dependence,
see section 2.3.1.

In the presence of quantum mechanical symmetries superconductors can
develop special geometrical properties. When this happens the superconduc-
tors are said to be topological [24, 40]. These superconductors host Majo-
rana bound states, which are condensed matter physics versions of the elusive
Majorana fermions in particle physics [61]. Majorana bound states have non-
Abelian properties that protects them robust against local perturbation, and
this makes Majorana bound states suitable candidate for qubits in topological
quantum computing. Since the first experiment which reported "signatures" of
Majorana bound states in 2012 [32], the search for Majorana bound states and
topological superconductivity has been very active.

Although, superconductivity is ubiquitous among elemental metals and many
materials, naturally occurring topological superconductors are rare and many
unconventional superconductors are complex compounds. Thus, studying the
latter is complicated by material composition. However, it is possible to propel
nonsuperconducting materials, with no intrinsic superconductivity, towards
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superconductivity by placing them next to a superconductor. Superconduct-
ing correlations are induced in the nonsuperconducting through proximity ef-
fect. Here, Cooper pairs leak from the superconductor, assuming a good inter-
face, into the nonsuperconducting material which then becomes superconduct-
ing [62]. This is an interesting and viable route to achieve, and study, uncon-
ventional and topological superconductivity, with intense activity lately [63].

After more than 100 years since its discovery, superconductivity is still an
exciting field and, even more fascinating, a growing field as more materials
with nontrivial superconducting phase are being discovered and many created
through proximity effect. Also, there are still challenging but crucial problems
such as explaining the mechanism of superconductivity in cuprates, pinning
down the nature of superconductivity in the enigmatic Sr,RuQOj, determining
superconducting symmetries of graphene systems, finding probe for unam-
biguous detection of MBS, just to mention a few.

This Thesis meets the challenges of superconductivity in two aspects us-
ing defects as a probe. In one part, superconductivity in graphene is studied
in order to understand its nature as well as give theoretical predictions. In
the other part, Majorana bound states at the ends one-dimensional topological
superconductors are investigated using defects such as potential disorder and
junctions, in order to determine the stability of Majorana bound states and also
predict a decisive experimental probe for their detection.

The rest of this chapter is devoted to the basics of superconductivity. The
BCS theory, Bogoliubov-de Gennes formalism and proximity effect are briefly
discussed vis-a-vis papers in this Thesis.

2.2 Basics of superconductivity

In this section, basic concepts of superconductivity relevant to the Thesis are
discussed. Further technical details can be found in standard textbooks [1, 3,
64].

2.2.1 Generalized BCS Hamiltonian

This Thesis is focused on unconventional superconductivity so the starting
point is the generalized BCS Hamiltonian which incorporates superconducting
states with nontrivial spatially dependent order parameters.

Consider a material with underlying lattice system. The generalized BCS
Hamiltonian in real space is given by

1 .

_ 0 il aBdy &

H=Y h, sclycip + 3 Y v CiaCpCjsCiy 2.1)
ijof ijafoy

where i, j label sites and other quantum numbers and Greek letters label spin.

The first term is the normal state Hamiltonian of the system while the second
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term contains interaction between electrons, where a factor of 1/2 has been
included to avoid double counting. Here, V;; apor = (iat, jB|V|j8,iy) is the

interaction matrix element. Throughout this The51s vV, jﬁ 7 is assumed to be
constant between paired sites. Discussion on the origin of the interaction or
mechanism by which it gives rise to superconductivity is postponed to later
sections. The reasons for shelving the discussion on interaction to later sec-

tions are (1) explicit knowledge of Vii Py ;

there are constraints on Vaﬁ 57’ Wthh are yet to be discussed, that will help
making deductions about the origin of the interaction easier. The operator
cja (ciq) creates (destroys) an electron of spin « at site i = i (iy,iy,i;). The
operators obey fermionic anticommutation relations,

{cjaacjﬁ} = 6ij5aﬁ7 {ciohcjﬁ} = {Cja7cj'ﬁ} =0 (2.2)

The single particle noninteracting, first term in Eq. (??), is quadratic in the
¢ operators. However, the interaction term is quartic making Eq. (2.1) difficult
to solve. To make the Hamiltonian more tractable it will be decomposed using
the mean-field approach.

is not necessary for now and (2)

2.2.2 Mean-field decomposition BCS Hamiltonian

One can collate the 2 x 2 identity matrix and the Pauli matrices as ¢ =
{GO, c*,0”,0°}. Using this abridged notation to introduce the matrices

6" =ic"o?, with, 72 = Oaydps (2.3)

in the interacting part of Eq. (2.1) and then decomposing in particle-particle
channel by writing cc — (cc — (cc)) + (cc) with the assumption that fluc-
tuations around the average is negligible and keeping only first order in the
fluctuations, one obtains the mean-field Hamiltonian as’

ot
Z hza Jﬁclacjﬁ + Z A]l io Gn]aﬁ Cjﬁ +He
ijap uaBn

t 2.4)
—Z(AZ}-) (r3) "4l
ij
where |
AZZEBZFZ}@]@[ lsyCiy) = ZFZF]}W 2.5)
Y

F]%V,'y - <cj6 [En]éyci}’>7

I'Similar decomposition can be carried out in particle-hole channel by writing ¢'c —

(cfe—(c'e)) + (cTc). In this Thesis the focus is on superconductivity only.
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Fln] = %Za},Vi?ﬁ 57/6(;1[3 Ggy is the mean-field decomposed interaction in chan-
nel 11 and H.c. implies Hermitian conjugate. Here, n = O(n =X,), z) denotes
spin-singlet (spin-triplet). The last term in Hyp, Eq. (2.4), is a constant that
is not important for the rest of this chapter so it is dropped. Note that this
constant term is important in some calculations, such as the free energy, and
has to be included when necessary.

The quantity A?i is called the gap function or order parameter of the su-
perconducting state and can be calculated from the self-consistent equation,
Eq. (2.5). To elucidate the role of A}’i as the superconducting order parameter

consider the gauge transformation U (1) icj—c jeid’, where ¢ is an arbitrary
space independent phase. The normal state Hamiltonian, that is the first term
of Hyg, is invariant under this transformation, however, under the same trans-
formation A?i — e2i¢A}7i, see Eq. (2.5). Thus, superconductivity breaks the

U (1) gauge symmetry. But U (1) is a symmetry of the normal state. Hence,
the transition from the normal state to superconducting phase is a spontaneous
symmetry breaking (SSB) transition: a situation where the normal state has a
symmetry that is not present in the ground state. Since A;'l. breaks a symmetry

under which the normal state is invariant, it must be that A?i = 0 in the normal
state and finite only in the superconducting phase. This is exactly the defini-
tion of an order parameter: a quantity that vanish in one phase and become
nonvanishing in another phase. The temperature at which the order parameter
becomes finite is called the critical temperature, T..

The function F;Zs,w is called the pair wave function of the superconducting

state. FJ% iy is an expectation value of a pair of electrons. Since FJ% iy contains
two electrons it must obey the fermion antisymmetrization rule i.e.

FTI _ _Fn

jSiy — T Ninjé (2.6)

and it can be factored into spatial and spin components. This implies that
spin-singlet superconductors, 7 = 0, are even under spatial inversion while
the spin-triplet counterparts, 11 = {x,y,z}, are odd under spatial inversion.
Thus, spin-singlet (-triplet) superconductors have s,d, g,---(p, f,---)— or-
bital symmetries.

The order parameter AZ. can be interpreted, from Eq. (2.4), as the ampli-
tude for pair creation while its Hermitian conjugate is the amplitude for pair
annihilation. These electron pairs are the so-called Cooper pairs, which are
formed just above the Fermi surface [2]. From the self-consistent equation,
Eq. (2.5), it obvious that A}’i inherits the symmetries of FJ %J.y. Since interac-
tion is assumed to be isotropic in space in this Thesis, one can focus on the
order parameter instead of the pair wave function.

The mean-field Hamiltonian is bilinear Eq. (2.4) but not diagonal in the c-
operators because of the particle-particle terms. Hyp can be diagonalized if
the c-operators are rotated to a basis where they are linear combinations of an
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operator and its conjugate. This is the approach of the Bogoliubov-de-Gennes
formalism which is the subject of next section [1].

2.2.3 Bogoliubov-de Gennes formalism

The effective mean-field Hamiltonian can be made simple by introducing the
so-called, Nambu spinor ¥; =Y, (c,-a cja) , at site i, which has equally weighted
electron and hole components [65]. ¥ obeys the same fermionic anticommu-
tation relations as the c-operators. Introducing the spinor in Hyr one obtain

Hyr = %\P;If]BdGle, with HBdG — Z ( (l(f ;
2.7)
where the factor 1/2 is introduced to avoid double counting since the introduc-
tion of Nambu spinor doubles the degree of freedom. The matrices Hy and A
contain matrix elements hoa B and A?i respectively. The matrix Hpgqg is called
Bogoliubov-de-Gennes Hamiltonian, a first quantized Hamiltonian.

Since Hj is Hermitian, then I:IBdG is an Hermitian matrix. Thus, there exist
an orthonormal basis for which Hgqg is diagonalized with real eigenvalues.
From the structure of Hpgg and symmetry of A one can show that for every
eigenvalue EV there exist another eigenvalue —EY where v =1,2,...,.4N. N
is number of sites. By merely observing the structure of Hpgg valuable in-
formation on the excitations of a superconductor has been revealed. These
excitations, which turn out to be quasi-particles, reveal themselves as linear
combination of electrons and holes which diagonalize Hyac.

Excitations in superconductors

In this subsection Hyr is diagonalized and the excitations which diagonalizes
Hggyg are obtained. The aim is to gain understand of the superconducting state
and its low energy behavior.

Equation (2.4) can be diagonalized by a linear combination of ¢ and ¢,
i.e. electron-hole combination. A convenient way of introducing such linear
combination is through Bogoliubov-Valatin transformation [66, 67], written
as

/ !

Cioo = Z (”zyay\/ - Sav?gﬁ) ) C;ra = Z (”?a%j - SOCVzYaY\D (2'8)

\4 1%

where prime on the summation sign implies positive energies only and sy =
—1(+1) for spin-up(spin-down). The new operators Y are called Bogoliubov
quasi-particles. The y’s can be obtained as a linear combination of ¢ and ¢ by
inverting the transformation. This means that y and ¥ are fermionic and thus
obey the same anticommutation relations as the c-operators. By substituting
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Eq. (2.8) into Eq. (2.4) the Hamiltonian becomes diagonal, and reads

Hyr =Y E"%n% (2.9)
v

By taking commutators [c¢;q, Hmp] and [y, Hvr] (and same for the conjugate
operators), and collecting the coefficient of ¥ and y" one obtains two sets of
equations namely,

W: Hpcy! =E"vy

peer ) (2.10)
Yoo Hpacy¥ =—E'y

v ”z"/oc *V sdv;ko‘z/ 'y Qo i
where y" =}, YU =Yg L and Hpqg is given in Eq. (2.7).

SaVY !
Several insights intoughe world of supercondifctivity are revealed in Eq. (2.10).
It is in order to make these observations.

* These are eigenvalue equations implying that by knowing Hpgg one can
obtain all necessary information about the superconductor by simply di-
agonalizing Hgpqc.

* For every positive energy state with eigenvalue E and eigenvector y”
there is a negative energy state with eigenvalue —E" and eigenvector
788

* The existence of both negative and positive energy states is an indication
of particle-hole symmetry. Denoting particle-hole symmetry operator
by? P = —it’ ® 1K, where 7 (o) and K are, respectively, Pauli matrix
in particle-hole (spin) space and the complex conjugate operator, one
notes the relationship between negative and positive energy states as

PHpacP ' = —Hpa,  PYi=y, (2.11)

Particle-hole symmetry is an inherent property of all superconductors.
It comes into light from the introduction of holes through the Nambu
spinor.

e From the structure of I:IBdG it is clear that A mixes electrons with holes,
thus playing a role akin to a coupling parameter. Hence, it is expected
that the spectrum of a superconductor is gapped by A and it is symmetric
around zero energy, (since for every EV there is —EV).

* By collecting the y’s and Py’s in column to form a matrix one obtains
the unitary matrix (Hgqg is Hermitian) that diagonalizes Hgag as

N u,  Sqv'r
0= i ic 2.12
; <s05vtyoc —Ujy > ( )

* Inverting the transformation Eq. (2.8) one obtains the y-operators as a
linear combination of electron and holes. Thus superconducting state is

2]t should be noted that form of the particle-hole operator is basis dependent.
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a vacuum state of y. The y (}/T)—operator destroys (creates) one electron
and one hole in the condensate.
* Using the anticommutation relation for c- and y-operators one obtains

UigWif + VigVig = 0ij0ap and uVig +viujg =0,
where u and v are the amplitude of electron and hole in the linear com-
bination and are called coherence factors.

In this Thesis, Agqg is solved for several systems. Note that Hgag is a large
matrix of size 4N x 4N where N is the number of sites. It is not always feasible
to carry ou