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Abstract
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Defects from impurities, edges, junctions or domain walls have local detrimental effects on the 
superconducting state. Defects are also important in topological superconductors, and useful 
in studying the properties of the superconducting order parameter. In the former case, gapless 
edge states appear as a consequence of the bulk-edge correspondence, which relates the edge 
states to the change in bulk topological invariants across the edge. In the latter case impurity 
scattering of electrons modifies the density of states locally and may (or not) lead to the appear-
ance of subgap states depending on the nature of the impurity and the superconductor. Due 
to these telltale effects of defects in topological superconductors, this Thesis uses defects to 
probe topological superconductors. The studies are divided into two parts. In the first part Majo-
rana bound states at the ends of one-dimensional topological superconductors are studied. The 
Majorana bound states at the ends of magnetic chains are found very stable in a disordered su-
perconducting medium, as long as the superconducting order parameter does not vanish locally. 
Also junction formed in a nanowire in proximity to two superconductors is found to give rise 
spontaneously to trivial zero-energy states that imitate Majorana bound states, due to finite 
size effect of the superconductors. However, there is a sign reversal in the supercurrent when 
trivial zero-energy states are present at the junction, as magnetic field is tuned, whereas the 
supercur-rent does not exhibit such sign reversal when Majorana bound states are present at the 
junction. Thus, supercurrent serves as a tool for distinguishing between Majorana bound states 
and trivial zero-energy states. The second part is devoted to unconventional and topological 
superconduc-tivity in graphene. Domain wall states formed between topological chiral dx

2−y2

± idxy-wave states on the honeycomb lattice are studied. The results find four domain wall 
states and that domain wall configurations with the lowest width in the order parameter is 
favorable over other configurations. Finally, by using a single potential impurity spin-singlet gap 
symmetries of superconducting graphene are explored. Investigation of the subgap states, due 
to the potential impurity, of each superconducting state and their corresponding quasi-particle 
interference shows that superconducting states of graphene can be identified by defects.
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1. Introduction

Superconductors are materials that conduct electric current, often at temper-
atures close to absolute zero, with zero resistance [1]. In a superconductor
bound states of electron pairs, called Cooper-pair [2], are formed. These
Cooper pairs are the carriers of dissipationless supercurrent in the supercon-
ducting phase. Below a certain temperature, called the critical temperature,
Tc, Cooper pairs form a condensate known as the superconducting phase. The
mechanism of pairing of the electrons into Cooper pairs characterizes the su-
perconducting state. In the simple conventional form, the interaction between
the electrons in the Cooper pair is phonon-mediated and the pairing of elec-
trons in the superconducting state is isotropic in momentum [3].

Interestingly, it has been shown that electron pairing can also be anisotropic
in momentum space. This type of pairing leads to unconventional supercon-
ductivity. Unconventional superconductivity was first discovered in heavy
fermion compounds [4] at Tc ≈ 0.5 K, and later in the cuprates with Tc ≈
135 K [5], which led to renewed interests in unconventional superconductors.
Intense experimental and theoretical efforts has led to the discovery many
unconventional superconductors that so far are not well understood [6, 7].
Most unconventional superconductors have layered and complicated struc-
tures which contributes to the challenge of pinning down the mechanism for
unconventional superconductivity in the materials. For a better understand-
ing of unconventional superconductivity, it might be necessary to study other
materials, with relatively simpler structure, that can host unconventional su-
perconductivity.

A candidate material is graphene. When graphene was discovered, physi-
cists were dazzled by its exotic transport properties [8]. At the same time
the community was disappointed by the lack of intrinsic superconductivity in
graphene. Graphene has a linear low energy dispersion relation which forms
a cone in reciprocal space, at the corners of the Brillouin zone. The tip of
the cone, called Dirac point or node, coincides with the Fermi energy [9, 10].
The implication of this is that there is no density of states at the Fermi en-
ergy and thus no electrons to form Cooper pairs, since pairing of electrons
occurs in the vicinity of the Fermi energy. Thus, the Dirac point at the Fermi
surface in graphene inhibits superconductivity. However, theoretical studies
have suggested that graphene doped close to the van Hove singularity, far
away from the Dirac point in energy, will allow for nontrivial superconducting
states [11, 12, 13].1 Therefore, experimental research activities have been on

1Such large doping of graphene was impossible until two years ago [14, 15].
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efforts to switch on superconductivity in graphene by coupling graphene to a
superconductor, a process known as proximity effect. There have been reports
of observation of conventional [16, 17] and unconventional [18, ?, 19] super-
conductivity in graphene in scanning tunneling spectroscopy experiments.

Superconductivity in graphene is still under investigation. Theory shows
that the graphene lattice symmetry allows for different types of superconduct-
ing states [12, 20] and it is difficult to know which of the superconducting
states is observed in a spectroscopy experiment. The reason for this difficulty
is because many of the superconducting states in graphene have similar den-
sity of states, especially when doping is low. The problem can also occur at
large doping if the scanning tunneling spectroscopy lacks resolution power
to clearly distinguish between fully gapped and nodal superconducting states.
However, it is known that point defects or impurities have local effects in su-
perconductors and can lead to the emergence of low-energy states within the
superconducting gap depending on nature of the impurity and superconduc-
tor. [21] Also, the quasi-particle scattering leaves trails in the superconduc-
tor. More specifically, a potential impurity distinguishes between conventional
and unconventional superconductors: no effect on the former [22] but creates
bound states (if the superconductor is fully gapped) or virtual subgap states (if
the superconductor is nodal) in the latter [21]. By exploiting the properties of
a single potential impurity in superconducting graphene this Thesis shows that
it is possible to unambiguously ascertain the gap symmetries of the supercon-
ducting state in graphene [23], see Paper IV.

An exotic family of unconventional superconductors with nontrivial topol-
ogy also exist. Such superconductors are termed topological superconduc-
tors [24, 25, 26]. Topology is a mathematical concept for the classification
of objects according to their shapes. Objects with different shapes can only
be continuously deformed into each other if they belong to the same topolog-
ical class and are said to remain unchanged under continuous deformation.
Similarly, topological superconductors have unchanged properties even when
parameters of the system change. Generally, the unchanged property of the
system during a continuous deformation is called topological invariant and it
is nonvanishing for a topological system. While a topological invariant is a
mathematical concept, in condensed matter physics it is also connected to the
number of edge states of a topological superconductor through the bulk-edge
correspondence [27, 28, 29, 30]. Topological superconductors host gapless
states at edges and domain walls [27, 31]. The bulk-edge correspondence
states that the number of edge modes at the boundary between two topologi-
cally distinct systems is equal to the difference of their topological invariants.
By studying domain walls states in topological chiral d−wave superconduct-
ing states in graphene are studied [31], theis Thesis shows that there are four
domain wall states irrespective of domain wall orientation, in agreement with
the bulk-edge correspondence. Also, the width of the domain wall follows a
universal inverse law, irrespective of parameters, see Paper III.
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Some topological superconductors have been theorized to host zero-energy
states called Majorana bound states,2 which are particles that are their own
antiparticles, at their boundaries. Unfortunately, topological superconductors
with Majorana bound state have not been found. Physicists have, however,
found several ingenious ways to engineer a particular topological supercon-
ductor hosting Majorana bound state, and have reported signatures of Majo-
rana bound states [32, 33]. There are ongoing debates on whether Majorana
bound states have actually be seen in the experiments. This difference of opin-
ion is due to mismatch between theory and experimental data, which suggests
the possibility that topologically trivial (nontopological) zero-energy states
can appear in experiemtns. For instance, chemical potential inhomogeneity
can introduce trivial zero-energy subgap states in superconductors [34, 35, 36],
and these trivial zero-energy states can also lead to quantized conductance, a
property initially attributed to Majorana bound states [37]. This brings into
question the role of disorder, finite size effects, and other parameters of the
materials, used in engineering the topological superconductor, and more im-
portantly how to differentiate between trivial zero-energy levels and topolog-
ical Majorana bound states. This Thesis contribute to the field of topologi-
cal superconductors by showing that Majorana bound states are robust against
disorder [38], see Paper I. The Thesis also shows that spontaneous quantum
dot levels with zero energy can appear in experiments and proposes super-
current as a tool to distinguish between these trivial zero-energy states and
Majorana bound states [39], see Paper II.

Contributions of this Thesis
In this Thesis different topological superconductors are studied. The studies
are carried out by introducing defects (disorder, junctions, domain walls, and
potential impurities) into the superconductor and then study the subgap states
of the superconductors. Apart from breaking translation invariance, electrons
are scattered at defects causing changes in the local density of states around
the defect points. This in turn influence the superconducting order parameter.
These can give rise to gapless states, or not, depending on the nature of the
superconductor.

The contributions of this Thesis are as follows:
Paper I: Majorana bound states are theorized to be robust against local pertur-

bations due to their non-Abelian nature [40, 41]. But, it is not clear
if stable Majorana fermions can exist in a disordered medium in the

2In condensed matter literature distinction between Majorana fermions, Majorana zero modes,
and Majorana bound states is not clear as they are used interchangeably. However, in the current
context these Majoranas are quasi-particles. Thus, they are different from the Majorana fermion
in particle physics, which are true particle. In this Thesis, the term Majorana bound states is
used.
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first place. Furthermore, it was shown that Majorana bound states at
ends of nanowires proximitized with conventional superconductors are
susceptible to disorder in the bulk of the superconductor especially in
the strong coupling regime, suggesting that the superconductor must be
clean [42, 43]. Paper I in this Thesis shows that Majorana bound states at
the ends 1D topological superconductor, formed by a magnetic chain in
a spin-orbit coupled superconductor, are very robust and stable against
disorder, as long as superconductivity is not destroyed.

Paper II: Currently, there is no consensus on whether Majorana bound states have
been observed or not. This is due to the fact that trivial zero-energy lev-
els can form due to chemical potential inhomogeneity and other sources.
Such trivial zero-energy level also produces a zero-bias conductance
peak, the same measured signature of Majorana bound states, in ex-
periments. Two important questions are (1) can an unintended trivial
zero-energy state appear in an experiment designed to create Majorana
bound states? And (2) if there is indeed trivial zero-energy level in an
experiment, how can one distinguish between trivial zero-energy state
and topological Majorana bound states? There have been several pro-
posals for the solution of the second question [44, 45, 39, 46, 47, 48, ?].
Paper II in this Thesis shows that trivial zero-energy levels can appear
spontaneously in junctions of a nanowire strongly coupled to two super-
conductors. By merely tuning the size of the superconductors the sys-
tem can move in and out of the trivial zero energy regime. Furthermore,
Paper II show that supercurrent through the junction when the trivial
zero-energy levels are present exhibits a sign reversal as magnetic field
is tuned whereas such sign reversal is not observed in the topological
phase when Majorana bound states are present. Thus, Paper II proposes
supercurrent as a potential tool for distinguishing between trivial zero-
energy levels and Majorana bound states in experiments.

Paper III: It has been theorized that heavily doped graphene and generally hon-
eycomb lattice materials can condense into a topological chiral d-wave
superconducting state [20, 13, 12], which is a complex mixture of two
different pair symmetry with d-orbital angular momentum. Paper III
in this Thesis shows that domain wall states of the topological chiral
d-wave state in superconducting graphene can be used as evidence for
the existence of chiral d-wave superconducting state on the honeycomb
lattice. Creating a domain wall between the dx2−y2 + idxy−wave state
with topological invariant N =+2 and the dx2−y2− idxy−wave state with
topological invariant N =−2, the results show that there are four domain
wall states irrespective of domain wall orientation, in agreement with the
bulk-edge correspondence. Paper III also shows that while the favored
domain wall direction depends on doping and phase difference across
the domain wall, the system generally chooses domain walls with the
smallest width, set by the suppression of the order parameter. Remark-
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ably, despite the sensitivity of the favored domain wall orientation to
several parameters, the domain wall width behavior as a function of the
bulk superconducting order parameter follows an inverse law, which is
universal. For all variation of parameters, the plot of the width of the
favored domain wall against the bulk superconducting order parameter
always falls on a single curve.

Paper IV: An STS experiment on low doped graphene sheet proximitized with a
cuprate superconductor reported the presence of a superconducting gap
in the graphene sheet [18]. Due to the V-shape of the spectral gap, the
induced superconductivity was attributed to p−wave pairing. However,
in theory, the myriad of superconducting states allowed by the honey-
comb lattice of graphene, some with similar density of states, makes it
difficult to identify the superconducting state through STS experiments,
especially when resolution is poor and/or when doping is low. Paper IV
in this Thesis uses a single nonmagnetic impurity to create subgap states
in superconducting graphene and the results show that the subgap states,
and accompanying quasi-particle interference, can reveal the type of su-
perconducting symmetries. This study proposes that by including a po-
tential impurity in superconducting graphene in STS the symmetry of
the superconducting in graphene can be determined.

All the above studies have been carried out numerically using a tight-binding
approach on either square or honeycomb lattice.
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Part I:
Background
In this part, basics of the theory of superconductivity relevant to this Thesis
are discussed. Also discussed are the numerical methods used to simulate the
systems studied in this Thesis.





2. Superconductivity

2.1 Overview
In 1911 Kamerlingh Onnes found that the resistance of mercury jumps to zero
at temperatures lower than 4.2 K [49]. It was later found that this (low temper-
ature) zero resistance is not peculiar to mercury but is exhibited by many ele-
ments. However, the critical temperature, Tc, at which the resistance becomes
zero varies from element to element. This phenomenon was called super-
conductivity. When a material becomes superconducting it develops an order
parameter, which is finite below Tc but vanishes above Tc. Zero resistance, that
is perfect conductivity, is not the only telltale signature of superconductivity.
Another feature of superconductivity is the so-called Meissner effect [50]: a
superconductor expels magnet field from its core thereby exhibiting perfect
diamagnetism.

At the early stages, while the community searched for a microscopic theory
of superconductivity, many of the properties of superconductivity were pre-
dicted from phenomenological theories. In 1935, the London brothers studied
the electrodynamics of the superconducting phase and derived the London
equations which explain the Meissner effect in a superconductor [51]. About
twenty years later, Pippard generalized the London equations and derived the
coherence length of the superconducting phase [52, 53]. In 1950, by assuming
a complex wave function and taking it as the order parameter of the supercon-
ducting phase, the Ginzburg-Landau theory was derived by expanding the free
energy in powers of the wave function [54]. The Ginzburg-Landau theory is
a macroscopic theory which predicts critical fields and spatial inhomogeneity
of the order parameter. Despite the success of phenomenological theories the
mechanism of superconductivity was not understood because there were still
open questions such as the microscopic constituent of a superconductor.

The celebrated Bardeen-Cooper-Schrieffer (BCS) theory, which gives mi-
croscopic explanation of superconductivity came in 1957. Noting that in the
superconducting state: (1) there is an attractive electron-phonon interaction
whose strength supersedes the repulsive Coulomb interaction [55, 56] and (2)
a pair of electrons close to Fermi energy with this attractive interaction forms
a bound electron pair called Cooper pair [2]. Below Tc the Cooper pairs con-
dense into a superconducting phase. (3) Taking the superconducting ground
state as a coherent state of Cooper pairs, BCS introduced an ansatz wave func-
tion and formed the microscopic theory [57, 58]. With the assumption that
the interaction and spatial dependence of the Cooper pair are isotropic, BCS
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predicted correctly all properties of superconductivity obtained from experi-
mental data as of then. One of the ultimate triumph of the BCS theory is the
prediction of the energy gap, the minimum energy required to break a Cooper
pair, which could not be explained by phenomenological theories. The as-
sumption of spatially isotropic Cooper pairs worked because during that pe-
riod only elemental superconductors were discovered and the assumption is
valid for these type of superconductors. Today, these type of superconductors
are called conventional superconductors.

With the BCS theory, superconductivity seemed to be understood and thus
a closed chapter. This view changed when superconductors with anisotropic
momentum dependent Cooper pair arrived on the scene. These superconduc-
tors are called unconventional superconductors. Unconventional superconduc-
tivity was first discovered in a heavy fermion material in 1979 by Steglich and
coworkers [4]. But due to the low Tc ≈ 0.5 K of the superconductors, coupled
with the fact that they were not understood, the discovery did not generate
much attention. In 1986, unconventional superconductivity was discovered in
cuprates by Bednordz and Müller [5] and this time with Tc ≈ 135 K, which
is a very high Tc compared to other known superconductors as of then. For
this reason they are termed High Temperature Superconductors. The discov-
ery of cuprates led to intensified efforts in search for unconventional super-
conductivity in several materials including heavy fermions materials [59, 7],
graphene [11, 13, 12], twisted bilayer graphene [60] and other materials [6].
To treat unconventional superconductivity the original BCS theory has been
extended to what is now called the generalized BCS theory. The generalized
BCS theory removes the restriction that the attractive interaction responsible
for Cooper pairs is phonon-mediated, thus allowing for pure electron-electron
interaction. For the electrons to overcome the repulsive Coulomb interaction
between them, the Cooper pair would develop nontrivial spatial dependence,
see section 2.3.1.

In the presence of quantum mechanical symmetries superconductors can
develop special geometrical properties. When this happens the superconduc-
tors are said to be topological [24, 40]. These superconductors host Majo-
rana bound states, which are condensed matter physics versions of the elusive
Majorana fermions in particle physics [61]. Majorana bound states have non-
Abelian properties that protects them robust against local perturbation, and
this makes Majorana bound states suitable candidate for qubits in topological
quantum computing. Since the first experiment which reported "signatures" of
Majorana bound states in 2012 [32], the search for Majorana bound states and
topological superconductivity has been very active.

Although, superconductivity is ubiquitous among elemental metals and many
materials, naturally occurring topological superconductors are rare and many
unconventional superconductors are complex compounds. Thus, studying the
latter is complicated by material composition. However, it is possible to propel
nonsuperconducting materials, with no intrinsic superconductivity, towards
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superconductivity by placing them next to a superconductor. Superconduct-
ing correlations are induced in the nonsuperconducting through proximity ef-
fect. Here, Cooper pairs leak from the superconductor, assuming a good inter-
face, into the nonsuperconducting material which then becomes superconduct-
ing [62]. This is an interesting and viable route to achieve, and study, uncon-
ventional and topological superconductivity, with intense activity lately [63].

After more than 100 years since its discovery, superconductivity is still an
exciting field and, even more fascinating, a growing field as more materials
with nontrivial superconducting phase are being discovered and many created
through proximity effect. Also, there are still challenging but crucial problems
such as explaining the mechanism of superconductivity in cuprates, pinning
down the nature of superconductivity in the enigmatic Sr2RuO4, determining
superconducting symmetries of graphene systems, finding probe for unam-
biguous detection of MBS, just to mention a few.

This Thesis meets the challenges of superconductivity in two aspects us-
ing defects as a probe. In one part, superconductivity in graphene is studied
in order to understand its nature as well as give theoretical predictions. In
the other part, Majorana bound states at the ends one-dimensional topological
superconductors are investigated using defects such as potential disorder and
junctions, in order to determine the stability of Majorana bound states and also
predict a decisive experimental probe for their detection.

The rest of this chapter is devoted to the basics of superconductivity. The
BCS theory, Bogoliubov-de Gennes formalism and proximity effect are briefly
discussed vis-á-vis papers in this Thesis.

2.2 Basics of superconductivity
In this section, basic concepts of superconductivity relevant to the Thesis are
discussed. Further technical details can be found in standard textbooks [1, 3,
64].

2.2.1 Generalized BCS Hamiltonian
This Thesis is focused on unconventional superconductivity so the starting
point is the generalized BCS Hamiltonian which incorporates superconducting
states with nontrivial spatially dependent order parameters.

Consider a material with underlying lattice system. The generalized BCS
Hamiltonian in real space is given by

H = ∑
i jαβ

h0
iα, jβ c†

iαc jβ +
1
2 ∑

i jαβδγ
V αβδγ

i j c†
iαc†

jβ c jδ ciγ (2.1)

where i, j label sites and other quantum numbers and Greek letters label spin.
The first term is the normal state Hamiltonian of the system while the second
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term contains interaction between electrons, where a factor of 1/2 has been
included to avoid double counting. Here, V αβδγ

i j = 〈iα, jβ |V̂ | jδ , iγ〉 is the

interaction matrix element. Throughout this Thesis V αβδγ
i j is assumed to be

constant between paired sites. Discussion on the origin of the interaction or
mechanism by which it gives rise to superconductivity is postponed to later
sections. The reasons for shelving the discussion on interaction to later sec-
tions are (1) explicit knowledge of V αβδγ

i j is not necessary for now and (2)

there are constraints on V αβδγ
i j , which are yet to be discussed, that will help

making deductions about the origin of the interaction easier. The operator
c†

iα (ciα) creates (destroys) an electron of spin α at site i = i(ix, iy, iz). The
operators obey fermionic anticommutation relations,

{c†
iα ,c jβ}= δi jδαβ , {ciα ,c jβ}= {c†

iα ,c
†
jβ}= 0 (2.2)

The single particle noninteracting, first term in Eq. (??), is quadratic in the
c operators. However, the interaction term is quartic making Eq. (2.1) difficult
to solve. To make the Hamiltonian more tractable it will be decomposed using
the mean-field approach.

2.2.2 Mean-field decomposition BCS Hamiltonian
One can collate the 2× 2 identity matrix and the Pauli matrices as ση =
{σ0,σ x,σ y,σ z}. Using this abridged notation to introduce the matrices

σ̄η = iσησ y, with,
1
2 ∑

η
[σ̄η ]

†
αβ [σ̄

η ]δγ = δαγδβδ (2.3)

in the interacting part of Eq. (2.1) and then decomposing in particle-particle
channel by writing cc −→ (cc−〈cc〉) + 〈cc〉 with the assumption that fluc-
tuations around the average is negligible and keeping only first order in the
fluctuations, one obtains the mean-field Hamiltonian as1

HMF = ∑
i jαβ

h0
iα, jβ c†

iαc jβ + ∑
i jαβη

Δη
jic

†
iα [σ̄η ]

†
αβ c†

jβ +H.c

−∑
i j

(
Δη

i j

)†(
Γη

i j

)−1
Δη

ji,
(2.4)

where
Δη

ji =
1
2 ∑

δγ
Γη

i j〈c jδ [ση ]δγ ciγ〉= ∑
δγ

Γη
i jF

η
jδ ,iγ , (2.5)

Fη
jδ ,iγ = 〈c jδ [ση ]δγ ciγ〉,

1Similar decomposition can be carried out in particle-hole channel by writing c†c −→(
c†c−〈c†c〉

)
+ 〈c†c〉. In this Thesis the focus is on superconductivity only.
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Γη
i j =

1
2 ∑αγ V αβδγ

i j ση
αβ ση

δγ is the mean-field decomposed interaction in chan-
nel η and H.c. implies Hermitian conjugate. Here, η = 0

(
η = x,y,z

)
denotes

spin-singlet (spin-triplet). The last term in HMF, Eq. (2.4), is a constant that
is not important for the rest of this chapter so it is dropped. Note that this
constant term is important in some calculations, such as the free energy, and
has to be included when necessary.

The quantity Δη
ji is called the gap function or order parameter of the su-

perconducting state and can be calculated from the self-consistent equation,
Eq. (2.5). To elucidate the role of Δη

ji as the superconducting order parameter
consider the gauge transformation U

(
1
)

: c j → c jeiφ , where φ is an arbitrary
space independent phase. The normal state Hamiltonian, that is the first term
of HMF, is invariant under this transformation, however, under the same trans-
formation Δη

ji → e2iφ Δη
ji, see Eq. (2.5). Thus, superconductivity breaks the

U
(
1
)

gauge symmetry. But U
(
1
)

is a symmetry of the normal state. Hence,
the transition from the normal state to superconducting phase is a spontaneous
symmetry breaking (SSB) transition: a situation where the normal state has a
symmetry that is not present in the ground state. Since Δη

ji breaks a symmetry
under which the normal state is invariant, it must be that Δη

ji = 0 in the normal
state and finite only in the superconducting phase. This is exactly the defini-
tion of an order parameter: a quantity that vanish in one phase and become
nonvanishing in another phase. The temperature at which the order parameter
becomes finite is called the critical temperature, Tc.

The function Fη
jδ ,iγ is called the pair wave function of the superconducting

state. Fη
jδ ,iγ is an expectation value of a pair of electrons. Since Fη

jδ ,iγ contains
two electrons it must obey the fermion antisymmetrization rule i.e.

Fη
jδ ,iγ =−Fη

iγ, jδ , (2.6)

and it can be factored into spatial and spin components. This implies that
spin-singlet superconductors, η = 0, are even under spatial inversion while
the spin-triplet counterparts, η = {x,y,z}, are odd under spatial inversion.
Thus, spin-singlet (-triplet) superconductors have s, d, g, · · ·(p, f , · · ·)− or-
bital symmetries.

The order parameter Δη
ji can be interpreted, from Eq. (2.4), as the ampli-

tude for pair creation while its Hermitian conjugate is the amplitude for pair
annihilation. These electron pairs are the so-called Cooper pairs, which are
formed just above the Fermi surface [2]. From the self-consistent equation,
Eq. (2.5), it obvious that Δη

ji inherits the symmetries of Fη
jδ ,iγ . Since interac-

tion is assumed to be isotropic in space in this Thesis, one can focus on the
order parameter instead of the pair wave function.

The mean-field Hamiltonian is bilinear Eq. (2.4) but not diagonal in the c-
operators because of the particle-particle terms. HMF can be diagonalized if
the c-operators are rotated to a basis where they are linear combinations of an
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operator and its conjugate. This is the approach of the Bogoliubov-de-Gennes
formalism which is the subject of next section [1].

2.2.3 Bogoliubov-de Gennes formalism
The effective mean-field Hamiltonian can be made simple by introducing the
so-called, Nambu spinor Ψi =∑α

(
ciα c†

iα
)
, at site i, which has equally weighted

electron and hole components [65]. Ψ obeys the same fermionic anticommu-
tation relations as the c-operators. Introducing the spinor in HMF one obtain

HMF =
1
2

Ψ†
i ĤBdGΨ j, with ĤBdG = ∑

i j

(
Ĥ0 (i, j) Δ̂(i, j)
Δ̂(i, j)† −Ĥ0 (i, j)T

)
(2.7)

where the factor 1/2 is introduced to avoid double counting since the introduc-
tion of Nambu spinor doubles the degree of freedom. The matrices Ĥ0 and Δ̂
contain matrix elements h0

iα, jβ and Δη
ji respectively. The matrix ĤBdG is called

Bogoliubov-de-Gennes Hamiltonian, a first quantized Hamiltonian.
Since Ĥ0 is Hermitian, then ĤBdG is an Hermitian matrix. Thus, there exist

an orthonormal basis for which ĤBdG is diagonalized with real eigenvalues.
From the structure of ĤBdG and symmetry of Δ̂ one can show that for every
eigenvalue Eν there exist another eigenvalue −Eν where ν = 1,2, ...,4N. N
is number of sites. By merely observing the structure of ĤBdG valuable in-
formation on the excitations of a superconductor has been revealed. These
excitations, which turn out to be quasi-particles, reveal themselves as linear
combination of electrons and holes which diagonalize ĤBdG.

Excitations in superconductors

In this subsection HMF is diagonalized and the excitations which diagonalizes
ĤBdG are obtained. The aim is to gain understand of the superconducting state
and its low energy behavior.

Equation (2.4) can be diagonalized by a linear combination of c and c†,
i.e. electron-hole combination. A convenient way of introducing such linear
combination is through Bogoliubov-Valatin transformation [66, 67], written
as

ciα =
′

∑
ν

(
uν

iαγν − sαv∗νiα γ†
ν
)
, c†

iα =
′

∑
ν

(
u∗iαγ†

n − sαvν
iαγ†

ν
)

(2.8)

where prime on the summation sign implies positive energies only and sα =
−1(+1) for spin-up(spin-down). The new operators γ are called Bogoliubov
quasi-particles. The γ’s can be obtained as a linear combination of c and c† by
inverting the transformation. This means that γ and γ† are fermionic and thus
obey the same anticommutation relations as the c-operators. By substituting
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Eq. (2.8) into Eq. (2.4) the Hamiltonian becomes diagonal, and reads

HMF = ∑
ν

Eνγ†
ν γν (2.9)

By taking commutators [ciα ,HMF] and [γν ,HMF] (and same for the conjugate
operators), and collecting the coefficient of γ and γ† one obtains two sets of
equations namely,

γν : ĤBdGψν
i = Eνψν

i

γ†
ν : ĤBdGψ∗νi =−Eνψ∗νi

(2.10)

where ψν
i =∑α

(
uν

iα
sαvν

iα

)
, ψ∗νi =∑α

(
sαv∗νiα
−u∗νiα

)
and ĤBdG is given in Eq. (2.7).

Several insights into the world of superconductivity are revealed in Eq. (2.10).
It is in order to make these observations.

• These are eigenvalue equations implying that by knowing ĤBdG one can
obtain all necessary information about the superconductor by simply di-
agonalizing ĤBdG.

• For every positive energy state with eigenvalue Eν and eigenvector ψν
i

there is a negative energy state with eigenvalue −Eν and eigenvector
ψ∗νi .

• The existence of both negative and positive energy states is an indication
of particle-hole symmetry. Denoting particle-hole symmetry operator
by2 P = −iτy⊗ τ0K, where τ (σ) and K are, respectively, Pauli matrix
in particle-hole (spin) space and the complex conjugate operator, one
notes the relationship between negative and positive energy states as

PĤBdGP−1 =−ĤBdG, Pψi = ψ∗i (2.11)

Particle-hole symmetry is an inherent property of all superconductors.
It comes into light from the introduction of holes through the Nambu
spinor.

• From the structure of ĤBdG it is clear that Δ̂ mixes electrons with holes,
thus playing a role akin to a coupling parameter. Hence, it is expected
that the spectrum of a superconductor is gapped by Δ and it is symmetric
around zero energy, (since for every Eν there is −Eν ).

• By collecting the ψ’s and Pψ’s in column to form a matrix one obtains
the unitary matrix (ĤBdG is Hermitian) that diagonalizes ĤBdG as

Û = ∑
α

(
uν

iα sαvν∗
iα

sαvν
iα −uν∗

iα

)
(2.12)

• Inverting the transformation Eq. (2.8) one obtains the γ-operators as a
linear combination of electron and holes. Thus superconducting state is

2It should be noted that form of the particle-hole operator is basis dependent.
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a vacuum state of γ . The γ
(
γ†
)
-operator destroys (creates) one electron

and one hole in the condensate.
• Using the anticommutation relation for c- and γ-operators one obtains

uν
iαu∗νjβ +ν∗ν1α vv

jβ = δi jδαβ and uν
iαv∗νjβ + vν

i u∗νjβ = 0,

where u and v are the amplitude of electron and hole in the linear com-
bination and are called coherence factors.

In this Thesis, ĤBdG is solved for several systems. Note that ĤBdG is a large
matrix of size 4N×4N where N is the number of sites. It is not always feasible
to carry out direct diagonalization of ĤBdG. Various methods of accessing rel-
evant information of target physics stored in ĤBdG are discussed in Chapter 4.
For systems with conserved spin rotation symmetry ĤBdG becomes block di-
agonal and each block has size 2N×2N. In this case it is enough to consider
only one of the blocks. This approach reduces the size of the problem.

2.2.4 Homogeneous superconductor
Hitherto, the discussion has been in real space. The BdG Hamiltonian is a
large matrix in real space making it difficult to handle analytically. However,
for large systems in the absence of defects, the problem is usually simplified
by working in momentum space. When a material has translation symmetry,
i.e. homogeneous, one usually work in momentum space by using the discrete
Fourier transform

c jα =
1√
Nk

∑
k

ck jαeik·r j , (2.13)

where Nk is the number of k−points, and j = { j,r j}, r j is position vector and
j is a compressed index for other labels including orbitals, sublattice etc.

Using this in the effective Hamiltonian, Eq. (2.4), and writing r j = ri +
a, where a is a vector along the bonds between paired sites, one obtains the
momentum space version of Eq. (2.4) as

HMF = ∑
kαβ

h0
αβ
(k)c†

kiαck jβ + ∑
i jak

∑
αβη

Δη
ji,ac†

kiα [σ̄η ]
†
αβ c†

−k jβ eik·a +H.c. (2.14)

and the gap equation Eq. (2.5) becomes

Δη
ji,a = ∑

kδγ
Γη

ji〈c−k jδ [σ̄η ]βα ckiγ〉e−ik·a = ∑
kδγ

Γη
jiFδγ (k) (2.15)

To reiterate, here it is assumed that interactions are momentum independent.
Introducing the Nambu spinor Ψk = ∑iα(ckiα c†

−kiα)
T in momentum space

one obtains

HMF =
1
2

Ψ†
kĤBdGΨk, ĤBdG =

(
Ĥ0(k) Δ̂(k)
Δ̂† (k) −ĤT

0 (−k)

)
(2.16)
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Similar to the real space version, the Nambu spinor renders the Hamiltonian
into a first quantized Hamiltonian ĤBdG, which is a 4L× 4L matrix, L is the
total of the abridged index i, which labels sublattices, orbitals, etc. All the
features of superconductivity discussed with real space analysis in the last
section are unchanged in momentum space. One can show that the momentum
space version of particle-hole symmetry of superconductivity is

PĤBdG(k)P−1 =−ĤT
BdG(−k), with Pφk = φ ∗−k (2.17)

The particle-hole operator transforms an electron with positive energy and mo-
mentum k to a hole with negative energy and momentum −k.

The properties of the superconductivity has now been discussed. However,
an important question that is yet to be answered is how to predict the transition
or critical temperature, Tc, of a superconductor. This is discussed in the next
section.

2.3 The superconducting order parameter and transition
temperature

As explained earlier the system undergoes a phase transition from the normal
state to the superconducting phase by developing a superconducting order pa-
rameter, Δ, which is zero in the normal phase but become finite just at Tc. Just
below Tc the order parameter, Δ, is small. Thus, at Tc or just below Tc, one can
expand Δ up to first order. That is, one linearizes the self-consistent equation,
Eq. (2.15).

Let Ŝ = ∑ss̄ Ŝs
s, where sands respectively label the orbitals and bands, be

the unitary matrix that diagonalizes Ĥ0 (k) and ξs (k) the energy bands of the
normal state, one then obtains the linearized gap equation as, (see appendix A
for details)

Δη
sr,a = ∑

i jb
M̂η

sra;i jbΔη
ji,b (2.18)

where the stability matrix M̂ is given by,

M̂η
sra;i jb =−

Γη
sr

4 ∑
kαβ r̄s̄

[
[σ̄η ]βα Ŝs

s (k) Ŝr∗
r (k)eik·a− [σ̄η ]αβ Ŝr∗

s (k) Ŝr
s (k)e−ik·a

]

×
[
[σ̄η ]αβ Ŝr

i (k) Ŝs∗
j (k)e−ik·b− [σ̄η ]βα Ŝs∗

i (k) Ŝr
j (k)eik·b

]
χ r̄s̄ (k)

with

χ r̄s̄ (k) =

⎡
⎣ tanh

(
βξr(k)

2

)
+ tanh

(
βξs(−k)

2

)
ξr (k)+ξs (−k)

⎤
⎦ .
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the pair susceptibility which gives the information on the propensity of a sys-
tem to exhibit superconductivity, where β = 1/kBT with T the temperature
and kB the Boltzmann constant.

The right hand side of Eq. (2.18) is the response of the order parameters, the
vector Δη

sr,a, to perturbations. The stability matrix is a response matrix whose
eigenvalues determine if an order given by the corresponding eigenvector is an
instability of the system. At Tc the vectors Δ of the order parameters on both
sides of Eq. (2.18) are equal if Δ is a superconducting state of this system.
Hence, Δη

ji,b, can be interpreted as an eigenvector of the stability matrix with
unity eigenvalue. Thus, at Tc any eigenvector of M̂ with unity eigenvalue
is superconducting, and symmetry of its corresponding eigenvector gives the
symmetry of the superconducting order parameter, Δη

ji,a, (eigenvectors with
eigenvalues greater than unity are already below Tc). Thus, by tuning T until
an eigenvalue of unity is obtained one can predict the Tc of a superconductor.
The symmetry of the order parameter, will be expatiated in the next chapter.

2.3.1 Conventional and unconventional superconductors
Earlier in section 2.2.1, the explanation of the mechanism through which a ma-
terial becomes superconducting was shelved. The exposition of the features of
a superconductor given in preceding discussions is enough for the understand-
ing of the mechanism of superconductivity. It is time to discuss the origin of
the interaction that leads to superconductivity.

Consider a material with simple atomic arrangement in the lattice such that
the normal state has only one band. Assume that parity is conserved,3 then,
Ŝ = 1, s̄, r̄ = 1, ξ (k) = ξ (−k) in Eq. (2.18). Then the gap equation for this
fictitious material for different interaction range can be local or nonlocal in
space.

On-site superconductivity

For onsite superconductivity the interaction is localized to a site, that is a =
b = 0. Due to Pauli exclusion principle the spin part of the order parame-
ter must be singlet, σ̄ η = σ̄0. Then the linearized gap equation, Eq. (2.18),
reduces to

Δ0
rr =−Γ0

rr ∑
ik

tanh
[1

2 βξ (k)
]

2ξ (k)
Δ0

ii, (2.19)

where the order parameter, Δ0
rr, is constant in k. This superconducting state is

called on-site s-wave superconductivity, denoted by son for the remainder of
this Thesis. Taking i = r = 0 one obtains the archetypal textbook gap equa-
tion. On-site superconductivity is ubiquitous in elemental superconducting

3All materials studied in thesis are parity conserving in the normal state i.e. Ĥ0 (k) = Ĥ0 (−k).
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materials. This is the superconducting state described by the original BCS
Hamiltonian.

Since the order parameter for son is constant then Γ0
r,r must be attractive

for the gap equation, Eq. (2.19), to have a solution. The bare interaction be-
tween paired electrons is repulsive on-site Coulomb interaction. Then, how
can Γ0

r,r be attractive? For superconductivity this attractive interaction is an
effective interaction resulting from the combination of Coulomb and electron-
phonon interactions. It was first shown by Frölich [55] and then by Barbeen
and Pines [56] that attractive electron-phonon interaction can overcome the re-
pulsive Coulomb interaction leading to an effective attractive interaction. This
effective attractive interaction was preconceived when proposing the BCS the-
ory. The attractive interaction comes from shielding of electron by phonons
as the electron moves around in the lattice, leading to an effective positive
charge, which then attracts another electron. The short story is that the attrac-
tion between the electrons is phonon-mediated.

In this Thesis, for s−wave superconductivity Γ (referred to as Vsc in the
Papers of this Thesis) is taken to be attractive and the actual mechanism of
the phonon exchange is ignored. This is called weak-coupling theory. The
strong-coupling or Eliashberg theory incorporates the mechanism of phonon
mediation through retardation but this is not of interest in this Thesis.

Nonlocal and higher momentum superconductivity

When the paired sites are different,i.e. a 
= 0, b 
= 0, the order parameter is
momentum dependent. Hence, the interaction is nonlocal in space. Here, the
spin part can be singlet or triplet. The gap equation, Eq. (2.18), then becomes

Δη
sr,a =−Γη

s,r ∑
i jkb

gη (k)
tanh

[1
2 βξ (k)

]
2ξ (k)

Δη
ji,b, (2.20)

where the nature of the function gη (k) depends on the spin configuration,
η . Unlike the on-site superconductivity the nonlocal superconductivity is mo-
mentum dependent.

There are two scenarios for the solution of the gap equation, Eq. (2.20). In
the first case the interaction is attractive, due to electron-phonon interaction,
but then the gap, more specifically the right hand side of Eq. (2.20), has to be
isotropic in momentum space. Such superconducting state is termed extended
s-wave, sext, because it has the same symmetry as ξ (k). The reason for this ter-
minology will become clear when symmetry is discussed in section 2.5 below.
The second possibility is when the interaction is repulsive. This is when pure
electronic interaction leads to superconductivity. For this to be possible the
order parameter must change sign in momentum space for the gap equation to
have a solution. Thus, a higher order momentum dependent gap is formed by
developing nodes in order to satisfy the gap equation. These superconducting
states are termed d-, g-wave (p-, f -wave) for spin-singlet (spin-triplet) super-
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conductivity. Superconductors with son or sext are said to be conventional.
Most metallic superconductors, e.g. Pb, and Nb, are conventional with son
superconductivity. Some iron-based superconductors are believed to have sext
gap.

Superconductors with gaps with nontrivial momentum dependence are called
unconventional superconductors. For example cuprate superconductors are
unconventional superconductors with d−wave superconducting gap.

Determination of the symmetry of the superconducting gap will be dis-
cussed in the next chapter but before that let us shift gear from intrinsic su-
perconductivity to induced superconductivity.

2.4 Proximity effect
The discussion in the preceding sections are based on intrinsic superconductiv-
ity. In the case of intrinsic superconductivity the gap equation has solutions.
However, there exist many materials that do not condense into a supercon-
ducting state. Placing such materials next to a superconductor can still make
the nonsuperconducting material amenable towards superconducting correla-
tions [68]. This effect called proximity effect occurs through Andreev reflec-
tion where Cooper pairs leak into the (previously nonsuperconducting) mate-
rial [62] making it superconducting. Proximity effect has become a standard
method for creating unconventional and topological superconductors. Prox-
imity effect dominates application of superconductivity in technology and the
research in this field is very active.

To understand this effect consider a nonsuperconducting material with Hamil-
tonian Ĥn

0 in proximity to a superconductor with Hamiltonian Ĥsc
0 . The cou-

pling between the two materials is Γ̂. The total Hamiltonian is

Ĥ =

(
Ĥn

0 Γ̂
Γ̂† Ĥsc

0 .

)
(2.21)

The total Green function G(ω) =
(
iω− Ĥ

)−1 can be written as

Ĝ =

(
Ĥn ˆ̃Γ
ˆ̃Γ† Ĥsc

)−1

(2.22)

where Ĥ i is the effective Hamiltonian of material i after proximity effect and
ˆ̃Γ the new coupling. After some algebra one gets

Hn = Hn
0 + Γ̂(iω−Hsc

0 )−1 Γ̂† = Hn
0 +Σ

(
ω
)

(2.23)

The effective Hamiltonian of the nonsuperconducting material after being prox-
imitized to the superconductor, Hn, has superconducting correlations which
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enter through the self-energy, Σ. However, the type of superconductivity that
develops in the material is influenced by the superconducting state of the orig-
inal superconductor and also by the nature of the nonsuperconducting mate-
rial [69]. As seen from Eq. (2.23) the off-diagonal part of Ĝn

0, which contains
the induced superconducting correlations, depends on both Ĝn

0 and Ĝsc
0 .

In this Thesis graphene in proximity to an unconventional superconduc-
tor [23] and nanowire in proximity to a conventional superconductor [39] are
studied.

2.4.1 Effective one-dimensional superconductor
Due to large quantum fluctuations superconductivity does not occur in 1D.
However, effective 1D superconductors have been engineered in the labora-
tory through proximity effect. The last fifteen years have seen enormous effort
on effective 1D superconductors with spin-orbit coupling and Zeeman inter-
action. This comes as a result of the proposal that such system host Majorana
bound states and therefore could be used for topological quantum computa-
tion. Several methods have been used to realize effective 1D superconductor.
The two most prominent approaches being (1) semiconducting nanowire with
strong spin-orbit coupling proximitized to s-wave superconductor [32], and
(2) magnetic impurity chain deposited on a spin-orbit coupled superconduc-
tor [33]. Ignoring magnetism for now, and focusing on the superconducting
nanowire, the effective 1D Hamiltonian is4

Hn
0 = ∑

kxαβ
d†

kxα
[
−2tn cos

(
kx
)
σ0

αβ −2iαsoc sin
(
kx
)
σ y

αβ
]
dkxβ

+Δ0 ∑
kx

d†
kx,↑d

†
−kx↓+H.c.

(2.24)

where the operator dkxβ destroys an electron with spin β and momentum kx in
the NW, αsoc is the strength of Rashba spin-orbit coupling along y-direction,
tn is the hopping strength in the NW, Δ0 is the induced superconducting gap.

Figure 2.1 shows the energy bands of the effective 1D superconductor de-
scribed by Eq. 2.24. Panels (a,c) show the electron (gold) and hole (blue)
bands in the nonsuperconducting state. The bands are degenerate in Panel (a)
when there is spin-orbit coupling but the degeneracy is lifted in Panel (c) in the
presence of spin-orbit coupling. Panels (b,d), for the superconducting phase,

4Note that it is assumed that the superconductor is large. For proximitized nanowire in the weak
coupling regime the main effect of the superconductor is inducing superconducting correlation
in the nanowire [70]. In this case the semiconducting nanowire becomes a superconductor and
can be studied independently. It is worth mentioning in the strong coupling regime one cannot
treat the nanwire and superconductor separately because the superconductor renormalizes all the
NW parameters. In this case the full NW+SC system has to be treated as a single entity [71, 39].
The strong coupling limit case will be discussed in section 5.3
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(a) (b)

(d)(c)

Figure 2.1. Energy of s-wave superconductor as a function of kx showing the normal
state without spin-orbit coupling (a) and its corresponding superconducting state (b),
normal state with spin-orbit coupling (c) and its corresponding superconducting state
(d). Spin-orbit coupling lifts the degeneracy in the bands except at kx = 0,π , which
reflects the so-called Kramer’s degeneracy. The electronic amplitude, |u|2, has been
mapped on the energies such that gold (blue) denote electrons (holes), see color bar.
Note that the color around E = ±Δ in (b,d) shows a mixture of electrons and holes.
When Δ = 0, the normal state (a) contains pure electrons (yellow) and pure holes
(blue). Turning on superconductivity, (b), hybridizes the electrons and holes around
Fermi energy, EF = 0 in this case, opening a gap of 2Δ. For α 
= 0, the normal
state bands are shifted along kx and the degeneracy between spin-up and spin-down
states is lifted but the bands are mixed (c). Turning on superconductivity gaps out
all degeneracies around EF but the Kramer’s degeneracies, protected by time reversal
symmetry, remain (d). Note how PHS relates the states (representative points in red
dot) to each another.

show that superconductivity mixes electrons and holes around the Fermi en-
ergy and thereby creates an energy gap of 2Δ0 symmetrically around zero en-
ergy. The high energy degeneracies at kx = 0,±π for finite spin-orbit coupling,
see Figure 2.1(c,d), are the Kramer’s pairs. The Kramer’s pair degeneracy can
only be lifted by breaking time-reversal symmetry.

There is more to this simple superconductor: by applying sufficient mag-
netic field it becomes a topological superconductor. Features of this 1D su-
perconductor has been a subject of intense study for the past ten years and is
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still very active. At this point it is necessary to discuss notion of topological
superconductivity before applying magnetic field. This will done in Chapter 3.

2.5 Symmetry aspects of superconductivity
Superconducting materials usually have an underlying crystal structure. The
arrangement of atoms in the lattice of a crystal influences the electronic behav-
ior of the system. A lattice has unique symmetries with reference to a point
in the lattice. The presence of symmetries not only reduces the complexity
of a problem but also gives insight into the nature of the system, and one can
obtain valuable information about the system without doing much calcula-
tions. For example, as we have seen before, PHS constrains the eigenvalues
of the BdG Hamiltonian to come in pairs but with opposite signs. Interest-
ingly, the symmetry operations of a lattice form a group. Thus, each lattice
can be classified according to a specific point group. A point group contains
all the symmetry operations except translation.5 A key property of groups is
that each group element can be represented by a matrix. This is the concept
of representation theory and this field is called group theory. In the following,
relevant lattice geometries and superconducting states that are of interest to
this Thesis are briefly discussed, within group theory. Details of group the-
ory can readily be found in textbooks [72, 73], while character tables can be
found well-documented online [74, 75], as well as visualization of symmetry
operations [76].

2.5.1 Definition of key group theoretical concepts
Conjugacy and Class: Let gi be the elements of the group G. Element g1
is conjugate to g2 if g2 = g3g1g−1

3 , ∀ g1, g2, g3 ∈ G. Conjugacy is an
equivalence relation, implying that conjugate elements have some common
properties, hence they can be categorized. The collection of all elements that
are conjugate to each other is called a class. An example of conjugacy is
Eq. (2.17). This suggests that both ĤBdG and −ĤT

BdG(−k), discussed in sec-
tion 2.2.4, belong to the same class and are related through PHS. Furthermore,
ĤBdG, −ĤT

BdG(−k), and P are all elements of the same group.
Representation: A representation Γ of a group G, with group multipli-

cation ◦, is a group of nonsingular square matrices M̂ such that the matri-
ces satisfy the properties of a group: If g1 ◦ g2 = g3, ∀ g1,g2,g3 ∈ G then
M (g1)M (g2) = M (g1 ◦g2) = M (g3) ∈ Γ, where M (g) is the matrix repre-
senting element g ∈ G.

Reducible and irreducible representations: A representation is called a
reducible representation if it is decomposable to a direct sum of other rep-

5By including translations one obtains a space group.
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D6h E 2C6 2C3 C2 2C′2 2C′′2 i 2S3 2S6 3σh 3σd 3σv Basis function
A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 1, k2

x + k2
y

E2g +2 -1 -1 +2 0 0 2 -1 -1 +2 0 0 k2
x − k2

y , kxky

B1u +1 -1 -1 -1 -1 +1 -1 -1 +1 -1 +1 -1 kx(k2
x −3k2

y)

E1u +2 +1 -1 -2 +1 +1 -2 -1 +1 +2 -1 -1 kx, ky

Table 2.1. Character table showing relevant irreducible representations (first column)
of the honeycomb lattice in D6h point group. The entries in the first column are the
irreducible representations relevant to this Thesis. The full D6h point group character
Table has twelve irreducible representations. The top row (columns 2-13), contains
the classes in the form NkCk, where Nk is the number of elements in the class and Ck is
the representative symmetry operation of the class. The entries under the classes for
each irreducible representationare the characters, χ of the irreducible representations
under the symmetry operations Ck. The character of an irreducible representation
under the identity element, E, gives the degeneracy of the irreducible representation.
The last column contains the basis functions, which gives the spatial behavior of the
irreducible representations. Here, a 2D lattice is considered, such that kz = 0, and the
representative basis function up to cubic order. The top (bottom) half is even (odd)
under inversion. See Ref.[73] for naming of point groups, symmetry operations, and
labeling of irreducible representations. Some of the symmetry operations are shown
in figure 2.2. See appendix B for the derivation of superconducting state.

resentation. A reducible representation introduces ambiguity since any two
representations can be combined to form a new one.

Any representation that cannot be reduced into a direct sum of other repre-
sentations is called an irreducible representation. The irreducible representa-
tions of a symmetry group are orthogonal. In group theory, to remove ambi-
guity in the representations, only irreducible representations of the symmetry
group are considered.

Character of a representation: The representation matrix M̂(Γ) is arbi-
trary because the matrix M̂′(Γ) = ÛM̂(Γ)Û−1, where Û is an invertible matrix,
obtained by similarity transformation is also a representation of Γ. However,
traces are unchanged under similarity transformation so M̂ and M̂′ have the
same trace. In group theory the important quantity is the trace, called char-
acter χ . Elements in the same class are related by similarity transformation
(conjugacy) implying that the representation matrices of elements in the same
class have the same character. For example, it is trivial to deduce that ĤBdG(k)
and −ĤT

BdG(−k) have the same character since the diagonal of a matrix is not
affected by transpose operation.

Character table: The irreducible representations of a point group along
with the classes of the symmetry operations and their characters are listed in
a character table. The character tables of all known point groups have been
calculated [72, 73, 74, 75].

Chapter 6 of this Thesis is devoted to the honeycomb lattice, specifically,
graphene. The point group of the honeycomb lattice is D6h. The character
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(b)(a)

Figure 2.2. The symmetry operations of the honeycomb lattice belonging to the D6h
point group for rotations (a) and reflections (b). The Cn represent rotations by 2π

n
through the principal axis while σ ’s are reflection planes. See Ref. [73] for definition
of symmetry operations. Note only one of the three σd , σv, C′2 and C′′2 is shown. The
improper rotations Sn are not shown but can easily be generated from Cnσh.

table of the D6h point group for kz = 0, showing only irreducible representa-
tions relevant to this Thesis, is presented Table 2.1. The symmetry operations
of the unit cells of the honeycomb, one for each class, are shown in Fig. 2.2.
See Ref. [73] for complete definition of symmetry operations and irreducible
representation labeling. The first column in the tables are the irreducible rep-
resentations while the other columns (except the last one) are the classes and
the number entries are the characters of the symmetry operations in each ir-
reducible representation. The character of an irreducible representation under
the identity class E gives the dimension of the irreducible representation. So
E2g

(
A1g

)
is a two (one) dimensional irreducible representation. The trivial

representation A1g have the full symmetry of the lattice while all other irre-
ducible representations break some spatial symmetry.

Basis functions of irreducible representations: At times it is difficult
to write down the representation matrices M̂ of the symmetry operations of
an irreducible representation. In this case it may be easier to know how the
irreducible representation behaves in coordinate space. Basis functions gives
information on the spatial behavior of an irreducible representation. Basis
functions are often listed together with the characters in the character table. In
the last columns of Tables 2.1 basis functions in reciprocal space, up to cubic
order, of relevant irreducible representations are listed.

Projection operator: In mathematics the projection operator maps an ob-
ject onto another object. In group theory, the projection operator is a special
and very powerful tool in determining basis functions. Here, the projection
operator P̂Γn

k , for an irreducible representation Γn, maps a basis function of Γn

on itself. If P̂R is the symmetry operator of symmetry operation (i.e. group
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element) R, then the projection operator is defined as [72, 73]

P̂Γn =
dim[Γn]

[g] ∑
k

Nk[χΓn(Ck)]
∗P̂R. (2.25)

where dim[Γn] is the dimension of the irreducible representation (given by
the character of symmetry element E), [g] is number of group elements, Nk
is number of elements in class NkCk, χΓn(Ck) is the character of symmetry
operation Ck under the irreducible representation Γn see Table 2.1.

The projection operator simplifies the process of finding the basis function
in that one only needs to know the characters of the symmetry operation under
the irreducible representation of interest. Then, one finds how the function
transforms according to the irreducible representation. Let f Γn

(
r
)

be a basis
function of the irreducible representation Γn, then it satisfies

P̂Γn f Γn
(
r
)
= f Γn

(
r
)

(2.26)

One problem is that this approach of finding the basis function seems to
be a trial and error method. It may become laborious and tiresome to find
the right basis function. Group theory solves this ambiguity in the way basis
functions are chosen. The basis functions are chosen from the harmonics ex-
pansion of the problem. For example, for isotropic, square, and honeycomb
lattice systems one uses, respectively, spherical, cubic and hexagonal harmon-
ics expansion as basis functions.For superconductivity, and in this Thesis, the
basis functions are obtained using the eigenvectors of the linearized gap equa-
tion, Eq. (2.18), by expanding its corresponding momentum dependent factor
around high symmetry points of the first Brillouin zone (1BZ). Further discus-
sion is presented in section 2.5.3 below and application to honeycomb lattice
is presented in chapter 6.

For the D6h point group, representing the symmetry of graphene, there are
twelve classes and irreducible representations, from the twenty-four group el-
ements. Thus, calculating the projection operation on some arbitrary basis
function can be algebraically complicated. This complication can be avoided
through symbolic computation. A demonstration of the power of the projec-
tion operator is given in Appendix C, using Mathematica.

All group theoretical concepts important to the subject of this Thesis has
been discussed. Attention will now be shifted on how this is connected to
condensed matter physics and more importantly superconductivity.

2.5.2 Normal state
The normal state, described by the noninteracting Hamiltonian, is invariant
under all the symmetry operations of the full group G satisfied by the inter-
acting Hamiltonians in Eqs.(2.1), (2.4), (2.14). The full group G = G⊗T ⊗
SU(2)⊗U(1), where G is the point group of the crystal lattice, T represents
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time-reversal symmetry (TRS) group, SU(2) the spin rotation group (impor-
tant for spin-orbit coupling) and U(1) the gauge symmetry group. Note that
if the spin-orbit coupling is strong, SU(2) and G cannot be treated indepen-
dently but rather combined together and treated as a single group. This is the
case for e.g. heavy fermion superconductors [59]. Here spin-orbit coupling
and spatial symmetry are considered separately because graphene has negli-
gible spin-orbit coupling. In fact, only spatial symmetry is of interest, T and
SU(2) are postponed to the next chapter where topological superconductivity
is discussed. The normal state does not break any symmetry in G. Thus, nor-
mal state always to the irreducible representation with highest symmetry in G.
For example, in D6h for honeycomb lattice, the normal state belongs to the
perfectly symmetric A1g irreducible representation, see Table 2.1.

2.5.3 Superconducting state
It is time to make connection with superconductivity. First, as discussed in
section 2.2.2, superconductivity spontaneously breaks the U(1) gauge sym-
metry through its pair amplitude, F ∝ 〈cc〉. If a superconducting state breaks
another symmetry in addition to U(1) it is referred to as unconventional but
otherwise conventional.

The quest is to know which symmetry operations of G \U(1) = G⊗T ⊗
SU(2) are broken by the superconducting state, more specifically the order
parameter, and then find the largest subgroup H ⊆ G \U(1) where the or-
der parameter is invariant. Here the focus is on the lattice spatial symmetry.
Hence, it is necessary to find the largest subgroup H ⊆ G under which the
order parameter is invariant.

Although the lattice allows for several possible states, order parameters be-
longing to different irreducible representations usually have different Tc [77,
78, 11, 20]. As seen in Eq. (2.18) the linearized gap equation is an eigen-
value equation and its solutions belong to specific irreducible representations
of the normal state. The highest eigenvalue determines the symmetry of the
order parameter at Tc [77]. If the solution of the linearized gap equation has
a degeneracy, all the degenerate solutions have the same Tc and belong to the
same irreducible representation. Examples of this are the two-fold degenerate
d-wave states on the honeycomb lattice, belonging to the two-dimensional E2g
irreducible representation, see Table 2.1. See appendix B for the derivation of
superconducting states of graphene.

It is common for lattices to have several irreducible representations in a
point group, as already seen in Table 2.1, where only the irreducible represen-
tations common for the solution of the gap equation, i.e the superconducting
symmetries in graphene systems are listed. Note that apart from the s-wave
states, the other superconducting states break some of the symmetries of the
point group G and are therefore unconventional. The superconducting state
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is named based on the spatial behavior of the basis function. When the basis
function of the trivial representation is constant it is called s-wave, but when it
has spatial dependence, which is isotropic, it is called extended s-wave. Both
belong to A1g irreducible representation, see Table 2.1. In this case H = G.
The spatial symmetry breaking states under E2g and B1u are respectively d-
waves and f -wave superconducting states.

Close to Tc the superconducting state can be a linear combination of several
basis functions of the irreducible representation with the largest eigenvalue.
Below Tc, as the temperature reduces further usually a few linear combina-
tions can satisfy the nonlinear gap equation. Degenerate states belonging to the
same irreducible representations can mix to form a more energetically favor-
able state. Indeed, on the honeycomb lattice, it has been shown that an equal
complex mixture of the nodal d-waves, in E2g irreducible representation, form-
ing the fully gapped chiral dx2−y2 ± idxy-wave superconducting state, is the
most stable state at doping close to the van Hove singularity [11, 20, 12, 13].
Note that the chiral states are topological with nonzero winding numbers.

Since the irreducible representations are orthogonal they should not mix.
But this does not mean the superconducting state is always pure far below Tc.
If there is a breakdown of continuous or structural symmetries as temperature
decreases, then the eigenvector of the largest eigenvalue will no longer be an
eigenstate of the eigenvalue equation [77]. In this case there can be a mixture
of superconducting states, where a sub-dominant superconducting state mixes
with the dominant one. A common form of this state is d+ is proposed to exist
in cuprates [79], and recently d + ig in Sr2RuO4 [80, 81].6 Superconducting
states with sub-dominant orders are not subject of interest in this Thesis.

As discussed earlier one can achieve superconductivity in an otherwise non-
superconducting material through proximity effect. In Ref. [18] a cuprate su-
perconductor is proximitized with graphene in an scanning tunneling spec-
troscopy experiment and the results showed induced superconductivity in the
graphene layer. As shown in section 2.4, both d-wave superconductivity in the
cuprate and the graphene lattice symmetry determine the induced supercon-
ducting state in graphene but only spin-singlet superconductivity is allowed
since there is no spin-flipping terms in graphene. In Paper IV, various possible
superconducting state on graphene proximitized with a cuprate superconduc-
tor are probed using a single potential impurity. The impurity quasi-particle

6Initially, Sr2RuO4 was proposed to be a candidate material for chiral px± ipy-wave supercon-
ducting state [82, 83, 84, 85]. However, recent nuclear magnetic resonance experiment [86] has
challenged this existence of chiral p-wave superconducting state in Sr2RuO4. Over the last two
years, and currently, there is a continuous paradigm shift on the superconductivity of this enig-
matic material. Though the superconductivity continues to mystify experts, after more than 25
years of efforts, there has been several new theoretical predictions of the superconducting state,
e.g. see Ref. [80, 81]. It is now considered to be a spin-singlet even-parity superconductor.
Understanding superconductivity of this material is important because it will shed light under-
standing superconductivity in its counterpart, the strongly correlated cuprate superconductors.
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interference reveals the symmetry of the superconducting state in the lattice.
Using this approach the superconducting state can be predicted in scanning
tunneling spectroscopy experiments [87, 88, 89, 90].
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3. Topological superconductors

In section 2.5, the classification of superconductivity was based on the sym-
metries of the order parameter, which are discrete symmetries of the lattice.
Additional classification of superconductor based on quantum symmetries ex-
ists. This classification is topological and the exotic superconductors in this
classification are called topological superconductors [29, 91, 92, 93, 94], a
name that comes from the field of topology in mathematics. These supercon-
ductors have been a subject of intense study since their discovery [95, 24]. The
most prominent feature of topological superconductors is the existence of ro-
bust gapless boundary states, despite the bulk being gapped. These boundary
states can be localized or propagating depending on the topology of the super-
conductor. The subject of this chapter are the topological superconductors.

In mathematics, topology is a concept of classifying objects according to
their shapes [96]. Two objects that can be continuously deformed into each
other are said to be topologically equivalent and otherwise topologically in-
equivalent. A condensed matter system can be nontopological (same as trivial
topology) or topological (same as nontrivial topology). The latter is the inter-
esting case. By tuning parameters of a system it is possible to drive the system
from nontopological phase to a topological phase. The system can also be
driven between between two distinct topological phases. When this happens
the system is said to undergo a topological transition. However, unlike usual
phase transition between disordered and ordered phases, a topological phase
transition between distinct topological phases involves coming across a topo-
logical defect which obstructs smooth deformation between these phases. In
real systems this is related to closing and reopening of the gap energy. In other
words when a system undergoes a topological phase transition its gap closes
and reopens. A topological phase has a topological invariant which does not
change during deformation except the gap closes, that is when there is an ob-
struction in the deformation, such that the topology of the system changes.
Thus, topological invariants can be used to classify topological phases.

The topology of noninteracting Hermitian condensed matter systems and
their topological invariants have been studied in detail. All such systems are
classified into ten topological classes in the so called tenfold-way scheme [95,
24, 97]. The classification is based on the presence or absence of any or all
of three quantum mechanical symmetries in the system, namely: particle-hole
symmetry (PHS), time reversal-symmetry (TRS) and chiral symmetry. The
chiral symmetry is proportional to the product of TRS and PHS, implying
that if any two of the symmetries are present, then the third must be present.
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Class
Symmetries Dimension

SC Edge states MaterialsT P C SU(2) 1 2
D − � − − Z2 Z spinless p-wave MBS Δs+SOC+B
C − � − � − 2Z chiral d + id chiral electrons graphene

Table 3.1. Table showing classification of TRS breaking topological superconduc-
tors, class C and D (first column). The entries under Dimension are the topological
invariants (bold entries are those relevant to this Thesis). The last three columns
are, respectively, nature of superconducting state, type of edge states, and the mate-
rial where these topological superconductors can be physically realized. Here MBS
implies Majorana bound state, SOC implies spin-orbit coupling and Δs+SOC+B indi-
cates combination of different materials namely: s-wave superconductor, Rashba SOC
material, and application of external magnetic field, to engineer the superconductor.

As seen in section 2.2.3, the BdG formalism of superconductor has built-in
PHS. Focusing on TRS breaking superconductors, then chiral symmetry must
vanish, which means only PHS exists. Superconductors which break TRS can
exhibit topology in the tenfold-way scheme depending on spin rotation. The
superconductor can be class D with broken spin rotation symmetry or class
C with preserved spin rotation, see Table 3.1. Details of the classification of
topological superconductors can be found in the literature [93, 98].

This Thesis studies 1D Class D topological superconductors engineered in
real materials, and 2D Class C topological superconductors in graphene, under
different types of defects.

3.1 Topological invariant in quantum mechanics
For a quantum mechanical system the topological invariant is encoded in the
wave function and can be obtained from the Berry phase [99]. If |ψν(k)〉 is an
eigenstate of ĤBdG with eigenvalue Eν(k) where ν labels the bands, then the
Berry phase, θ , along a curve C is given by [92, 93]

θν(C) =
∮

C
Aν ·dk, Aν = i〈ψν(k)|∇kψν(k)〉, (3.1)

where Aν is the Berry potential, which is gauge dependent since the phase of
|ψν(k)〉 is not fixed. Choosing a new gauge such that |ψ ′ν(k)〉 = eiφk |ψn(k)〉
one obtains the Berry phase in the new gauge as γ ′ν(C) = θν(C)−

∮
C ∂kφkdk.

As long as C is a closed loop the integral in the second term is always a multi-
ple of 2π . As such, the phase factor Z = eiθ ′ν (C) = eiθν (C) is an invariant. Note
that θν(C) is path dependent.

The presence of PHS, as discussed in section 2.2.4, enforces that if |ψν(k)〉
is a state with energy Eν(k

)
> 0, then there is also a stateP|ψν(k)〉= |ψν∗(−k)〉

with energy Eν(− k
)
< 0, (see figure 2.1(b) for visualization). In this case,

summing over all occupied band contributions to Eq. (3.1), the total Berry
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phase is quantized, θ = 2πm, where m is an integer, see Ref. [93] for proof.
The topological invariant is then Z = θ mod 2π . In this case, Z = 0 zero
for trivial phase and Z = 1 for nontrivial topological phase.1 Other values of
topological invariant are possible depending on the symmetries of the super-
conductor, see Table 3.1.

Another topological invariant, called the Chern number, N, can be defined
from the Berry connection as [100].

N =
1

4π

∫
BZ

F ·dk, with F = ∇×A, (3.2)

where F is the Berry curvature, which is a gauge independent quantity.
This description of the topological invariant gives the misconception that it

is some abstract object. However, in condensed matter physics the topological
invariant is related to physical properties of the system which are conserved,
and this quantity can be used as a topological invariant. Such physical prop-
erty include quantized conductance [101, 102]. The number of edge states is
also related to the topological invariant [27]. This relationship is given by the
index theorem or bulk-edge correspondence. This theorem is briefly discussed
below.

3.2 Bulk-edge correspondence
In the previous section, the concept of topological invariant was discussed in
relation to bulk systems in momentum space. However, in experiments sam-
ples are usually small, and thus have edges. One can ask what is the meaning
of a topological invariant or what are the features of topological states in these
finite samples. The bulk-edge correspondence [27, 29, 28, 30] is a powerful
theorem that gives physical meaning to the topological invariant. The theo-
rem postulates that the boundary between two topologically different systems
hosts zero energy states. This implies that the closure of the energy gap as the
Hamiltonian is deformed from one topological class with topological invariant
N1 to another topological class with topological invariant N2 is equivalent to
the appearance of zero-energy states at the boundary between these two sys-
tems, provided that the boundary is between topologically distinct systems.
The total number of edge states per edge is |N1−N2| [27]. Note that for vac-
uum the invariant is zero. Through the bulk-edge correspondence, the bulk
topological invariant tells us exactly how many zero energy states will appear
at the edge of finite system.

1The phase factor Z = eiθ can also be chosen to be the topological invariant. Then, Z = 1 for
topologically trivial phase and Z =−1 for topologically nontrivial phase.
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3.3 Majorana fermions in condensed matter physics
In particle physics, Majorana fermions are particles that are their own antipar-
ticles [61, 103, 104]. Being its own antiparticle, a Majorana fermion is nec-
essarily neutral since particles and antiparticles have opposite charges. So the
wave function is real. Neutrinos are candidates for Majorana fermions but
there is no experimental evidence that confirms that neutrinos are their own
antineutrinos, because neutrinos rarely couple with matter.

While Majorana fermions are still elusive in particle physics, there is now
a strong evidence of their emergence as quasi-particles excitations in topolog-
ical superconductors in condensed matter physics [103, 32, 105, 33]. To be
a Majorana fermion an excitation must satisfy two criteria: (1) It must obey
Dirac equation, and (2) be its own antiparticle. In topological superconductors
there exist gapless states, according to the bulk-edge correspondence. Since
the gapless state are linear around the Fermi energy then the low energy Hamil-
tonian will satisfy linear dispersion. Thus, the low energy states of topological
superconductors obey the massless Dirac equation. Hence, the first criterion
is fulfilled. The second criterion is fulfilled in a superconductor since the Bo-
goliubov excitations are linear combination of electrons and holes. Thus, the
low energy excitations of topological superconductors are Majorana fermions,
although they are not the same as their particle physics counterpart.

3.3.1 Majorana bound states
From Eq. (2.10) it is noted that the operator γν is associated with positive
energy excitations while the operator γ†

ν is associated with negative energy ex-
citation, of a superconductor. Considering a zero energy state in a topological
superconductor, i.e. Eν = 0 =−Eν = E0, then from Eq. (2.10)

γ0 = γ†
0 = γ. (3.3)

These zero energy states come in pairs due to PHS. In other words, if γ1 exists
at zero energy, then must be another γ2 also at zero energy. These zero energy
levels in a topological superconductor are called Majorana zero modes or Ma-
jorana bound states.2 Here Majorana bound state is used. From Eq. (3.3) it
is noted that γ both the creation and annihilation operator of the zero energy
state. This is a contradiction. A way to resolve the problem is to consider two

2In real materials due to finite size effects, the Majoranas might not sit exactly at zero energy,
although still very close to zero energy. In this case, which is often the case in reality, and even in
numerically simulation, they are called Majorana bound states. Majorana zero mode is a special
case of Majorana bound state when the Majoranas are exactly at zero. Here, Majorana bound
states is used to refer to these Majoranas irrespective of their energy as long as the required
properties are satisfied. In the literature there is no clear distinction between Majorana fermion
Majorana bound state and Majorana zero mode.
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Majorana operators, γ1 and γ2, and then define a complex fermion [91], as

cm =
1
2
(γm,1 + iγm,2) , c†

m =
1
2
(γm,1− iγm,2) , (3.4)

where m labels the state, not site. In this way one can interpret a fermion as
a combination of two Majorana zero modes and in reverse, the Majorana zero
mode as half a fermion. Inverting the expression we obtain

γm,1 =
(
cm + c†

m
)

and γm,2 =−i
(
cm− c†

m
)
. (3.5)

It can be seen that γ†
m,i = γm,i and the commutation relation {γm,γn}= 2δmn.

It should be noted that γm,1 and γm,2 can be separated in space. When the γm,1
and γm,2 are close, they combine so that cm is a regular fermion, and no Ma-
jorana bound states in the system. However, when spatially separated γm,1
and γm,2 exist different points (boundaries according to bulk-edge correspon-
dence), and the fermion cm is a spatially nonlocal fermion. This nonlocal prop-
erty has been shown to lead to the non-Abelian statistics of Majorana bound
states [24], and also endows Majorana bound states with immunity against
local perturbations. Also, the energy gap of the superconductor separates Ma-
jorana bound states from the continuum of states at higher energies. This is
referred to as topological protection. These properties open the door for using
Majorana bound states for fault tolerant quantum computation [40, 91, 106].

Majorana bound states have been proposed to exist at edges of 1D p-wave
superconductors and at the center of vortices in chiral p-wave superconduc-
tors [24, 40, 91, 106]. Such superconductors belong to Class D topological
superconductors, see Table 3.1. Single entity materials exhibiting these exotic
superconducting phase are rare in nature. However, the superconductors can
be engineered in the laboratory by combining several ingredients that satisfy
the symmetries of Class D topological superconductors. The ingredients for
achieving 1D p-wave superconductor is given in the last column of Table 3.1.

In summary, Majorana bound stateare topologically protected states which
exists at the edges of 1D p-wave superconductors. In Paper I, the robust-
ness and stability of Majorana bound states against perturbation was put to
test by subjecting Majorana bound states at the end of a magnetic chain in
a superconductor to strong disorder. The topological protection of Majorana
bound states from finite energy quasi-particle poisoning improves with a large
topological energy gap. One of the main issues in experimental realization
of Majorana bound states in earlier experiments is that the topological gap
was small [32, 105]. It has been shown that it is possible for zero-energy
energy states on nontopological origin can appear in Majorana bound states
experiments [36]. Distinguishing between this trivial zero-energy states and
Majorana bound states has been a subject of debate [46, 45, 39, ?, ?, 48]. In
Paper II, an approach for possible unambiguous detection of Majorana bound
states through supercurrent is proposed.
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4. Methods of solving the
Bogoliubov-de-Gennes Hamiltonian

In chapters 2 and 3 superconductivity and its properties were discussed. What
is missing is the methodology for obtaining necessary information about the
superconducting state from ĤBdG. This missing piece is filled in this chapter.

Due to the presence of defects, namely impurities, disorder, domain walls
and junctions, in the materials studied in this Thesis, the studies are carried
out in real space. This makes ĤBdG a large matrix . The size increases rapidly
with lattice size. The problem is then a large eigenvalue problem. To solve
this problem, one needs to consider the computational cost and the properties
of the system to be studied. Two methods are used, namely diagonalization
and spectral methods.

4.1 Diagonalization methods
Diagonalization of a Hermitian matrix is probably the most prominent topic
in linear algebra. The method is very efficient since it gives access to the
eigenvalues and eigenvectors with which one can calculate any observable.
Numerically, depending on the size of the problem or target physics one can
choose between full diagonalization and partial or Arnoldi iteration method of
diagonalization.

4.1.1 Full diagonalization
This is the usual diagonalization method and will not be discussed here. After
diagonalization one obtains eigenvalues Eν and unitary matrix ∑α Uν

iα , where
denotes spin and i lattice sites. Any observable of interest can be calculated
from the two quantities.

Numerically, the diagonalization method is very computationally expensive
with computational time of order ∼ (4N)3 for ĤBdG with N lattice sites. The
full diagonalization of ĤBdG in real space therefore limits study to smaller lat-
tice sizes. The fact that one needs to tune parameters which entails diagonal-
izing the Hamiltonian several times implies that the size of the system needs
to be small. While the size of the lattice may the small compared to experi-
mental samples the method yields qualitatively accurate results when one uses
large values of the superconducting order parameter. This is possible due to
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the fact that the superconducting coherence length, ξ , is inversely proportional
to the magnitude of the order parameter, |Δ|, that is ξ ∝ |Δ|−1. Realistically
|Δ| is small,∼ 1.0−3.0meV for s-wave superconductors [33], albeit larger for
unconventional superconductors. It is, therefore, necessary to ensure that the
lattice is larger than ξ , for superconductivity to be stable, implying a large lat-
tice. However, by using |Δ| values larger than experimental values ξ becomes
small and one can simulate experimental scenarios with smaller lattice. Note
that since |Δ| and ξ are numbers, thus this approach has no qualitative effect
on the simulations.

Self-consistent calculation of the order parameter

Often in the literature, the superconducting state is studied using nonself-
consistent analysis where the magnitude of the order parameter is assumed
to be constant in space. However, as discussed earlier, the order parameter is
locally affected by defects. Thus, when the superconductor is inhomogeneous
the order parameter will vary with space. To capture its spatial behavior the
order parameter is calculated self-consistently. In this Thesis, self-consistent
calculations are carried out with the diagonalization method. This is because
diagonalization gives access to the coherence factors u,v making it easy to cal-
culate the order parameter directly from the self-consistent equation, described
by Eq. (2.5), as

Δη
ji =

Γi j

2 ∑
αβν

Uν
jβ
[
ση

βα
]
Uν

iα fFD
(
βEν)

=−Γi j

2 ∑
αβν

[σ̄η ]βα

[
sαuν

jβ vν∗
iα fFD (−βEν)+ sβ vν∗

jβ uν
iα fFD (βEν)

], (4.1)

where fFD is the Fermi function.
This method is used in Paper III where domain wall of chiral d-wave super-

conducting state was studied in semi-infinite graphene. To make the problem
tractable to diagonalization the infinite direction was Fourier transformed to
moment space while the finite direction is kept in real space. This signifi-
cantly reduced the size of ĤBdG. Thus, the self-consistent calculation is not
expensive. The self-consistent calculations showed that the order parameter is
suppressed at the domain wall making it possible to extract the domain wall
width. In this mixed space, mixture of real x-axis and momentum space ky in
y direction, the spectral function, given by,

A(E,ky,x) =
2N

∑
ν=1

(
|uν

x,ky
|2 + |vν

x,ky
|2
)[

δ (E−Eν (ky))+δ (E +Eν (−ky))
]

(4.2)

tracks the flow of the states, especially the low energy states. Thus, it un-
ambiguously discern between edge, domain wall and bulk states as well as
indicate the flow direction in k-space.
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Self-consistent calculation of the order parameter of a disorder supercon-
ductor was carried in Paper I. The self-consistent calculation in Paper I made
it possible to obtain the condition for the stability of Majorana bound states at
the end of magnetic chain in a spin-orbit coupled superconductor, which is not
possible to find in nonself-consistent calculation.

It is worth mentioning that self-consistent calculation is computationally
expensive since the diagonalization is carried out several times, until the order
parameter converges. Therefore, self-consistent calculation could be avoided
in situations where it does not have qualitative effect on the results. An exam-
ple of situations where self-consistency may not be important is when a single
potential impurity is deposited on a large superconductor.

4.1.2 Arnoldi iteration method
At times one may want to to study the system with experimentally realistic
values. Often, the important features are the low energy states especially in
the case of topological superconductors where zero-energy states are present
at the defects as a consequence of bulk-edge correspondence. In such cases
partial diagonalization using the Arnoldi iteration method [107, 108] is handy.
The method use far less memory than required in a full diagonalization, thus
drastically reduces the computational cost while simulating system size that is
not feasible with full diagonalization method. The calculation can further be
sped up if the Hamiltonian is a sparse matrix. The price of using this method
is lack of information on some of the states. The Arnoldi method is one of the
iterative methods used in obtaining the largest eigenvalues, in magnitude, of a
matrix. When the target are the smallest eigenvalue the inverse of the matrix
is used. In the case of this Thesis, the inverse of ĤBdG is used for to extract
the smallest eigenvalues, since the inverse of the eigenvalues of the inverse of
ĤBdG are the eigenvalues of ĤBdG. This takes most of the computational time
since inversion is an expensive operation. However, the Arnoldi procedure is
still far cheaper than the full diagonalization method. General details of the
iterative method can be found in the literature [107, 108].

The significant reduction in computational cost offered by this method was
exploited in Papers I and II where matrices of size ∼ 105× 105 we used and
extracting as many as 20 to 1000 lowest eigenvalues. Note that self-consistent
calculation is not possible with this method since high states above the energy
gap are needed for self-consistency.

4.1.3 Expressions for relevant quantities in BdG formalism
The BdG formalism offers easy access to relevant quantities through the wave
function amplitudes or coherence factors. Experimentally accessible quanti-
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ties can then be calculated. Listed here are some of the quantities used in the
analysis of materials studied in this Thesis.

Densities
Local density of states (LDOS) and Spin-polarized density of states (SPL-
DOS) are usually measured in scanning tunnelling microscopy and scanning
tunnelling spectroscopy experiments.

SPLDOS : ρiα(E) = 〈c†
iαciα〉= ∑

ν

[
|uν

iα |
2 δ (E−Eν)+ |vν

iα |
2 δ (E +Eν)

]
(4.3a)

where α denotes spin.

LDOS : ρi(E) = ∑
α
〈c†

iαciα〉= ∑
α

ρiα (4.3b)

DOS : ρ(E) = ∑
iα
〈c†

iαciα〉= ∑
iα

ρiα = ∑
i

ρi (4.3c)

Spin projection
Information about the spin can be obtained by projecting the eigenvector of
each energy level ν on the spin in a particular direction [109, 110] i.e.

Sη
i,ν = ∑

j

〈
ψν

i (τx
i ⊗ση)ψν

j
〉

(4.4)

where τ (σ) are Pauli matrices in particle-hole(spin) spaces. For projection
along x is,
Sx

i,ν =
[(

uν
i↑v

ν∗
i↓ +uν

i↑v
ν∗
i↓

)
fFD (βEν)+

(
uν∗

i↑ vν
i↓+uν∗

i↑ vν
i↓

)
fFD (−βEν)

]
In a similar manner all the quantities listed in section 4.1.3, Eqs. (4.1),

(4.3), (4.4), can be written in moment space by making appropriate Fourier
transformations.

4.2 Spectral methods
The Arnoldi method reduces computational cost significantly when ĤBdG is
very large. However, some information about the system is lost because some
states are not calculated, in this case the high energy states. What if ĤBdG
is large and one wants information of the full energy range? Alternative to
diagonalization are the spectral methods which have computational time ∝ N
instead of powers of N as in the case of diagonalization method. The symmetry
of the function or basis, c j, to be expanded determines the appropriate spectral
method. In section 2.2.4 Fourier basis was used to expand c j, which is a
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type of spectral method. Fourier expansion is the natural spectral method for
a periodic function but when the function is non-periodic and finite at the
boundaries more appropriate expansions are Legendre and Chebychev series
because they have finite intervals. In this Thesis the Chebychev polynomial
expansion is used.

4.2.1 Chebyshev polynomial expansion
The Chebyshev method is a spectral method [111] which can be used to cal-
culate the retarded Green’s function Gi j (ω) = 〈Ψi|

[
ω + iη− ĤBdG

]−1 |Ψ j〉,
where |Ψ j〉 is the eigenvector of the of the position operator at site j. Rather
than direct inversion of the matrix, which is expensive, the Green’s function is
expanded in terms of Chebyshev polynomial. The coefficient of the nth expan-
sion term is an

i j, and can be expressed in terms of the Chebyshev polynomial1

Tn
(
H̃BdG

)
[112, 113, 114, 115] as,

an
i j = 〈q0

i |Tn
(
H̃BdG

)
|q0

j〉= 〈q0
i |qn

j〉 (4.5)

where H̃BdG denotes the rescaled ĤBdG such that the eigenvalues of H̃BdG falls
in the interval [−1, 1] which is the interval of normalization of the Tn(x) =
cos(narccos(x)). The vector |q0

j〉= |c j〉= c†
j |vacuum〉 is a vector with an entry

of unity at the position j while all other elements are zero.
The nth Chebyshev polynomial is obtained by the recurrence relation

Tn
(
x
)
= 2xTn−1

(
x
)
−Tn−2

(
x
)

T0 = 1, T1 = x.
(4.6)

From Eq. (4.6) all higher order polynomials can be obtained. Thus, the first
and nth order polynomial expansion of the position eigenvector in Eq. (4.5)
are given by

|q1
j〉= H̃BdG|q0

j〉,
|qn

j〉= Tn
(
H̃BdG

)
|q0

j〉= 2H̃BdG|qn−1
j 〉− |qn−2

j 〉.
(4.7)

The retarded Green’s function is then obtained as

Gi j (ω̃) =
−2i√
1−ω2

∞

∑
n=0

an
i je

narccos(ω̃)

1+δ0,n
. (4.8)

The denominator is obtained from normalization condition of the Chebyshev
polynomials. The whole process can be seen as re-expressing the retarded

1Tn are Chebyshev polynomials of the first kind. Chebyshev polynomials of the second kind.
Un

(
x
)

can also be used.
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Green’s function in terms of Chebyshev coefficients. Note that the local den-
sity of states (LDOS) is obtained as

ρ(ω, i) =− 1
π

Im [Gii (ω̃)] (4.9)

This method is very computationally cheap and permits simulations of sys-
tems with experimentally realistic parameters. This is because most of the
operations involves summations, as seen in Eq. 4.8. The most expensive part
is the last expression of Eq. (4.7) which involves multiplication of matrices
and vectors. Using sparse multiplication will further speed up the calculation.
From the form of Eq. (4.5) it is possible to extract the coefficients an

i j for a
single site or a region of the lattice, and then obtain the LDOS on that site or
a region of the lattice. This is the power of the Chebyshev polynomial expan-
sion method. Thus, it should be noted that when the information of the full
lattice is required the method may become computationally expensive.

The Chebyshev method is efficiently implemented in the TBTK code pack-
age [116]. In Paper IV, the Chebyshev method, with 104 coefficients in the
expansion, is used to simulate superconducting graphene with lattice size of
1000×1000 giving ĤBdG matrix of size ∼ 106×106. This allowed the use of
reasonable experimental parameters for graphene.
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Part II:
Results
In this part the results in the papers leading to this Thesis are summarized.
Details are available in Papers I-IV.





5. Studies of Majorana bound states via
defects

5.1 Majorana bound states in real materials
As discussed in chapter 3, p-wave topological superconductors with Majo-
rana bound states at the ends can be engineered in the laboratory by combin-
ing common ingredients, namely: superconductivity, spin-orbit coupling and
magnetism. There are several ways of combining materials to realize effective
1D p-wave superconductor with Majorana bound states at its edges. Of these
methods, two are prominent with several experimental reports.

In one approach, magnetic impurities are deposited to form a chain on a
spin-orbit coupled superconductor [105, 117, 118], see figure 5.1. Signatures
of Majorana bound states have been reported in experiments by depositing Fe
atoms on Pb in the superconducting phase [33, 119, 120, 118]. In this method
the magnetic impurities are ferromagnetic.Using this approach, in section 5.2,
robustness of Majorana bound states to potential disorder is studied.

In another approach a semiconductor nanowire with strong Rashba spin-
orbit coupling is proximitized to a conventional s-wave superconductor [121,
122, 123, 124, 125]. An external magnetic field is then applied. The magnetic
field is used to drive the system from the trivial phase to a topological phase
with Majorana bound states appearing at the ends of the nanowire [122, 123,
124]. Using this approach several experiments have reported signatures of
Majorana bound states [32, 126].

5.2 PAPER I:
Majorana bound states in ferromagnetic chains on
conventional superconductors are robust against disorder
As explained in chapter 3, Majorana bound states are robust against local per-
turbations, due to their nonlocal and topological properties. In experiments
to create Majorana bound states, the superconductor will contain some form
of defects. For a hybrid superconductor-nanowire system it was shown that
the base superconductor must be extremely clean in order to obtain well iso-
lated Majorana bound states [42, 43]. Merely extending this result to magnetic
chains in a superconductor would imply that Majorana bound states at the ends
of magnetic chain are sensitive to disorder.
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Fe

Figure 5.1. Schematic of a chain of magnetic impurities (Fe) on conventional spin-
orbit coupled s-wave superconductor (Pb). The magnetic impurities give rise to an
effective Zeeman term along the chain in the superconductor. The overall result is
the appearance of Majorana bound states (MBS) at the edges of the magnetic chain.
Details of the experiment can be found in Ref. [33].

Paper I in this Thesis investigates the effect of disorder on Majorana bound
states on a chain of magnetic impurity deposited on a disordered s-wave su-
perconductor. Figure 5.1 schematically depicts the experimental scenario sim-
ulated in Paper I. The total Hamiltonian is given by

H = HSC +HZ +Hdisorder, (5.1)

where HSC is the Hamiltonian of the base superconductor which is modeled
with on-site s-wave superconductivity on a square lattice using the mean-field
Hamiltonian described in Eqs. (2.4). Also, the superconductor has Rashba
spin-orbit coupling, as this is the case for Pb(110) used in the experiment [33].
The order parameter Δi at lattice site i is calculated self-consistently with
Eq. (2.5) using the full diagonalization method discussed in section 4.1.1. HZ
is the effective Zeeman effect which comes from the magnetic chain. The mag-
netic impurities in the chain are considered to be ferromagnetically aligned.
Defects are introduced in the base superconductor through Hdisorder. Disorder
here is a random fluctuation of the chemical potential in the superconductor,
that is a site dependent chemical potential. This type of disorder, also called
Anderson disorder [22], is generated by charge inhomogeneities or puddle
formation, which is inevitable in experiments. This disorder has the benefit of
keeping the average chemical potential unchanged. Details of each term in the
Hamiltonian are explicitly given in Paper I.

The results showed that Majorana bound states are very robust against dis-
order. Majorana bound states remain at zero energy until disorder is very
strong. Using self-consistent calculations, Paper I shows that Majorana bound
states are not susceptible to disorder as long as superconductivity is not de-
stroyed. Paper I also shows that at very strong disorder strength Anderson’s
theorem, which states that s-wave superconductors are not susceptible to po-
tential disorder, breaks down. This leads to local destruction of superconduct-
ing correlations in some regions in the superconductor. This destruction of
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superconductivity is hidden in disorder averaged calculation. This is because
after averaging over several disorder configurations the effect of disorder is
washed out, almost completely, in disorder averaged quantities. Analysis of
a single disorder configuration is more appropriate for experiments, since few
samples are used in experiments, and it also yields the condition for Majo-
rana bound state robustness in a disordered superconductor: Majorana bound
states, in magnetic chains deposited on a conventional superconductor, remain
stable as long as superconductivity is not destroyed. Details can be found in
Paper I attached.

5.3 PAPER II:
Majorana bound states versus trivial zero-energy states
in nanowire junctions
Despite the advancement in the search for Majorana bound states there is still
no consensus whether Majorana bound states have been observed or not. One
reason for this controversy is because it was shown that trivial zero-energy
states can appear due to chemical inhomogeneities and can attain quantized
conductance, just like Majorana bound states [34]. Furthermore, it has been
shown that when the coupling between the nanowire and superconductor is
strong the energies of the nanowire are shifted and this will then have an effect
on the topological transition point of the nanowire [71, 127]. In the strong cou-
pling regime, which is experiemtally achieved by epitaxially growing the su-
perconductor on the nanowire [128], it is important to study the full nanowire-
superconductor system as a single entity in order to capture the experimental
situation more accurately.

Paper II in this Thesis studies a nanowire proximitized to two finite 2D
superconductors to form a superconductor-nanowire-superconductor junction.
The result shows that the nanowire parameters are sensitive to the size of the
superconductor, most sensitive of all is the induced chemical potential in the
nanowire. Remarkably, just by tuning the width of the superconductor the
induced chemical potential can fill or deplete the nanowire levels. Thus, the
width of the superconductor dictates when the nanowire becomes a topolog-
ical superconductor. Even more interesting is that different scenarios can be
achieved at the junction by tuning the superconductor width. For instance
the junction can form a quantum dot, depending on the width of the super-
conductor, which can attain zero energy. This is a spontaneous formation of
zero-energy state. In an experiment these trivial zero-energy state can mimic
Majorana bound states.

To distinguish between trivial zero-energy states and Majorana bound states
the supercurrent is calculated, and the result shows that as the Zeeman interac-
tion strength increases the supercurrent across the junction in the presence of
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trivial zero-energy states undergoes a sign reversal, that is a π−shift, but such
sign reversal is absent in the supercurrent when topological Majorana bound
states are present at the junction. Thus, Paper II proposes supercurrent mea-
surements as a tool for unambiguous detection and distinction between trivial
zero-energy states and Majorana bound states. Details can be found in Paper II
attached.
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6. Studies of topological and unconventional
superconductivity in graphene via defects

In this chapter a summary of the results obtained from studying superconduc-
tivity in graphene, or generally honeycomb lattice, is given.

Graphene has exotic electronic states [8, 9], and several many-body insta-
bilities including superconductivity, have been predicted to exist in graphene.
As discussed in section 2.5.3, the D6h point group of the honeycomb lattice
allows for several irreducible representations which implies that a vast vari-
ety of superconducting states are possible in graphene. Focusing on nearest-
neighbor interaction in the spin-singlet channel, since spin-orbit coupling is
negligible in graphene and higher order interaction strength has no qualita-
tive effect [129], the linearized gap equation, Eq. 2.18, predicts that at Tc the
possible nearest-neighbor superconducting states in graphene are degenerate
unconventional nodal dx2−y2− and dxy−waves belonging to the E2g irreducible
representation and conventional extended s−wave, sext , belonging to the A1g
irreducible representation, see Table 2.1 and appendix B.

Below Tc the honeycomb lattice favors equal complex admixture of the de-
generate d−wave states to form a fully gapped chiral d-wave, i.e. a dx2−y2 ±
idxy−wave superconducting state. The chiral d-wave state breaks time reversal
symmetry through the complex nature of its superconducting order parameter.
The chiral d-wave superconducting state has been predicted by several the-
oretical methods, including mean-field [11, 20], renormalization group [13]
and functional renormalization group [12], to exist in the honeycomb lattice
at doping levels close to the van Hove singularity. While the nodal d-wave
states break the sixfold symmetry of the lattice, the chiral d-wave obey the
lattice symmetry, however, it is a Class C topological superconducting state,
(see Table 3.1) with topological invariant given by the Chern or winding num-
ber N = ±2, described in Eq. 3.2, respectively, for dx2−y2 ± idxy. The Chern
number gives the chirality and the number of edge states, according to bulk-
edge correspondence. It should noted that chirality here refers to the complex
nature of the order paramter, and should not be confused with the chiral sym-
metry of graphene which refers to the sublattice symmetry of graphene. It has
been shown that chiral d-wave superconductivity in graphene has two edge
estates as expected from bulk-edge correspondence [129]. Further details of
chiral d-wave superconducting state in doped graphene can be found in [20].

Considering effective nearest-neighbor electron-electron interaction at fi-
nite doping levels up to and beyond the van Hove singularity, both intrinsic
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and proximity-induced superconductivity in graphene are studied by introduc-
ing defects. All the aforementioned superconducting states, especially the
topological chiral d-wave state are studied. The results are summarized be-
low.

6.1 PAPER III:
Domain wall in chiral d-wave superconductor on the
honeycomb lattice
The two possible chiral d-wave states, dx2−y2 + idxy and dx2−y2 − idxy, are de-
generate. Thus, a domain wall can form between these states. The domain
wall is formed when the order parameter changes from dx2−y2 + idxy-wave on
one side of the lattice to dx2−y2 − idxy-wave on the other side of the lattice.
The domain wall is formed because of change in chirality across of the lat-
tice. Figure 6.1(a) shows the spectral flow, obtain from Eq. (4.2), at the left
edge, domain wall, and right edge. The spectral flow shows that there are two
copropagating states per edge, and four copropagating states at the domain
wall, Figure 6.1(a). The domain wall states occur as a consequence of the
jump in the topological invariant from +2 to −2. This is consistent with pre-
diction of bulk-edge correspondence as discussed in section 3.2. The flow is
schematically shown in Figure 6.1(b). The flow is clockwise for dx2−y2 + idxy
and anticlockwise dx2−y2 − idxy. At the domain wall the flow is in the same
direction.

Paper III carries out full self-consistents calculation of different domain
walls in chiral d-wave superconducting graphene was carried out using full
diagonalization method, discussed in section 4.1.1. The result shows that the
domain wall energy have multiple minima as a function of the phase differ-
ence across the domain wall. The most favorable state is determined by the
order parameter profile that has the minimum width around the domain wall,
provided that it is not a sharp profile.

Although the most favorable domain wall orientation is doping dependent,
it is not sensitive to the interaction strength. For doping levels below the van
Hove singularity, the domain walls along the armchair edge are most favor-
able with no phase difference, while the domain walls along the zigzag edge
are favored for doping above van Hove singularity now with a finite phase dif-
ference. There is no preference at the van Hove singularity. This behavior is
attributed to the changes in the topology of the normal state of graphene with
doping. Despite the sensitivity of the domain wall state to edge type, doping
and phase difference the superconducting order parameter has a universal in-
verse relationship with the domain wall width, in agreement with phenomeno-
logical theory [77].
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(b)

(a)
Domain wallLeft edge Right edge

Figure 6.1. (a) Plot of the spectral function, A(E,ky,x) given in Eq. (4.2), at the
boundaries of chiral d-wave superconductor on the honeycomb lattice. The left (right)
side of the lattice has dx2−y2 + idxy− (dx2−y2 − idxy−)wave superconducting states, so
that a domain wall is formed at the middle of the lattice. The sign of the slope of the
boundary states gives the direction of flow of the chiral edge states. There are four
copropagating domain wall states, middle panel, but with flow opposite that of the
edge states, left and right panels. A finite phase difference across the domain wall has
been introduced to lift the degeneracy of the domain wall states. (b) Schematics of the
flow of the boundary states. The degenerate edge states at each edge are copropagating
and the domain wall states are also copropagating. Note that there are four domain
wall states in agreement with the bulk-edge correspondence.

Chiral superconductors are expected to have domain wall states. This study
then proposed that a finite differential conductance at zero bias within the bulk
of superconductor is a feature of domain wall states. Details can be found in
Paper III attached.

6.2 PAPER IV:
Probing unconventional superconductivity in graphene
via potential impurities
As discussed earlier, and in section 2.5.3, the honeycomb lattice allows for
several possible superconducting states under several irreducible represen-
tations. Following an experiment where superconductivity was induced in
graphene through proximity to a cuprate superconductor [18], in Paper IV all
possible spin-singlet superconducting states, up to nearest-neighbor pairing,
in graphene are studied using a single potential impurity. The system is mod-
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eled using Eqs. (2.4) but adding a single potential impurity such that the total
Hamiltonian is Ĥ = ĤBdG + Ĥimp, where Ĥimp is single the impurity Hamil-
tonian. The result shows that a single potential impurity introduced on the
graphene will aid the characterization of the superconducting states. To avoid
interference with edge states, a large lattice size with experimentally realistic
parameters is used. The calculation is carried out with Chebyshev polynomial
expansion method, discussed in section 4.2.1.

A very interesting finding is that the normal state Dirac point still hosts
a virtual bound state outside the superconducting gap. This supergap state
is always present irrespective of the superconducting state and it has the same
features as that of the impurity state in normal graphene. There are also subgap
impurity resonance states, states within energy gap due to impurity, in the
unconventional and topological superconducting states. These subgap states
reveal the symmetry of the superconducting states in the spatial local density
of states. The unconventional d-wave and chiral d-wave states show different
patterns in real space when probed at impurity resonance energy. The Fourier
transform of the local density of states [130, 131], known as the quasiparticle
interference, also shows different patterns in the Brillouin zone.

Paper IV shows that introducing a single potential impurity into proxim-
itized graphene in a scanning tunnelling spectroscopy or microscopy exper-
iment will reveal the symmetry of the superconducting state induced in the
graphene layer. Details can be found in Paper IV attached.
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7. Conclusion and Outlook

The results of this Thesis show that defects can be powerful tools for study-
ing topological superconductors, when properly controlled and manipulated.
Using different types of defects this Thesis has successfully studied a range of
topological superconductors.

The field of superconductivity is constantly growing. Novel materials with
unconventional superconducting correlations, but lacking theoretical expla-
nation at the moment, are found from time to time. Examples are the iron-
based superconductors [132, 133, 134] and twisted bilayer graphene [60, 135]
both of which have attracted a lot of attention since their discoveries. Multi-
layer graphene systems are very interesting materials because the low-energy
dispersion is dependent on the stacking order. In the special case of ABC-
stacked multilayer graphene [136] the low-energy bands are dispersionless at
the Fermi energy, around the K-points, due to the topology of the system. The
flat bands give rise to a large density at the Fermi energy, contrary to single
layer graphene where there is no density of states at the Fermi energy due
to the presence of a Dirac point. The presence of a large density of states
suggests that ABC-stacked multilayer graphene might be prone to supercon-
ducting instability, albeit such superconducting state will have to compete with
magnetism since density functional theory on a few layers and experiment on
trilayers [137] predict a magnetic ground state. Another multilayer graphene
system yet to be studied for superconductivity is biased bilayer graphene,
which is a Bernal stacking of two graphene sheets but with one of the layers
staggered i.e. the onsite energies in the two sublattices are different. Exper-
imental results show a flat band around the K-points [138]. The presence of
flat a band has led to speculations of unconventional superconductivity in the
material, but there is no detailed study of superconductivity in the material at
the moment.

Just as in graphene systems, a lot of activities are going on in the search for
Majorana bound states. Although, current experimental set-ups have achieved
a large induced gap, the strong coupling achieved have also resulted in detri-
mental effects such as reduction in spin-orbit coupling [39], large induced
chemical potential in the nanowire [39, 71, 127], all of which can conspire
to postpone the topological transition point to very large magnetic field val-
ues. It is therefore imperative to return to the weak coupling regime where the
effect of the base superconductor on the parameters of the nanowire is negligi-
ble. The believe in the community is that the induced order parameter in this
regime is small and thus the gap in the nanowire will be soft. But a detailed
investigation may change this view.
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With the tools at our disposal coupled with experienced gained from previ-
ous studies we hope to investigate the problems listed above and also to study
other interesting systems.
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8. Svensk sammanfattning

Defekter refererar generellt sett till objekt och strukturer som förhindrar en
mjuk kontinuitet i ett material. En elektron i rörelse kan kollidera med en
defekt och ändra sin rörelseriktning, vilket kallas för spridning, eller så kan
elektronen fångas av defekten. I vanliga fall är defekter oönskade i material
men då de introduceras avsiktligt och på ett kontrollerat sätt kan de användas
som kraftfulla prober. Det finns många typer av defekter och deras påverkan på
materialet beror på både defekten och materialet. Det vanligaste exemplet på
en defekt är materialets kant där materialet tar slut (precis som en bordskant).
Vad som händer vid ett materials kant beror på materialets natur. Ett annat
exempel på en defekt är en orenhet, vilken är en främmande atom med andra
egenskaper än de atomer som materialet består av. Elektroner som sprids mot
en orenhet lämnar spår i materialet. Genom att studera dessa spår i materialet
så kan materialets natur eller underligande fenomen visa sig. En knutpunkt,
vilket är en annan form av orenhet, fungerar som en länk mellan material och
tillåter att en ström flyter mellan olika material. Dessa exempel visar att de-
fekter kan vara kraftfulla prober för att studera material.

När materialet som studeras är en supraledare (supraledare är material som
leder elektrisk ström utan motstånd när de kyls ned till i närheten av den ab-
soluta nollpunkten) så är defektens påverkan beroende på supraledarens natur.
Den supraledande orderparametern (en storhet som har ett ändligt värde i den
supraledande fasen men som är noll när materialet inte är supraledande och
vilken skapar ett energigap mellan energinivåerna i supraledaren) bestämmer
hur supraledaren svarar på en defekt. Beroende på supraledarens natur så kan
defekter åstadkomma lågenergitillstånd inuti supraledarens energigap. Därför
är det möjligt att genom att studera vissa defekter i en supraledare förutsäga
egenskaperna hos lågenergitillstånden inuti gapet eller t.o.m. supraledarens
natur. Ett material för vilket detta kan vara användbart är grafen.

Grafen består av kolatomer organiserade i ett hexagonalt mönster. Grafen är
populärt på grund av dess exotiska egenskaper och potentiella teknologiska
tillämpningar. På grund av sitt hexagonala mönster kan det ge upphov till
flera olika supraledande tillstånd. Intressant nog ser de flesta av dessa tillstånd
likadana ut vid experimentella mätningar på rent grafen. Det är därför svårt att
avgöra experimentellt vilket supraledande tillstånd grafen har. I ett av projek-
ten i denna avhandling har en potentiell orenhet introducerats i supraledande
grafen och effekten av olika typer av möjliga supraledande tillstånd beräk-
nas. Resultatet av denna studie visar att spåren av de spridda elektronerna
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formar rumsliga mönster i den supraledande orederparametern för vart av de
supraledande tillstånden. Kunskap om de rumsliga mönstren eller symmetrin
för orderparametern innehåller hälften av informationen som behövs för att
bestämma det supraledande tillståndet. Den andra halvan av informationen
är antalet lågenergitillstånd. Genom att kombinera dessa två bitar av infor-
mation föreslår detta projekt experiment som otvetydigt kan bestämma det
supraledande tillståndet i grafen.

En speciell klass av exotiska supraledare som kallas topologiska supraledare
innehåller nollenergitillstånd, vilka kallas för Majoranafermioner, vid dess
kanter. De bundna Majoranatillstånden är okänsliga för defekter och har egen-
skaper som gör dem till lovande kandidater för qubitar (en qubit är en kvant-
mekanisk version av en bit i klassiska datorer) i feltolleranta kvantdatorer.
Enorma ansträngningar har gått till att söka efter bundna Majoranatillstånd. I
ett av projekten i denna avhandling har bundna Majoranatillstånd utsatta för
stark oordning för att testa hur robusta de är mot defekter. Detta test utförs
genom numeriska simuleringar av de förhållanden under vilka bundna Ma-
joranatillstånd skapas i labboratorier. Resultaten visar att så länge materialet
fortsätter att vara supraledande så påverkas de bundna Majoranatillstånden inte
av oordning. Detta är goda nyheter eftersom stabilitet mot oordning garanterar
att qubitar som skapats från bundna Majoranatillstånd kommer vara stabila.

Trotts deras stabilitet så finns det svårigheter att detektera bundna Majora-
natillstånd i experiment. Det är nämligen möjligt för oönskade triviala nolltill-
stånd att framträda i experiment som är ämnade att skapa bundna Majoranatill-
stånd. Dessa triviala nolltillstånd kan imitera bundna Majoranatillstånd och
skapa tvetydighet vid tolkningen av experimentella resultat. Denna utveckling
skapar svårigheter gällande hur man skall särskilja mellan de triviala nolltill-
stånden och bundna Majoranatillstånd. Det är viktigt att det nolltillstånd som
används för att skapa en qubit är ett bundet Majoranatillstånd eftersom qubiten
annars kommer sakna sina topologiska egenskaper, vilket gör feltolleranta
kvantberäkningar omöjliga. I ett av projekten i denna avhandling simuleras
ett experimentellt scenario för att skapa ett bundet Majoranatillstånd. Genom
att beräkna strömen genom en knutpunkt i supraledaren då ett magnetiskt fällt
varieras så visar det sig att strömmen från ett trivialt nolltillstånd genomgår
ett teckenbyte då det magnetiska fältet ändras, medan ett bundet Majoranatill-
stånd inte genomgår ett sådant teckenbyte. Detta projekt föreslår mätningar av
strömmen genom knutpunkter i topologiska supraledare som ett verktyg för att
särskilja mellan triviala nolltillstånd och bundna Majoranatillstånd.

På det hela taget undersöker denna avhandling möjligheten att undersöka supraledare
med hjälp av olika sorters defekter. Slutsatsen av resultaten är att defekter my-
cket riktigt är kraftfulla verktyg för att studera supraledare och detta kan vara
användbart för att realisera feltolleranta kvantdatorer.
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Appendix A.
Derivation of the linearized gap equation

To arrive at Eq. (2.18) in the main text the following steps are followed:
1. The orbital basis c−operators are written in terms of band basis a−operators

as
cikα = ∑

r
Ŝr

i akrα (A1)

where the unitary matrix Ŝ = ∑ri Ŝr
i diagonalizes the normal state Hamil-

tonian. This is substituted into Eq. (2.14) and Eq. (2.15).
2. The interacting density matrix ρ is expanded in terms of the noninter-

acting density matrix, ρ0 = e−βH0 , up to first order in interaction term so
that

ρ = e−βH0− e−βH0

∫ β

0
dβ ′eβ ′H0HΔe−β ′H0 (A2)

Here HΔ is interacting part of Eq. (2.14) in the band basis, akrα .
3. Apply Baker-Campbell-Hausdorff formula, namely eABe−A =B+[A,B]+

1
2! ![A, [A,B]]+ · · · to calculate the density matrix obtained in step 2 above.

4. From statistical mechanics use that 〈A〉= Tr(ρA) in new self-consistent
equation in band basis akrα , noting that Tr(ρ0A) = 0.

5. Finally, apply Wick’s theorem 〈A†B†CD〉0 = 〈A†D〉0〈B†C〉0−〈A†C〉0〈B†D〉0
to obtain the averages.

Note that tanh
(

βξr(k)
2

)
+ tanh

(
βξs(−k)

2

)
= sinh[ξs(k)+ξr(k)]

cosh[ξs(k)]cosh[ξr(k)]
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Appendix B.
Spin-singlet nearest neighbor
superconductivity in graphene

Considering chemical potential, μ , and nearest-neighbor hopping of strength,
t, between sublattices A and B, the normal state Hamiltonian of graphene is
given by

Ĥ0 =

(
μ εk
ε∗k μ

)
, (B1)

where εk = −t ∑a eik·a and a =
(
a1 a2 a3

)
are the bond direction vectors, see

figure B1. Diagonalizing Ĥ0 gives the eigenvalues as ξ±
(
k
)
= μ ± |εk| with

the corresponding eigenvectors making up the columns of the unitary matrix

Ŝ = ∑
r=A,B

∑
r=±

Ŝr
r =

1√
2

(
1 1

−e−iφk e−iφk

)
(B2)

where φk = arg
(
εk
)
. Considering nearest-neighbor spin-singlet superconduc-

tivity, substituting ξ±
(
k
)

and Ŝ±A,B into the linearized gap equation, given in
Eq. (2.18), one obtains the stability matrix as

M̂0
a,b = Γa ∑

kb
[

cos
(
k ·a−φk

)
cos

(
k ·b−φk

)
⎛
⎜⎜⎝

tanh
(

βξ+
(

k
)

2

)
2ξ+

(
k
) +

tanh
(

βξ−
(

k
)

2

)
2ξ−

(
k
)

⎞
⎟⎟⎠

+sin
(
k ·a−φk

)
sin

(
k ·b−φk

) sinh(β μ)

2μ cosh
(

βξ+
(

k
)

2

)
cosh

(
βξ−

(
k
)

2

)
⎤
⎥⎥⎦
(B3)

This is the same result obtained in Refs. [11, 20]. Let f =M0
a,a and g=M0

a,b
=a,
then

M̂0
a,b =

⎛
⎝ f g g

g f g
g g f

⎞
⎠ . (B4)
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AB

Figure B1. Schematic of the honeycomb lattice showing sublattices A (circle) and B
(filled circle), the bond direction vector (a1,a2,a3) and bond dependent order param-
eter Δ = (Δ1 Δ2 Δ3).

M̂0
a,b is a 3×3 matrix because there are three nearest-neighbor bond directions,

with bond vectors a =
(
a1 a2 a3

)
, in the honeycomb lattice, see figure B1.

Therefore, the order parameter is bond dependent and has three components
one along each bond direction. The gap the symmetries of the superconducting
states are obtained by diagonalizing M̂0

a,b. The eigenvalues, eigenvectors, and
their respective superconducting states are,

Eigenvalues f −g f −g f +2g

Eigenvectors 1√
6

(
2 −1 −1

)T 1√
2

(
0 1 −1

)T 1√
3

(
1 1 1

)T

Superconducting states dx2−y2 dxy sext

,

where the top row are the eigenvalues, the second row are the corresponding
eigenvectors, Δa and the third row superconducting states corresponding to
each eigenvector in the D6h point group.

The eigenvectors give the symmetry factors of the superconducting order
parameter, as discussed in section 2.5.3. Then, the bond dependent nearest-
neighbor superconducting order parameter can be collated as vector Δ=Δ0Δa =(
Δ1 Δ2 Δ3

)
, where Δ0 is the strength of the pairing, see figure B1. Using the

eigenvectors, Δa, as bond form factors for the superconducting pairing in mo-
mentum space, then expanding around a high symmetry point, the basis func-
tions are obtained. The basis functions are then compared with the basis func-
tions of the irreducible representations of D6h point group, the determine the
irreducible representation and symmetry of the superconducting state. The
degenerate states are nodal d-waves belonging to the E2g irreducible represen-
tation while fully symmetric state is the extended s-wave state belonging to
the A1g irreducible representation of D6h point group, see Table 2.1.

As discussed in section 2.5.3, group theory allows for mixing of degenerate
basis functions below Tc. In graphene it follows that equal mixing of the d-
waves is favored below Tc form chiral d-wave, dx2−y2 + idxy superconducting
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state with symmetry factors 1√
3

(
1,ei2π/3,e−i2π/3

)T . Several theoretical stud-
ies, including mean-field [11, 20], renormalization group [13] and functional
renormalization group [12], have predicted the existence of chiral d-wave su-
perconductivity in honeycomb lattice at doping levels close to the van Hove
singularity.
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Appendix C.
Using projection operator to find basis
functions

6



Using projection operator to find 
basis function
Define symmetry operations operator (or matrices) , PR

Rotation operations

In[976]:= Rn[ _] := RotationMatrix[ , {0, 0, 1}];(*Rotation along the principal axis which is along z*)
Rx[ _] := RotationMatrix[ , {1, 0, 0}]; (*Rotation along x-axis*)
C2 = Rx[ ];
Ry[ _] := RotationMatrix[ , {0, 1, 0}]; (*Rotation along y-axis*)
C2 = Ry[ ];
Check rotation operations{Rn[ ] // MatrixForm , C2 // MatrixForm, C2 // MatrixForm}

Cos[ ] -Sin[ ] 0
Sin[ ] Cos[ ] 0

0 0 1
,

1 0 0
0 -1 0
0 0 -1 ,

-1 0 0
0 1 0
0 0 -1

Reflection operations

In[982]:= d = ReflectionMatrix[{1, 0, 0}];
v = ReflectionMatrix[{0, 1, 0}];
h = ReflectionMatrix[{0, 0, -1}];

Check reflection operations{ d // MatrixForm , v // MatrixForm, h // MatrixForm}-1 0 0
0 1 0
0 0 1

,
1 0 0
0 -1 0
0 0 1

,
1 0 0
0 1 0
0 0 -1

Improper rotation operations

In[985]:= Sn[ _] := RotationMatrix[ , {0, 0, 1}]. h

Cos[ ] -Sin[ ] 0
Sin[ ] Cos[ ] 0

0 0 -1
Inversion operation

In[991]:= invI = -IdentityMatrix[3];
Transformation function for symmetry operations, PR

In[986]:= opRule[O_] := Thread[{x, y, x} O.{x, y, z}];
Note that this PR the projection of each symmetry element under the
irreducible representation . Summing all PR gives the projection operator



Eq. (2.26) i.e. P = R PR.
opRule takes in PR and then aplies it on coordinates{x, y, z} transforming it to new coordinates {x1, y1, z1}

In[987]:= Test the function opRule[Rn[2 / 6]] // MatrixForm;
x x

2
- 3 y

2

y 3 x
2

+ y
2

x z

Finding basis functions of D6 h using the projection operator

As an example consider two arbitrary functions  basis1 = x2 + y2 and basis2 = x2 - y2,  the
task is to check if these functions are basis functions of A1 g or E2 g .  Using Eq. (3.1) in the main text
one finds the irreps to which the basis function belongs to as follows : 

In[989]:= basis1 = x2 + y2; basis2 = x2 - y2;

[g] = 24; dim [A1 g] = 1; dim [E2 g] = 2;
The characters and number of elements in a class, Nk are read from Table 3.1

Try basis1 under A1 g

In[994]:= A1gBasis1 = Simplify
1

24
1 1 basis1 /. opRule[Rn [0]] + 1 2 basis1 /. opRule[Rn [2 / 6]] +
1 2 basis1 /. opRule Rn 2 3 +
1 1 basis1 /. opRule Rn 2 2 + 1 3 basis1 /. opRule[C2] +
1 3 basis1 /. opRule[C2 ] + 1 1 basis1 /. opRule[invI] +
1 2 basis1 /. opRule[Sn [2 / 6] ] +
1 2 basis1 /. opRule Sn 2 3 + 1 1 basis1 /. opRule[ h] +
1 3 basis1 /. opRule[ v] + 1 3 basis1 /. opRule[ d]

x2 + y2 x2 + y2 is a basis function of A1 g

Try basis2 under A1 g

In[995]:= A1gBasis2 = Simplify
1

24
1 1 basis2 /. opRule[Rn [0]] + 1 2 basis2 /. opRule[Rn [2 / 6]] +
1 2 basis2 /. opRule Rn 2 3 +
1 1 basis2 /. opRule Rn 2 2 + 1 3 basis2 /. opRule[C2] +
1 3 basis2 /. opRule[C2 ] + 1 1 basis2 /. opRule[invI] +
1 2 basis2 /. opRule[Sn [2 / 6] ] +
1 2 basis2 /. opRule Sn 2 3 + 1 1 basis2 /. opRule[ h] +
1 3 basis2 /. opRule[ v] + 1 3 basis2 /. opRule[ d]

1

2
x2 - y2 x2 - y2 is not a basis function of A1 g

Try basis1 under E2 g



In[996]:= E2gBasis1 = Simplify
2

24
1 2 basis1 /. opRule[Rn [0]] + 2 -1 basis1 /. opRule[Rn [2 / 6]] +
2 -1 basis1 /. opRule Rn 2 3 +
1 2 basis1 /. opRule Rn 2 2 + 3 0 basis1 /. opRule[C2] +
3 0 basis1 /. opRule[C2 ] + 1 2 basis1 /. opRule[invI] +
2 -1 basis1 /. opRule[Sn [2 / 6] ] +
2 -1 basis1 /. opRule Sn 2 3 + 1 2 basis1 /. opRule[ h] +
3 0 basis1 /. opRule[ v] + 3 0 basis1 /. opRule[ d]

0 x2 + y2 not a basis function of E2 g

Try basis2 under E2 g

In[997]:= E2gBasis2 = Simplify
2

24
1 2 basis2 /. opRule[Rn [0]] + 2 -1 basis2 /. opRule[Rn [2 / 6]] +
2 -1 basis2 /. opRule Rn 2 3 +
1 2 basis2 /. opRule Rn 2 2 + 3 0 basis2 /. opRule[C2] +
3 0 basis2 /. opRule[C2 ] + 1 2 basis2 /. opRule[invI] +
2 -1 basis2 /. opRule[Sn [2 / 6] ] +
2 -1 basis2 /. opRule Sn 2 3 + 1 2 basis2 /. opRule[ h] +
3 0 basis2 /. opRule[ v] + 3 0 basis2 /. opRule[ d]

x2 - y2 x2 - y2 is a basis function of E2 g

In[967]:= Export["ProjectionOperatorD6h.pdf", EvaluationNotebook[]]
Out[967]= ProjectionOperatorD6h.pdf
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