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and Anne Fiksdahl*

Cite This: Inorg. Chem. 2021, 60, 2847−2855 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Gold(III) complexes are versatile catalysts offering a growing
number of new synthetic transformations. Our current understanding of the
mechanism of homogeneous gold(III) catalysis is, however, limited, with that
of phosphorus-containing complexes being hitherto underexplored. The ease
of phosphorus oxidation by gold(III) has so far hindered the use of
phosphorus ligands in the context of gold(III) catalysis. We present a method
for the generation of P,N-chelated gold(III) complexes that circumvents ligand
oxidation and offers full counterion control, avoiding the unwanted formation
of AuCl4

−. On the basis of NMR spectroscopic, X-ray crystallographic, and
density functional theory analyses, we assess the mechanism of formation of
the active catalyst and of gold(III)-mediated styrene cyclopropanation with
propargyl ester and intramolecular alkoxycyclization of 1,6-enyne. P,N-chelated
gold(III) complexes are demonstrated to be straightforward to generate and be
catalytically active in synthetically useful transformations of complex molecules.

■ INTRODUCTION

Whereas gold had barely been applied in organic synthesis
before the 21st century, over the past 2 decades, gold catalysis
has grown into a distinct subfield, with its wide applicability
having already been demonstrated.1−8 In spite of its young age,
gold catalysis has provided new organic transformations and has
been shown to offer chemoselectivity under mild conditions,9,10

often with higher tolerance toward moisture and oxygen than
the more established transitions metals, such as palladium,
platinum, rhodium, cobalt, and nickel. Homogeneous gold(I)
catalysts are comparably well-developed and understood,11 as
evidenced by the number of ligated gold(I) complexes in use and
by the variety of gold(I)-catalyzed transformations and
mechanistic studies available in the literature.12−18 In contrast,
gold(III) catalysis mainly uses the initially developed inorganic
gold(III) salts, without a stabilizing ligand.19,20 The successful
development of widely applicable synthetic techniques and
access to complex structures has hitherto been demonstrated,
yet without a detailed mechanistic understanding.21−23 A few
examples of ligated gold(III) complexes used as catalysts are
known and have revealed that ligation provides increased
catalyst lifetime and tuneability.24 These have enabled
mechanistic studies that were previously impossible because of
the instability of gold chlorides.25−35 Ligands encompassing
phosphorus donor(s) are common in gold(I) catalysis,6,36−38

which also include P,N-chelated gold(I) complexes.39 However,
conventional phosphine ligands have so far scarcely been
explored in gold(III) chemistry because phosphorus easily gets
oxidized in the presence of gold(III). Indeed, gold(III) salts have
been proposed to be “activated” by being reduced to gold(I),

“the catalytically active species”, by phosphorus ligands.40

Phosphorus-based ligands forming more stable gold(III)
complexes typically contain one or more phosphines coordinat-
ing to a chelated and cyclometalated gold(III), as shown in
Figure 1.
Gold(III)-complexing ligands offering a phosphine coordina-

tion site along with an additional heteroatomic electron donor
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Figure 1. Representative gold(III) phosphine complexes I,41 II,42 III,42

IV,43,44 V,41,45,46 VI,47 VII,48,49 and VIII.50
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are rare,51 although the use of P,N ligands for gold(III) have
allowed the synthesis of organogold(III) complexes and
mechanistic studies.52,53 The mechanism of catalysis with
phosphorus-containing gold(III) complexes remains virtually
unexplored. Herein, we assess the structure and reactivity of
gold(III) complexes of P,N-donor ligands with solution NMR
spectroscopic, X-ray crystallographic, and computational
(density functional theory, DFT) techniques. Capitalizing on
the known high affinity of oxazoline nitrogen to gold(III),34,54,55

the novel P,N ligands 1−4 (Figure 2) studied here were
designed to possess an alkylated oxazoline linked to an
arylphosphine moiety.

■ RESULTS AND DISCUSSION

Ligand 1, (S)-2-[2-(diphenylphosphanyl)phenyl]-4-isopropyl-
4,5-dihydrooxazole, was used for optimization of gold(III)
coordination. Its direct coordination to gold(III) upon mixing
with AuCl3 and AgSbF6 in acetonitrile yielded two species
(Scheme 1a), as judged from 1H and 31P NMR. The oxidized
phosphine derivative of ligand 1, (S)-[2-(4-isopropyl-4,5-
dihydrooxazol-2-yl)phenyl]diphenylphosphine oxide (1′; 31P
NMR δ 40.5), was identified as the main product using 31P
NMR, whereas [1-Au(III)]SbF6 (

31P NMR δ 34.7), the target
gold(III) complex, is the minor one. Altering the order of AuCl3
and AgSbF6 addition to the ligand, the ratio of 1′ and [1-
Au(III)]SbF6 was modulated (2.5:1 to 4:1); see Table S1 for
details. Simultaneous addition of the gold and silver salts
facilitated phosphorus oxidation to a larger extent than the initial
addition of AuCl3, before the addition of AgSbF6. Coordinating
under an inert atmosphere, using dry acetonitrile, changing the
gold(III) source to KAuCl4, or using dichloromethane as the
solvent instead of acetonitrile did not improve the product/
byproduct ratio in noteworthy manner. Attempts at gold(III)

Figure 2. P,N ligands for gold(III) coordination studies.

Scheme 1. Preparation of Complexes 1−4-Au(III)]SbF6 (a) Directly from Ligands 1−4, AuCl3, and AgSbF6 and (b−d) via
Oxidation of 1−4-Au(I) Complexes

Inorganic Chemistry pubs.acs.org/IC Featured Article

https://dx.doi.org/10.1021/acs.inorgchem.0c02720
Inorg. Chem. 2021, 60, 2847−2855

2848

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.0c02720/suppl_file/ic0c02720_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c02720?fig=sch1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c02720?ref=pdf


coordination to ligands 2−4 in an analogous manner afforded
the phosphine oxides 2′−4′ as the main products.
We developed a protocol that exploits the lesser tendency of

gold(I) to oxidize phosphorus, thereby avoiding competing
phosphorus oxidation by gold(III) when generating [1-Au-
(III)]SbF6. Hence, we initially prepared the 1-Au(I) phosphine
complex and subsequently oxidized it to [1-Au(III)]SbF6
(Scheme 1b−d). The preparation of ligated gold(III) complexes
by the oxidation of gold(I) complexes with dichloro(phenyl)-λ3-
iodane56−58 or Br2

59−62 was previously proven to be efficient.
The 1-Au(I) complex was prepared in quantitative yields by
mixing chloro(dimethyl sulfide)-Au(I) and ligand 1 in dichloro-
methane (Scheme 1b). The preference of gold(I) to coordinate
to phosphine instead of the oxazoline nitrogen was suggested by
theΔδ31Pcoord = 39.1 ppm andΔδ15Ncoord = 11.4 ppm, observed
by 31P and 15N NMR, respectively (Table 1). Gold(III)
coordination of oxazolines causes Δδ15Ncoord = −40 to −76
ppm.34,54 The observed small and positive Δδ 15Ncoord = 11.4
ppm upon coordination is hence most likely an indirect effect
and not a consequence of the formation of a gold(I)−nitrogen
secondary bond. This hypothesis is corroborated by DFT,
predicting a 8.4 ppm coordination shift for 1-Au(I) (Scheme
1b). Counterion exchange from Cl− to the weakly coordinating
SbF6

− was performed by the addition of AgSbF6 to 1-Au(I) in
dichloromethane (Scheme 1c). The anion exchange was
successful in both the absence and presence of acetonitrile (3
equiv), with the latter having been explored to evaluate whether
a Lewis basic solvent may facilitate the process by charge
stabilization (for details, see Figure S2). The lack of acetonitrile
coordination to gold(I) throughout the process was confirmed
by the observation of Δδ15N = 0 ppm on the acetonitrile
nitrogen.

For the oxazoline of 1-Au(I) after anion exchange, a moderate
Δδ15Ncoord = −20.4 ppm (Table 1) was observed. This is ∼20
ppm smaller than that reported for the oxazoline nitrogen of a
bidentate gold(III) complex34 and accordingly may reflect weak
gold(I) coordination. Following anion exchange, the charge of
gold(I) is, hence, rather stabilized by oxazoline coordination
through dimerization to ([1-Au(I)]SbF6)2 (Scheme 1c), instead
of acetonitrile coordination yielding [1-Au(I)-ACN]SbF6.
Coordination to the nearby oxazoline nitrogen intramolecularly
is unfeasible: the ([1-Au(I)]SbF6)2 dimer is 105.7 kcal/mol
lower in energy, according to DFT, than the corresponding
monomer possessing an intramolecular gold(I)−oxazoline
nitrogen coordinative bond (2 × [1-Au(I)]SbF6).
The gold(I) complexes of ligands 2−4 were prepared

following the procedure described for ligand 1, yielding 2-
Au(I)−4-Au(I) in comparable yields (94−96%; Scheme 1b).
The ([2-Au(I)]SbF6)2 and ([3-Au(I)]SbF6)2 complexes were
subsequently obtained by anion exchange of 2-Au(I) and 3-
Au(I) with AgSbF6, as confirmed by the observation of
Δδ31Pcoord and Δδ15Ncoord comparable to those of ([1-Au(I)]-
SbF6)2 (Table 1). Similar to that observed for the anion
exchange of 1-Au(I), the addition of acetonitrile had no effect, as
judged by 1H and 15N NMR, not even for the more sterically
hindered complex 3-Au(I). Anion exchange of the most flexible
4-Au(I) complex, lacking an aromatic bridge between the
phosphine and oxazoline units, was more difficult in terms of
poorer solubility and slightly more unstable after anion
exchange.
The plausible structures of the monomeric and dimeric

complexes were assessed by DFT and are discussed here for the
complexes of ligand 1. The monomeric complex may have three
possible geometries, as shown in Figure 3a−c, of which two, a

Table 1. Experimental δ15N, Δδ15Ncoord, δ
31P, and Δδ31Pcoord NMR Chemical Shifts (ppm) in CD2Cl2

a

complex δ15Ncomplex δ15Nligand Δδ15Ncoord δ31Pcomplex δ31Pligand Δδ31Pcoord

1-Au(I) −129.9 −141.3 11.4 33.6 −5.5 39.1
−140.7 −149.1 8.4 7.3 −14.6 21.9

2-Au(I) −127.0 −138.6 11.6 33.4 −5.4 38.8
−133.6 −141.8 8.2 5.8 −15.6 21.4

3-Au(I) −126.7 −141.4 14.7 13.0 −22.0 35.0
−140.0 −148.5 8.5 −14.8 −27.6 12.8

4-Au(I) −149.2 −154.9 5.7 21.4 −23.2 44.6
−161.8 −166.3 4.5 −9.6 −34.2 24.6

([1-Au(I)]SbF6)2 −161.7 −141.3 −20.4 27.9 −5.5 33.5
−190.8 −149.1 −41.7 7.9 −14.6 22.5

([2-Au(I)]SbF6)2 −171.1 −138.6 −32.5 21.3 −5.4 26.7
−190.1b −141.8 −48.3b 6.6b −15.6 22.3b

([3-Au(I)]SbF6)2 −171.1 −141.4 −29.7 16.7 −22.0 38.7
−201.2b −148.5 −52.7b −19.0b −27.6 8.6b

([4-Au(I)]SbF6)2 c −154.9 c 21.5 −23.2 44.7
−211.1d −166.3 −44.8d −10.4d −34.2 23.7d

[1-Au(III)]SbF6 −222.9 −141.3 −81.6 34.7 −5.5 40.2
−230.2 −149.1 −81.1 37.6 −14.6 52.2

[2-Au(III)]SbF6 −228.4 −138.6 −89.8 33.8 −5.4 39.2
−229.2 −141.8 −87.4 37.3 −15.6 53.0

[3-Au(III)]SbF6 −228.3 −141.4 −86.9 29.3 −22.0 51.2
−235.1 −148.5 −86.6 31.4 −27.6 59.0

[4-Au(III)]SbF6 −213.8 −154.9 −58.9 27.0 −23.2 60.2
−223.5 −166.3 −57.2 40.2 −34.2 74.4

aCorresponding computed quantities are shown in italic. bValues obtained with structures optimized without solvent effects; see the Supporting
Information for more information. cNot available because of poor solubility. dValues corresponding to the antarafacial conformer, averaging the two
distinct nitrogen signals. See the Supporting Information for more information.
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and b, are isoenergetic, whereas the third, c, is slightly higher in
energy (3.8 kcal/mol). Upon dimerization, the two low-energy
monomers may combine into three possible geometries, as
shown in Figure 3d−f, in which the isopropyl functionalities are
either suprafacial (d and f) or antarafacial (e). Because of their
symmetry, dimers d and f are expected to give a single set of
NMR signals, compatible with our experimental observations,
whereas geometry e is anticipated to provide two sets of signals
and can therefore be excluded. Because of the high energy of the
nitrogen−gold(I) and phosphorus−gold(I) bonds, rapid
interconversion between various dimeric forms is unlikely.
The DFT-predicted 31P and 15N NMR chemical shifts of these
geometries (d-f) are in agreement with those obtained
experimentally (Table 1; for details, see the Supporting
Information). The accurate prediction of the NMR chemical
shifts of heteroatoms, such as 15N, remains a challenge, and
dozens of parts per million deviations are common.63,64 DFT
systematically underestimates the nitrogen shifts, in a consistent
manner. There is a systematic error for 31P NMR estimation as
well, with the only difference being that the calculated chemical
shifts of the products, [1−3-Au(III)]SbF6, are slightly over-
estimated. The accuracy of the chemical shift prediction was not
improved significantly upon the introduction of a correction
factor using a reference.65 Importantly, all coordination shifts for
both 15N and 31P NMR follow the same trend for all four ligands.
We attempted to grow single crystals for X-ray analysis for all

of the Au(I) complexes of ligands 1−4 by slow diffusion of n-
pentane into a dichloromethane solution of the complexes,
which gave suitable crystals for ([4-Au(I)]SbF6)2 (Figure 4a).
Its X-ray analysis confirmed the preference of formation of a
dimeric gold(I) complex, after anion exchange (Figure 4a),
corroborating the NMR- and DFT-based structural proposals.
The positive charge of each of the two phosphorus−gold(I)
units is stabilized in this complex by the oxazoline nitrogen of the
opposite unit. The observed Δδ15Ncoord values for the oxazoline
nitrogen of the ([1−3-Au(I)]SbF6)2 complexes (Table 1) are in
agreement with those back-calculated for the X-ray structure.
The oxidation of [1−4-Au(I)]SbF6 with dichloro(phenyl)-λ3-

iodane in dichloromethane (Scheme 1d) took place directly, as
indicated by an immediate change of the solution from colorless
to strong yellow. The oxidation was confirmed by 1H and 31P
NMR monitoring of the reaction mixture of ([1-Au(I)]SbF6)2
following the addition of dichloro(phenyl)-λ3-iodane. This
reaction yielded two complexes, as indicated by 31P NMR
(Figure S1). The complex with the lowest δ31P = 24.3 ppm was
assigned to an intermediate that slowly converted into [1-
Au(III)]SbF6. The latter gold(III) complex possessed δ31P =
34.7 ppm, comparable to the calculated δ31P = 37.7 ppm for the
[1-Au(III)]SbF6 complex. The interconversion of the inter-

mediate is slow, and approximately 40% remained even after 2
days of reaction. We propose the intermediate to be the oxidized
square-planar dimeric gold(III) complex ([1-Au(III)]SbF6)2
(Figure 5b), with two chlorides, generated by dichloro-

(phenyl)-λ3-iodane oxidation, added in a trans manner. This
geometry is energetically feasible, as predicted by DFT.
Analogous stability differences of the cis and trans orientations
of chlorides, favoring the trans orientation, have previously been
reported for the gold(III)56 and palladium(II)66 complexes. The
dynamic nature of the complex ([1-Au(III)]SbF6)2 was
indicated by the inability to observe the δ15N of this complex,
even at high concentration and with prolonged experiments.
The smaller Δδ1H of the oxazoline protons of ([1-Au(III)]-
SbF6)2 than those of [1-Au(III)]SbF6 (Figure 5a−c) suggests,

Figure 3.DFT-computed low-energy geometries of (a−c) 1-Au(I) and
(d−f) ([1-Au(I)]+)2.

Figure 4. Solid-state geometries of (a) ([4-Au(I)]SbF6)2, (b) [1-
Au(III)]SbF6, (c) [2-Au(III)]SbF6, and (d) [3-Au(III)]SbF6 obtained
by X-ray crystallographic analyses. Counterion and hydrogens are
omitted for clarity.

Figure 5. 1H NMRmonitoring of the oxidation of ([1-Au(I)]SbF6)2 to
[1-Au(III)]SbF6 in dichloromethane-d2: (a) ([1-Au(I)]SbF6)2; (b)
intermediate ([1-Au(III)]SbF6)2, formed directly after the addition of
dichloro(phenyl)-λ3-iodane; (c) following full conversion into complex
[1-Au(III)]SbF6.
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however, that the oxazoline of the intermediate coordinates
more weakly to gold(III).
On the basis of the above observations, the first step toward

the generation of [1-Au(III)]SbF6 is formation of the dimeric
([1-Au(I)]SbF6)2 from 1-Au(I). DFT predicts ([1-Au(I)]-
SbF6)2 to be 105.7 kcal/mol lower in energy than the
corresponding monomers, explaining the exclusive existence of
the dimeric form in solution. Whereas this complex could not be
crystallized, the analogous dimeric form was observed by X-ray
diffraction for the corresponding ([4-Au(I)]SbF6)2. Upon
oxidation, ([1-Au(I)]SbF6)2 is converted into the dimeric
gold(III) complex, ([1-Au(III)]SbF6)2, which we conceivably
detected by NMR (Figure 5b). Direct dissociation of the ([1-
Au(III)]SbF6)2 dimer into trans-[1-Au(III)]SbF6 is unfeasible,
requiring ∼60 kcal/mol activation energy according to DFT,
because it would involve the simultaneous breaking of two
gold(III)−nitrogen coordinative bonds. This can only be
feasible if it happens in a stepwise fashion, accompanied by
transformations that compensate for the energy loss. A feasible
route for this transformation, as shown in Scheme 2, is initiated
with the breakage of one nitrogen−gold(III) coordinative bond
(going from 2.19 to 3.67 Å in TS1), which, according to DFT,
necessitates 26.4 kcal/mol activation energy. Following a slight
rotation of the oxazoline group, the “free” nitrogen weakly
coordinates to the second gold(III), with a nitrogen−gold(III)
bond distance of 2.78 Å, such that a local energy minimum is
reached upon formation of the intermediate int1. The latter
possesses one tetracoordinated and another tricoordinated
gold(III). Because of the unfavorable tricoordination of one of
the two gold(III) centers, int1 is fairly unstable and is thus at
23.1 kcal/mol higher energy compared to ([1-Au(III)]SbF6)2.
The reaction continues, with the latter gold(III) getting

stabilized by coordination to one of the chlorides of the other
gold(III), requiring a bond rotation that passes a 2.7 kcal/mol
energy barrier (TS2), and that provides an overall 13.1 kcal/mol
energetic gain. This step can be appreciated by the
corresponding gold(III)−chlorine bond shortening from 2.94
Å in int1 to 2.51 Å in int2 and the torsional angle centered on
the second nitrogen−gold(III) bond going from 20.8° to 93.3°.
This second intermediate is converted into [1-Au(III)]SbF6
upon breakage of the remaining nitrogen−gold(III) bond,
which necessitates 13.7 kcal/mol activation energy (TS3) and is
followed by a series of events providing an overall 57.2 kcal/mol
energy gain. This transformation is thus irreversible. The lower
barrier (13.7 kcal/mol) compared to the first nitrogen−
gold(III) bond breaking (26.4 kcal/mol) is due to the
simultaneous formation of a gold(III)−chlorine bond with the
chloride anion of the other gold(III), triggering a barrierless
chlorine exchange between the monomers and terminating in
the product. The table included in Scheme 2 illustrates the
chloride exchange, where the Cl1−Au2 and Cl2−Au1 distances
change from 4.07 Å (hence, part of the different monomers) to
2.41 Å. The large energetic gain of 57.2 kcal/mol originates
mainly from the trans-to-cis isomerization of the chlorides bound
to each gold(III) and from the formation of two new gold(III)−
nitrogen bonds (see the N1−Au1 and N2−Au2 bond distances
in Scheme 2). The energetic gain for the ([1-Au(III)]SbF6)2-to-
[1-Au(III)]SbF6 transformation, through a route that, following
the first activation barrier, lacks high-laying transition states, is
overall −33.3 kcal/mol. The rate-determining step is dissocia-
tion of the intermediate ([1-Au(III)]SbF6)2 dimer into a half-
opened dimer, a step that is predicted by DFT to require 26.4
kcal/mol energy. This is in agreement with the long time
required (12 h) to obtain the products following gold oxidation

Scheme 2. Computed Gibbs Free Energy Profile (ΔG in kcal/mol) of the ProposedMechanism for Formation of [1-Au(III)]SbF6
from ([1-Au(III)]SbF6)2

a

aThe rate-determining step is proposed to be the first gold(III)−nitrogen bond dissociation from ([1-Au(III)]SbF6)2 to int1. Relevant structural
parameters are reported as a table within the scheme (bond lengths are given in angstroms, and angles are given in degrees), with the labels shown
only on the TS1 structure for clarity. Details of the DFT calculations as well as the Gibbs free energy profile obtained with the M06 functional for
comparison are given in the Supporting Information.
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as well as by 40% of the intermediate complex remaining even 2
days of reaction. It should be noted that the continuously
altering environment of the oxazoline nitrogen atoms through-
out the transformation explains the difficulty to detect an
1H−15N HMBC cross-peak for any intermediate(s).
The addition of small amounts of acetonitrile accelerates the

oxidation, facilitating the formation of the target [1-Au(III)]-
SbF6. Accordingly, full conversion to [1-Au(III)]SbF6 was
reached within 12 h in the presence of 0.5 equiv of acetonitrile
but in less than 30 min in the presence of 15 equiv. Acetonitrile
complexation to 1-Au(I) offers 43.2 kcal/mol energetic gain,
according to DFT, likely providing a feasible low-energy route
toward ([1-Au(I)]SbF6)2. The latter dimer is 19.4 kcal/mol
lower in energy compared to 2 equiv of [1-Au(I)-ACN]+, and
the acetonitrile complex of 1-Au(I) formed upon chloride
abstraction. Acetonitrile may also facilitate dissociation of the
gold(III)−nitrogen bonds of the dimeric ([1-Au(III)]SbF6)2.
Metal−halogens may participate in halogen bonding,67 which is
capable of activating the metal−halogen bond, for example, in
gold(I) complexes.68 Motivated by this observation, we
prepared [1-Au(III)]SbF6−[3-Au(III)]SbF6 by dichloro-
(phenyl)-λ3-iodane oxidation of the corresponding 1−3-Au(I)
complexes also in the presence of acetonitrile (Scheme 1d; 69−
95% yield). We observed comparable Δδ31Pcoord for the
phosphorus-containing gold(I) and P,N-chelated gold(III)
complexes (Table 1). Stronger nitrogen coordination of
gold(III) than of gold(I) was seen, as indicated for ligands 1−
3 byΔδ15Ncoord = −81.6 to −89.8 ppm of the former complexes
compared to Δδ15Ncoord = −20.4 to −32.5 ppm of the latter
complexes. These coordination shifts are in line with those
predicted by DFT (Table 1).
The oxidation of ([4-Au(I)]SbF6)2 gave the unstable [4-

Au(III)]SbF6 complex along with 30% byproducts. This
complex, in contrast to the analogous complexes of 1−3,
decomposed within 1 day in solution. Counterion exchange of 4-
Au(I) was also difficult and is likely due to the lack of a rigid
aromatic linker in this ligand (Scheme 1c). The [4-Au(III)]SbF6
complex was therefore not isolated but used directly in catalytic
activity studies.
Slow diffusion of n-pentane into dichloromethane solutions of

the 1−4-Au(III)SbF6 complexes provided single crystals for all
but the [4-Au(III)]SbF6 complex. X-ray analyses confirmed the
bidentate P,N-coordination of the phosphine oxazoline ligands
1−3, yielding P,N-chelated gold(III) complexes (Figure 4b−d).
We observed a notable trans effect on the chloride anions of 1−
3-Au(III)SbF6 complexes, 2.2619(12) and 2.3408(12) Å trans
to nitrogen and phosphorus, respectively.
We evaluated the catalytic ability of the gold(I) and gold(III)

complexes using the established model reactions cyclopropana-
tion of styrene with propargyl ester55,68−70 and intramolecular
alkoxycyclization of 1,6-enyne34,40,69−74 (Table 2). All gold(I)
and gold(III) complexes showed catalytic activity in both
transformations. The gold(III) complexes showed a generally
higher reactivity in cyclopropanation than in alkoxycyclization.
Whereas the gold(III) complexes gave faster conversion
compared to the gold(I) complexes in cyclopropanation, we
observed the opposite trend for alkoxycyclization. When the
reactions for both gold(I) and gold(III) complexes of ligand 1
were monitored with 1H, 31P, and 15N NMR, similar routes of
catalyst activation were detected. Hence, the dimer ([1-
Au(I)]SbF6)2 is activated by gold(I)−nitrogen bond cleavage,
with the resulting complex being stable throughout the reaction.
Whereas the reaction could be followed by 31P NMR, the 15N

NMR chemical shifts could not be detected using 1H−15N
HMBC, for neither the gold(I)- nor gold(III)-mediated
reactions. The 1H NMR chemical shift changes of the i-Pr
group of [1-Au(III)]SbF6 throughout the reaction suggest that
the oxazoline nitrogen gets decoordinated. Hence, deshielding
of up to 1 ppm of the i-Pr methyl, which has been observed for
this system upon coordination of the oxazoline to gold(III) and
consequent orientation of a phenyl ring, is absent for this
complex. 31PNMRmonitoring revealed gold−phosphorus bond
cleavage during the reaction progress, leading to oxidized
phosphorus. This indicates a higher affinity of both gold(I) and
gold(III) to phosphorus than to nitrogen. However, differences
in the relative reaction rates suggest that the catalytically active
species are different when starting from ([1-Au(I)]SbF6)2 and
[1-Au(III)]SbF6. None of the complexes provide enantiose-
lectivity despite the chiral nature of the ligand.

■ CONCLUSION
P,N-chelated gold(III) complexes are introduced as homoge-
neous catalysts. We show that these can be generated via a new
method, based on the oxidation of gold(I) to gold(III)
complexes. This, in contrast to their direct synthesis by ligand
coordination to AuCl3, circumvents the critical phosphine ligand
oxidation that has hitherto hindered their use and investigation.
Our method offers counterion control and, hence, avoids the
unwanted formation of AuCl4

− that is unavoidable upon direct

Table 2. Reactivity of Gold(I) and Gold(III) Complexes
Evaluated in Alkoxycyclization Reaction of a 1,6-Enyne and
Cyclopropanation of Styrene with Propargyl Ester

(a) Alkoxycyclization of a 1,6-Enyne

entry complex reaction time yield of 6 (%)

1 ([1-Au(I)]SbF6)2 <2.5 h 70
2 [1-Au(III)]SbF6 overnight 20
3 ([2-Au(I)]SbF6)2 overnight 72
4 [2-Au(III)]SbF6 overnight 16
5 ([3-Au(I)]SbF6)2 3 h 52
6 [3-Au(III)]SbF6 overnight 14
7 ([4-Au(I)]SbF6)2 overnight 78
8 [4-Au(III)]SbF6 overnight 34

(b) Cyclopropanation

entry complex reaction time yield (%) of 9 (cis:trans)

9 ([1-Au(I)]SbF6)2 3 h 95 (37:63)
10 [1-Au(III)]SbF6 30 min 88 (25:75)
11 ([2-Au(I)]SbF6)2 overnight 51 (16:84)
12 [2-Au(III)]SbF6 1 h 79 (23:77)
13 ([3-Au(I)]SbF6)2 overnight 54 (15:85)
14 [3-Au(III)]SbF6 1.5 h 93 (75:25)
15 ([4-Au(I)]SbF6)2 overnight 61 (11:89)
16 [4-Au(III)]SbF6 15 min 79 (48:52)
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coordination, further hindering the investigation of phosphorus-
containing gold(III) complexes.
By systematic NMR spectroscopic, X-ray crystallographic,

and computational assessment of the synthesis of a series of
structurally closely related P,N-chelated gold(III) complexes, we
describe the mechanism of their formation and show it to
involve dimeric gold(I) and gold(III) intermediates. The
addition of small amounts of acetonitrile was demonstrated to
accelerate the formation of catalytically active species. Both the
P,N-ligated gold(I) and gold(III) complexes are catalytically
active in cyclopropanation and in intramolecular alkoxycycliza-
tion, with the latter complexes being more efficient in
cyclopropanation in terms of the conversion rate and the
gold(I) complexes more efficient than the gold(III) complexes
in alkoxycyclization. Both gold(I) and gold(III) were observed
to have a higher phosphorus than nitrogen affinity, making
gold−nitrogen bond cleavage the critical step of the reaction.
Ligated gold(III) complexes, and especially those providing a

phosphorus coordination site, are scarce. Having been
challenging to obtain, their structures, catalytic activity, and
mechanisms of their transformations remain to be explored.
This work clears a pathway for the efficient generation and
application of phosphorus-containing ligated gold(III) com-
plexes by providing the first fragments of understanding based
on spectroscopic, crystallographic, and computational data.
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Toyoda, R.; Sakamoto, R.; Nishihara, H.; Mebs, S.; Beckmann, J.
Aurophilicity and Photoluminescence of (6-Diphenylpnicogenoace-
naphth-5-yl)Gold Compounds. Eur. J. Inorg. Chem. 2019, 2019, 647−
659.
(48) Bhargava, S. K.;Mohr, F.; Bennett, M. A.;Welling, L. L.;Willis, A.
C. Synthesis, Structure, and Reactions of a Binuclear Gold(I)−
Gold(III) Complex Containing Bridging and Bidentate (2-Diphenyl-
phosphino-6-Methyl)Phenyl Groups.Organometallics 2000, 19, 5628−
5635.
(49) Bennett, M. A.; Bhargava, S. K.; Mirzadeh, N.; Priveŕ, S. H.;
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Graf̈enstein, J.; Erdeĺyi, M. Halogen Bond Asymmetry in Solution. J.
Am. Chem. Soc. 2018, 140, 13503−13513.
(65) Lamb, K. N.; Squitieri, R. A.; Chintala, S. R.; Kwong, A. J.;
Balmond, E. I.; Soldi, C.; Dmitrenko, O.; Castiñeira Reis, M.; Chung,
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