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ABSTRACT The health, growth, and fitness of boreal forest trees are impacted
and improved by their associated microbiomes. Microbial gene expression and
functional activity can be assayed with RNA sequencing (RNA-Seq) data from host
samples. In contrast, phylogenetic marker gene amplicon sequencing data are used
to assess taxonomic composition and community structure of the microbiome. Few
studies have considered how much of this structural and taxonomic information is
included in transcriptomic data from matched samples. Here, we described fungal
communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon
sequencing to compare the outcomes between the methods. We used a panel of
root and needle samples from the coniferous tree species Picea abies (Norway
spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the
Flakaliden forest research site in boreal northern Sweden. We show that the rela-
tionship between samples and alpha and beta diversity indicated by the fungal
transcriptome is in agreement with that generated by the ITS data, while also iden-
tifying a lack of taxonomic overlap due to limitations imposed by current database
coverage. Furthermore, we demonstrate how metatranscriptomics data additionally
provide biologically informative functional insights. At the community level, there
were changes in starch and sucrose metabolism, biosynthesis of amino acids, and
pentose and glucuronate interconversions, while processing of organic macromole-
cules, including aromatic and heterocyclic compounds, was enriched in transcripts
assigned to the genus Cortinarius.

IMPORTANCE A deeper understanding of microbial communities associated with
plants is revealing their importance for plant health and productivity. RNA
extracted from plant field samples represents the host and other organisms pres-
ent. Typically, gene expression studies focus on the plant component or, in a lim-
ited number of studies, expression in one or more associated organisms. However,
metatranscriptomic data are rarely used for taxonomic profiling, which is currently
performed using amplicon approaches. We created an assembly-based, reproduci-
ble, and hardware-agnostic workflow to taxonomically and functionally annotate
fungal RNA-Seq data obtained from Norway spruce roots, which we compared to
matching ITS amplicon sequencing data. While we identified some limitations and
caveats, we show that functional, taxonomic, and compositional insights can all be
obtained from RNA-Seq data. These findings highlight the potential of metatran-
scriptomics to advance our understanding of interaction, response, and effect
between host plants and their associated microbial communities.
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Agrowing body of research shows that plants harbor a complex assemblage of epi-
phytic and endophytic symbionts (1). Understanding the composition and role of

the microbial components of such systems raises fundamental questions concerning
the taxonomic composition and biological functions provided by these communities
and how they influence plant survival and fitness. High-throughput DNA sequencing
technologies have vastly improved our ability to assay these complex and diverse mi-
crobial communities (2, 3). The current de facto standard of metagenomics is the use of
amplicons spanning regions of marker genes, usually the internal transcribed spacer
(ITS) region of the rRNA gene for fungal species and variable regions of the 16S rRNA
gene for bacteria (4, 5), for both of which extensive reference databases exist (6, 7).
Although useful for taxonomic profiling, DNA-based amplicon methods suffer from
methodological biases such as not accounting for multiple rRNA copies per cell and
preferential primer binding, leading to bias for or against certain taxa (8, 9). Moreover,
DNA-based methods cannot differentiate between living and dead sources of DNA
(10). In contrast to examining DNA, RNA sequencing (RNA-Seq) captures actively
expressed sequences as well as their relative abundance. Among the numerous
appealing qualities of RNA-Seq is the nearly universal coverage of the transcriptome. In
the current context, and particularly in the case of field samples, that coverage com-
prises transcripts from both a host and its associated microbial community, enabling
what we previously referred to as serendipitous metatranscriptomics (11) and what
others have termed tripartite sequencing (12) or, in the case of a host and single micro-
bial species, dual RNA-Seq (13). One characteristic of using metatranscriptome (i.e., the
transcriptome of a whole community) data is that it yields insight into the biological
processes active within microbial communities, providing functional insights (14–18).
The availability of functional information from both components of the holobiont
system (the assemblage of the plant host and the hosted microbial community) could
be transformative in advancing our understanding of the development, dynamics,
interactions, and effects of these two components (17, 19, 20). In principle, RNA-Seq
applied to a holobiont system would enable taxonomic profiling of the represented
species, offering taxonomic information in addition to information on the biological
processes actively represented in the metatranscriptome.

There have been few systematic comparisons of metatranscriptomics data to those
from amplicon sequencing of the 16S or ITS regions of rRNA genes. One study using
human stool samples concluded that total metatranscriptome data have higher sensi-
tivity and reproducibility than both ITS and 16S amplicon data (21). More such studies
are needed to understand whether both methods provide similar insight into commu-
nity diversity, species composition, and biological function. Here, this question was
addressed by performing a comparison of taxonomic information and community
structure obtained from mRNA-based metatranscriptomics and amplicon sequencing
of the fungal ITS1 region. As a study system, we used a panel of root and needle sam-
ples from Picea abies (Norway spruce) growing in northern boreal Sweden. The boreal
forest covers around one-third of the world’s forested areas and is mostly characterized
by harsh climates and N-limited plant growth (22). These forests are dominated by
conifers, and they host complex communities of microorganisms, both in the soil and
in close association with the forest trees. Ectomycorrhizal (ECM) fungi are especially im-
portant in this context, colonizing over 90% of root tips in the boreal forest (23). ECM
enhance tree nutrient uptake and are important drivers of carbon and nutrient cycling
in the boreal forests (24). Another ubiquitous and important group of fungi are sapro-
trophs, which play an important role in degrading organic litter and root detritus (25).
The site sampled in this study is part of a controlled short-term (5 years) and long-term
(25 years) nutrient enrichment (NE) experiment including untreated nutrient-deficient
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(ND) control plots (26, 27). The aim of this study was 3-fold: (i) to implement a bioinfor-
matic workflow for metatranscriptomic RNA-Seq data that filters host-derived reads
and assigns taxonomic and functional annotations to assembled fungal transcripts; (ii)
to compare results derived using this pipeline to rRNA gene amplicon-based data of
the fungal ITS region (28); and (iii) to demonstrate the potential of our metatranscrip-
tomic data for providing multifaceted, functional insight into actively expressed genes,
for example, identifying biological processes that are enriched in response to long-
term NE both at community level and for the selected genus Cortinarius.

RESULTS
Pipeline development and data set statistics. RNA-Seq of roots and needles

yielded an average 14.7 million reads per sample after adapter/quality trimming
(Fig. 1A), of which 0.6% (89,763 reads) and 6.7% (933,229 reads) on average were iden-
tified as fungal (by alignment to the JGI MycoCosm and TaxMapper databases) in the
needle and root samples, respectively (see Table S1 in the supplemental material).
Assembly of fungal reads using Megahit generated 615,331 transcripts, with a total
size of 444 Mbp. The length of transcripts ranged from 200 to 12,588, with an N50

FIG 1 (A) Overview of the RNA-Seq workflow. (Step 1) The inset shows the proportion of the raw data that was kept after trimming adapters and
removing low-quality regions (shown in base pairs for cutadapt and as reads for Trimmomatic). (Step 2) Reads remaining after preprocessing in needle and
root samples. (Step 3) The inset shows the number of reads identified as fungal by bowtie2 alignments and TaxMapper assignments in needle and root
samples. (Step 4) Number of fungal reads in needle and root samples after filtering. (Step 5) The inset shows length distribution of assembled transcripts
(log10 scale) after assembly using Megahit. (Step 6) Length distribution of the open reading frames (ORFs) as determined by GeneMarkS-T (in amino acids,
log10 scale). (Step 7) The inset shows overall and uniquely aligned fraction of reads for needle and root samples, after aligning fungal reads to the
assembled transcripts using bowtie2. (Step 8) Fraction of assigned reads in needle and root samples, as determined by FeatureCounts. (Step 9) The inset
shows number of total ORFs and number of ORFs with different levels of functional annotations obtained from eggnog-mapper. (Step 10) Distribution of
amino acid identity for DIAMOND BLASTX hits used to assign taxonomy at the different ranks, using the contigtax tool. The fraction of transcripts assigned
at each rank is shown in parentheses on the x axis. Full statistics on surviving reads are available in Table S1. (B) Overview of the amplicon sequencing
workflow. Raw, demultiplexed reads were filtered and trimmed, after which dada2 was used to denoise the reads and to merge forward and reverse reads.
Subsequently, chimeras were removed, and the resulting amplicon sequencing variants (ASVs) were cut with ITSx and clustered into Swarm operational
taxonomic units (SOTUs). Finally, taxonomy was assigned to SOTUs using the dada2 naive Bayesian classifier and the UNITE database. Detailed read counts
can be found in Table S1.
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length of 822 bp (for an ExN50 [i.e., the N50 value over the most highly expressed genes
that represent x% of the total normalized expression data] graph and a comparison to
Trans-ABySS and Trinity, see Fig. S1 and Text S1). A total of 547,305 open reading
frames (ORFs) were called on the assembled transcripts, with a median length of 98
amino acids, while for 68,029 (11.1%) transcripts no ORF was found. An average of
34.3% reads in needle samples and 70.6% in root samples were aligned to these ORFs.
Functional annotation of ORFs was performed, with 92.7% of ORFs having a hit in the
eggnog database, of which 64.5% were assigned to a Kyoto Encyclopedia of Genes
and Genomes (KEGG) ortholog and 59.8% were assigned Gene Ontology (GO) terms.
Taxonomic assignments resulted in 95.5%, 50.4%, and 34.2% of transcripts assigned at
the phylum, genus, and species levels, respectively. A more detailed description is
available in Text S1.

For the ITS1 amplicon sequencing data (Fig. 1B), between 86,279 and 338,800 reads
per sample remained (176,734 on average), corresponding to a range between 47 and
78% of the raw reads (Table S1). Denoising and chimera removal resulted in 5,726
ASVs in total, of which 2,694 were found in roots and 3,032 in needle samples. After
clustering, there were 2,673 Swarm operational taxonomic units (SOTUs), 1,172 in root
samples and 1,890 in needle samples.

Comparison of tree tissues in nutrient deficient control samples. Twice as many
SOTUs were observed in the needle ND samples as in roots (Fig. 2A), consistent with
the published analysis of these data (28). In contrast, the RNA-Seq data set showed
around 50 times more remaining transcripts after abundance filtering in the root than

FIG 2 Nutrient deficient (ND) sample overview, contrasting fungal communities in Norway spruce needles and roots. (A
and B) Venn diagrams showing the number of postfiltering fungal Swarm operational taxonomic units (SOTUs) (A) and
fungal transcripts (B) obtained from root and needle ND samples. Inside the Venn diagrams are density curves showing
the log10-transformed total count distribution in needle (green) and root (brown) samples. (C) Principal-coordinate analysis
(PCoA) of Bray-Curtis dissimilarities between needle and root ND samples, obtained from ITS1 amplicon sequencing data.
(D) Principal-component analysis (PCA) of variance stabilization-transformed counts from the metatranscriptomes of
Norway spruce roots and needles.
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in the needle samples (Fig. 2B). There was a predominance of low counts per SOTU
and transcript in the ITS and the RNA data sets, respectively, particularly in the needle
samples (Fig. 2A and B, insets).

A principal-coordinate analysis on the Bray-Curtis dissimilarities between root and
needle ND samples in the ITS data set revealed a clear separation of needle and root
samples along the first principal coordinate (75% explained variance) (Fig. 2C). The sec-
ond principal coordinate was characterized by the biggest variation among the root
samples, corresponding to the variation between field plots. A principal-component
analysis of transcript counts of root and needle ND samples led to a highly similar sepa-
ration and arrangement of samples (Fig. 2D), but with lower variation among needle
samples. The visual congruency between the two data sets for the ND samples was con-
firmed (Mantel r, 0.89; P, 0.001; Procrustes correlation, 0.86; squared m12, 0.26;
P, 0.001). Due to the small amount of remaining transcripts and the low intersample
variance in the needle samples, only root samples were used for later data comparisons.

Comparison of taxonomic annotations in ITS and RNA databases and data sets.
To compare the coverage of the databases used for taxonomic annotation of tran-
scripts (JGI MycoCosm and TaxMapper) and SOTUs (UNITE database), the number of
families, genera, and species listed in both or only one of the databases was assessed
(Fig. 3A). The proportional overlap between the two databases clearly decreased with
lower taxonomic levels. A similar trend was found for taxa identified in the two data
sets, but with a lower proportional overlap at the species level than between the

FIG 3 Taxonomic congruence between RNA-Seq and ITS amplicon sequencing data sets. (A) (Top) Venn
diagrams showing taxonomic unit overlap between the UNITE database and the JGI MycoCosm and TaxMapper
(JGI1TM) genome databases at the family, genus, and species levels. (Bottom) Taxonomic unit overlap of
identified taxa in the RNA and the ITS sequencing data sets. Bars indicate the proportion of transcripts and
Swarm operational taxonomic units (SOTUs) belonging to the unique and common portions of the Venn
diagrams (colors correspond; gray indicates unidentified transcripts/SOTUs on the corresponding taxonomic
level). (B) Spearman rank correlations of taxonomic abundance (family, genus, and species levels) between
RNA-Seq and ITS amplicon sequencing samples. Colors indicate samples of root (brown) or needle (green)
origin.
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databases (Fig. 3A, lower row). At the family level, the percentage of common tran-
scripts and SOTUs was ;50%, while at the species level, ,5% were in common
(Fig. 3A, area bar graphs). The same trend was apparent on a read count level
(Fig. S2A).

To assess how well the relative abundance of common taxa agreed between the
RNA and the ITS data sets, Spearman rank correlations were computed for all taxo-
nomic levels (Fig. 3B; Fig. S2B). At the family level, the correlations ranged between 0.4
and 0.6 (medians, 0.53 in roots and 0.48 in needles). In accordance with the Venn dia-
grams, correlations decreased rapidly at lower taxonomic ranks in needle samples
(medians, 0.48 and 0.26 at the genus and species levels, respectively) and moderately
in root samples (medians, 0.53 and 0.44 at the genus and species levels, respectively).

Comparison of community structure in root samples. To assess how well the
transcript and SOTU data from the root samples structurally correlated with each other,
within and between fertilization treatments, ordination analyses were performed. A
principal-coordinate analysis (PCoA) on the SOTU counts obtained from the ITS1
sequencing data revealed the same pattern as in the previously published results
(Fig. 4A) (28). The 25-year-treated (NE-25) samples clearly separated from the controls
on the first principal coordinate (explaining 36% of the variance). A permutational mul-
tivariate analysis of variance (PERMANOVA) test showed significance for fertilization
treatment (P, 0.001) but not for sampling date. Similarly, a principal-component anal-
ysis (PCA) of the transcript counts (Fig. 4B) showed that the NE treatment accounted
for the highest variance in the data set (29%) and that after 25 years of NE, the fungal
transcriptomes in the fertilized plots were distinct from those in the ND samples.
PERMANOVA confirmed this (P, 0.001), while sampling date was not significant. The
correlation between the sample distances in the two ordinations was significant
(Mantel r, 0.74; P, 0.001; Procrustes correlation, 0.55; squared m12, 0.69; P, 0.001).
Phyllospheric community structure comparisons (Fig. S3) are discussed in the supple-
mental material (Text S1).

Furthermore, Shannon diversity index values at the genus level between the two
data sets were compared (Fig. 4C). The total correlation was strong (Spearman r, 0.76),
and the increase in Shannon diversity with longer NE treatment (as reported in refer-
ence 28) was apparent in both the ITS and the RNA data (all pairwise comparisons
were significant; all P, 0.02).

Comparison of highly abundant families and random forest classification by
sample source using taxonomic annotations in both data sets. Counts in both data
sets were summarized to the family level, and relative proportions of the 12 most
abundant family annotations from the two data sets were visualized (Fig. 5A). As
expected from the above comparison of taxonomic annotations, the general

FIG 4 Ordination and alpha diversity index comparison of root samples. (A) Principal-coordinate analysis of
rarefied Swarm operational taxonomic unit (SOTU) counts, colored by treatment. (B) Principal-component
analysis of variance stabilization transformed transcript counts, colored by treatment. (C) Sample-wise
relationship between Shannon diversity index values (genus level) using ITS amplicon sequencing (x axis) and
RNA-Seq (y axis), colored by treatment.
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overlap was not strong, but notable examples, like Cortinariaceae and
Hygrophoraceae, showed very similar abundance distributions. The total propor-
tion occupied by the 12 most abundant family annotations (covering 95% of reads
on average) in each data set were highly similar, and this proportion decreased
with longer NE treatment.

A random forest classifier on both ITS and RNA data set was used to classify samples

FIG 5 Taxonomic overview and random forest results. (A) Taxonomic overview area plot of ITS amplicon sequencing data (left bars) and annotated
transcripts (right bars) from root samples. Counts were summed to the family level, and mean relative abundance per sample type is displayed. Shown in
color inside the bars are the 12 most abundant families. Red and green bars on top indicate the treatment; sampling time point is indicated below the
columns. (B) ITS data random forest results. Heat map showing the distribution of the 30 most important species (rows) for prediction of samples
(columns) into ND/25-year NE groups. Normalized abundance values (summed to the species level) were converted to z-scores per row to highlight
differences between samples. Hierarchical clustering of samples and species was performed using correlation metrics and complete linkage clustering.
Colors on top indicate treatment and sampling date. Colors in the left margin indicate the corresponding family (gray indicates that the result was not
among the 12 most abundant family annotations in any of the two data sets). The two-column heat map to the right indicates average relative abundance
in ND and NE samples. Species in bold belong to genera that are found in both data sets. (C) Metatranscriptome random forest results. Heat map showing
the distribution of the top 30 most important species (rows) for prediction of samples (columns) into control/25-year-treatment groups. Normalized
expression values (summed to species level) were converted to z-scores per row to highlight differences between samples. Hierarchical clustering of
samples and species was performed using correlation metrics and complete linkage clustering. Colors on top indicate treatment and sampling date. Colors
in the left margin indicate the corresponding family of species. The two-column heat map to the right indicates average relative abundance in control and
NE samples. Species in bold belong to genera that are found in both data sets.
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by treatment and date. The 30 species having the highest importance in both data sets
were then compared (Fig. 5B and C). For a more detailed description of the random
forest results, see Text S1, Fig. S4 and S5, and Table S2. When classification of root sam-
ples by treatment type (ND, NE-5, and NE-25) was compared, predictive accuracy was
high (.0.7) in both the ITS and RNA data. When only ND and NE-25 samples were
used, the accuracy increased to 1 in both data sets. Root samples could not be accu-
rately classified by sampling date, congruent with the earlier ordination-based statisti-
cal tests. In the ITS data, the 30 most important species had a summed importance of
0.69 and 17 species fell among the 12 most abundant families in the ITS data set
(Fig. 5A). In addition, the mean relative abundance of a species and its feature impor-
tance had a Spearman rank correlation coefficient of 0.79. For the averaged RNA data,
the top 30 most important species had summed importance of 0.4 (Fig. 5C), and in
contrast to the ITS data set, only 9 of the top 30 important species belonged to the
most abundant families (Fig. 5B); the Spearman correlation coefficient for mean relative
abundance and importance was only 0.13.

Functional annotation of RNA data provides functional insight into fungal-
community activity. As described above for taxonomic assignment, random forest
analysis was applied using functional expression profiles of fungal transcripts to classify
samples. Normalized expression values for ORFs assigned to the kingdom Fungi were
summed to the KEGG ortholog (KO) level. To gain insight as to which functional cate-
gories were important for separating ND and NE-25 samples, the expression of KOs
with a combined importance of 0.5 was summed to higher level functional categories
in the KEGG pathway hierarchy (Fig. 6A). This revealed that the transcription, transla-
tion, and amino acid metabolism categories had higher expression values in NE-25
samples, while, e.g., carbohydrate metabolism, nucleotide and lipid metabolism, and
signal transduction categories were more highly expressed in control samples.

Evidence in the literature suggests that N addition leads to a decrease in tree below-
ground carbon allocation to ECM (29, 30), accompanied by a decrease in ectomycorrhizal
growth (31). The random forest results were therefore used to explore the “carbohydrate
metabolism” KEGG pathway category. In total, 17 KOs from this pathway category were
among the most important 50% of KOs (Fig. 6B). Noteworthy orthologs with decreased
abundance after long-term NE included several key players in the major glucose conver-
sion pathway glycolysis (6-phosphofructokinase, pyruvate kinase, and triosephosphate
isomerase), the glycolysis-parallel pentose phosphate pathway (transketolase and

FIG 6 Functional analysis—random forest results. (A) Heat map of the 50% KEGG orthologs with the highest importance, summed to pathway category 2
level. Normalized expression values are converted to z-scores per row to highlight differences between samples. Hierarchical clustering of samples and
KEGG pathways was performed using correlation metrics and complete linkage clustering. Colors on top indicate treatment and sampling date. (B) KEGG
orthologs falling into the “Carbohydrate metabolism” pathway category. Visualization was performed as described for panel A.
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6-phosphogluconolactonase), and others from closely related downstream pathways.
Some of the higher-abundance KOs were related to amino acid (specifically, leucine and
isoleucine) metabolism: 3-isopropylamate dehydrogenase and synthase.

Long-term nutrient enrichment leads to major functional changes at the
community level with seasonal differences. A differential abundance analysis of the
25 years versus control condition identified KOs (1,822 KOs overall and 1,189 unique
KOs), with an increasing number of differentially abundant KOs throughout the growing
season (Fig. 7A). There were 47 commonly differentially abundant KOs at all four sampling
dates (6 to 27% of KOs per seasonal time point), of which 29 increased and 18 decreased
in abundance.

KEGG pathway enrichment of differentially abundant KOs (Fig. 7B) showed that general
housekeeping pathways, including ribosome, proteasome, and spliceosome, were
enriched among more highly abundant KOs, pointing to major shifts in biological activity.
Pathways such as RNA transport, cell cycle, ubiquitin-mediated proteolysis, and mRNA sur-
veillance were enriched among KOs with lower abundance. These enrichments were simi-
lar to results from the random forest analysis (Fig. 6). Notable and more specific pathways
composed of KOs with higher abundance included starch and sucrose metabolism, biosyn-
thesis of amino acids, and pentose and glucuronate interconversions. Specific pathways
that were found to have significantly lower abundance after NE included autophagy, fatty
acid elongation and metabolism, and N-glycan biosynthesis (Table S3).

Taxonomic annotations of the differentially abundant KOs provided an overview of
which taxa were responsible for the observed functional changes (Fig. 7C). For
instance, the family Atheliaceae, which did not seem to be strongly affected by NE in
the ITS and RNA data sets (Fig. 5A), accounted for a much larger proportion (25% ver-
sus 10%) of the lower-abundance than the higher-abundance KOs.

Differential abundance analysis of the genus Cortinarius revealed extensive
transcriptional downregulation. To highlight the ability to extract insight into the
functional response of specific taxa, all transcripts assigned to the genus Cortinarius
were selected. Cortinarius is a widespread and common genus of ECM fungi that has

FIG 7 Functionally summarized differential KEGG ortholog (KO) abundance overview. (A) Bar plot showing the number of KOs found to be significantly
more (red) or less (blue) abundant after 25 years of nutrient enrichment (NE) in comparison to the untreated controls. (B) KEGG pathway enrichment of all
KOs identified as significantly differentially abundant at all four sampling dates, after 25 years of NE. Color intensity is determined by adjusted P value of
enrichment, while rectangle size is proportional to the number of differentially abundant KOs in the respective pathway category. “Mis-annotated” refers to
pathway categories associated with human diseases. Table S3 contains all terms and statistics. (C) Taxonomic distribution at the family level of all
transcripts assigned to the set of KOs displayed in panel A. Only the 12 most abundant family annotations from both sets of KOs are displayed.
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been previously reported to be negatively affected by N enrichment in different con-
texts (28, 32, 33). In the current study, Cortinarius was still observed at low abundances af-
ter 25 years of treatment. We used a hierarchical clustering method (Ward minimum var-
iance) and visualized the gene expression patterns of Cortinarius in our data set (Fig. 8A).
This identified three main clusters of genes that had similar expression abundance pat-
terns. Cluster 1 (4,047 transcripts) contained genes showing high abundance in the unper-
turbed control plots, which mostly dropped beyond detection after long term NE. Cluster
2 (1,456 transcripts) displayed high gene abundance in part of the ND and part of the NE
samples, without any apparent pattern, while being mostly absent in other samples.
Genes in cluster 3 (1,741 transcripts) displayed erratic abundance, with subsets of the clus-
ter showing very high abundance in some samples, while other subsets displayed high
abundances in other samples, with a tendency to be more abundant in control samples.
Summarizing transcripts to KOs where possible, we observed substantial functional over-
lap between the three clusters (Fig. 8A, Venn diagram).

Gene Ontology (GO) enrichment of the three clusters identified significant enrich-
ments for cluster 1 and cluster 3 (Fig. 8B). Cluster 1 showed significant (P, 0.001)
enrichment in functions associated with the processing of organic macromolecules,

FIG 8 Hierarchical clustering of transcripts assigned to the genus Cortinarius and Gene Ontology (GO) enrichment. (A) Heat map of all transcripts assigned
to the genus Cortinarius. Normalized variance stabilization transformed expression values were transformed to z-scores per row to highlight differences
between samples. Hierarchical clustering of samples and transcripts was performed using Ward’s minimum variance method. Colors on top indicate
treatment and sampling date, while colors to the left indicate the three highest-level clusters. A color legend is provided below the heat map. The Venn
diagram below the heat map shows KEGG orthologs (KOs) derived from the three clusters and the respective overlap between them. (B) Tree maps
showing GO enrichment of all transcripts identified as belonging to the three highest level clusters. The upper tree map summarizes significant GO
enrichments for cluster 1 (4,047 transcripts), and the lower tree map shows the enrichment for cluster 3 (1,741 transcripts). There were no significant
enrichments for cluster 2 (1,465 transcripts). Color intensity is determined by adjusted P value of the enrichment, while rectangle size is proportional to the
number of transcripts mapping to the respective GO term. Table S3 shows all terms and corresponding statistics.
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including aromatic and heterocyclic compounds. Cluster 3 was enriched for a greater
variety of GO terms, including metabolism of both small molecules and macromole-
cules, metabolism of organonitrogen compounds and organophosphates, and carbo-
hydrate and carbohydrate derivative metabolism. Both cluster 1 and cluster 3 showed
a reduction in abundance after long-term NE, but this effect was much more pro-
nounced in cluster 1.

DISCUSSION

RNA-Seq, in principle, enables studies of both the composition of active microbial
communities and the biological functions being expressed by the constituent mem-
bers. While several pipelines for the analysis of metatranscriptome data have been
published (34–37), including evaluation of how the results from such data compare to
those of amplicon- or whole-genome shotgun-based methods, these studies primarily
focused on bacterial communities or relatively low-complexity species mixes or used
the total RNA pool (21, 37, 38). Other studies have used both RNA-Seq and amplicon
sequencing together to describe microbial communities from a taxonomic and func-
tional perspective (18, 39). Here, we performed a study to ascertain how polyadeny-
lated mRNA-Seq-based metatranscriptomics and DNA amplicon-based metagenomics
results compare when profiling the complex root-associated and phyllospheric fungal
communities associated with the boreal forest tree species Norway spruce (Picea abies)
under natural and perturbed nutrient conditions. To facilitate the analysis of the meta-
transcriptomics data, we implemented a reproducible bioinformatic workflow to
assemble fungal transcripts from the RNA-Seq data and subsequently annotate the
assembled transcripts both functionally and taxonomically (Fig. 1). Creation of this cus-
tom workflow was necessitated by the lack of available tools for this specific case
where our a priori criteria were the ability to (i) separate fungal and host reads and (ii)
perform a de novo assembly of transcripts. We chose to assemble transcripts over
direct read-based alignment to increase query sequence length and to maximize the
number of aligned reads (Fig. S6) and because representative databases are lacking for
our samples. Among previously published workflows, the IMP (Integrated Meta-omic
Pipeline) workflow (37) supports host filtering and de novo assembly but was written
with the human bacterial microbiome in mind and does not offer additional analyses
such as differential expression or multiple sample comparisons (40). For the purpose of
this study, we reanalyzed previously published ITS amplicon sequencing results from
the same samples (28) to reflect new developments in sequence processing algorithms
(41, 42).

Comparison of the control samples from roots and needles in the two data sets at
the transcript and SOTU level revealed strikingly similar patterns of between-sample
variation (Fig. 2), despite the proportionally higher number of needle SOTUs compared
to the low number of fungal transcripts in needle samples. The low number of fungal
transcripts obtained from the phyllospheric samples likely resulted from (i) the orders-
of-magnitude-lower fungal load in the phyllospheric samples, leading to a much lower
ratio of host to fungal nucleic acid in the extracts (43–45), and (ii) the higher phyllo-
spheric fungal richness (Fig. 2) leading to sparser transcript count data in the needle
samples. This low signal-to-noise ratio propagated through all further analyses of the
needle samples, and for this reason we concentrated on the root data for in-depth
analyses. This highlights the importance of relative fungal load for the application of
this approach.

A further limitation of metatranscriptomics studies, especially where communities
are composed of nonmodel systems, is the relatively low availability of sequenced ref-
erence fungal genomes. At the time the analyses were performed, there were 1,164
sequenced fungal genomes available at the JGI MycoCosm resource (46). This number
is increasing steadily (1,681 at the time of writing) but is still far from being sufficiently
comprehensive to capture a substantial portion of the fungal diversity present in most
ecosystems. While the use of ITS amplicon data has its own limitations and
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methodological issues, it could be expected to yield a more comprehensive catalogue
of taxa present in the sample due to the more established database resource currently
available. Comparing the fungal metatranscriptomics assembly to the ITS data from
the same samples, the taxonomic overlap was found to be small at lower taxonomic
levels (Fig. 3). While only a relatively low proportion of transcripts and SOTUs were
assigned at the species level (42 and 39%, respectively), this small overlap is likely to
also stem from the already low overlap between the UNITE and the MycoCosm data-
bases at low taxonomic levels, with only 40% of species present in the MycoCosm
resource being represented in the UNITE database (Fig. 3A). This issue currently limits
RNA and ITS comparability on taxonomic terms, but this is likely to improve as fungal
genomes become increasingly available and as the UNITE database increases the num-
ber of included ITS sequences.

Furthermore, the two methods showed a consistent variation in evenness (Fig. 4C),
and both identified a consistent decrease in the proportion of reads belonging to the
12 most abundant family annotations in response to nutrient enrichment (Fig. 5A). For
both data sets, this appeared to reflect higher diversity and loss of dominance of cer-
tain groups of fungi, as reported previously for the ITS data set (28). That some families
strongly differ in abundance between the two data sets might result from methodo-
logical bias in the ITS amplicon data (9), but it was shown previously that while most
DNA and RNA data correlate fairly well, total gene expression abundances of some
groups deviate in their levels from what could be expected when looking only at
genomic DNA abundance (47). Moreover, it has been found that even ITS amplicons
obtained from DNA and RNA in soil fungal communities yielded very different taxo-
nomic compositions (38). Finally, a characteristic of mixed-species RNA-Seq is that tran-
script abundance captures both expression and species abundance; i.e., a higher abun-
dance could stem from either higher gene expression per nucleus or a higher nucleus
count. Current sequencing library generation protocols do not allow these two factors
to be separated, although future strategies will likely overcome this, for example,
through use of long-read sequencing technologies, such as Pacific Bioscience or
Oxford Nanopore, that do not require assembly or via the use of unique molecular
identifiers and transcript assembly algorithms that utilize this information.

While taxonomic overlap was low between the metatranscriptomics and ITS ampli-
con sequencing data, the congruence between unsupervised ordination methods was
high, not only when comparing control samples but also when comparing the root
sample clustering by nutrient status (Fig. 4A and B). The phyllospheric results are dis-
cussed in Text S1. As an additional approach to assess the similarities and differences
between the two data types, we performed random forest classifications of NE-25 and
ND samples in both data sets. We found that in a direct comparison, the random forest
classification performed better on the ITS data, especially for needle samples.
Congruent with the previous statistical tests, the random forest classifier found a
strong effect of NE and no seasonal effect on root fungal communities. Another inter-
esting observation was the notably higher correlation between mean relative abun-
dance and importance in the ITS compared to RNA data. This could again be an artifact
of the low taxonomic annotation in the RNA data, but potentially it indicates that the
metatranscriptomic data enables a higher resolution by containing both taxonomic
and expression abundance. Several previous studies have shown the importance of
low abundance community members in a functional context (38, 48–50).

We applied random forest and differential abundance analyses to demonstrate use
of the RNA-Seq data to provide both functional and taxonomic insights into the root-
associated fungal community of Norway spruce and how it is affected by NE. Random
forest classification accuracy when using KO counts, in comparison to taxonomic anno-
tations at the species level, proved to be similarly good when classifying by treatment
and slightly better when classifying by sampling date. The slightly higher accuracy for
sampling date in both roots and needles when using functional profiles indicates that
over the course of the season, shifts in functions expressed by fungal species are more
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pronounced, and yield higher signal strength, than the turnover of the species them-
selves. Both random forest and differential ortholog and transcript abundance analyses
identified a number of functional categories with enrichment for transcripts having
increased or decreased abundance as a result of the treatment, with highly congruent
results from the two methods (Fig. 6 and 7). Furthermore, both methods were used to
provide taxonomically resolved insights, identifying species and families that were im-
portant in explaining the separation either of the two treatment conditions (Fig. 5 and
7) or of transcripts from a specific family having significant changes in relative abun-
dance (Fig. 7).

Finally, we demonstrated that we can pick one taxon of interest and investigate its
specific transcriptomic response to the experimental conditions with the same meth-
ods, in this case, the known nitrophobic genus Cortinarius (Fig. 8). Cortinarius is one of
the most species-rich ECM genera, with hundreds of species occurring in Sweden
alone, and belongs to a group of ECM fungi that exhibit medium-distance fringe-type
exploration and that have been shown in several studies to be sensitive to N addition
(33). This N sensitivity has been hypothesized to be caused partly by their reliance on
mobilizing organic N sources, using oxidative enzymes for degradation (32, 51). The
high carbon cost of this foraging strategy would become disadvantageous with high
inorganic N availability, due to both the decreased allocation of tree carbon below-
ground (30, 31) and a decrease in the energetical efficiency of oxidative enzymes (52).
More recent comparative genomic studies have shown that Cortinarius glaucopus (the
only sequenced European Cortinarius species to date) has retained an unusually high
number of genes for plant cell wall-degrading enzymes in its genome, compared to
most other ECM fungi (53). While the majority of Cortinarius transcripts in our data set
showed a strong and uniform reduction in abundance after long-term NE, groups of
genes had more varied, limited, or no response to the treatment (Fig. 8).

The large extent of functional overlap between the three identified gene clusters
could suggest that each cluster represents a different Cortinarius species (or group of
species), each of which has a different level of sensitivity to N addition. We observed
an enrichment of GO terms associated with metabolic processing of aromatic com-
pounds in the cluster of genes that showed the strongest consistent decrease in abun-
dance after long-term NE (cluster 1), potentially indicating a strong reliance on the
degradation of phenolic compounds (e.g., lignin derivatives) for this species, in line
with the aforementioned literature. Cluster 2 (equal expression representation in both
conditions) did not yield significant GO enrichments, which could suggest that some
Cortinarius species are not as negatively affected by high N content. The third cluster
showed variable representation in control samples and similarly variable (but overall
reduced) representation after long-term NE. The higher number of enriched GO terms,
including many important metabolic processes, such as carbohydrate and organonitro-
gen utilization, potentially indicates that this group of transcripts is from a Cortinarius
species that relies on other enzymatic mechanisms to obtain N and that are not as de-
pendent on tree derived C as the species in cluster 1. While these interpretations are,
admittedly, speculative, they serve to highlight the additional power provided by a
metatranscriptomic approach for enabling functionally informed insights and hypothe-
sis generation to direct subsequent studies.

In conclusion, we have demonstrated that RNA-Seq metatranscriptomics, under
the prerequisite of a sufficient microbial load in the sample of interest, has the
potential to bypass the inherent limitations of ITS amplicon sequencing, especially
with further technology development and availability of more extensive databases
of sequenced genomes. We have shown that in terms of alpha and beta diversity,
comparable results can be obtained using only metatranscriptomic data, while ITS
amplicon data are still currently needed to provide a more complete taxonomic
profile of the fungal community. While we did not consider this in the current
study, the data generated additionally capture transcriptome dynamics in the host
tree, enabling a plethora of additional analyses apart from what we demonstrated
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here. In conjunction with host tree expression, as well as other microbial commun-
ities, the presented data set and the approach in general hold great potential to
yield insights into the dynamics of multispecies and multidomain gene expression
and their interactions.

MATERIALS ANDMETHODS
Sample collection, nucleic acid extraction, and sequencing. Samples were collected during the

growing season in 2012 and stored at 280°C. The ITS1 amplicon sequencing data used in this study
were published previously (28) and reanalyzed for this study. RNA was extracted from the same spruce
root and needle samples in early 2013 and used for RNA sequencing; the details are described in Text
S1. RNA was successfully sequenced from 214 samples, 107 root and 107 needle samples. For ideal com-
parability to the ITS data, replicates from within one on-site block were pooled, resulting in 36 pooled
root and needle samples.

Metatranscriptomic workflow. Preprocessing and analysis of metatranscriptomic data were imple-
mented in a Snakemake workflow available on Bitbucket (54); we ensured complete, hardware-agnostic
reproducibility through implementation in both docker and singularity containers. A detailed descrip-
tion of software and parameters used in the workflow is available in Text S1. Briefly, raw reads were
trimmed and filtered using cutadapt and Trimmomatic (55, 56). Read quality scores before and after pre-
processing were assessed with FastQC and MultiQC (57, 58). Fungal reads were selected from prepro-
cessed reads aligned using bowtie2 against the JGI MycoCosm database (46, 59) and TaxMapper against
its own database (60). Reads aligning to JGI MycoCosm were filtered for host reads by bowtie2 align-
ments against the Norway spruce reference genome obtained from PlantGenIE (61). We deduplicated
fungal read pairs using FastUniq (62). Subsequently, fungal reads were assembled using Megahit, Trans-
ABySS, and Trinity (63–65). Open reading frames (ORFs) in the Megahit assembly were identified using
GeneMarkS-T (66). FeatureCounts from the subread package (67) was used to count the reads aligning
within ORFs with bowtie2. Raw counts were normalized to transcripts per million (TPM) (68). Translated
protein sequences were annotated using eggnog-mapper in conjunction with the eggnog database (69,
70), to obtain KEGG ortholog (KO) and Gene Ontology (GO) annotations (71). For taxonomic annotation,
we used a database comprising proteins constructed from JGI MycoCosm, TaxMapper, and the
Hygrophorus russula MG78 genome with genes predicted using Augustus (72). Hygrophorus russula was
included to account for the high abundance of Hygrophorus at the field site, observed both in the ITS
data and in situ sporocarp assessments. Taxonomy was assigned to transcripts using contigtax (73),
which uses rank-specific thresholds (74) to infer lowest common ancestors, based on DIAMOND BLASTX
searches (75).

Amplicon sequence data pipeline. The code needed to run the preprocessing and analysis of the
amplicon sequencing data is available on GitHub (76). A detailed description is available in Text S1. In
short, raw reads were demultiplexed using deML (77), and primer sequences were removed using cuta-
dapt (55) after pooling technical replicates, as described previously (28). The R package dada2 (42) was
used to filter and denoise the reads, before dereplicating them into amplicon sequencing variants
(ASVs), merging overlapping forward and reverse reads, and removing chimeric sequences. The ITS1
region was cut out from the ASVs using ITSx (78) and subsequently clustered into Swarm operational
taxonomic units (SOTUs) using Swarm (41). Taxonomy was assigned using naive Bayesian classifier
implemented in dada2, with the UNITE database as a reference (79).

Analyses and visualizations. All further analyses were performed using R (80), unless otherwise
specified. Visualizations were plotted using ggplot2, unless otherwise specified (81). Venn diagrams in
Fig. 2 were created using the R package VennDiagram (82), and Venn diagrams and correlations in
Fig. 3 were created using jupyter and matplotlib (83, 84). Detailed parameter information can be found
in the above git repositories, and a more detailed description is provided in Text S1. Amplicon
sequencing data were filtered and rarefied using vegan (85), which was also used for PERMANOVA,
Shannon diversity, and Mantel and Procrustes tests. The package phyloseq (v 1.28) was used to visual-
ize PCoA ordinations (86). Linear mixed-effect models were used to test for significant differences in
diversity using the nlme package (87) and the multcomp package (88). RNA-Seq-derived transcripts
were selected to be of fungal origin and subsequently filtered using the same criteria as for the
SOTUs. After filtering, the replicates per plot were merged by mean value to make the data more com-
parable to the ITS amplicon data. Filtered metatranscriptome count data were transformed using the
function varianceStabilizingTransformation from the DESeq2 package prior to principal-component
analysis (89). Random forest analyses were implemented using the RandomForestClassifier from scikit-
learn (90). Heat maps summarizing random forest results were plotted using matplotlib (84), while the
heat map in Fig. 8 was plotted using the R package pheatmap (91). DESeq2 was used to identify differ-
entially abundant KOs and transcripts (89). Differentially abundant KOs and transcripts were filtered to
have a log fold change of at least 0.5 and a P value of ,0.05. Functions for easier filtering and visual-
ization of differential expression results were pulled from the Rtoolbox repository (92). The tool gofer2
(93) was used for KO and Gene Ontology enrichment, the R wrapper of which was pulled from the re-
pository of the Umeå Plant Science Centre bioinformatics facility (94). The R package treemap was
used to visualize the enrichments (95).

Data availability. The raw data from the ITS1 amplicon sequencing have been deposited in the
European Nucleotide Archive (ENA) with accession number PRJEB21692 (96). RNA-Seq raw data are also
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deposited in the ENA with accession number PRJEB35783 (97). Workflows and scripts to preprocess and
analyze the data have been made available in the git repositories mentioned above.
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FIG S1, EPS file, 1.4 MB.
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