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Cascade of replica bands in flat-band systems: Predictions for twisted bilayer graphene
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We investigate the effect of electron-phonon interactions (EPI) in systems exhibiting one or more flat electron
bands close to the Fermi level and a comparatively large phonon energy scale. After solving the self-consistent
full-bandwidth Eliashberg equations, we compute angular resolved photoemission spectroscopy (ARPES) and
scanning tunneling spectroscopy/microscopy (STS/STM) spectra. We obtain a sequence of quasiparticle replica
bands in both the normal and superconducting states that originate from frequency-dependent features of the
electron mass renormalization function. We show that these replica bands can be used to extract the relevant
phonon energy scale from experiments. Focusing in particular on twisted bilayer graphene, we predict replica-
band formation, which, when observed, will shed light on the role of EPI in this archetypal flat-band system.

DOI: 10.1103/PhysRevB.103.144505

Introduction. Effects of electron-phonon interactions (EPI)
in metals and superconductors are most accurately modeled
by the Eliashberg formalism [1,2]. The connection between
this theory and scanning tunneling spectroscopy/microscopy
(STS/STM) spectra has been well understood for many
decades [3,4]. In more recent years, advances in angular re-
solved photoemission spectroscopy (ARPES) have led to the
possibility of an even richer comparison between theory and
experiment [5-8]. These techniques have been successfully
applied to gain better understanding of many materials, such
as the high-temperature superconducting cuprates [9—12] and
monolayer FeSe on a SrTiOs; (STO) substrate [13-15], to
name only few examples.

In this work, we focus on systems with one or more flat
electron energy bands close to the Fermi level, where the
term “flatness” is to be understood in comparison to the
phonon energy scale €2. Calculating ARPES and STS/STM
spectra using full-bandwidth Eliashberg theory, we reveal a
sequence of quasiparticle replica bands outside the electron
bandwidth W of the flat bands, occurring both at positive
and negative frequencies. A closer analysis reveals that these
spectral features are a direct manifestation of the electron
mass renormalization function, and they are located at integer
multiples of €2 along the frequency axis. Therefore, they can
serve as a means to extract the phonon frequency directly
from the measured spectra. Notably, in contrast to the replica
bands observed for FeSe/STO [16], which are mediated by
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the forward-scattering form of the EPI [13,14], our here pre-
dicted cascade of replicas is driven solely by the flatness of
the electron band and therefore has a distinct origin which
is more akin to the shake-off spectral features of localized
systems [17].

We apply our theory to twisted bilayer graphene (TBG)
at the magic angle ~1.1° [18-20], for which we perform
calculations of the quasiparticle spectrum using material spe-
cific input. This system exhibits two flat bands close to
the Fermi energy, as reported by both theory [21-23] and
experiment [24-28]. These bands are gaped out from the
remaining electron energies, and, together with a reasonably
large phonon frequency [29,30] that has been shown to be
relevant for explaining superconductivity [31], constitute an
ideal testing ground for the phenomenon discovered here. Al-
though the predicted intensity of the replica bands is relatively
weak, we propose here their detection in TBG in the fore-
seeable future. Notably, the here-predicted replica bands due
to EPI are distinct from the recently reported split-off peaks,
observed in STS measurements [32], that were attributed to
electron-electron interactions, which are expected to be pro-
nounced in TBG [18].

Methodology. We consider a single-branch isotropic
Einstein phonon spectrum with characteristic frequency €.
For simplicity, we also treat the electron-phonon scattering
strength gy as momentum independent. Adopting the Eliash-
berg formalism in imaginary frequency space, with fermion
frequencies w,, = 7T (2m + 1) at temperature T, we decom-
pose the inverse electron Green’s function as

Gl (K, iwy) = ionZ(ion)Po — Plion)p
— (&1(K) + x(ion))p3 - (1

Above, & (k) are electron energies at momentum k in band /,
and we work in Nambu space [33] with Pauli matrices p;. The
mass enhancement Z(iw,,), superconducting order parameter
¢(iw,), and chemical potential y (iw,,) do not acquire any
momentum dependence due to the isotropic nature of the
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electron-phonon coupling. By using the electron self-energy,

S(ion) ==T Y p3Gr(k, iww)psgeDlign-mw),  (2)
k,m' I’

with phonon propagator D(iq,—n) = D°(igu_m) = =22/
(Q? 4 ¢7) and boson frequencies g, = 2nTn, we derive a
closed set of equations for Z(iw,,), x (iw,), and ¢(iw,,) (see
Appendix A).

For the sake of clarity, we note that the here-investigated
phenomenon cannot be described within the Bardeen-
Cooper-Schrieffer (BCS) model, which assumes a frequency-
independent order parameter, absence of mass renormaliza-
tion, and an electronic bandwidth W that is much larger
than the phonon frequency, W > Q. Hence, we employ
full-bandwidth Eliashberg theory, which explicitly takes into
account scattering processes involving electrons with energies
and momenta that are not restricted to the vicinity of the Fermi
surface, and therefore goes beyond Migdal’s theorem [34].
Moreover, despite the fact that €2 is much larger than the Fermi
energy and thus the systems under study lie in the extreme
antiadiabatic limit, we show explicitly in the Appendix B that
vertex corrections are negligible for the systems studied here.

Our self-consistent results in Matsubara space are ana-
lytically continued to the real-frequency axis, iw,, = @ + 6.
This step is carried out in a formally exact and self-consistent
manner, via the method first introduced by Marsiglio
et al. [35] and extended for finite electron energy bandwidths
as done in Ref. [14], resulting in functions Z(w), x (@), and
¢(w). With the real-frequency dependent electron Green’s
function at hand we can calculate the band and momentum
resolved spectral function

Ak, o) = —%Im([@(k, o +i8)n), 3)
which can be compared to ARPES measurements when
summed over band index /. By further summing up the mo-
mentum degree of freedom, we have the means to compare
our calculations to tunneling experiments,

dl

T X A@) = ZAl(k w). @)

All our calculations are performed with the Uppsala Super-
conductivity (UPPSC) code [14,34,36-39]. For further details
on the theory see also [14,31] and the Appendix.

Results. We begin with a conceptually rather easy case
of a nearest neighbor, one band tight-binding model on
a 2D square lattice with bare electron energies &(k) =
—2t[cos(ky) + cos(ky)] — u (we drop the band index). The
hopping energies and chemical potential respectively are fixed
att = 0.425meV and u = —1 meV. Unless specified other-
wise, we choose the electron-phonon scattering strength as
go =2meV and a relatively large phonon frequency Q =
11 meV. With an electronic bandwidth of W = 3.4 meV the
energies &£(k) appear flat when compared to the phonon
energy scale. We are not primarily interested in superconduc-
tivity, so, unless noted otherwise, we consider here T > T
corresponding to ¢(w) = 0. The replica bands under discus-
sion occur outside the electron bandwidth of the flat band,
hence not in a frequency regime where the superconducting

energy gap alters the spectrum. Therefore, superconductivity
does not play any role for the current analysis, as we show in
the Appendix C. With this input, we solve the full-bandwidth
Eliashberg equations in Matsubara space and analytically con-
tinue the results to the real-frequency axis.

In Fig. 1(a), we show the self-consistent results for the
mass renormalization Z(w) = Z'(w) + iZ”(w) in blue and
chemical potential x (w) = x'(w) + ix”(w) in red. Real and
imaginary parts for both functions are drawn as solid
and dashed lines, respectively. Within the electronic band-
width, |w| < W/2, the real part of the mass renormalization
takes on values close to unity, while x’ is in the range of
neV. This behavior is somewhat expected due to the relatively
small coupling A = 2g3Ny/S2 =~ 0.175 (N, density of states at
the Fermi level) and electron energy scale. In this frequency
range, Z"(w) and x” (w) are negligible. Turning to || > W/2,
we observe a highly unexpected behavior of both Z(w) and
X (w). Apart from unusually large magnitudes in all four func-
tions plotted in Fig. 1(a), we find large negative values for
the mass renormalization at various frequencies. Although not
straightforward to physically interpret, it has been shown by
Marsiglio and Carbotte that such values for Z(w) can occur in
the very strong coupling limit [40].

Next, we look into the ARPES spectrum, which we com-
pute from Eq. (3) with a smearing of § = 0.01 meV. Our
result for A(K, w) is shown along high-symmetry lines of the
tetragonal Brillouin zone (BZ), and as function of frequency
in Fig. 1(b). Here, it is apparent that multiple nearly flat quasi-
particle bands occur below and above the Fermi level. The
frequencies corresponding to these rather coherent features
seem to be separated by approximately the Einstein phonon
frequency. To more reliably examine the energy positions of
the observed replica bands, we show the logarithmic differ-
ential conductance in Fig. 1(c), where the frequency axis is
normalized to 2. The highest peak is observed at w/Q =0
and corresponds to the one band electron dispersion. The next
three peaks to both the left and right occur very accurately at
multiples of 2. All remaining signals can also be attributed to
frequencies p Q with p € Z, but slightly shifted. Empirically,
we therefore conclude that a cascade of quasiparticle bands
centered at p Q2 exists, which represent replications of the
original energy band. We provide a more rigorous proof of this
argument in Appendix D, where we show that the positions of
replica bands directly follow changes in €2.

It is worthwhile investigating which part of A(k, w) is
responsible for producing the replica bands. For this purpose,
we use Eq. (1) to write the spectral function as

Ak, w) = —— 4)

m{ 1 1~ }’
Z(w)w+i§ — &k, w)

with £(k, w) = (§(k) + x(@))/Z(w) the renormalized elec-
tron energy dispersion. To make further progress, we analyze
A(k, o) for two different frequency regions: In one case, A",
the frequency lies within the bandwidth, |w| < W/2, and in
the other case, A®, we consider || > W/2.

Case || < W/2: From our numerical results, we find that
the imaginary part £”(k, @) of the renormalized dispersion is
to first order negligible in this frequency region. This is due to
the fact that for || < W/2, Z(w) = Z'(w) + iZ"(w) ~ Z'(w)
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FIG. 1. Real-frequency dependent results from our self-consistent Eliashberg calculations, computed for go = 2meV, Q2 = 11 meV, and
T > T.. (a) Mass enhancement and chemical potential renormalization are shown in blue and red, respectively. (b) Frequency dependent
spectral function along high-symmetry lines of the 2D tetragonal BZ, showing the replica bands. (c) Logarithmic differential conductance.
(d) Differential conductance for |w| < W/2; the blue curve represents our full result and the red line is found from a sum of delta functions. (e)

Renormalized electron dispersion at k =

(m, ™) = M, the real and imaginary part are plotted as green and purple curves. In red we show w as

guide for the eye. (f) Differential conductance with focus on |w| > W/2. The three curves correspond to different ways of calculating d1/dV,

see legend and main text.

and 3" (k, w) = 0, as well. The spectral function found from
Eq. (5) in this case is
ADK, o] <

W/2) ~ —5(0) £'(k, ),

Z'(w)

and corresponds to the coherent part of the quasiparticle
excitation spectrum. Since Z'(w) is nearly constant for the
frequencies under consideration, and its value is close to
unity, we set for simplicity Z'(w) = 1. Under this assumption,
Eq. (6) simplifies to AV (K, |w| < W/2) ~ §(w — E'(k, »)),
so that the corresponding differential conductance can be ap-
proximated as

7D

W(|w|

(6)

<W/2) =~ Za(w Ek o). (D

To show that Eq. (7) provides the main contributions to
the tunneling spectrum for |w| < W/2, we plot the result
as red curve in Fig. 1(d). The delta function is approxi-
mated as §(x) ~exp(— xz/(202))/«/ 2mo? with smearing
o = 0.01 meV. For comparison, d/dV, as obtained by sum-
ming the nonsimplified Eq. (5) over momenta, is drawn in
blue. The boundaries of the renormalized electron disper-
sion £'(k, ) are indicated in yellow. We see that, despite
the approximations made, the sum over delta functions in
Eq. (7) reproduces the full spectrum to very high accuracy for
|lw| < W/2. The spectral features for frequencies outside the
electronic bandwidth, see Fig. 1(b), are due to the incoherent
part of A(k, w) as we will show in the following.

Case |w| > W/2: In this region, none of the imaginary
parts in Eq. (5) are negligible, i.e., Z"(w) # 0, x"(w) # 0,
therefore the spectral function has the general form

1 oZ'@ =y
7 |0Z(@) = [§00) + @)

APK, o] > W/2) = (8)

and refers to the noncoherent quasiparticle contributions. To
prove this, we show in Fig. 1(e) the real and imaginary part of
£(k = M, w) in green and purple, respectively. The relation
f(w) = w is shown in red. We see that the only intersections
of w with & are close to the Fermi level, i.e., for |o| < W/2.
In this region, Eq. (8) contains sharp poles since w =~ 'Kk, w)
and £”(k, w) ~ 0 as discussed in the case for |w| < W/2.
For the two frequencies outside the electron bandwidth, i.e.,
near —50 meV and 40 meV, where w ~ £, the imaginary part
£” is clearly nonzero. Hence, their spectral signatures are
suppressed.

We can write the differential conductance, which results
from A®(k, w), as

Z 1 wZ' (@) — x"(o)

di®
ar” w/2)y=Y — :
Sy ol > W/2) — 7 [wZ(w) — [E(K) + X ()]

®

The outcome of Eq. (9) is shown in Fig. 1(f) as dotted red
curve. The full differential conductance as obtained from
Eq. (4) is plotted in solid blue. We observe that the two curves
fall precisely on top of each other, which shows explicitly that
the replicas originate from A® only, and no contribution from
AW enters for || > W/2. As it turns out, we can reproduce
the main features of the large-frequency spectrum by further
simplifying Eq. (9). First, since |w| > W/2, we can assume
that £ (k) has a comparatively minor influence on both, peak
positions and amplitudes. Second, we might set the chemical
potential renormalization to zero, which is a rather drastic
simplification since neither x'(w) nor x”(w) are negligibly
small for |o| > W/2, compare Fig. 1(a). However, assuming
that these simplifications are valid we can write

dr®

1 Z//

o |Z(w)?

AP K, |w| > W/2) ~ (10)
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Note that there is no longer a momentum dependence in
Eq. (10) since we neglect £ (k). The outcome of the above
expression is shown in Fig. 1(f) in solid yellow. It is directly
evident that the peak positions agree well with the full solution
shown as blue curve. The heights do not precisely match the
reference curve, which can be understood from the neglected
“—x”(w)” in the numerator of Eq. (9). Therefore we can
conclude that the large-w tunneling features are mainly me-
diated by the mass renormalization. For obtaining the correct
intensities, one needs to also include the chemical potential
into the calculation. The bare electron dispersion & (k) plays a
negligible role here.

We note that our results show similarities to a study by
Marsiglio and Carbotte [40], who investigated frequency de-
pendent results of isotropic Eliashberg theory in the strong
coupling limit. They showed the existence of quasiparticle-
like excitations in the spectral function, that are located at
Ao+ p 2, with Ay the superconducting gap edge. While
we similarly find a sequence of replica bands, our results
differ in that we are not depending on the limit A — oo,
and the features detected in this work are independent of
superconductivity (see Appendix C). We further note that
our itinerant Eliashberg theory results bear similarities with
the well-known sequence of spectral peaks that arise in the
strongly localized limit [17]. However, as we show below,
our replica bands exist even when the electron bandwidth is
the largest energy scale and most importantly, they stem from
the strong mass renormalization effects that are absent in the
former case.

Twisted bilayer graphene. Let us now turn to TBG at a
twist angle of ~1.1°, where we fix the phonon frequency at
Q = 11 meV [29,30] and use a faithful ten-band tight-binding
model for the electron energies [41]. This model has two
flat bands near the Fermi level with a narrow bandwidth
W ~ 7 meV which are energetically separated from the rest
of the bands by energy gaps over 20 meV. Further, we con-
sider the normal state, 7 = 1.6 K > T, [19,20] and choose an
electron-phonon scattering strength go = 1.6 meV [31]. When
performing our analysis for the two flat bands only, the result-
ing spectra are very similar to our model calculations above
and we present the outcomes in the Appendix E. Next, we
take into account a total of four energy bands with bandwidth
W ~ 127meV > . This includes the two flat bands close
to the Fermi level, enclosing an energy window of around
7meV < €, and an additional occupied and unoccupied band
below and above. In Fig. 2, we show dI/dV for three different
electron fillings n. Here, n® corresponds to half filling and
for n© (n™) the Fermi level lies exactly at the van Hove
singularity of the unoccupied (occupied) band of the bare sys-
tem. As apparent in panel (a), the replicas are superimposed
with the additional nonflat energy bands, which are located
at approximately |w| = 20 meV. However, the signals at p =
+1, £2, 43 are still clearly resolvable. The outcomes for the
low-w regime are drawn in Fig. 2(b). A closer inspection of
both panels reveals that the filling does not noticeably influ-
ence the intensity or location of the replicas, which is expected
due to the comparatively small energy scale on which &;(Kk) is
shifted.

Based on these findings, we are confident to predict the
observation of signals at w = p 2 in experiment. Since the
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FIG. 2. Tunneling spectrum computed for the four-band model
of TBG. Results for different electron filling # have been shifted ver-
tically with respect to each other. (a) High-frequency contributions
for fillings n™ (blue), n'® (red), and n® (yellow). (b) Low-frequency
spectrum for the same fillings and colors as in (a).

replica bands do not represent coherent excitations of the
system, their intensity is significantly lower than for actual
poles of the Green’s function (by about a factor of 50). Con-
sequently, the proposed tunneling features are not expected
to be prominent in the experimental spectra, however they
should be detectable, given the available resolution [42]. The
observation of the here-predicted quasiparticle replica bands
for TBG would provide strong support for the importance
of the electron-phonon interaction for its low-temperature
behavior.

Our predicted replicas are distinctly different from those
observed in FeSe/STO [16] that are due to the forward-
scattering (small-q) EPI, whereas the here-considered flat-
band systems have a momentum independent EPI. Since in
the latter case the phenomenon is driven by the electron flat
bands themselves, the complete main bands are replicated,
above and below the Fermi energy, and not only a part of
an electron band below the Fermi energy as in the case
of FeSe/STO [13,14]. Moreover, the flat-band replicas have
spectral intensity that is maximal at the second replica and
they appear in multiplets, i.e., in a cascade of several replica
bands. In contrast, for small-q EPI-mediated replicas almost
all the spectral intensity is found in the first replica band
[13,15]. Although the flat-band replicas are weak in intensity,
they should be more pronounced than those of FeSe/STO.

Conclusions. To summarize, we predict a sequence of
quasiparticle replicas in 2D systems that exhibit both, one or
more flat bands around the Fermi level, and a comparatively
large phonon energy scale. The conditions necessary to ob-
serve these features in ARPES or STS/STM measurements
are a high experimental accuracy, and sufficient energy gaps
between the flat band(s) and the remaining (un)occupied lev-
els. The prime candidate for detecting such signals is TBG,
where the flat bands close to the Fermi energy are isolated to a
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good approximation. Our calculations explicitly show that the
replicas, occurring at multiples of the phonon frequency, are
well distinguishable from the spectral signals of neighboring
energy bands. Although TBG has been studied extensively, no
such sequence of replicas has yet been discussed or observed
experimentally, up to our knowledge. Most experiments focus
on a frequency range comparable to the bandwidth of the two
flat bands, while for the observation of the here-discovered
phenomenon an investigation of frequencies at least up to
~50meV is required. Lastly, split-off peaks were recently
observed in STS measurements on TBG that were attributed
to strong electron-electron correlations [32]. Our predicted
replicas have a distinct origin, but appear as similar STS peaks
whose position and magnitude depend on the mediating EPL.
Hence, we predict that the quasiparticle spectrum of TBG
harbors more surprises in the form of EPI-mediated replica
bands. Given the generality of our analysis, our predictions
should be relevant to all related flatband systems [43—45].
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APPENDIX A: ELIASHBERG THEORY
We model our physical system by the Hamiltonian
4 1
— f A T
H= %j 51(0)W] (K)p3 W (k) + 7 qu (b (@b(Q) + 5)

+ g0 Y ulk —K)W(K)ps W (k),
kK, LI

(AD)

with phonon displacement u(q) = b(q) + b'(—q) and Nambu
spinor W;(k) = (CIT,¢(k)’ c1.,(—K)). Here, we use b'(q) and
c}to (k) as phonon and electron creation operators, with o €
{1, J} as spin label. The phonon frequency €2 and electron-
phonon scattering elements g, are both assumed to be
isotropic. The electron Green’s function G, Kk, iw,,), as de-
fined in Eq. (1) of the main text, obeys the Dyson equation

Gk, iwy) = G)(k, i0,) E(i0n)Gi(k, i), (A2)
with (i) given by Eq. (2) of the main text. The nonin-

teracting Green’s function in Eq. (A2) is [G?(k, ia)m)]_1 =
iwpy — &(K)p3, so that we get

Gi(K, iwy) = liwmZ(iwn)o + Piw)pr

+ EK) + X (©,))03107 (K, iwy),  (A3)
O1(K, iwy) = (iwpZ(ion))* — ¢ (iwy)
— (&(K) + x (ion)* (A4)

As we describe in the main text, the phonon propagator is
approximated by D(q, ig,) = D°(q, ig,), so that we obtain the

electron-phonon interaction kernel

2Q2
e—ph, - _
Ve (ig,) = g%m .
The resulting Eliashberg equations for the mass renormaliza-
tion Z(iw,,), chemical potential y (iw,,) and superconducting
order parameter ¢ (iw,,) in Matsubara space read

(A5)

T Wy Z(iwyy
Z(iwn) = 1= - k;l VC—Ph(iqm_m/)W, (A6)
x(Giwn) =T k;l VP gy LI T X () (;z)(:(—, )l‘a()’m“’)’") . (A7)
iwy
Pliwn) = =T 1;1 Ve‘Ph(iqm_m/)% . (A8)
The electron filling of the system is given by
pot Ly g 0o

L L0y (K, icop)

where L denotes the number of electronic bands.

Once we have solved the Eliashberg equations in Mat-
subara space, we can calculate ARPES and STM spectra to
make direct contact with experiment [14]. For this purpose,
we analytically continue the solutions to Eqs. (A6)—(A8) self-
consistently via

ime(ia)ﬂl )

T
Z)=1—=Y V(0 — @)
(@) oV oo V01K, i)

k,m,l

I a?’F(z) Z(w — 2)(w — 2)
_ %/_mdzk;: £(0.2),

N(0) Ok, 0 —2)
(A10)
— e—ph _ El(k) + X(iwm)
x (@) —TI(Z’:"JV Pw wm)—®1(k, o)
> a’F(2) &(k) + ¢p(w — 2)
" /_oodsz, W) koo O
(A11)
_ e—ph,, d(ivy)
¢(a)) - r Z 4 ’ (a) wm)®l(k, i(l)m)

k,m,l

> @’Fi(z) ¢(w—2)
Al2
i /_oodzkz; W(0) Ok w—g)° 0 A1

with ¢(w, z) = (tanh %Z* + coth 5%) introduced for brevity
(see [14,35]), and N, (0) the band-resolved density of states at
the Fermi level. The solutions to Egs. (A10)—(A12) are then
used to compute the real-frequency matrix Green’s function
of the system, which in turn can be employed to find the
momentum, band, and frequency resolved spectral function
as well as the STS/STM spectrum via Egs. (3) and (4) of the
main text.

For solving Eqs. (A6)—(A8) and Egs. (A10)-(A12), we
do not make use of any further simplifications and keep the
full complexity of the problem. Momentum and frequency
grids have been checked for convergence. Our efficient im-
plementation [36] makes use of fast Fourier transform (FFT)
convolution schemes, and we exploit the known functional
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form of the interaction kernel to reach faster convergence in
the number of Matsubara frequencies [46].

APPENDIX B: VERTEX CORRECTIONS

The flat-band systems that we are concerned with here, lie
in the extreme antiadiabatic regime where the phonon energy
is much larger than the Fermi energy, i.e., Q2 > Ep. As such,
it is reasonable to expect violations of Migdal’s theorem. Gen-
erally, corrections beyond Migdal’s theorem involve two kind
of contributions: (i) corrections due to the finite bandwidth
that are not accounted for due to the Fermi surface based
derivation of the theorem and (ii) corrections to the electron-
phonon vertex beyond lowest order [34,47]. We stress that
the former are fully taken into account in our full-bandwidth
Eliashberg theory, hence our approach goes beyond standard
Migdal-Eliashberg theory [34]. Here, we will show that the
latter, i.e., vertex corrections, are negligible for the systems
that we study here.

For simplicity, we consider a model system with one band
that is perfectly flat, i.e., & = €. This approximation is rea-
sonable since for our model system discussed in the main
text €2 > W. It also renders the problem tractable analytically
to a large extent. The corresponding vertex function in the
one-loop approximation, i.e., in terms of the the normal state
noninteracting Green’s function, has the form (see e.g., [34])

Ly, iow) =T Y gD — 0n)Golion)

-
X Go(iw, — iwyy + iwy,),

with Gal(a)m) = iw,Z(iwy,) — €. Taking the m = m' case,
we have

. 2g2
Fliw,) =T Z [Qz + (a)mo_ wm’)z]

x (iwwZ (i) — B) 72, (B1)

where in the last step we have introduced the ratio 8 = €/£2.
To make further progress, we take a square-well model ansatz
for the mass renormalization function: Z(iw,) = 1+ A for
|wy| < w, and Z(iw,) =1 elsewhere, with w. a frequency
cutoff. The Matsubara sum of Eq. (B1) can now be performed
analytically, but the resulting expression is too lengthy and we
will not report it here. We have checked numerically that the
vertex correction in Eq. (B1) is a smooth function of w,, and
temperature and is maximized for T — 0, m = 1. Therefore,
for our purposes we focus here on the zero temperature, static
vertex limit,

/‘”" dw,y Zg%)
o 2 (B ) (@ 0})
/""” dwyy 2g3
o 27 (M- BN (@2 + 0}
X dw,y 2g%
+ / i, 2 ’
o B e

The integrals in the above can be performed analytically.

+

oo

(B2)

05 i
04]
03 —
02 i

01f

0.0+ P— T J— P L
B

FIG. 3. Computed zero-temperature static vertex correction, I,
as a function of the ratio § = €/Q.

Using the parameters of our model system from the main
text, A = 0.175, @ = 11 meV, gop = 2 meV, and v, = 2, we
plot the above equation as a function of the ratio 8 in Fig. 3.
This figure shows clearly that for the parameter range that
we are concerned with in this work (8 < 0.3), vertex correc-
tions are negligible since I' <« 1. Note that the results hardly
change if we increase the cutoff, e.g., set w, = 10€2.

To be more specific, I'(8 =1/11) = 0.023 and I'(8 =
0.23) =~ 0.028. Near 8 ~ 0, a Taylor expansion of Eq. (B2)
within our chosen parameter set yields,

I' 2 0.023 4 0.05687 .

APPENDIX C: RESULTS IN THE
SUPERCONDUCTING STATE

As briefly mentioned in the main text, superconductiv-
ity does not play any significant role in the observation of
replicated flat band(s). To explicitly prove this point, we
perform additional calculations for our model dispersion,
using again the phonon frequency 2 = 11 meV. The electron-
phonon scattering strength in this section is set to gg =

w| < W/2

00 —_— ———
0
= 30F 1
8
g 20p T = 2.0K]
=
- - -
= i T=16K

0

FIG. 4. Tunneling spectrum computed for our model system with
bandwidth W = 3.4K, choosing go =3 meV, Q = 11meV, and
T = 1.6K (T = 2.0meV) for the blue (red) curve.
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FIG. 5. Tunneling spectrum as function of w, focusing on |w| >
W/2 (=1.7 meV). (a) Red, yellow, and blue curves correspond re-
spectively to 2 = 3meV, Q = 7meV, and Q = 11 meV. (b) dI/dV
as computed for Q2 = 0.5meV.

3meV, such that we get a maximum superconducting gap of
A = ¢(0)/Z(0) =~ 215 ueV at T = 1.6 K. The corresponding
tunneling spectrum for |w| > W/2 is shown in Fig. 4 as blue
curve. Once we increase the temperature to 2K, the gap
closes and we obtain results for dI/dV as drawn in red. It is
easily observed that the two spectra in Fig. 4 do neither differ
in the locations of replica bands, nor are the corresponding
intensities visibly deviating. This confirms that superconduc-
tivity has no observable effect on the tunneling features under
investigation, since the gap opening occurs only inside the
electron bandwidth of the flat band.

APPENDIX D: INFLUENCE OF PHONON FREQUENCY

In this section, we want to examine the effect of phonon
frequency on our results for the model system. In the main
text we chose 2 significantly larger than the electronic band-
width W = 3.4meV, such that £(k) appears as flat band in
comparison. Now we additionally consider the cases where €2
is 7, 3, or 0.5 meV, keeping T < T, and choosing the scat-
tering strength go, such that A = 2Npg3/S2 = constant. Our
results for the differential conductance are shown in Fig. 5(a),
where the curves have been shifted vertically with respect to
each other. We focus here on the large-frequency part of the
tunneling spectrum and show the results only for @ > 0. The
outcomes for Q = 11 meV (blue), 2 = 7meV (yellow) and
2 = 3meV (red) rigorously prove that the replica bands occur
at multiples of the respective phonon frequencies. In Fig. 5(b),
we draw the complete tunneling spectrum for phonon fre-
quency 2 = 0.5meV and observe that the replica bands are
absent. This behavior is to be expected, since for such small
2 the single electron band does no longer appear flat, i.e.,

(a) >, Ai(k,w) (arb.units)

(b)

-6

K r

-K-M T

M K

FIG. 6. Momentum- and frequency-dependent ARPES spectrum
for n = n™. (a) Global view. (b) Zoom into frequency region of the
most prominent replica band above the Fermi level. (¢c) Zoom into
frequency region of the most prominent replica band below the Fermi
level.

the energy bandwidth is significantly larger than the phonon
frequency.

APPENDIX E: TWO-BAND CASE OF TBG

The replica bands in TBG are most easily observed when
only the two flat bands close to the Fermi level are consid-
ered. In this section we therefore look into results obtained
by this setup, additionally setting 7 > 7., 2 = 11 meV and
go = 1.6 meV. The electron bandwidth W ~ 7meV is then
smaller than €2, hence we expect to observe effects compa-
rable to our model system in the main text and Appendix D.
As before, we solve the Eliashberg equations in Matsubara
space and analytically continue the self-consistent results to
real frequencies. The ARPES and tunneling spectra are then
obtained as function of w.

In Fig. 6(a), we show the spectral function, summed over
energy bands, at a filling n = n(® along momenta in the mini
BZ of TBG (see Fig. 8) and frequencies. The bare two-
band dispersion corresponds to enhanced signals close to the
Fermi level. All remaining features in this graph represent
replications of the original energies. As is easily seen, and
in agreement to our model calculations in the main text,
these signals are almost constant in momentum space and
occur approximately at integer multiples of the phonon fre-
quency. In panels (b) and (c) of Fig. 6, we zoom into the
frequency regions around w/2 ~ 3 and w/2 ~ —3, respec-
tively. From these parts of the spectrum it is evident that
the observed features are indeed direct replications of the
original &; (k).

We show in Fig. 7 the corresponding differential conduc-
tance as it can be measured by STM experiments. For better
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FIG. 7. Tunneling spectrum computed from the two-band model
of TBG, setting T = 1.6K < T, go = 1.5meV, and Q2 = 11 meV.
Results for different n have been shifted vertically with respect to
each other. (a) High-frequency contributions for fillings n (blue),
n@ (red), and n© (yellow). (b) Low-frequency spectrum for the same
fillings and colors as in (a).

(a) M- (b)

FIG. 8. Brillouin zones for the tight-binding models that we con-
sider in this work, with high-symmetry points indicated. (a) The BZ
of our model system (see Fig. 1 in the main text) and (b) mini BZ of
twisted bilayer graphene (see Fig. 6).

visibility, we plot in Fig. 7(a) the high-frequency spectra only,
for fillings n™ (blue), n' (red), and n® (yellow) as given in
the main text. Multiples of 2 are indicated by dashed gray
vertical lines. The region of small w is shown in a magnified
way in Fig. 7(b) for similar fillings and color code. We observe
from this graph that the large-energy part of the spectrum
contains a sequence of replicas similar to our model system.
Further, the range of electron doping that is relevant for su-
perconductivity [31] does not affect the replica positions in a
noticeable way, since the phonon energy scale is dominant.
It should be noted that not all signals are equally well pro-
nounced, so only some replicas could be be observable due to
experimental resolution.
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