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Abstract

Holonomic quantum computation exploits a quantum state’s non-trivial, matrix-valued geometric phase
to perform fault-tolerant computations. Holonomies arising from systems where the Hamiltonian traces
a continuous path through state space have been the subject of a significant amount of research. Discrete
holonomies, on the other hand, where the state jumps from point to point, have had little prior investigation.
In the context of an interferometry experiment, we build an explicit model for universal quantum computation
using a sequence of incomplete projective measurements of the angular momentum operator. We show that
quantum gates constructed with discrete holonomies are resilient to errors. In the limit of dense measurements
we recover known results from the continuous-path holonomy. Our work sets the stage for verification in the
laboratory.
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Chapter 1

Introduction

The road to efficient quantum computation is paved with instability and error. This report explores a
fault-tolerant scheme of quantum computation based on the geometric phase of a quantum state.

Since the advent of quantum mechanics, quantum states are known to have a (non-measurable) global phase.
Later, it was realized that states also have a (measurable) geometric phase [1]. Soon after, this phase was
generalized to a non-Abelian – meaning matrix-valued – geometric phase [2].

In the circuit model of quantum computation every calculation is realized using a series of transformations,
called gates, on a register of qubits. For the entire computation to happen correctly each gate needs to be
resilient to errors. A way of ensuring this is by exploiting these non-Abelian geometric phases (holonomies)
to execute the action of a gate [3].

Holonomic quantum computation is most often studied in systems where the Hamiltonian traces a continuous
path through state space. There are many ways to achieve this experimentally, from using microwaves on
spin qubits [4] to solid-state spins in a nitrogen-vacancy center of a diamond [5]. There has not been as much
research in the discrete case, whereby the state jumps from point to point in state space.

We map a part of this unexplored territory by modeling discrete holonomies that arise in an interferometry
experiment. It is worthwhile to build up a theoretical framework of the experiment as interferometry is such a
ubiquitous technique in quantum physics. Since the discrete holonomy is driven by a sequence of projective
measurements, our scheme takes inspiration from one-way, or measurement-based quantum computation,
but remains within the realm of holonomic quantum computation.

We will show that gates constructed using the interferometry of angular momentum coherent states can
achieve universality – that is, they can approximate any unitary transformation. Both the relevant single-
and two-qubit gates will be explicitly constructed. Finally, we show that the limiting case of our experiment
reduces to the well-known continuous case.

Compared to scant existing literature, [6] we do not require any auxiliary qubits. Our work was written with
experiment in mind, meaning it is easier to directly verify our result in the laboratory.
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Chapter 2

Theory

2.1. Projective measurements

We will start by reviewing how a quantum state changes after a projective measurement. Suppose we start
with a state |ψ〉 in a finite, N -dimensional Hilbert space H. A projection into a K-dimensional subspace,
pa, (which is also known as an incomplete measurement if K ≥ 2) can be realized with a projector Pa. After
the projective measurement our state transforms as

|ψ〉 → Pa |ψ〉√
〈ψ|Pa|ψ〉

, (2.1)

with probability 〈ψ|Pa|ψ〉 [7].

Each subspace pa represents a point inside the Grassmann manifold GrH(K,N) and can be spanned by a
frame Fa = {|ak〉}Kk=1. Note that there are infinitely many ways (different frames) to span a subspace. The
collection of frames form a Stiefel manifold, so each subspace is a fiber and the Stiefel manifold is a fiber
bundle with the Grassmann manifold as its base [8]. The overlap matrix, defined component-wise as

(Fa|Fb)kl := 〈ak|bl〉 ,

quantifies how different subspaces are connected [9]. A series of points inside the Grassmann manifold, C,
can be identified with a series of rank-K projections. As these points are also a collection of fibers, C is a
manifestly geometric quantity, and given by

ΓC := Pm . . . P1.

We can generalize (2.1) to see how a state changes under the action of ΓC . We have that

|ψ〉 → ΓC |ψ〉√
〈ψ|P1 . . . Pm−1PmPm−1 . . . P1|ψ〉

with a probability of 〈ψ|P1 . . . Pm−1PmPm−1 . . . P1|ψ〉.

2.2. Experimental setup

We are now at a point where we can build the framework needed to describe a non-Abelian holonomy
acquired by a state in a two-path interferometer. Our exposition is based on [10]. The setup is pictured
in figure 2.1. A beam of particles with the internal state |1k〉 ∈ F1 (normalized to unity) is sent through a
50-50 beamsplitter giving the state

|Ψk〉 = |1k〉 ⊗
1√
2

(|0〉+ |1〉),
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where |0〉 and |1〉 denote the interferometer arms. In the 1 arm a unitary V , restricted to act unitarily on
p1, is applied. In the 0 arm |1k〉 is exposed to a sequence of m projective filtering measurements, ΓC . The
sequence corresponds to the operators Πa = Pa ⊗ |0〉〈0|+ I ⊗ |1〉〈1| for a = 1, . . . ,m. The two arms meet at
another 50-50 beamsplitter, and the state after the beamsplitter is given by

|Ψk〉 =
1

2
ΓC |1k〉 ⊗ (|0〉+ |1〉) +

1

2
V |1k〉 ⊗ (|0〉 − |1〉)

=
1

2
(ΓC + V ) |1k〉 ⊗ |0〉+

1

2
(ΓC − V ) |1k〉 ⊗ |1〉 .

The output intensity in the 0 arm is given by

Ik =
1

4
〈1k|

(
Γ†C + V †

)
(ΓC + V )|1k〉

=
1

4

(
〈1k|V †V |1k〉+ 〈1k|V †ΓC |1k〉+ 〈1k|Γ†CV |1k〉+ 〈1k|Γ†CΓC |1k〉

)
=

1

4

(
1 + 〈1k|Γ†CΓC |1k〉+ 2 Re 〈1k|V †ΓC |1k〉

)
.

Let us rewrite 〈1k|V †ΓC |1k〉 in a more convenient form. The first subspace is spanned by |1k〉 and K − 1
other vectors |1l〉. Therefore (all sums go from 1 to K),

〈1k|V †ΓC |1k〉 =
∑
l

〈1k|V †|1l〉 〈1l|ΓC |1k〉

=
∑
l,i,...,j

〈1k|V †|1l〉 〈1l|mi〉 . . . 〈2j |1k〉

=
∑
l

〈1k|V †|1l〉 [(F1|Fm)(Fm|Fm−1) . . . (F2|F1)]lk

=
(
V †D

)
kk
,

where we have defined
(
V †
)
kl

:= 〈1k|V †|1l〉 and D := (F1|Fm)(Fm|Fm−1) . . . (F2|F1). Hence,

Ik =
1

4

(
1 + 〈1k|Γ†CΓC |1k〉

)
+

1

2
Re
(
V †D

)
kk
.

The total intensity is

Itot =

K∑
k=1

Ik =
1

4

(
K + Tr

(
Γ†CΓC

))
+

1

2
Re
(
Tr
[
V †D

])
.

The final step is to find the unitary V that maximizes the intensity, specifically Re
(
Tr
[
V †D

])
. It can

be shown that this happens when V = UD := |D|−1D, where |D| =
√
DD†. UD is the direct holonomy

associated with the sequence C [10].

So, when we send our beam of particles through the interferometer the output state corresponding to the
maximum intensity will have been transformed by the holonomy UD.
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Figure 2.1: The two-path interferometer. The input state gets split by a 50-50 beamsplitter. In one arm
the state gets exposed to a series of projections. In the other arm the state undergoes a unitary evolution
V . The state in each of the arms meet again at another 50-50 beamsplitter. Adapted from [10].

2.3. Angular momentum coherent states

A particularly interesting class of internal states are the angular momentum coherent states. Let {|j,m〉}jm=−j
be the eigenkets of the Jz operator. The angular momentum coherent states are eigenstates of J~n, the angu-
lar momentum operator in the ~n direction, with m = ±j [11]. Characterizing ~n with spherical coordinates
as (sin θ cosφ, sin θ sinφ, cos θ) the coherent states are e−iφJze−iθJy |j,±j〉. We always set ~ = 1. Note that
e−iφ

~J·n̂ =: D~n(φ) is the rotation operator in the ~n direction. So, the angular momentum coherent states are
rotated angular momentum states, where the total rotation has been decomposed into a rotation along the
y-axis and then the z-axis.

If j ≥ 1 we can have our sequence of frames be projections into subspaces spanned by different coherent
states, viz.

F(θa, φa) =
{
e−iφaJze−iθaJy |j,±j〉

}
=: {|±ja〉}.

Each projective filtering measurement corresponds to the operator Pa = |ja〉〈ja|+ |−ja〉〈−ja| and represents

a measurement of the observable
(
~n · ~J

)2
[10].

We can calculate the overlap matrix for the coherent states by decomposing each state into a tensor product
of spin-1/2 states, |±j〉 =

∣∣± 1
2

〉⊗2j . The spin-1/2 states must all be 1/2 or −1/2 because we are only looking
at states of maximal angular momentum. Hence (where k and l equal + or -, which correspond to the 0
index and to the 1 index of the matrix, respectively),

(Fa|Fb)kl = 〈kj|eiθaJyeiφaJze−iφbJze−iθbJy |lj〉
= 〈kj|eiθaJye−i(φb−φa)Jze−iθbJy |lj〉
= 〈kj|Dy(−θa)Dz(φb − φa)Dy(θb)|lj〉

=

〈
k

1

2

∣∣∣∣⊗2j (Dy(−θa)Dz(φb − φa)Dy(θb)

∣∣∣∣l12
〉)⊗2j

.
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For spin-1/2 particles the rotation operator has the following representation [12]

Dn(φ) = e−iφ
~J·n̂ = e

−i~σ·n̂φ
2 = cos

(
φ

2

)
I − i sin

(
φ

2

)
~σ · n̂

=

cos
(
φ
2

)
− inz sin

(
φ
2

)
(−inx − ny) sin

(
φ
2

)
(−inx + ny) sin

(
φ
2

)
cos
(
φ
2

)
+ inz sin

(
φ
2

).
Therefore,

Dy(−θa)Dz(φb − φa)Dy(θb) =

(
cos
(−θa

2

)
− sin

(−θa
2

)
sin
(−θa

2

)
cos
(−θa

2

) )e−i(φb−φa2

)
0

0 e
i
(
φb−φa

2

)
(cos

(
θb
2

)
− sin

(
θb
2

)
sin
(
θb
2

)
cos
(
θb
2

) )

=

 cos
(
θa−θb

2

)
cos
(
φa−φb

2

)
+ i cos

(
θa+θb

2

)
sin
(
φa−φb

2

)
sin
(
θa−θb

2

)
cos
(
φa−φb

2

)
− i sin

(
θa+θb

2

)
sin
(
φa−φb

2

)
− sin

(
θa−θb

2

)
cos
(
φa−φb

2

)
− i sin

(
θa+θb

2

)
sin
(
φa−φb

2

)
cos
(
θa−θb

2

)
cos
(
φa−φb

2

)
− i cos

(
θa+θb

2

)
sin
(
φa−φb

2

)
=

(
A B
−B∗ A∗

)
∈ SU(2).

So, we find that the overlap matrix is

(Fa|Fb) =

(
Ra,b Sa,b

(−1)2jS∗a,b R∗a,b

)
with

Ra,b =

[
cos

(
θa − θb

2

)
cos

(
φa − φb

2

)
+ i cos

(
θa + θb

2

)
sin

(
φa − φb

2

)]2j
,

Sa,b =

[
sin

(
θa − θb

2

)
cos

(
φa − φb

2

)
− i sin

(
θa + θb

2

)
sin

(
φa − φb

2

)]2j
.

Note that |R(a, b)|1/j + |S(a, b)|1/j = 1 [10]. Therefore the determinant of the overlap matrix is never zero,
meaning the matrix is invertible and hence full rank. So, none of the coherent-state subspaces are orthogonal;
assuming j is a half-odd integer we can make a left-polar decomposition of the overlap matrix into

(Fa|Fb) = |(Fa|Fb)|Ua,b =

√
|Ra,b|2 + |Sa,b|2Ua,b,

where Ua,b is a unique unitary matrix [10]. We stress that this requires j to be a half-odd integer. If j is an
integer then the prefactor ceases to be a number and becomes a positive-semidefinite matrix instead, which
is considerably more complicated.

If we perform a sequence of m measurements into the coherent-state subspaces (j is assumed to be a half-odd
integer greater than one from now on) then the final holonomy will be

UD =
(F1|Fm)(Fm|Fm−1) . . . (F2|F1)√(

|R1,m|2 + |S1,m|2
)(
|Rm,m−1|2 + |Sm,m−1|2

)
. . .
(
|R2,1|2 + |S2,1|2

) . (2.2)

2.4. Quantum gates

Our goal is to manipulate the holonomy to do quantum computations – to find holonomies that correspond
to the action of different (unitary) quantum gates. Important single-qubit gates are the Pauli gates (also
named σx, σy and σz.):

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,
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as well as the Hadamard gate (H), the phase gate (S) and the π/8 gate (T )

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
.

The CNOT gate acts on two qubits and is represented by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.
It can be shown that the set H, S, T and CNOT can approximate any unitary operation. That is, the set
is universal [7].

We can also decompose any single-qubit unitary operation exactly into Dz(α)Dy(β)Dz(γ) [12]. Here we
ignore any additional global phase factors.

2.5. The quantum Zeno effect

By now our strategy should be clear. We want to find those sequences of projections into subspaces of
coherent states with j = (2m + 1)/2, m ∈ N, that correspond to the action of quantum gates. Our qubit
is defined with |0〉 = |j〉 and |1〉 = |−j〉. This way, we can use the interferometry setup to do quantum
computations. However, with each projection into a subspace, there is also a non-zero probability the
state collapses into the orthogonal subspace. It is a well-known result that taking the limit of infinitely
many projective measurements ‘freezes’ the system. The quantum Zeno effect can even drive the system
through different subspaces with effective certainty [13]. Why, then, do we consider sequences of discrete
measurements?

The pragmatic answer is that fewer measurements are experimentally more feasible. There is also a more
fundamental reason, though. For our choice of angular momentum coherent states when we take the limit
to dense measurements we find that we can only implement a phase gate. To see why, let us divide the total
angles into into N steps, δθ = θ/N and δφ = φ/N , and then take the limit N →∞. Then, one of the overlap
matrices (F(θa + δθ, φa + δφ)|F(θa, φa)) will contain (up to and including first order)

ei(θa+δθ)Jyei(φa+δφ)Jze−iφaJze−iθaJy = eiδθJyeiθaJyeiδφJze−iθaJy

= (1 + iδθJy)eiθaJy (1 + iδφJz)e
−iθaJy

= (1 + iδθJy)
(
1 + iδφeiθaJyJye

−iθaJy
)

= (1 + iδθJy)(1 + iδφ[− sin(θa)Jx + cos(θa)Jz])

= 1 + iδθJy + iδφ(− sin(θa)Jx + cos(θa)Jz),

where when going from the third line to the fourth line we expanded the exponentials and used the commu-
tation relationships for Ji. Using ladder operators we rewrite the above to

1 + iδθJy + iδφ(− sin(θa)Jx + cos(θa)Jz) = 1 + iδθ
1

2i
(J+ − J−) + iδφ

(
− sin(θa)

1

2
(J+ + J−) + cos(θa)Jz

)
.

Since j > 1/2 the matrix elements with ladder operators will always vanish. The off-diagonal elements will
be zero and the diagonal elements will be 1±ij cos(θa)δφ. Therefore, in the limit N →∞ the total holonomy
can only be a phase. We have shown that in order to get a non-commuting holonomy with the coherent
states, necessary for universality, we require a finite number of projections.
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Chapter 3

Results

3.1. Subtleties and starting assumptions

A cursory glance at (2.2) reveals that the relationship between the input angles (the different coherent
states) and the final holonomy is complex. Furthermore, different paths through our space can yield the
same results. Hence, our first step is to reduce the problem to something more manageable.

To make the holonomy unambiguous we require that the overlap matrix is unitary [10]. So, we restrict j to
j = (2m + 1)/2, m ∈ N. Our input state will be |ψ〉 = a |j〉 + b |−j〉 with |a|2 + |b|2 = 1 and |±j〉 ∈ F1,
where F1 spans the first subspace.

To simplify the problem even more we will only consider sequences of four measurements, which is the
minimum number of measurements that can yield a non-trivial holonomy. The first measurement is a
projection into the same subspace and frame as |ψ〉. In an experimental setting we can interpret this
projection as the preparation of our state into the correct subspace. We then carry out two more projections
into subspaces that are different from the first subspace. Finally, we project back into the same subspace
and frame as the starting measurement. Without loss of generality we define (θ1, φ1) = (θ4, φ4) =: (0, 0).
Our sequence of measurements becomes

(0, 0)→ (θ2, φ2)→ (θ3, φ3)→ (0, 0).

The holonomy, given by (2.2), reduces to

UD =
(F1|F4)(F4|F3)(F3|F2)(F2|F1)√(

|R1,4|2 + |S1,4|2
)(
|R4,3|2 + |S4,3|2

)(
|R3,2|2 + |S3,2|2

)(
|R2,1|2 + |S2,1|2

)
=

(F4|F3)(F3|F2)(F2|F1)√(
|R4,3|2 + |S4,3|2

)(
|R3,2|2 + |S3,2|2

)(
|R2,1|2 + |S2,1|2

) ,
and the maximum-intensity output state will be UD |ψ〉.

An astute reader might raise objections to our use of (0, 0) as our starting state. Because we have parametrized
the direction of the angular momentum with spherical coordinates (and, in extension, our eigenstates), the
coordinate φ is undefined at the poles, meaning our coherent states are ill-defined as well; at the poles we
have e−iφJz |±j〉 and e−iφJze−iπJy |±j〉, respectively, so there is no unique eigenstate. In the continuous-path
case one can pick coordinates that remove one (but not both) of the singularities [14]. The two patches that
cover the system are related by a gauge transformation, and the analysis is strikingly similar to how one
would approach a Dirac monopole [15]. In the discrete case we can afford to be slightly more blasé about the
singularity. We were careful to define the (0, 0) label to correspond to our starting and ending subspace and
frame, which is unambiguous. Subsequent measurements are projections into rotated versions of the original
subspace. Having discussed the more subtle points of setup, we can move on to constructing the gates.
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3.2. Phase gates

We first want to implement a phase gate. We can do so as follows: we expand j as (2m+ 1)/2 with m ≥ 1
and pick (θ2, φ2, θ3, φ3) = (π/2, π, π/2, ϕ), where ϕ ∈ [0, 2π). We find

UD,z =
1√

cos2+4m
(
ϕ
2

)
+ sin2+4m

(
ϕ
2

)(z∗ 0
0 z

)
=:

(
e−iφ/2 0

0 eiφ/2

)
, (3.1)

with
z = (−1)

m
ei(2m+1)ϕ2

(
(−1)

m
cos2m+1

(ϕ
2

)
− i sin2m+1

(ϕ
2

))
.

Since UD ∈ SU(2), |z| = 1. The relative phase change induced by this holonomy is

φ = arg(z/z∗) ∈ (−π, π]. (3.2)

That the range of φ is always (−π, π] is not necessarily obvious. To motivate our assertion we sketch a
proof. We have that (writing z/z∗ =: w) in general arg(w) = atan2(Im(w),Re(w)). atan2 is either ±π/2
or a function of Im(w)/Re(w) that maps R to (−π, π]. For ϕ ∈ [0, 2π) Im(w)/Re(w) diverges with the
left and right limits being either ±∞ (this can be seen by plotting the function for different values of m).
Notwithstanding the diverging points, the rest of Im(w)/Re(w) is continuous. Because the positive and
negative divergent points alternate the range of the argument is (−π, π].

3.3. Rotation gates

The gate specified by (3.1) is also the rotation gate in the z direction. A relative phase change of φ is the
same as a rotation of our state by −φ (up to a global phase, which is irrelevant). We can also interpret
the gate as a passive rotation (a rotation of our measurement basis) by φ, instead of an active rotation of
our state. This makes intuitive sense because when we project into a different subspace we are effectively
rotating our basis. Therefore, (3.1) is a mapping that tells us how a rotation of a subspace in which we
project a state relates to a rotation of the state itself.

At first, finding rotation gates in the x and y directions seems complicated. However, we can simply
convert our rotation operator along the z direction to two new rotation operators along the other axes
by changing our basis. Recall that a matrix can be represented in other basis through (where P is the
basis transformation matrix) A′ = PAP−1. So, we have Dx(φ) = Dy(π/2)Dz(φ)Dy(π/2)−1 and Dy(φ) =
Dx(3π/2)Dz(φ)Dx(3π/2)−1. This gives for the rotation gates

UD,x =
1√

cos2+4m
(
ϕ
2

)
+ sin2+4m

(
ϕ
2

)( Re(z) i Im(z)
i Im(z) Re(z)

)
,

UD,y =
1√

cos2+4m
(
ϕ
2

)
+ sin2+4m

(
ϕ
2

)(Re(z) − Im(z)
Im(z) Re(z)

)
.

These matrices are equivalent to the following list of angles by which we rotate our subspaces. They are:

UD,x = Dx(φ) : (0, 0)→
(π

2
, π
)
→
(
ϕ,
π

2

)
→ (0, 0),

UD,y = Dy(φ) : (0, 0)→
(
ϕ,

0 if m is even
π if m is odd

)
→
(π

2
,
π

2

)
→ (0, 0),

UD,z = Dz(φ) : (0, 0)→
(π

2
, π
)
→
(π

2
, ϕ
)
→ (0, 0),

where ϕ can be found by solving (3.2).
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3.4. CNOT gate

To achieve a universal set of quantum gates we need to construct the CNOT gate. In principle we could
extend the scheme for single-qubit gates directly, by defining frames as |J,M〉 (with J the total angular
momentum and M the total-angular-momentum projection quantum number),{

e−iθJye−iφJz |J,±J〉 , e−iθJye−iφJz |J, 0〉 , e−iθJye−iφJz |0, 0〉
}
.

We then pick either the control or target qubit to have half-odd integer spin and the remaining qubit to have
integer spin (so the total spin is half-odd integer and the overlap matrix admits a unique polar decomposition)
and once again try to find the appropriate measurement sequence. We call this an ‘active’ CNOT gate.

Experimentally, it is easier to implement a ‘passive’ CNOT gate, where we embed our single-qubit gate into
a larger system. We use a similar scheme as [16]. Suppose our states have an extra degree of freedom, other
than angular momentum, labeled by `. This degree of freedom will act as our control qubit. We can prepare
a beam of particles of the form a |j, `〉 + b |j, `′〉 + c |−j, `〉 + d |−j, `′〉, with |a|2 + |b|2 + |c|2 + |d|2 = 1. As
illustrated in figure 3.1, we send this particle beam through a filtration device (akin to a polarizing beam
splitter). Let |0〉 and |1〉 represent the interferometer arms. The state after the filtration device will be

|Ψk〉 = (a |j, `〉+ c |−j, `〉)⊗ |0〉+ (b |j, `′〉+ c |−j, `′〉)⊗ |1〉 .

In the 0 arm we expose the beam to a single-qubit X gate (where we make the sequence of measurements),
while in the 1 arm we do nothing. We then recombine the beams. The output will be of the form a |−j, `〉+
b |j, `′〉+ c |j, `〉+ d |−j, `′〉. We see that this setup corresponds to the action of a CNOT gate.

Figure 3.1: A passive CNOT gate, following a similar scheme as [16]. A filtration device splits the input
state. In the 0 arm we implement a single-qubit X gate while in the 1 arm we do nothing. The states are
then recombined.

3.5. Toffoli gate

Instead of single-qubit gates and the CNOT gate, we can also achieve universality by only using the Toffoli
gate [7]. The Toffoli gate acts on three qubits at once. We will show that our scheme unfortunately does
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not generalize (at least not naively) to a three-qubit system. Suppose we have three angular momentum
coherent states, which we denote with |j, j′, j′′〉. We can span the three qubit system with the following set
of frames:{

e−iθJye−iφJz |j, j, j〉 , e−iθJye−iφJz |j, j,−j〉 , e−iθJye−iφJz |j,−j, j〉 , e−iθJye−iφJz |j,−j,−j〉 ,
e−iθJye−iφJz |−j, j, j〉 , e−iθJye−iφJz |−j, j,−j〉 , e−iθJye−iφJz |−j,−j, j〉 , e−iθJye−iφJz |−j,−j,−j〉

}
.

In this basis, the Toffoli gate takes one of three forms depending on which two qubits are the control qubits.
If a generic state is |j, j′, j′′〉, then we have for j and j′; j′ and j′′; and j and j′′ as control qubits, respectively,

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0


,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0


.

Just like the single-qubit system we can measure
(
~n · ~J

)2
to project into frames spanned by

e−iθJye−iφJz |3j, 3j〉 = e−iθJye−iφJz |j, j, j〉 ,

e−iθJye−iφJz |3j, j〉 =
e−iθJye−iφJz√

3
(|j, j,−j〉+ |j,−j, j〉+ |−j, j, j〉),

e−iθJye−iφJz |3j,−j〉 =
e−iθJye−iφJz√

3
(|j,−j,−j〉+ |−j, j,−j〉+ |−j,−j, j〉),

e−iθJye−iφJz |3j,−3j〉 = e−iθJye−iφJz |−j,−j,−j〉 ,

e−iθJye−iφJz |j, j〉A =
e−iθJye−iφJz√

3

(√
2 |j, j,−j〉 − 1√

2
|j,−j, j〉 − 1√

2
|−j, j, j〉

)
,

e−iθJye−iφJz |j,−j〉A =
e−iθJye−iφJz√

3

(
−
√

2 |−j,−j, j〉+
1√
2
|j,−j,−j〉+

1√
2
|−j, j,−j〉

)
,

e−iθJye−iφJz |j, j〉B =
e−iθJye−iφJz√

2
(|j,−j, j〉 − |−j, j, j〉),

e−iθJye−iφJz |j,−j〉B =
e−iθJye−iφJz√

2
(|j,−j,−j〉 − |−j, j,−j〉).

Note that this makes clear that the three-qubit space is a direct sum of three subspaces. The basis transfor-
mation matrix from the |j, j′, j′′〉 basis to the |J, J ′〉 basis is given by

S =



1 0 0 0 0 0 0 0

0 1√
3

0 0
√

2
3 0 0 0

0 1√
3

0 0 − 1√
6

0 1√
2

0

0 0 1√
3

0 0 1√
6

0 1√
2

0 1√
3

0 0 − 1√
6

0 − 1√
2

0

0 0 1√
3

0 0 1√
6

0 − 1√
2

0 0 1√
3

0 0 −
√

2
3 0 0

0 0 0 1 0 0 0 0


.
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Operators transform as (new) = S†(old)S. So, in the |J, J ′〉 basis the Toffoli gates are given by

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 2
3

1√
3

0
√
2
3 0 0

0 0 1√
3

0 0 −
√

2
3 0 0

0 0 0 0 1 0 0 0

0 0
√
2
3 −

√
2
3 0 1

3 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 2
3

1√
3

0 1
3
√
2
−
√
2
3 0 − 1√

6

0 0 1√
3

0 0 1√
6

0 1√
2

0 0 0 0 1 0 0 0

0 0 1
3
√
2
−
√
2
3

1√
6

0 5
6 0 − 1

2
√
3

0 0 0 0 0 0 1 0
0 0 − 1√

6
1√
2

0 − 1
2
√
3

0 1
2


,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 2
3

1√
3

0 1
3
√
2
−
√
2
3 0 1√

6

0 0 1√
3

0 0 1√
6

0 − 1√
2

0 0 0 0 1 0 0 0

0 0 1
3
√
2
−
√
2
3

1√
6

0 5
6 0 1

2
√
3

0 0 0 0 0 0 1 0
0 0 1√

6
− 1√

2
0 1

2
√
3

0 1
2


.

From section 2.3 we know that any gate will be the product of the overlap matrices. Since our three-qubit
system decomposes into three independent vector spaces, the overlap matrices will be block diagonal,

(Fa|Fb) =

F1 0 0
0 F2 0
0 0 F2

 ,

with F1 the 4× 4 overlap matrix for the vector space corresponding to a total angular momentum of 3j, and
F2 the 2× 2 overlap matrix for the vector space corresponding to a total angular momentum of j. All three
of the Toffoli gates in the |J, J ′〉 basis require mixing of the three vector spaces. This cannot be realized
with products of overlap matrices. Hence, we cannot produce the Toffoli gate.

Although these bases do not allow for the Toffoli gate, there may exist other bases (coupled to observables)
that do. What these bases are, and even whether they exist is still an open question.

3.6. Universal quantum computation for j = 3/2

It is instructive to work out the discrete set of gates needed for universal quantum computation in the case
of j = 3/2. The process for working out higher-j gate is identical. Our goal is to construct the H, S, T , and
Pauli gates. For that, we need φ, and to calculate φ we first need UD,z. Plugging in m = 1 into (3.1) gives
us

U
(j=3/2)
D,z =

1√
10 + 6 cos (2ϕ)

(
1 + 3e−2iϕ 0

0 1 + 3e2iϕ

)
.

Therefore,

φ = arg

(
1 + 3e−2iϕ

1 + 3e2iϕ

)
. (3.3)

A plot of (3.3) is shown in figure 3.2. Note that φ is multivalued. However, in the end, each intersection
point yields the same holonomy. We should clarify that by same we mean up to a global phase; for the rest
of this section if a gate is equal, equality up to a global phase is meant. Of course, a global phase is not
measurable and does not have any effect on the quantum system.
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ϕ

Figure 3.2: The relative phase φ as a function of the rotation of the subspace rotation ϕ for j = 3/2.

For the T , S and Pauli gates we want to find the intersection point where φ is π/4, π/2 and π, respectively.
We find the gates can be made using the following sequence of measurements:

T : (0, 0)→
(π

2
, π
)
→

π2 , 2 arcsec

2

√√√√√ 6√
6
(√

2−
√

36
√

2 + 70 + 10
)

+ 12

 ≈ 1.44

→ (0, 0),

S : (0, 0)→
(π

2
, π
)
→

(
π

2
, arctan

(
3 +
√

17

2

)
≈ 1.30

)
→ (0, 0),

X : (0, 0)→
(π

2
, π
)
→
(

arctan
(√

2
)
≈ 0.955,

π

2

)
→ (0, 0),

Y : (0, 0)→
(

arctan
(√

2
)
, π
)
→
(π

2
,
π

2

)
→ (0, 0),

Z : (0, 0)→
(π

2
, π
)
→
(π

2
, arctan

(√
2
))
→ (0, 0).

Note that these sequences are not unique. For example, the Z gate is also given by a measurement sequence
where the second pair of angles is replaced by (π/2, 0). Next is the Hadamard gate. H can be decomposed
into two rotations, a π rotation around the z axis and a π/2 rotation around the y axis. We can use the
values we found above to construct the following sequence,

H : (0, 0)→

(
arctan

(
3 +
√

17

2

)
, π

)
→
(π

2
,
π

2

)
→ (0, 0)→

(π
2
, π
)
→
(π

2
, arctan

(√
2
))
→ (0, 0).

With the above gates we can achieve universal single-qubit computation. If we embed the X gate into the
setup described in section 3.4 we can achieve universal quantum computation.

3.7. Gate efficacy

Having constructed the formalism to describe holonomic quantum gates, we now turn to their performance.
There are two main mechanisms that give rise to faults in the gates’ performance. The first is that with
each projection into a subspace p, there is a chance our state will collapse into the orthogonal subspace
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p⊥ instead. The second is purely experimental: in practice it is difficult to project perfectly into a given
subspace. We will have some small error δθ and δφ in our angles.

Let us start with the probability amplitudes. In this case the gate itself works perfectly, but we have to
take into account post-selection of the states. Recall from section 2.1 that the transition probability for a
series of projections ΓC = Pm . . . P1 is given by 〈ψ|P1 . . . Pm−1PmPm−1 . . . P1|ψ〉. Because our initial and
final frame is the same, it is convenient to look at the matrix representation of ΓC in the {|±j〉} basis. Then,
all computations reduce to linear algebra. The representation is given by

ΓC
represented by−−−−−−−−−→ (F0|Fm)(Fm|Fm−1) . . . (F1|F0).

We can write an arbitrary state this basis as |ψ〉 = cos
(
a
2

)
|j〉+eib sin

(
a
2

)
|−j〉, with a ∈ [0, π] and b ∈ [0, 2π).

We will focus on the rotation gates since they form the basis for all single-qubit gates. Furthermore, due to
symmetry, we only need to look at rotations around the z axis. It turns out that the transition amplitude
TC is independent of the input state and is given by

TC = 4−2m
(

cos2+4m
(ϕ

2

)
+ sin2+4m

(ϕ
2

))
.

A plot is shown in figure 3.3. We can see that as we increase j, the transition amplitude decreases exponen-
tially. The maxima of the transition amplitude occur at integer multiples of π, while the minima occur at
half-integer multiples of π. If we compare this to figure 3.2, we see that for both cases the extrema correspond
to no relative phase change at all. However, at half-integer multiples of π the state acquires a global phase
of -1, while for integer multiples of π the global phase remains zero. For j = 3/2 the maximum value of the
transition amplitude is 1/16 ≈ 0.063, while the minimum value is 1/64 ≈ 0.016. All in all this plot tells us
that we should pick j to be as low as possible to have a feasible gate.

0 π
2 π 3 π

2 2 π

10-5
10-4
0.001

0.010

0.100

1

φ

Figure 3.3: A logarithmic plot of the transition amplitude for rotations along the z axis as a function of
the subspace rotation ϕ. Red is j = 3/2, yellow is j = 5/2, and blue is j = 7/2.

Next, we would like to know what happens when we perturb our subspace angles. Our perturbed state will
acquire a slightly different holonomy (U ′D) than the unperturbed state (UD). We will quantify the difference
in holonomy by calculation the minimum fidelity over all possible input states |ψ〉,

F (ψ′, ψ) = min
|ψ〉∈F1

∣∣∣ 〈ψ|U ′†DUD|ψ〉∣∣∣2.
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We assume ϕ = arctan
√

2 ≈ 0.955, the angle for a Z gate. Small perturbations will be in the order of 10−2.
In figure 3.4a and 3.4b we show surfaces of minimum fidelity corresponding to perturbations of the form
(θ2, φ2)→ (θ2 + δθ, φ2 + δφ) and (θ3, ϕ)→ (θ3 + δθ, ϕ+ δφ), respectively.

(a) Perturbations of the form (θ2 + δθ, φ2 + δφ). (b) Perturbations of the form (θ3 + δθ, ϕ+ δφ).

Figure 3.4: Surface of minimum fidelity for small perturbations away from the Z gate.

We can see that the gates are robust, that is, they are fairly insensitive towards noise. There is effectively no
difference whether we consider perturbations of the second measurement or of the third measurement. We
could have expected this, by symmetry of our measurement path. We would also like to see if this robustness
changes when we change j. To that end, we only perturb ϕ. This is shown in figure 3.5.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.6

0.7

0.8

0.9

1.0

δφ

Figure 3.5: The minimum fidelity for perturbations of the form (ϕ+ δϕ) of the Z gate. Red is j = 3/2,
yellow is j = 5/2, cyan is j = 7/2 and blue is j = 9/2.

We can see that for small perturbations the value of j is irrelevant. However, for larger perturbations the
lower j-gates have higher fidelity. Interestingly, the difference between j = 3/2 and j = 5/2 is very small,
especially compared to j = 7/2 and higher. We do not know of a good explanation for this.

The general shape and trend of the curves are not changed by much if we perturb the first measurement
and then plot the effect of a perturbation of the second measurement. The main features discussed above
remain essentially the same, except that the fidelity is slightly lower.
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From the above analyses we conclude that the best gates are for low values of j. Although a j = 5/2 gate
will have a similar resilience to errors as a j = 3/2 gate, the difference in transition amplitude decreases
exponentially, making the latter a more attractive option.

3.8. The Zeno limit

We conclude our discussion on discrete holonomic gates by verifying the Zeno limit. We will take the
Zeno limit for the Dz(φ) gate. As there is some freedom in what measurement sequence to take, we pick
(0, 0)→

(
π
2 , 0
)
→
(
π
2 , ϕ

)
→ (0, 0) for simplicity. The continuous-path holonomy for a curve parametrized by

s ∈ [0, 1] is given by [17]
UD = U0,1Pe

∫ 1
0
dsA(s),

where P denotes path ordering and [A(s)]k,l := 〈ȧk(s)|al(s)〉, with {ak(s)}2k=1 a smooth set of frames. U0,1

is the overlap matrix of the first and final frame [10]. Because we have a closed path U0,1 = I. Furthermore,

|a0(s)〉 = e−iφ(s)Jze−iθ(s)Jy |j〉 ,

|ȧ0(s)〉 = −i
(
φ̇(s)e−iφ(s)JzJze

−iθ(s)Jy + θ̇(s)e−iφ(s)JzJye
−iθ(s)Jy

)
|j〉 ,

|a1(s)〉 = e−iφ(s)Jze−iθ(s)Jy |−j〉 ,

|ȧ1(s)〉 = −i
(
φ̇(s)e−iφ(s)JzJze

−iθ(s)Jy + θ̇(s)e−iφ(s)JzJye
−iθ(s)Jy

)
|−j〉 ,

where dots denote derivatives with respect to s. We then find that A(s) = iφ̇jσz. So, the continuous
holonomy is

UD = exp

(
ijσz

∫ ϕ

0

dφ

)
=

(
eiϕj 0

0 e−iϕj

)
∼
(

1 0
0 e−2iϕj

)
,

where the final identification holds because a global phase is not measurable.

Suppose we have j = 3/2 and rotate our subspace by ϕ = π/4. In the Zeno limit our holonomy should be a
phase shift with argument −2× 3π/(2× 4) = −3π/4 ≈ −2.35. How do we take the appropriate limit in the
discrete case? It turns out we have to increase the number of measurements like shown in figure 3.6.

Figure 3.6: We approach the Zeno limit by making more measurements along the path.

To see this, note that we want to make the measurement sequence (0, 0) →
(
π
2 , 0
)
→
(
π
2 , ϕ

)
→ (0, 0) more

and more dense. This sequence is composed out of three legs: one leg down, one leg along the equator, and
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one leg back up again. A first guess would be to add measurements points by first dividing each leg into two,
then adding a point half way. Next, divide the leg into three and add two points. We keep dividing more and
more finely until we effectively have a smooth path. This works well for the first two legs, but for the last
leg there is an ambiguity. Intuitively, we want to stay on the geodesic when dividing the path. Otherwise,
we would twist around the sphere when going back up to the pole. This would change the character of the
holonomy. So, when we go from

(
π
2 , ϕ

)
→ (0, 0) we keep our φ coordinate fixed to ϕ. Only in the last

measurement we ‘jump’ from ϕ to zero. Does this jump matter?

The answer is no. The easiest way to see this is to look at the matrices that make up the holonomy UD. If
we do not include the jump we will have a matrix of the form

UD ∝ ((0, 0)|(θm, ϕ))× ((θm, ϕ)|(θm−1, ϕ))× · · · × ((θ2, 0)|(0, 0)). (3.4)

If we include the jump our matrix will look like

UD ∝ ((0, 0)|(0, ϕ))× ((0, ϕ)|(θm, ϕ))× ((θm, ϕ)|(θm−1, ϕ))× · · · × ((θ2, 0)|(0, 0)). (3.5)

However,

((0, 0)|(0, ϕ))× ((0, ϕ)|(θm, ϕ)) =

(
e−

i
2 (2m+1)ϕ 0

0 e
i
2 (2m+1)ϕ

)
×
(

cos2m+1
(
θm
2

)
− sin2m+1

(
θm
2

)
sin2m+1

(
θm
2

)
cos2m+1

(
θm
2

) )
= ((0, 0)|(θm, ϕ)).

So, there is no difference between (3.4) and (3.5). Another way of viewing this is by nothing that projectors
are gauge-invariant, and that all subspace at the north pole are connected by a U(1) gauge transformation.
So, the sequence of projection into different subspace of the north pole should not matter. The appropriate
way to take the Zeno limit, then, is to increasingly make the measurement sequence more dense along the
geodesic connecting the initial four measurement points.

If we choose the initial state, say |ψ〉 = 1√
2
(|j〉+ |−j〉), we can also calculate the transition probability.

This probability should go to one as the amount of measurements increases, because of the quantum Zeno
effect. Furthermore, the off-diagonal elements of the holonomy UD should go to zero and the argument of
the relative phase shift of the diagonal elements should go to −3π/4. This is plotted in figure 3.7.
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Figure 3.7: The behavior of the discrete holonomy UD for a subspace rotation of ϕ = π/4 (using a Z-gate)
when the amount of measurements is increased. (left) The argument of the relative phase of the diagonal
elements of the holonomy. (center) The absolute value of the off-diagonal elements of the holonomy. (right)
The transition probability for an initial state 1√

2
(|j〉+ |−j〉). The inset shows a zoomed-out version of the

larger plot.

In figure 3.7 we can see that the diagonal elements quickly approach the limiting value. However, the off-
diagonal elements take longer to go zero (the initial spike is because with only four measurements UD is
diagonal). Approaching a transition amplitude of one takes the longest of all (as can be seen from the
inset, where the amount of measurements exceeds 1000). To sum up, when we increase the amount of
measurements we reassuringly recover the expected continuous-path holonomy, which, unlike the discrete
holonomy, is Abelian.
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Chapter 4

Conclusion

We have demonstrated that interferometry-based discrete holonomic quantum computation can achieve uni-
versality. In particular, we have explicitly constructed quantum gates for the angular-momentum coherent
states, whereby rotation gates were achieved using a sequence of four projective measurements. The pro-
cedure we have used to construct the quantum gates generalizes easily to different quantum states as well
as multi-qubit systems. Like other holonomic quantum gates, our gates are resilient to errors. We also
recover previously-found results for continuous-path holonomic quantum computation by taking the limit to
infinitely many measurements.

Our work opens the way for experimental verification. It would be interesting to see how scalable our
approach is. On more theoretical grounds it is worth investigating whether there exists states other than
the angular-momentum coherent states that can be used in our experiment. And, if so, what performance
difference those states would give. A worthwhile family of states to investigate are the subspaces spanned
by the eigenkets of J~n where m = ± 1

2 . In those cases the holonomy in the Zeno limit remains off-diagonal,
and therefore retains its non-Abelian character. In what way the discrete case transitions to the continuous
case is still an open question.
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