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Abstract
The magnetic inertial dynamics have previously been investigated for one sublattice
ferromagnets. Here, we develop the magnetization dynamics in two-sublattice ferromagnets
including the intra- and inter-sublattice inertial dynamics. First, we derive the magnetic
susceptibility of such a ferromagnet. Next, by finding the poles of the susceptibility, we
calculate the precession and nutation resonance frequencies. Our results suggest that while the
resonance frequencies show decreasing behavior with the increasing intra-sublattice relaxation
time, the effect of inter-sublattice inertial dynamics has an opposite effect.

Keywords: magnetic inertia, two-sublattice ferromagnet, spin dynamics, linear response
theory, spin nutation

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultrafast manipulation of electrons’ spin remains at the heart
of future generation spin-based memory technology [1–3]. It
has been observed that a femtosecond (fs) laser pulse is capable
of demagnetizing a ferromagnetic material [4–6]. On the other
hand, using these ultrashort pulses, magnetic switching has
been reported in ferrimagnetic [7–9] and ferromagnetic mate-
rials [10, 11]. These observations have been explained through
the spin dynamics within traditional Landau–Lifshitz–Gilbert
(LLG) equation of motion [12–15].

The phenomenological LLG spin dynamics consists of
spin precession and a transverse damping [16–18]. Such an
equation of motion has been derived from a relativistic Dirac
theory, where the transverse damping is found to originate
from spin–orbit coupling [19–22]. However, at ultrashort
timescales, the traditional LLG equation needs to be supple-
mented by several other spin torque terms [23]. Especially, at
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the ultrafast timescales, the magnetic inertia becomes partic-
ularly relevant [24]. The effect of magnetic inertia has been
incorporated within extended LLG dynamics as a torque due to
the second-order time derivative of the magnetization M(r, t).
The inertial LLG (ILLG) equation of motion reads [25–27]

∂M
∂t

= M ×
[
−γH +

α

M0

∂M
∂t

+
η

M0

∂2M
∂t2

]
, (1)

where M0 and H define the ground state magnetization and
an effective field, respectively. The first and second terms in
equation (1) represent the traditional LLG equation [18]. The
inertial spin dynamics in the last term of equation (1) gives rise
to the spin nutation [28, 29]. The ILLG equation signifies the
fact that the dynamics of a magnetic moment shows preces-
sion with nutation at ultrafast timescales, followed by trans-
verse damping [24]. The ILLG equation has schematically
been depicted in figure 1. A simple dimension analysis shows
that the transverse damping is characterized by a dimension-
less parameter α, and the inertial dynamics are strengthened
by inertial relaxation time η. The ILLG dynamics have been
derived within the relativistic Dirac framework as well, where
it shows that the Gilbert dampingα and inertial relaxation time
η are tensors [30]. In particular, the relativistic theory derives
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Figure 1. Schematic depiction of ILLG equation of motion.

that the Gilbert damping dynamics is associated with the imag-
inary part of the susceptibility, while the inertial dynamics
is given by the real part [31]. Such findings are found to be
consistent with a linear response theory of ferromagnet [32].
The inertial dynamics have also been derived within classical
mechanics of a current loop [33]. Equation (1) has been applied
to a single sublattice ferromagnet beyond ferromagnetic res-
onance (FMR), observing an additional peak due to nutation
resonance [34–36]. While the FMR peak appears at the GHz
regime, the nutation resonance peak appears at the THz regime
[37]. The ILLG equation has also been applied to antiferro-
magnets and ferrimagnets, and it has been predicted that the
spin nutation should be better detected in antiferromagnets as
it is exchange enhanced [38].

Recently, the spin nutation resonance has been observed
for ferromagnets in the experiment [39]. Indeed, the nuta-
tion resonance peak has been seen at around 0.5 THz.
Note that the experiment was performed in two-sublattice
ferromagnets namely CoFeB and NiFe. For two-sublattice
ferromagnet, the inter-sublattice exchange energies become
important. Here, we describe the inertial effects in a two-
sublattice ferromagnet coupled by the Heisenberg exchange
interaction. We follow the similar procedure of reference
[38] and derive the magnetic susceptibility. We not only con-
sider the intra-sublattice inertial dynamics, but also the inter-
sublattice dynamics. Our results suggest that there are two
precession resonance peaks: one at GHz regime and the other
at THz regime. Similarly, two nutation peaks can also be
observed, both are at the THz regime. By calculating the
precession and nutation resonance frequencies, we observe
that the resonance frequencies decrease with increasing intra-
sublattice relaxation time, however, the scenario is different for
inter-sublattice inertial dynamics.

2. Theory of intra- and inter-sublattice inertial
dynamics in two-sublattice ferromagnets

The inertial dynamics for antiferromagnets have been intro-
duced in reference [38]. For two-sublattice magnetic systems
having magnetization MA and MB, for A and B representing the

two-sublattice, the ILLG equations of motion can be recast as

∂MA

∂t
= −γA (MA × HA)

+
αAA

MA0

(
MA × ∂MA

∂t

)

+
αAB

MB0

(
MA × ∂MB

∂t

)

+
ηAA

MA0

(
MA × ∂2MA

∂t2

)

+
ηAB

MB0

(
MA × ∂2MB

∂t2

)
(2)

∂MB

∂t
= −γB (MB × HB)

+
αBB

MB0

(
MB × ∂MB

∂t

)

+
αBA

MA0

(
MB × ∂MA

∂t

)

+
ηBB

MB0

(
MB × ∂2MB

∂t2

)

+
ηBA

MA0

(
MB × ∂2MA

∂t2

)
(3)

In each ILLG dynamics, the first term represents the spin pre-
cession around an effective field HA/B. The intra- and inter-
sublattice Gilbert damping dynamics have been denoted by
the second and third terms, respectively. Similarly, the last
two terms define inertial dynamics. While the intra-sublattice
Gilbert and inertial dynamics have been weighed by αAA/BB

and ηA A/B B, the same for inter-sublattice dynamics are denoted
by αA B/B A and ηA B/B A. From a simple dimension analysis,
it is clear to show that the Gilbert damping parameters α
are dimensionless, in contrast, the inertial relaxation times
η have a dimension of time [26, 30]. It is worth mention-
ing that the Gilbert damping α has been calculated for sev-
eral materials within ab initio frameworks [32, 40–52], while
there are also proposals to calculate the inertial relaxation
time within extended breathing Fermi surface model [53–55].
These ILLG equations have been contemplated to forecast the
signatures of inertial dynamics in collinear antiferromagnets
and ferrimagnets [38].

We consider that the two-sublattice ferromagnet is aligned
collinear at the ground state such that MA = MA0ẑ and
MB = MB0ẑ. The ferromagnetic system is under the applica-
tion of an external Zeeman field H0 = H0ẑ. Then, the free
energy of the considered two-sublattice system can be consid-
ered as the sum of Zeeman, anisotropy, and exchange energies
as

F (MA, MB) = −H0 (MAz + MBz)

− KA

M2
A0

M2
Az −

KB

M2
B0

M2
Bz

− J
MA0MB0

MA · MB, (4)
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where KA and KB are anisotropy energies and J is the isotropic
Heisenberg exchange with J > 0 for ferromagnetic coupling.
To calculate the linear response properties of the system, we
consider that the small deviations of magnetization mA(t) and
mB(t) with respect to the ground state are induced by the trans-
verse external field hA(t) and hB(t). We calculate the effective
field in the ILLG equation as the derivative of free energy in
equation (4) to the corresponding magnetization

HA = −∂F (MA, MB)
∂MA

=

(
H0 +

2KA

M2
A0

MAz

)
ẑ

+
J

MA0MB0
MB

=
1

MA0
(H0MA0 + 2KA + J) ẑ

+
J

MA0MB0
mB, (5)

HB = −∂F (MA, MB)
∂MB

=

(
H0 +

2KB

M2
B0

MBz

)
ẑ

+
J

MA0MB0
MA

=
1

MB0
(H0MB0 + 2KB + J) ẑ

+
J

MA0MB0
mA. (6)

We then expand the magnetization around the ground state
in small deviations, MA = MA0ẑ + mA(t) and MB = MB0ẑ +
mB(t). Essentially, with the effective fields in equations (5)
and (6) along with the magnetization, the linear response for
sublattice A provides

∂mA

∂t
= − γA

MA0
(H0MA0 + 2KA + J)

[
mAyx̂ − mAx ŷ

]

− γAJ
MB0

[
mBx ŷ − mByx̂

]
− γAMA0

[
hAx ŷ − hAyx̂

]

+ αAA

[
∂mAx

∂t
ŷ − ∂mAy

∂t
x̂
]

+
αABMA0

MB0

[
∂mBx

∂t
ŷ − ∂mBy

∂t
x̂
]

+ ηAA

[
∂2mAx

∂t2
ŷ − ∂2mAy

∂t2
x̂
]

+
ηABMA0

MB0

[
∂2mBx

∂t2
ŷ − ∂2mBy

∂t2
x̂
]

, (7)

obtaining the dynamics for two components x and y as

γAMA0hAx =
γA

MA0
(H0MA0 + 2KA + J) mAx

− γAJ
MB0

mBx + αAA
∂mAx

∂t

+
αABMA0

MB0

∂mBx

∂t

− ∂mAy

∂t
+ ηAA

∂2mAx

∂t2

+
ηABMA0

MB0

∂2mBx

∂t2
, (8)

γAMA0hAy =
γA

MA0
(H0MA0 + 2KA + J) mAy

− γAJ
MB0

mBy + αAA
∂mAy

∂t

+
αABMA0

MB0

∂mBy

∂t

+
∂mAx

∂t
+ ηAA

∂2mAy

∂t2

+
ηABMA0

MB0

∂2mBy

∂t2
. (9)

In the circular basis defined by mA± = mAx ± imAy and hA± =
hAx ± ihAy, the equations can be put together

γAMA0hA± =
γA

MA0
(H0MA0 + 2KA + J) mA±

− γAJ
MB0

mB± + αAA
∂mA±
∂t

+
αABMA0

MB0

∂mB±
∂t

± i
∂mA∓
∂t

+ ηAA
∂2mA±
∂t2

+
ηABMA0

MB0

∂2mB±
∂t2

. (10)

Similarly, one can calculate the linear response of the sublat-
tice B in the circular basis defined by mB± = mBx ± imBy and
hB± = hBx ± ihBy as

γBMB0hB± =
γB

MB0
(H0MB0 + 2KB + J) mB±

− γBJ
MA0

mA± + αBB
∂mB±
∂t

+
αBAMB0

MA0

∂mA±
∂t

± i
∂mB∓
∂t

+ ηBB
∂2mB±
∂t2

+
ηBAMB0

MA0

∂2mA±
∂t2

. (11)

We define the response functions mA±, mB±, hA±, hB± ∝
e±iωt and ΩA = γA

MA0
(H0MA0 + 2KA + J) and ΩB =

γB
MB0

(H0MB0 + 2KB + J). To simplify the expres-
sions, we introduce the following: ΓAA = γAMA0,
ΓBB = γBMB0, ΓAB = γAMB0 and ΓBA = γBMA0 such
that ΓAAΓBB = ΓABΓBA. The linear response Eqs. (10)
and (11) can be written in a matrix formalism

3
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(
hA±
hB±

)

=

⎛
⎜⎜⎝

1
ΓAA

(
ΩA ± iωαAA − ω2ηAA − ω

)
− 1
ΓAB

(
γAJ
MA0

∓ iωαAB + ω2ηAB

)

− 1
ΓBA

(
γBJ
MB0

∓ iωαBA + ω2ηBA

)
1

ΓBB

(
ΩB ± iωαBB − ω2ηBB − ω

)
⎞
⎟⎟⎠

(
mA±
mB±

)
. (12)

For finding the susceptibility, we recall m± = χ± · h± such that the susceptibility matrix derives as

χAB
± =

1
D±

⎛
⎜⎜⎝

1
ΓBB

(
ΩB ± iωαBB − ω2ηBB − ω

) 1
ΓBA

(
γBJ
MB0

∓ iωαBA + ω2ηBA

)

1
ΓAB

(
γAJ
MA0

∓ iωαAB + ω2ηAB

)
1

ΓAA

(
ΩA ± iωαAA − ω2ηAA − ω

)
⎞
⎟⎟⎠ , (13)

where the determinant is expressed as

D± =
1

ΓAAΓBB

(
ΩA ± iωαAA − ω2ηAA − ω

)

×
(
ΩB ± iωαBB − ω2ηBB − ω

)

− 1
ΓABΓBA

(
γAJ
MA0

∓ iωαAB + ω2ηAB

)

×
(
γBJ
MB0

∓ iωαBA + ω2ηBA

)
. (14)

Note that the intra-sublattice dynamical parameters enter in
the diagonal elements of the susceptibility matrix, however,
the inter-sublattice dynamics are reflected in the off-diagonal
elements. Such a susceptibility matrix has been obtained with
intra- and inter-sublattice Gilbert damping dynamics for anti-
ferromagnets [56]. To find the resonance frequencies, one has
to solve the equation setting D± = 0. Therefore, a fourth-order
equation in frequency is obtained

A±ω
4 + B±ω

3 + C±ω
2 + D±ω + E± = 0, (15)

with the following coefficients

A± = ηAAηBB − ηABηBA, (16)

B± = (ηAA + ηBB) ∓ i (αAAηBB + αBBηAA)

± i (αABηBA + αBAηAB) , (17)

C± = 1 ∓ i (αAA + αBB) − (ΩAηBB +ΩBηAA) − αAAαBB

−
(

γA

MA0
ηBA +

γB

MB0
ηAB

)
J − αABαBA, (18)

D± = − (ΩA +ΩB) ± i (ΩAαBB +ΩBαAA)

± i

(
γA

MA0
αBA +

γB

MB0
αAB

)
J, (19)

E± = ΩAΩB − γAγB

MA0MB0
J2. (20)

The analytical solution of the above-mentioned equation is
very cumbersome. Therefore, we adopt the numerical tech-
niques for solving equation (15). The solution of the above
equation results in four frequencies, two of them correspond
to the precession resonance (ωp) of each sublattice and the
other two belong to the nutation resonance (ωn). The real and
imaginary parts of the resonance frequency are denoted by Re
and Im, respectively. For example, the precession resonance
frequencies are ωp = Re

(
ωp

)
+ iIm

(
ωp

)
, while the nutation

resonance frequencies are ωn = Re (ωn) + iIm (ωn). Compar-
ing equation (15), a similar equation has been obtained for
antiferromagnets and ferrimagnets [38], however, without the
inter-sublattice inertial dynamics. We mention that the inter-
sublattice Gilbert damping dynamics have extensively been
discussed [56, 57]. Therefore, we will not consider in the fol-
lowing discussions. In particular, we allow αAB = αBA = 0,
and calculate the inertial effects on precession and nutation
resonances.

3. Numerical results

To calculate the resonance frequencies, we numerically solve
the equation (15) for two-sublattice ferromagnets having same
magnetic moments in each sublattice i.e., MA0 = MB0. We use
the following parameters: γA = γB = 1.76 × 1011 T−1 s−1,
J = 10−21 J, KA = KB = 10−23 J, αAA = αBB = α = 0.05,
αAB = αBA = 0. The considered exchange and anisotropy
energies have similar order of magnitude as typical ferromag-
nets e.g., Fe [58]. The chosen Gilbert damping α = 0.05 is
within the ab initio reported values [51]. For inertial relax-
ation times, even though, the ab initio calculation suggests
about fs timescales for transition metals [55], the recent exper-
iment predicts it to be a higher value up to several hundreds
of fs [39]. Therefore, in what follows, we have considered the
inertial relaxation times ranging from fs to ps.

3.1. Intra-sublattice inertial dynamics

To focus on the intra-sublattice inertial dynamics, we set the
inter-sublattice relaxation time to zero i.e., ηAB = ηBA = 0,

4
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Figure 2. The calculated resonance frequencies as a function of intra-sublattice inertial relaxation time for two-sublattice ferromagnets
using MA0 = MB0 = 2μB. (a) The precession and nutation resonance frequencies and (b) the effective Gilbert damping have been plotted.

Figure 3. The calculated precession resonance frequencies as a function of MA0/MB0 for two-sublattice ferromagnets, at several
intra-sublattice inertial relaxation times. (a) The real part of the lower precession resonance frequencies, (b) the effective damping of lower
resonance mode, (c) the real part of the upper precession resonance frequencies, (d) the effective damping of upper resonance mode, has
been plotted.

keeping the same inertial relaxation time in two-sublattice
ηAA = ηBB = η. With this set of specifications, the calculated
frequencies have been shown in figure 2. One can see that
there exist two precession resonance frequencies (positive) and
the corresponding two nutation resonance frequencies (nega-
tive). We denote these two positive precession frequencies as
ωu

p+ and ωl
p+, while the two negative nutation frequencies are

ωu
n− and ωl

n−. The superscripts ‘u’ and ‘l’ denote the upper
and lower frequencies, respectively. These results are in con-
trast with the observation in antiferromagnets or ferrimagnets,
where one positive and one negative precession (and nutation)
frequencies are expected [38]. Nevertheless, the quantitative
comparison of the calculated frequencies agrees with those
of the ferrimagnets, where the upper (THz), and lower (GHz)
frequency precession resonances are called exchange and fer-

romagnetic modes, respectively [38, 59]. Similar to antifer-
romagnets and ferrimagnets [38], the resonance frequencies
decrease with the intra-sublattice inertial relaxation time in
the case of two-sublattice ferromagnets. Especially, the lower
nutation resonance frequency scales with 1/η, while the upper
one shows deviation from 1/η at higher relaxation times. This
deviation from 1/η has been noticed in two nutation modes
for antiferromagnets and ferrimagnets as well [38]. An inter-
esting feature is that the precession and nutation frequencies
cross each other at certain inertial relaxation times in ferro-
magnets. Such crossing was not observed in antiferromagnets
and ferrimagnets [38]. The crossing happens especially with
the upper precession mode with lower nutation mode as seen in
figure 2(a). However, we note that crossing of these two modes
have positive and negative frequencies, meaning that the upper

5
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Figure 4. The calculated resonance frequencies as a function of inter-sublattice inertial relaxation time for two-sublattice ferromagnets
using MA0 = MB0 = 2μB. The intra-sublattice inertial relaxation time was kept constant η = 100 fs. (a) The precession and nutation
resonance frequencies and (b) the effective Gilbert damping have been plotted.

precession mode (ωu
p+) has a positive rotational sense, how-

ever, the lower nutation mode (ωl
n−) has the opposite rotational

sense in circular basis.
The inertial dynamics affect the effective Gilbert damping

in a system. This has been demonstrated in figure 2(b) for
two-sublattice ferromagnet by the ratio of imaginary and real
parts of the calculated frequencies. We have used the same
Gilbert damping for both the sublattices α ∼ 0.05 and there-
fore, the effective damping remains the same at smaller inertial
relaxation times. However, the effective damping decreases
with increased relaxation times, a fact that is consistent with
the results of antiferromagnets [38]. It is observed that the
decrease in effective damping is exactly the same for preces-
sion and corresponding nutation modes. Moreover, the upper
precession mode is influenced strongly, which has already
been observed for ferrimagnets [38].

Next, we calculate the influence of different sublattice mag-
netic moment (MA0 �= MB0) on inertial dynamics. In particular,
we compute the precession resonance frequencies as a func-
tion of the ratio of magnetic moments (MA0/MB0), at several
inertial relaxation times in figure 3. We observe that the res-
onance frequencies decrease with increasing difference in the
magnetic moments. Such reduction is less visible in case of
lower precession frequencies e.g., figure 3(a), however, more
prominent in upper precession frequencies in figure 3(c). In
addition, the difference of frequencies calculated at several
relaxation times are similar for MA0 = MB0 and MA0 �= MB0.
The latter suggests that the inertial dynamics do not get quanti-
tatively influenced by the same or different sublattice magnetic
moments. A similar conclusion can also be made from the
computation of effective damping in figures 3(b) and (d). The
effective damping for the upper and lower precession modes
remains almost constant (with a very small positive slope) for
a higher ratio of MA0/MB0.

3.2. Inter-sublattice inertial dynamics

To investigate the inter-sublattice inertial dynamics, we set the
intra-sublattice relaxation time as ηAA = ηBB = η = 100 fs.
Such a relaxation time is lower than the experimental
findings in two-sublattice ferromagnets [39]. In fact, the
direct comparison of equation (2) with the equation (2) of

reference [39] provides η ∼ ατ . With the experimental find-
ings for CoFeB, α = 0.0044 and τ = 72 ps (see table 1 in
reference [39]), we calculate η = 316 fs. We compute the
effect of inter-sublattice inertial dynamics as a function of
ηAB = ηBA = η′ in figure 4 considering η′ < η. As we men-
tioned earlier, the overlapping of precession (ωu

p+) and nuta-
tion (ωl

n−) frequencies at the intra-sublattice relaxation time
η = 100 fs can be seen. We observe that the upper preces-
sion resonance frequency (ωu

p+) increases, while the lower
one (ωl

p+) decreases very small with inter-sublattice relax-
ation times. A similar conclusion can be made for nutation
frequencies. This is in contrast to the observation of intra-
sublattice inertial dynamics as discussed above. A divergence
in the upper nutation frequency can be noticed at the limit
η′ → η. Such divergence can be explained through the coeffi-
cient A in equation (15). At the limit η′ → η, the coefficient of
fourth power in frequency becomes A = ηAAηBB − ηABηBA =
η2 − η′2 → 0, which brings the fourth-order equation into an
effective third-order equation in frequency.

A similar observation can also be concluded from the cal-
culation of effective damping in figure 4(b). Similar to the
intra-sublattice inertial dynamics, the effective damping of the
precession and corresponding nutation mode behaves exactly
the same for the inter-sublattice inertial dynamics. We observe
that the damping of upper precession and nutation modes
increases with inter-sublattice inertial relaxation time, how-
ever, it is the opposite for lower precession and nutation
modes. Therefore, we conclude that the effect of intra- and
inter-sublattice inertial dynamics are contrasting.

4. Conclusions

To conclude, we have incorporated the intra- and inter-
sublattice inertial dynamics within the LLG equation of
motion and calculated the FMR resonance for two-sublattice
ferromagnets. To this end, we first derive the magnetic sus-
ceptibility that is a tensor. To calculate the resonance fre-
quencies, we find the poles of the susceptibility. Without
the inertial dynamics, there exist two precession modes in
a typical two-sublattice ferromagnet. The introduction of
inertial dynamics shows two nutation resonance frequencies
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corresponding to the precession modes. We note that these
precession and nutation resonances can be excited by right
and left circularly polarised pulses, respectively, and vice-
versa. The precession and nutation frequencies decrease with
the intra-sublattice relaxation time as also has been seen in
the case of antiferromagnets in previous work [38]. How-
ever, at certain relaxation times, the precession and nuta-
tion frequencies overlap with each other. Note that these
overlapping precession and nutation frequencies have oppo-
site rotational sense in circular basis, thus, they can be
neatly realised in the experiments. The inter-sublattice iner-
tial dynamics increase the resonance frequencies and effec-
tive damping for upper precession mode, however, have
opposite effect on lower precession mode in two-sublattice
ferromagnets.
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