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Abstract

Study of the Genetic Dynamics in Pan-genomes for Six
Bacterial Species

Jennifer Johansson

Foodborne diseases are a growing health problem today and can be 
caused by eating food contaminated with bacteria. To monitor known 
foodborne diseases, institutions keep track of bacteria in 
surveillance projects. Whole genome sequencing is becoming the new 
standard method for comparing isolates, which generates large amounts 
of data. Today, the standard analyses are focused on conserved regions 
in genomes. The dynamics in less conserved regions can be studied by 
creating pan-genomes. A pan-genome consists of conserved genes, called 
core genes, and genes of varied conservation grade, called accessory 
genes. This thesis aimed to analyse pan-genomes of large datasets from 
six bacterial species coming from surveillance projects: Campylobacter 
coli, Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, 
Salmonella enterica, and Streptococcus pneumoniae. The purpose was to 
investigate the species dynamics in the genomes and to look at 
properties of the genomes not included in the standard analyses that 
are used in surveillance projects today. 

Bacterial Pan Genome Analysis tool was used for the pan-genome 
analysis of the six species and datasets of 1,000-2,000 genomes per 
species were analysed. All species were estimated to have open pan-
genomes, meaning the pan-genomes are increasing in size as more 
genomes are added. Escherichia coli and Salmonella enterica had more 
dynamic and open genomes compared to the other species. They had the 
highest number of accessory genes relative to their genome sizes and 
had the largest accessory segments between core genes. The synteny of 
the core genes showed high conservation for a part of the core genes 
in all species. Some core genes always sat directly after each other 
in the analysed genomes, never having accessory genes between them. 
Other core genes always had accessory genes between them, indicating 
very open regions in the genomes. The core genes were evenly 
distributed through the reference genomes with some regions showing 
increased gene density for all species. Some regions had a higher gene 
density for core genes often followed by core genes, and others for 
core genes often followed by accessory genes. However, the placement 
of genes needs to be investigated further with more reference genomes 
to be able to draw confident conclusions. 
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Sammanfattning 

Varje år insjuknar ungefär 10 % av världens befolkning i livsmedelsburna sjukdomar. Detta är 
ett växande problem och det finns idag mer än 200 kända sjukdomar som orsakas av att 
människor äter kontaminerad mat. Varje år sker fler än 420 000 dödsfall till följd av 
livsmedelsburna sjukdomar och av dessa är 125 000 barn yngre än fem år. Sjukdomarna kan 
bland annat orsaka diarré och cancer och orsakas av att maten vi äter är kontaminerad av olika 
kemikalier, bakterier, virus och parasiter.  

För att övervaka och studera livsmedelsburna sjukdomar utför olika institutioner över hela 
världen övervakningsprojekt där bland annat bakterier studeras. Statens Veterinärmedicinska 
Anstalt (SVA) i Uppsala är ett av de ställen som jobbar med olika övervakningsprojekt. Syftet 
med övervakningsprojekten är bland annat att detektera utbrott av livsmedelsburna 
sjukdomar, studera varför utbrott sker och att i möjligaste mån minska effekterna av pågående 
utbrott. Detta kan till exempel göras genom att identifiera smittkällor.  

I det här projektet analyserades de sex vanligaste bakterierna som studeras i 
övervakningsprojekt: Campylobacter coli, Campylobacter jejuni, Escherichia coli, Listeria 
monocytogenes, Salmonella enterica och Streptococcus pneumoniae. Syftet var att studera de 
olika bakteriernas gener och undersöka dynamiken i deras genom. Ett annat syfte var att 
undersöka hur många bakterier från varje bakterieart som kunde analyseras. En hypotes som 
undersöktes i projektet var ifall gener som bara finns i vissa bakterier hos en population sätter 
sig på specifika platser i genomen eller om de slumpmässigt placeras i genomen. 

Det första steget i projektet var att skapa pan-genom för de olika bakteriearterna, vilket visar 
hur många gener varje art totalt sett innehåller utifrån de bakterier som analyseras. Detta 
gjordes med hjälp av det bioinformatiska verktyget Bacterial Pan Genome Analysis tool där 
bakteriernas gener delades upp i olika kategorier som alla är del av pan-genomet:  

• Coregener: gener som fanns hos alla bakterier  
• Accessorygener: gener som inte fanns hos alla bakterier men hos minst två 
• Unika gener: gener som endast fanns hos en bakterie 

Utöver detta gjorde programmet en uppskattning för hur öppna de olika arterna är för att ta 
upp nya gener från omgivningen. Efter detta gjordes ytterligare analyser som undersökte hur 
konserverade coregenernas placering i genomen är och hur ofta olika coregener tillåter att 
accessorygener sitter mellan specifika coregener. För de platser i genomen där coregenerna 
tillät att accessorygener satt mellan dem analyserades hur långa accessory-gensegment som 
satt mellan coregenerna. Till sist användes ett referensgenom för varje art att jämföra 



 

 

coregenerna mot och därmed få en uppskattning kring hur generna var fördelade över 
referensgenomen.  

Pan-genom kunde göras för 1 000 bakterier var för Escherichia coli och Salmonella enterica. 
Hos de övriga arterna, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes 
och Streptococcus pneumoniae, kunde istället pan-genom göras för 2 000 bakterier per art. 
Resultatet av detta projekt visade att två arter, Escherichia coli och Salmonella enterica, hade 
mer dynamiska genom och är mer benägna att ta upp nya gener från omgivningen. Detta 
eftersom de hade ett större antal accessorygener och unika gener i förhållande till deras 
genomstorlek jämfört med de andra arterna. De hade även större genomsegment med 
accessorygener placerade mellan coregener än de andra arterna och uppskattades att ha de 
mest öppna genomen av Bacterial Pan Genome Analysis tool. Coregenernas placering i 
förhållande till varandra visade sig vara mycket konserverade för en del coregener. I en del 
fall följde två coregener alltid varandra i alla bakteriers genom som studerades under 
projektet. En del coregener satt dessutom alltid direkt efter varandra i genomen och lät inga 
andra gener sitta mellan dem. Detta tyder på att en del coregener är placerade i gensegment 
där alla gener placerade i just det segmentet uttrycks tillsammans. Andra coregener hade alltid 
accessorygener placerade mellan dem, vilket visade på mer dynamiska och öppna delar av 
genomet. I dessa delar av genomen har bakterierna lättare för att ta upp nya gener från 
omgivningen. När coregenerna jämfördes mot referensgenom visade det sig att de flesta 
generna var placerade jämnt över hela referensgenomen. Men det fanns också vissa delar i 
genomen där fler coregener var placerade. Det fanns också delar i genomen med antydningar 
att fler accessorygener kan vara placerade där. Däremot skulle ytterligare analyser med ett 
flertal referensgenom per art behöva göras för att kunna dra säkra slutsatser gällande genernas 
placering.  

Sammanfattningsvis visade resultaten i det här projektet att en del bakteriearter har mer 
dynamiska och öppna genom än andra. Olika delar av genomen inom en art kan också vara 
mer eller mindre dynamiska då en del gensegment är mer benägna att släppa in nya gener. 
Detta leder till att nya gener inte endast fördelar sig slumpmässigt över genomen, utan det går 
att se vilka områden som tenderar att tillåta nya gener i högre utsträckning.  
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1 Introduction 

Almost 10 % of the world’s population become ill every year from consuming contaminated 
food, and the World Health Organization (WHO) has stated that foodborne diseases are a 
growing health problem (WHO 2021). Today, over 200 known foodborne diseases have an 
impact on disease and mortality globally (WHO 2021). Furthermore, more than 420,000 
deaths are caused by foodborne diseases each year, and out of these, 125,000 are children 
under five years old (WHO 2021). The diseases can be all from diarrhoea to cancer and are 
caused by food contaminated by chemicals, bacteria, viruses, or parasites (WHO 2021). 
Surveillance projects are performed to detect outbreaks of foodborne diseases as well as raise 
the knowledge of why outbreaks happen, predict the impact of an outbreak, and limit the 
impact of an ongoing outbreak (Deng et al. 2016).  

Whole-genome sequencing is widely used today and is a standard method for analysis in 
many microbiological research studies. The use of it is also increasing for outbreak 
investigations and for monitoring pathogenic bacteria (Deng et al. 2016). However, today the 
standard analysis for bacterial outbreak investigations and surveillance projects is mainly 
focused on Single-Nucleotide Polymorphisms (SNPs) and extended Multi-Locus Sequence 
Typing (MLST) approaches utilizing the core genome. Often it can be complemented with a 
targeted search for known resistance genes and virulence factors. Among the methods used 
today, there is very limited availability of standardized methods to look at the dynamics 
outside of the core genome.  

1.1 Project Aim 

This thesis was performed at Statens Veterinärmedicinska Anstalt (SVA) in Uppsala. The 
purpose was to study the pan-genome structure of bacteria that are sequenced in surveillance 
projects by dividing their genomes up into core-, and accessory genes. Furthermore, the 
purpose was to better understand the dynamics of the gene contents in bacterial genomes 
coming from surveillance projects. The purpose was also to analyse parts and properties of 
the genomes that are not included in the standard core genome analysis. To do this, I chose to 
work with the six bacterial species which were most frequently occurring in a database 
composed of genomes from surveillance projects, and analyse the dynamics in the chosen 
species core-, and accessory genomes. One aim was to explore how large datasets could be 
used for the different species to successfully perform the pan-genome analysis. A hypothesis 
that was investigated through this project was if there are hotspots in the genomes where 
accessory genes are placed, or if they are placed in the genome by random. Six bacteria 
species were analysed in this thesis: Campylobacter coli (C. coli), Campylobacter jejuni (C. 
jejuni), Escherichia coli (E. coli), Listeria monocytogenes (L. monocytogenes), Salmonella 
enterica (S. enterica), Streptococcus pneumoniae (S. pneumoniae). The chosen species are the 
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major foodborne pathogens monitored in surveillance projects and outbreak investigations 
today (Deng et al. 2016).  

2 Theory 

2.1 Genomic Structure 

Bacteria usually have one circular chromosome which holds most of the genes. They can also 
have smaller DNA fragments, called plasmids. At the origin of replication (oriC), they have 
specific DNA motifs and genes initiating genome replication which most often is 
bidirectional. Bidirectional replication is when two replication forks perform the replication 
simultaneously in opposite directions from the oriC, and the replication is ended at the 
opposite side of the chromosome, or plasmid, at the terminus of replication (ter) (Deng et al. 
2016). The bacteria genome is mostly made up of genes, which means that the genome only 
has a small proportion of non-coding parts (Neville & O’Toole 2014). Furthermore, genes 
that are functionally related to each other in bacteria can be placed after each other in the 
genome in operons (Neville & O’Toole 2014). The genes included in an operon are 
transcribed and translated together (Neville & O’Toole 2014). Genes in a species can be 
classified into different gene families, and a gene family consists of genes related to each 
other by duplication from a common ancestor (Lal et al. 2020). 

2.2 Pan-genome, Core Genome, and Accessory Genome 

Tettelin et al. (2005) were the ones that coined the expression “pan-genome” to describe the 
total, non-redundant, genetic material of a species, including all parts of the genomes found in 
all different strains. Since then, the pan-genome has become a well-known phrase, and the 
interest to study the pan-genome has grown through the years. The pan-genome can be 
divided into the core genome, the accessory genome (sometimes called dispensable genome), 
and the unique genes (Medini et al. 2005). The strict definition of the core genome is that it 
includes all genes that are found in all strains for a species, but sometimes a less strict 
definition can be used and the core genome can e.g. be defined as the genes found in at least 
95 % of the strains (Medini et al. 2005). The less strict definition can be useful when 
analysing larger datasets because the risk of not finding genes that are in the genomes is 
increasing with a larger dataset. Genes included in the core genome are often essential for the 
cell’s survival and among others, the core gene includes genes for regulatory functions, cell 
growth, and housekeeping functions. The accessory genome includes the genes not present in 
all strains (or found in fewer strains than the limit for the core genome), but found in at least 
two genomes (Medini et al. 2005). The unique genes are the set of genes found in only one 
strain (Medini et al. 2005). However, the definition of a unique gene is dependent on the size 
of the dataset that is analysed, how it was sampled, and how a strain is defined. If more strains 
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were added to the analysis, there is the chance that many of the unique genes would be found 
in more than one strain and instead be part of the accessory genome.  

The pan-genome for a species can be said to be closed or open. When a pan-genome is closed, 
it means that when new genomes are added to the analysis, the number of new genes are 
decreasing towards zero. This means the species pan-genome might be fully characterized 
with the genomes included in the analysis (Medini et al. 2005). If a pan-genome is open, the 
number of new genes added for each new genome will stabilize around a certain number of 
genes (Medini et al. 2005). After this point, on average the same number of genes will be 
added to the pan-genome with each added genome (Medini et al. 2005). A way to estimate the 
openness of a pan-genome and its growth rate is to use Heaps’ law (Tettelin et al. 2008, Park 
et al. 2019), which is defined as: 

𝑛 =  𝜅𝑁𝛾                                                                      (1)  

Where n is defined as the size of the pan-genome, 𝜅 and 𝛾 are parameters for fitting, and N is 
the number of genomes included in the pan-genome (Park et al. 2019). The pan-genome is 
estimated to be open when 𝛾 > 0, and closed when 𝛾 < 0 (Tettelin et al. 2008, Park et al. 
2019). Another way to estimate the openness is to use a power law model that finds how the 
rate of new genes added to the pan-genome is decreasing (Tettelin et al. 2008, Park et al. 
2019), the power law model is defined as: 

∆𝑛 = 𝜅𝑁(−𝛼)                                                                    (2) 

Where ∆n is defined as the number of genes added, 𝜅 and 𝛼 are parameters for fitting, and N 
is the number of genomes included in the pan-genome (Park et al. 2019). A pan-genome is 
estimated to be open when 𝛼 ≤ 1, and closed when 𝛼 > 1 (Tettelin et al. 2008). Of the 
species studied in this thesis, L. monocytogenes has previously been found to have a closed 
pan-genome (Halachev et al. 2011). C. jejuni, E. coli, S. enterica, and S. pneumoniae have 
previously been found to have open pan-genomes (Halachev et al. 2011, Park et al. 2019). 

Up until today, a lot of approaches and software have been made to find a species pan-
genome as well as dividing it up into core genome and accessory genome (Vernikos 2020). 
Some of the software compares the genomic sequences by whole genome alignment and 
thereby divides the genome into the core- and accessory genome (Ozer et al. 2014). A 
comparison by whole genome alignment is a good option to make sure not to miss any non-
coding regions in the genomes, however, these methods are very time consuming, and is 
therefore only suitable to use when working with small datasets (Ozer et al. 2014). To reduce 
the running time and optimize the usage of Random Access Memory (RAM), other methods 
have been developed that instead use clustering of genes to divide them up into core- and 
accessory genes (Page et al. 2015, Chaudhari et al. 2016). 
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2.3 Bacterial Pan Genome Analysis tool  

Bacterial Pan Genome Analysis tool (BPGA) is a tool for pan-genome analysis which divides 
protein-coding genes into core-, accessory-, and unique genes by clustering similar sequences 
together. The tool takes genomes as input in different formats, e.g. GenBank files or FASTA 
files. After entering the input files, BPGA prepares the data for clustering. The next step is the 
clustering, where the protein sequences from the genes are clustered together based on their 
similarity. For repeated genes, BPGA only considers the first time the gene occurs in the 
analysis, and the gene is only clustered once. The user has the option to choose from three 
different clustering methods: USEARCH, CD-HIT, and OrthoMCL. USEARCH is said to be 
the fastest clustering method and is the default method for the tool. When proteins have been 
clustered together, one cluster represents one gene family and the proteins in the cluster can 
be interpreted as one protein representing its corresponding gene. From the clustering, BPGA 
divides the genes into core-, accessory-, and unique genes depending on how many genomes 
the different clusters (genes) are found in. The genes found in all genomes analysed are 
classified as core genes, the ones not found in all but at least in two genomes are classified as 
accessory genes, and the ones found in only one genome are classified as unique genes. From 
this, BPGA calculates the pan-genome as well as the core-genome. The openness of the pan-
genome is estimated with Heaps’ law, and the program gives the fitting parameters 𝜅 and 𝛾. 
In addition to this, BPGA has several downstream analyses that are optional to use. One of 
these is the option to map the classified genes towards Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and to the Clusters of Orthologous Groups (COG) categories. 
BPGA has been validated to work for 1,000 genomes where it was seen that it had a lower run 
time and used less RAM than other clustering tools for pan-genome analysis. The lower 
running time and the decrease in RAM usage give BPGA an advantage over other methods 
when analysing large datasets. (Chaudhari et al. 2016) 

2.4 KEGG Pathways and COG Categories 

KEGG is a project initiated in 1995, it was created to connect genetic information to 
functional information (Kanehisa & Goto 2000). Today, KEGG is a resource that consists of 
18 different databases and enables the understanding of biological systems such as cells, 
organisms, and ecosystems at the molecular level (Kanehisa et al. 2021). The databases are 
divided up into four categories: systems information, genomic information, chemical 
information, and health information (Kanehisa et al. 2021). KEGG pathways is one of the 
eighteen databases and is found in the systems information category (Kanehisa et al. 2021). 
This database consists of manually drawn maps of KEGG pathways, which represents the 
knowledge for molecular interactions, reactions, and relations (KEGG 2021). The pathways 
are divided into seven categories: metabolism, genetic information processing, environmental 
information processing, cellular processes, organismal systems, human diseases, and drug 
development (KEGG 2021). The first six categories are used by BPGA when it maps 
classified genes toward KEGG pathways. All categories in KEGG pathways are further 
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divided into more specific categories which can be seen in Appendix A for the categories 
used by BPGA.  

COG is another database created in 1997 that is used to predict the function of proteins 
(Tatusov 2000, COG 2021). The COG database added functionality from proteins that have 
been experimentally characterized (Tatusov 2000). Thereafter, functional predictions have 
been added to proteins coming from poorly studied organisms by finding their orthologous 
relationship to the proteins that were characterized experimentally (Tatusov 2000). Today, the 
database holds complete genomes from 1,187 bacteria, and the proteins are divided into 26 
different categories based on their functionality (COG 2021). When BPGA map proteins 
towards COG, it maps against the COG database released in 2003, which had 20 COG 
categories (Chaudhari et al. 2016). The COG categories are summed up into four larger 
categories for COG in the BPGA analysis: cellular process and signalling, information storage 
and processing, metabolism, and poorly characterized.  

3 Materials and Methods 

3.1 Computational Resources 

During this project, the scripts used were written in Python 3.8.5 (Van Rossum & Drake 
2009). The pan-genome analyses were performed with BPGA 1.3.0 (Chaudhari et al. 2016). 
BLAST 2.9 was used to blast core genes towards reference genomes (Altschul et al. 1990). 
All computations ran locally on a computer having one processor with eight cores, each core 
having two threads. The computer had a RAM of 156 gigabytes.  

3.2 Data 

In this study, I used data that I got from my supervisor. The data was originally obtained from 
the National Center for Biotechnology Information (NCBI) genome database that contained 
sequenced genomes presented as GenBank files. The genomes came from surveillance 
projects from different institutions all over the world. All genomes in the database were 
already assembled and annotated. In the database, there were 49 different bacterial species 
present, and the six species with the highest number of genomes present in the database were 
chosen for this project: C. coli (12,904 genomes), C. jejuni (34,002 genomes), E. coli (34,222 
genomes), L. monocytogenes (29,857 genomes), S. enterica (243,401 genomes), and S. 
pneumoniae (13,437 genomes). For each of the chosen species, smaller datasets of 10, 100, 
1500, 2000, and 2500 genomes were constructed. The genomes in the smaller datasets were 
randomly chosen from the complete datasets of each species. The GenBank files were put in 
separate folders for each species and each size of the dataset.  
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3.3 Pan-genome Construction  

BPGA was used for the pan-genome analysis of the six species. For each run with BPGA, the 
GenBank files in the datasets to be analysed were unzipped and entered as input files. 
Through all steps of BPGA, it was running with default settings and parameters. BPGA 
performed a preparation of the data and then the clustering step was initiated. USEARCH was 
used for the clustering step. USEARCH performs a sequence alignment on the protein 
sequences derived from the genes. Then it clusters the protein-coding genes together based on 
their proteins similarity. After the clustering, BPGA divided the genes into core-, accessory-, 
and unique genes. Furthermore, it calculated the pan-genome and core genome, and used 
Heaps’ law to estimate the openness of the pan-genome. BPGA was also used to map the 
classified genes to COG categories and KEGG pathways. 

The datasets were analysed by BPGA one at a time. First, the smallest datasets having ten 
genomes were run with BPGA for each species. Then the number of genomes to be analysed 
for each species were scaled up by increasing the size of the datasets. This was done for all 
species until BPGA could no longer handle the number of genes entered for analysis. The 
reason it could not analyse a higher number of genomes were not that the computer’s capacity 
of RAM was maximized, it had to do with the scripts used inside of BPGA.  

For the resulting datasets analysed with BPGA, the mean number of genes in each species 
genomes were calculated and rounded to be an integer value. A relative core genome size was 
calculated for the species by dividing the number of genes classified as core genes with the 
mean number of genes in the genomes for the species. The relative core genome sizes can be 
expected to have approximately the same size if more genomes were added to the analysis. A 
relative accessory genome size was calculated too, where the sum of accessory-, and unique 
genes were divided by the mean number of genes in the genomes. This shows how many 
accessory-, and unique genes the species have in relation to their genome sizes in the datasets 
analysed in this project. However, I would like to emphasize that this measurement cannot be 
predicted for other datasets like the relative core genome size can. The percentage given for 
the relative accessory genome size is a measurement for how many accessory-, and unique 
genes were found in the specific datasets of genomes analysed here. However, if more 
genomes were added to the analysis, the percentages would most probably change for all 
species since other accessory-, and unique genes will be found in the added genomes. 

3.4 Frequency of Accessory Genes 

Text files were outputted by BPGA with information about the genes that were classified in 
the pan-genome analysis. In each text file, all the protein sequences from the classified genes 
were presented together with information about which genome the protein-coding gene came 
from, which cluster the protein had been clustered to, the protein accession number, and the 
classification (core, accessory, or unique). To analyse the gene frequency of all genes in the 
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species, a Python3 script (Van Rossum & Drake 2009) was constructed. The text files were 
scanned through to find which cluster ids were present in the file. Then the number of 
proteins in each cluster were calculated. The number of proteins in each cluster represented 
how many genomes each protein, or gene, was found in.  

3.5 Combining Gene Annotation Data with BPGA Classifications 

To be able to analyse the conservation of the core genes synteny, the structural annotation of 
the genes from the genomes included in the pan-genome analysis had to be combined with the 
cluster ids and classifications from BPGA. The information was gathered and saved as a table 
in a CSV file, forming a gene database for each species. The GenBank files and the text files 
from BPGA were mined for information about the genome and its genes by constructing a 
Python3 script (Van Rossum & Drake 2009) and using the BioPython package SeqIO (Cock 
et al. 2009). For each gene in each genome and GenBank file, the following information was 
gathered and added to a table: genome accession number, contig accession number, contig 
number, contig size, gene number in the contig, assembly method (de novo or reference 
guided), gene type (protein-coding, rRNA, tRNA, etc.), locus tag (gene identifier), gene 
annotation, protein accession number, pseudogene or not, coordinates in the genome (together 
with information if the gene was on the forward or reverse strand). Some genes had several 
annotations, these were saved together in one field in the table and separated by a semicolon. 
A unique id was created for each gene by combining the gene accession number with the 
contig number and the gene number. Two fields were added in the table with information 
from the text files from BPGA: cluster id and the classification of the genes (core, accessory, 
or unique). The information from the text file was found by matching the protein accession 
numbers from the GenBank file with the protein accession numbers in the BPGA files. Since 
BPGA only classified protein-coding genes, not all genes in the table had a cluster id and a 
classification. For genes not classified by BPGA, no cluster id was stated as ‘No’ and no 
classification was stated as ‘0’ in the table. The table was saved as a CSV file for each 
species.  

3.6 Analysis of Core Gene Synteny 

The gene database presented in section 3.5 was used in an analysis to look at the conservation 
of synteny in the core genes for all species one at a time. A Python3 script (Van Rossum & 
Drake 2009) was written and used to carry out the analysis. BPGA did not classify tRNA and 
rRNA coding genes since it only works with protein-coding genes. Therefore, in this analysis, 
tRNA and rRNA coding genes were classified as core genes and were given a cluster id each. 
For each gene classified as a core gene, the next downstream core gene was identified by 
using the gene database. By this, the order of the core genes (represented by their 
corresponding cluster id) could be compared between the genomes in a species. In this 
analysis, it did not matter if a core gene sat directly after another core gene in the genome or if 
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there were other genes in between them (accessory-, unique-, or not classified genes). A 
schematic image exemplifying this is shown in Figure 1. For each core gene, the total number 
of times it was followed by all other core genes was calculated. The core gene that most often 
followed a core gene was chosen, and the two genes together formed the most common core 
gene pair. The number of times the most common core gene pair was present was divided by 
the total number of times the upstream core gene in the core gene pair was present in the 
genomes and having a downstream core gene connected to it. It was divided by this number 
since some genes are located at the end of a contig, hence not having a downstream core gene 
following it in this genome. This gave a percentage for how often the most frequent following 
core gene did follow the core gene. If a core gene were given a score of 100 %, it meant that 
the core gene was always followed by the same downstream core gene and the core gene pair 
had full conservation regarding the synteny in the genomes that were included in the analysis.  

 

Figure 1. Schematic image showing how the analysis for core genes following each other in the genomes were working. In 
genome 1, 2, and 4 core gene A is followed by core gene B even though there are other non-core genes between core gene A 
and core gene B in genome 2 and 4. In genome 3, core gene A is instead followed by core gene C.  

For each conserved core gene pair, the gene database was used again to count how many 
times the two core genes sat directly after each other in the genome. It was also calculated 
how often the first core gene in the core gene pair was instead directly followed by an 
accessory gene, and how often it was followed by a not classified gene. In this analysis, both 
accessory genes and unique genes were counted as accessory genes. The calculated numbers 
were used to calculate a percentage showing how often the upstream core gene in the core 
gene pair was followed by a core-, accessory-, or not classified gene.  

The next step was to analyse how large the accessory segments sitting between the core genes 
in each core gene pair were. The size of the accessory segments was defined as the number of 
accessory genes in the segments. For each core gene pair where accessory genes sometimes or 
always were found between the core genes, the gene database was used to count the size of 
the accessory segments. Maximum length, minimum length, median length, first quartile, and 
third quartile was calculated for the accessory segments occurring between each core gene 
pair.  
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3.7 Comparison Against Reference Genome 

The core genes were compared with a reference genome for all species, by writing a Python3 
script (Van Rossum & Drake 2009) and using BLAST (Altschul et al. 1990), to see how the 
genes classified by BPGA were distributed in a complete reference genome. One reference 
genome for each species was downloaded from NCBI. The name of the reference genomes 
and their respective accession number can be found in Table 1. For each species, the core 
genes were divided up into three categories:  

1. Core genes always or almost always followed directly by another core gene (followed 
by a core gene in at least 95 % of the cases). 

2. Core genes sometimes followed directly by core genes (followed by a core gene in 5 
% - 95 % of the cases). 

3. Core genes never or seldom followed by core genes (followed by a core gene in up to 
5 % of the cases). 

The text files from BPGA having the protein sequences were used to take out one 
representative sequence for each protein-coding core gene. In this step, the tRNA and rRNA 
coding genes were no longer present in the analysis as core genes, since they were not 
classified by BPGA. For all three categories of core genes, the cluster id for each core gene 
was used to take out all protein sequences representing a gene in a cluster. One of the protein 
sequences were randomly chosen to be the representative sequence for each gene. The three 
categories of core genes were then blasted, with tblastn, towards the reference genome one at 
a time for each species. From the BLAST output, only the best hits were filtered out for each 
gene, this was done by choosing the hit that had the best score. The start positions in the 
reference genome were saved for the best hits for all three categories of core genes. 
 
Table 1. Reference genomes for each species from NCBI and their accession numbers. 

Species 
 

Reference genome 
 

Accession number for reference genome 

Campylobacter 
coli  

Campylobacter coli strain aerotolerant OR12, 
complete genome 
 

 NZ_CP019977.1 

Campylobacter 
jejuni 

 Campylobacter jejuni subsp. jejuni NCTC 11168 
= ATCC 700819 chromosome, complete genome 
 

 NC_002163.1 

Escherichia 
coli 

 Escherichia coli str. K-12 substr. MG1655, 
complete genome 
 

 NC_000913.3 

Listeria 
monocytogenes 

 Listeria monocytogenes EGD-e chromosome, 
complete genome 
 

 NC_003210.1 

Salmonella 
enterica 

 Salmonella enterica subsp. enterica serovar 
Typhimurium str. LT2, complete genome 
 

 NC_003197.2 

Streptococcus 
pneumoniae 

 Streptococcus pneumoniae strain NCTC7465 
chromosome 1, complete sequence 
 

 NZ_LN831051.1 
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4 Results 

4.1 Construction of Pan-genomes 

Pan-genome analyses were made for each species by using BPGA. I could successfully 
analyse 1,000 genomes for E. coli and S. enterica, and 2,000 genomes for C. coli, C. jejuni, L. 
monocytogenes, and S. pneumoniae. When trying to analyse a larger dataset than this, the 
program gave errors indicating that the internal scripts in BPGA performing the analysis in 
the program could not handle the data size. However, the errors did not appear to be related to 
lack of RAM. 

4.1.1 Pan-genome Construction with BPGA 
BPGA was used to classify the protein-coding genes for each species into core-, accessory-, 
and unique genes, to perform a pan-genome analysis, and to estimate the openness of the pan-
genomes. The result from this is shown in Table 2 and Table 3. As seen in Table 2, E. coli and 
S. enterica had the largest genome sizes, both having around 5,000 genes on average in the 
genomes analysed. They also had the highest number of accessory-, and unique genes relative 
to the genome size. The relative core genome size represented how many genes in the mean 
genome size were classified as core genes, and was presented as a percentage. C. jejuni, L. 
monocytogenes, and S. enterica had the highest relative core genome size with a percentage of 
around 40 %. C. coli and E. coli had the lowest relative core genome size around 40 %. 
However, C. coli’s relative core genome size was probably underestimated because of an 
artefact where a wrongly annotated genome was part of the analysis for C. coli. The artefact is 
described in more detail in the next section (4.1.2). E. coli and S. enterica had the largest pan-
genomes and C. jejuni had the smallest pan-genome size. 

4.1.2 Openness of the Pan-genomes 
During the pan-genome analysis with BPGA, genes were cumulatively added to the pan-
genome and taken away from the core genome as new genomes were added iteratively to the 
comparison. Together with the total number of gene families in the pan-genome and core 
genome, it produced estimated curves representing the cumulative growth of the pan-genome 
and the cumulative shrinkage of the core genome with the growing number of genomes. A 
visualisation of this is shown in Figure 2. For most of the species, except E. coli, the pan-
genome had flattened out considerably at the end of the curves. During the pan-genome 
analysis, BPGA used curve fitting with Heaps’ law to estimate the openness of the pan-
genomes, shown in Table 3. All species had a 𝛾 > 0, which means they were estimated to 
have open pan-genomes. E. coli and S. enterica had the largest 𝛾 value, just over 0.2, 
indicating a higher openness, while C. jejuni had the lowest 𝛾 value. 

The cumulative growth of gene families for the pan-genome and the core genome for C. coli 
shows that one genome, around gene number 1,250, contributed with many new gene families 
and the core genome were thereby decreased a lot for the same genome. Because of this, I 
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looked up which genome contributed to this and found out that this genome contributed with 
955 new genes to the pan-genome which is considerably more than expected. A manually 
random chosen part of the genome was chosen from the GenBank file for this genome. The 
genome segment was run with BLAST (Altschul et al. 1990) against the GenBank NR 
database. This gave a 100 % query cover match for Campylobacter fetus (C. fetus), which 
suggests that this genome most probably has been wrongly annotated and is a C. fetus instead 
of a C. coli. Because of the time limit for this project, there was no time to redo the analysis 
without the wrongly annotated genome after it was discovered. Furthermore, C. jejuni also 
had two spots in the pan-genome curve where a larger number of new genes were added, 
however, these were much smaller than the one found in C. coli. 

4.1.3 Frequency of Classified Genes 
For all genes classified by BPGA during the pan-genome analysis, it was calculated how 
many genomes each gene, represented by their cluster id, was found in. This was used to 
visualise the gene frequency distribution, shown in Figure 3. To the left of the red vertical line 
in the plots are the core genes which were found in all genomes. To the right of the red line, 
the accessory and the unique genes can be seen. For all species, there was a group of 
accessory genes that were present in more than 95 % of the genomes but not in all, these are 
shown between the red line and the black vertical line. In a less stringent core genome 
definition, these genes would be considered part of the core genome, hence the genes can be 
called low stringency core genes. All species except C. coli had more genes classified as core 
genes than they had low stringency core genes. However, the higher amount of low stringency 
core genes for C. coli is probably because of the artefact in the analysis that a wrongly 
annotated genome of the species C. fetus were a part of the C. coli pan-genome analysis. 
Approximately half the genes were found in only one or just a few genomes for all species.  

4.1.4 Functional Classification of Core-, Accessory-, and Unique Genes 
BPGA was used to map the core-, accessory-, and unique genes to COG categories and 
KEGG pathways to get insight into which biological processes the genes takes part in. The 
gene distribution among the major COG categories is found in Figure 4. Some genes were 
classified as poorly characterized, which means they could not be given functionality from the 
COG categories. For all species, the largest portion of the core genes was found to be 
connected to metabolism. The accessory-, and unique genes instead had their largest portion 
of genes connected to information storage and processing for E. coli, L. monocytogenes, S. 
enterica, and S. pneumoniae. The species C. coli and C. jejuni had most of their accessory-, 
and unique genes connected to metabolism. All species had a higher portion of their 
accessory-, and unique genes than their core genes classified as poorly characterized. A more 
detailed visualisation of the COG distribution with more specific categories can be seen in 
Appendix B.  

The distribution of the genes mapped to the major KEGG pathways is seen in Figure 5. 
Similarly to what was seen in the COG analysis, the core genes had a higher percentage of 
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their genes connected to metabolism pathways than the accessory-, and unique genes for all 
species. This with an exception for C. jejuni, where the accessory genes had a slightly higher 
percentage connected to metabolism. Furthermore, the core genes had a higher proportion of 
its genes found in the pathways for genetic information processing than the accessory-, and 
unique genes had for all species. Two categories of pathways showed a higher representation 
of accessory-, and unique genes than core genes: environmental information processing, and 
human diseases. A more detailed visualisation of the KEGG distribution with more specific 
categories can be seen in Appendix C. 

Table 2. Summary of the number of genomes and genes analysed, together with the number of genes classified by BPGA, 
and the estimated pan-genome sizes. 

   Number of genes classified by 
BPGA 

   

Species 

Number of 
genomes in 
pan-genome 

analysis 

Mean 
number of 
genes in 
genomes 

Core Accessory Unique 

Relative 
core 

genome size 
[%] 

Relative 
accessory 
genome 

size  
[%] 

Pan-genome 
size 

[number of 
genes] 

Campylobacter 
coli 

2,000 1,890 554 3,457 1,523 29 263 5,534 

Campylobacter 
jejuni 2,000 1,844 736 3,069 1,077 40 225 4,882 

Escherichia 
coli 1,000 5,317 1,662 16,026 4,803 31 392 22,491 

Listeria 
monocytogenes 2,000 3,100 1,330 5,826 2,321 43 262 9,477 

Salmonella 
enterica 1,000 4,775 1,977 13,247 5,411 41 391 20,635 

Streptococcus 
pneumoniae 2,000 2,134 775 4145 965 36 239 5,885 
 

Table 3. Results from pan-genome analysis. Fitting parameters (𝜿, 𝜸) from Heaps’ law, open or closed pan-genome.  

Species 𝜿 𝜸 Open / closed 
pan-genome 

Campylobacter 
coli 

1206.02 
 

0.191656 
 

Open 

Campylobacter 
jejuni 

1747.07 
 

0.126668 
 

Open 

Escherichia 
coli 

4729.21 
 

0.214124 
 

Open 

Listeria 
monocytogenes 

2568.04 
 

0.174854 
 

Open 

Salmonella 
enterica 

3984.4 
 

0.24002 
 

Open 

Streptococcus 
pneumoniae 

2076.87 
 

0.137829 
 

Open 
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Figure 2. Cumulative growth curves (orange) and core genome curves (red) based on curve fitting using Heaps’ law, together 
with the cumulative total number of gene families for pan-genome (black) and core genome (blue). The orange and red lines 
are for some species totally or partly hidden behind the black and blue lines. 
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Figure 3. Gene frequency distribution for genes classified by BPGA. The red line indicates the transition from core genes to 
accessory genes. The field between the red and the black line shows the accessory genes found in at least 95 % of the 
genomes. A larger thick on the x-axis has been added at the end of the curves, indicating where the last unique gene is found 
and how many genes are seen in the plots. 
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Figure 4. COG distribution of genes classified by BPGA. 
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Figure 5. KEGG distribution of genes classified by BPGA. 
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4.2 Analysis of Core Gene Synteny and Distribution of Core Genes 

To get a better understanding of the core genes’ properties and to investigate if there were 
sites in the genomes more prone to take in new genes, the core gene synteny was analysed. 
The core genes were also compared to one reference genome for each species to visualise 
their distribution along that genome.    

4.2.1 Conservation of Core Gene Synteny 
For all core genes in the genomes of each species, an analysis was made to find out which 
downstream core gene most often followed the upstream core gene, the two core genes 
forming a core gene pair. To be able to compare the gene order between genomes, the order of 
the assigned cluster ids for the core genes were used.  For each core gene pair, its frequency 
was calculated as a percentage of the total number of times the core gene pair was present in 
the genomes of a species. The percentage can be interpreted as a measurement for how 
conserved different core genes were regarding their synteny, and the result from this is shown 
in Figure 6. S. pneumoniae stood out from the other species because it was the only species 
not having any conserved genes with a percentage over 90 %, while all the other species had 
some genes at 100 % or almost 100 %. Furthermore, S. pneumoniae only had very few genes 
over 80 % and almost half of its genes had a conservation percentage below 60 %. For the 
other species, a clear majority of the genes had a conservation percentage above 60 %. They 
also had a considerable number of genes above 80 %. C. jejuni, E. coli, and S. enterica 
showed the largest number of genes having more than 80 % conservation.  

For each conserved core gene pair presented in Figure 6, it was analysed how often the 
conserved core genes directly followed each other and how often accessory genes or not 
classified genes sat between the core genes. During the analysis, both accessory genes and 
unique genes were counted as accessory genes. The result from the analysis is shown in 
Figure 7. The percentage is a measurement for how often the two conserved core genes sat 
directly after each other, and how often accessory-, or not classified genes sat between the 
core genes. All species had a considerable number of core gene pairs where no accessory 
genes or not classified genes appeared between them. They also had a smaller number of core 
genes where accessory genes or not classified genes always sat between the core genes. 
However, there was an exception for C. coli where the number of core genes always having 
other genes between them and the number of core genes never having other genes between 
were approximately the same amount. Because of a technical artefact, C. coli had core genes 
that most probably were misclassified as accessory genes, which may influence this result. 
For all species, when looking at the percentage that the core genes sat directly after each 
other, it decreased at a steady rate from 100 % to 0 % for almost all species. However, for S. 
pneumoniae it did not decrease in the same way, it had very few genes where core percentage 
was between 0-30 % and 70-100 %, which made the shape of the plot different from the other 
species.  



28 

 

4.2.2 Size of Accessory Segments 
The length of the accessory segments (number of accessory genes) inserted between 
conserved core gene pairs was analysed. For each species, the median, maximum, and 
minimum length of the accessory segments are presented in Figure 8. The median, first 
quartile, and third quartile of the accessory segments lengths are shown in Figure 9. The 
maximum length of accessory segments showed that all species did take in quite large 
accessory segments between core genes, even when the median length goes down. There was 
no obvious association between the maximum values and the median values. E. coli and S. 
enterica were the species with the highest number of large accessory elements when looking 
at the maximum lengths. Both species had several genes that had taken in accessory segments 
with a size over 100 accessory genes. For the other species, the maximum length of accessory 
segments reached up to 70-80 accessory genes, except for only one core gene pair that had an 
accessory segment with over 100 genes for both C. jejuni and L. monocytogenes. There was a 
bit more association between the minimum length and the median length for all species, 
meaning there were probably a higher amount of short accessory segments than large ones 
sitting between the core gene pairs. Some of the accessory segments with a larger median 
length also had a larger minimum value, which indicates that these spots in the genomes 
always take in larger accessory segments. However, this was not true for all genes with a 
higher median value. When looking at the first quartile and third quartile values, the outliers 
in the datasets are ignored, seen in Figure 9. From this, it is possible to see how many core 
gene pairs tend to take in larger accessory segments more frequently than others. C. jejuni, E. 
coli, and L. monocytogenes all had one gene each where the third quartile value was 
considerably high even though the median value had gone down. This indicates that these 
genes had high amounts of both small and large accessory segments, large accessory 
segments sat between the core genes several times for those core gene pairs.  

4.2.3 Comparison Against Reference Genome 
All conserved core genes were split up into three categories for each species:  

1. Core genes always or almost always followed directly by another core gene (in Figure 
7: core > 95 %). 

2. Core genes sometimes followed directly by core genes (in Figure 7: 95 % > core > 5 
%). 

3. Core genes never or seldom followed by core genes (in Figure 7: core < 5 %). 

The three categories of core genes were aligned with BLAST to a reference genome to get 
insight into the genes’ placement. The cumulative gene numbers, represented as percentages, 
were plotted against the genes start positions in the reference genomes. This gave an overview 
of the distribution of the genes from the three categories over the reference genomes. The 
resulting plots are shown in Figure 10. For some species and some categories of core genes, 
the genes were evenly placed out in the reference genome. This is shown where the genes 
were laying up on a straight line with a constant slope. E. coli is an example where all three 
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categories of genes were quite evenly placed in the reference genome. When the genes had a 
steeper slope in a part of the genome, it indicated a higher gene density in that area of the 
genome, i.e. more core genes were present in this region of the reference genome. Steeper 
slopes were found in all species but were clearer for some of them. C. coli had several regions 
for all categories of genes where the gene density was high and the slope was steep, 
sometimes the slope was almost completely vertical. C. jejuni also showed this tendency for 
all categories. Both C. coli and C. jejuni had a high gene density at the end of the genome for 
the core genes in category 1 (core genes always followed by a core gene). L. monocytogenes 
had regions with high gene density for the core genes always followed by a core gene and for 
the core genes never followed by other core genes. For S. pneumoniae, the regions with the 
highest gene density were found for genes in category 1 (core genes always followed by a 
core gene). However, the other categories also had regions with slightly higher gene density. 
Generally, when the different categories of genes do not lay on a line together, but their lines 
get separated, this means that they had a high gene density in different parts of the genome. 
Furthermore, C. coli had a large gap in the reference genome where no genes were found, the 
other species had smaller gaps in some places but none of them was as large as for C. coli.  
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Figure 6. Conservation percentage for the core gene synteny. For each core gene, the percentage represents the frequency for 
how often the gene was followed by the downstream core gene that most often sat after the gene in the genomes. 
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Figure 7. Visualisation of the conserved core gene pairs. The percentage is a measure for how often the upstream core gene 
in the core gene pair is directly followed by another core gene (blue), by accessory genes (orange), or by not classified genes 
(green). E.g. if a core gene has 50 % blue and 50 % orange, it means that the first core gene in the core gene pair was 
followed directly by the downstream core gene in 50 % of the genomes analysed, and directly followed by an accessory gene 
in the other 50 % of the genomes that was analysed. 
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Figure 8. Length (number of genes) of the accessory segments inserted between two conserved core genes. For each gene, 
the median length (blue), maximum length (green), and minimum length (orange) for the accessory segments are shown. 
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Figure 9. Length (number of genes) of the accessory segments inserted between two conserved core genes. For each gene, 
the median length (blue), third quartile (green), and first quartile (orange) for the accessory segments are shown. 
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Figure 10. Cumulative plot of the distribution of the core genes’ start position in their respective reference genomes. Each 
gene number represented as a percentage, making the percentage span the number of genes. Core genes directly followed by 
a core gene in at least 95% of the cases (blue), core genes directly followed by a core gene in 5%-95% of the cases (green), 
core genes directly followed by a core gene in less than 5% of the cases (orange). 
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5 Discussion 

For many years, the number of genomes that are sequenced and available for analysis has 
grown exponentially. Especially for species included in surveillance projects, extensive 
numbers of genomes are accumulating. A few years ago, pan-genome analyses had only been 
made on small datasets using a small number of genomes. However, with the increasing 
number of genomes sequenced, the interest in making large pan-genome analyses is 
increasing too. Originally, publications with pan-genome studies were based only on a small 
number of genomes, having up to ten genomes in the datasets (Medini et al. 2005). Today 
publications are starting to show that larger datasets of up to thousands of genomes are used 
in pan-genome analyses (Park et al. 2019).  

I chose to work with the six most common species from surveillance projects: C. coli, C. 
jejuni, E. coli, L. monocytogenes, S. enterica, and S. pneumoniae. The chosen species all had 
over 10,000 genomes available in the database, which were a sufficient amount of data to try 
to maximize the number of genomes taking part in the pan-genome analyses. The literature 
indicated that BPGA was the most powerful pan-genome tool available today for large-scale 
pan-genome analysis and it had been proven successfully for 1,000 genomes. Since there are a 
lot of sequenced genomes from surveillance projects, one aim in this thesis was to perform the 
analysis for as many genomes as possible for each species. I managed to successfully run the 
pan-genome analysis with BPGA for 1,000 genomes for E. coli and S. enterica, and 2,000 
genomes for the other species. After this, a limit was reached. The limit for the number of 
genomes to be analysed was not reached because the RAM was limiting or that the computer 
ran out of capacity. This suggests that there is a need for further development of pan-genome 
analysis tools that can handle a larger amount of data than the tools available today. E. coli 
and S. enterica were the two species with the largest genome size, making it clear that the 
limit had to do with the genome size, and the number of genes to be analysed. It could be that 
the clustering step in the analysis only can handle a certain number of genes.  

E. coli and S. enterica had more accessory-, and unique genes relative to their genome size 
compared to the other species. The shape of the cumulative growth curve for the pan-genome 
of E. coli visually indicated a higher openness of the genome than other species. At first, the 
cumulative growth curve for E. coli flattened out and almost reached a plateau, and then new 
genes were added at a higher rate again. This could be because the dataset consisted of 
different sub-populations. If this was the case, the first genomes that were entered into the 
analysis had a more similar gene content because they belonged to one sub-population, then 
other genomes were added later in the analysis which was not part of the sub-population. The 
openness of the pan-genomes was also estimated using Heaps’ law, which supported that E. 
coli and S. enterica had more open pan-genomes than the other species. This could mean that 
E. coli and S. enterica has a higher tendency to pick up new genes from the environment and 
that they might have a more dynamic genome than the other species analysed in this thesis.  



36 

 

C. jejuni, L. monocytogenes, and S. enterica had the highest relative core genome size, 
indicating that these three species are the ones having the most conserved genomes among the 
analysed species. The lowest relative core genome size was found for E. coli, suggesting it to 
be the species with the least conserved genome. C. coli had a low relative core genome size 
too. However, it appeared through the analysis that most probably many core genes for C. coli 
were miss-classified as accessory genes due to a data artefact. If this would not have 
happened, C. coli would likely have a higher relative core genome size, close to the size of C. 
jejuni. Approximately half of the genes classified by BPGA were found in only one or very 
few genomes for all species. Species with a lot of unique genes or accessory genes found in 
very few genomes might be more prone to take up new genes. These low frequent genes 
might increase in the population to the next generation, especially if the genes are beneficial 
for the species in the environment it lives in. Or they might be phased out from the species if 
they instead are harmful.  

An important aspect is that BPGA used a strict definition for core genes, where only the genes 
found in all genomes in the dataset analysed were classified as core genes. If a less strict 
definition for core genes were used during a pan-genome analysis instead, the number of core 
genes and the relative core genome size would increase for all species. The gene frequency 
distribution showed for all species that many accessory genes were found in more than 95 % 
of the genomes. These genes would instead be classified as core genes if a softer definition 
were used in a pan-genome analysis with a limit at 95 %. A strict definition can be sufficient 
when analysing small datasets and running pan-genome analyses for up to e.g. 20 genomes, 
which has originally been the case. However, when working with larger datasets having up to 
thousands of genomes, it could be more sufficient to use a softer limit for the core genes. This 
because when working with a larger number of genomes, there will be genes not found 
because of sequencing artefacts or because they were missed in the annotation step. In this 
thesis, I used a softer limit at 95 % as an example, however, this limit might need to be 
adjusted. Different limits might be suitable for different datasets depending on how the 
dataset was created. The limit may need adjustment depending on which sequencing method 
was used to generate the data, because the sequencing methods have different error rates. 
Another aspect to take into consideration can be which annotation method was used.  

In the cumulative growth curves for the pan-genomes, it was seen that a lot of new genes were 
added for the first genomes in the pan-genome analyses. As more genomes were added, the 
curve flattened out as fewer new genes were found. Since the curves had flattened out 
considerably for all species, it means that most of the genes in the total dataset probably 
already were found in the analysis of the 1,000 or 2,000 genomes. This indicates that the 
number of genomes analysed was sufficient to include most of the genes from the species 
pan-genomes. However, if all genomes in the datasets were analysed, more unique genes and 
accessory genes present in only a few genomes would probably be found. E. coli were the 
species where the pan-genome curve had flattened out least, and it might have flattened out 
more if more genomes were analysed. One way to expand the analysis to a higher number of 
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genomes even though BPGA could not handle a larger dataset would be to run BPGA several 
times for each species. For each run, a dataset of 1,000 genomes could be randomly chosen 
from the total dataset. After several runs, the results could be combined and thereby a more 
comprehensive analysis could be made. All species were estimated to have open pan-genomes 
during the pan-genome analysis by Heaps’ law. For C. jejuni, E. coli, S. enterica, and S. 
pneumoniae, this confirmed what had been shown in previous studies (Halachev et al. 2011, 
Park et al. 2019). However, L. monocytogenes had been found to have a closed pan-genome 
previously (Halachev et al. 2011), which it was not during this thesis. Another round of pan-
genome analysis with BPGA could have been made for L. monocytogenes, using 2,000 other 
genomes from its total dataset to see if the result would change. Although, it should be 
emphasized that the previously published article by Halachev et al. (2011) where L. 
monocytogenes was estimated to have a closed pan-genome, used the power law model to 
estimate the openness. Furthermore, they only had seven genomes in their analysis for L. 
monocytogenes. Because of their small number of genes in the pan-genome analysis, it is 
more likely that the pan-genome for L. monocytogenes is open. The power law model may be 
better to use than the Heaps’ law to estimate the openness of pan-genomes. However, when 
using BPGA, the user could not choose which model to use.   

For a functional classification of the genes, the genes were mapped towards COG categories 
and KEGG pathways. From the COG analysis, poorly characterized genes were the genes that 
could not get any functional classification among the genes present in the COG database. 
There was a larger portion of accessory-, and unique genes than core genes classified as 
poorly characterized. This shows that accessory-, and unique genes probably had more 
specific functions, which are less central. These functions have not been studied and thereby 
have not been added to COG or KEGG pathways. Core genes had a high percentage of their 
genes connected to metabolism in both COG categories and KEGG pathways. This was not 
very surprising since metabolism is connected to a lot of functions which is essential for all 
cells to survive. In KEGG pathways, a high percentage of the core genes were connected to 
genetic information processing. This is understandable since this category also includes a lot 
of necessary functions for cells survival, such as transcription, translation, replication, and 
reparation. Furthermore, accessory-, and unique genes had a higher percentage of its genes 
than the core genes classified as environmental information processing and as human 
diseases. Environmental information processing includes processes like membrane transport, 
signal transduction, signalling molecules, and interaction, which are aspects that could be 
affected by accessory-, and unique genes. This could have to do with specialised functions 
helping the bacteria handling the interaction with specific environments. The human diseases 
pathways include genes connected to e.g. drug resistance. Drug resistance genes can be 
picked up as unique genes, and when the bacteria live in an environment where it is 
advantageous to have this gene, it will spread through the population. The bacteria having the 
drug resistance gene might have a positive selection depending on the environment it lives in.  
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All species except S. pneumoniae had core genes showing a very high conservation-grade 
regarding their synteny. Some core genes had a conservation percentage at 100 %, and some 
almost 100 %. This means that some core genes had a very high, and some a total 
conservation regarding their synteny in the datasets analysed during this project. Furthermore, 
it was seen that a considerable number of core gene pairs were always placed directly after 
each other, not letting in any non-core genes between them. One reason why some core genes 
have such high synteny conservation and some core genes always sits directly after each other 
in the genome could be because they sit in operons. If another gene was inserted into an 
operon, the operon might lose its function, and therefore the core genes stay conserved and do 
always sit directly after each other in the genomes. Some core genes were instead always 
followed by non-core genes, the core genes in the core gene pairs were never sitting directly 
after each other. This shows that some areas in the genomes are very dynamic and open for 
taking in new genes between the core genes. In these areas, the core genes are probably not 
dependent on each other and do not need to sit directly after each other in the genome to 
function correctly.  

It was shown that all species do take in considerably large accessory segments between core 
genes through their genomes. E. coli and S. enterica were the species with largest accessory 
segments. This increases the evidence that E. coli and S. enterica might have more dynamic 
genomes than the other species because they tend to have larger accessory segments and 
thereby let in more new genes between their core genes. Generally, for all species, the sites in 
the genomes where very large accessory segments were found, could be more dynamic and 
more open for taking in accessory segments than other sites in the genomes.  

A comparison with a reference genome was made for all species to see how the core genes 
were distributed along the reference genome. The core genes were divided into three 
categories representing how often a gene was directly followed by another core gene or by 
accessory genes. Only the core genes were compared to the reference genomes since those are 
the genes expected to be found in the reference genomes. Even though the accessory genes 
were not compared to the reference genomes, it is possible to indirectly get a hint about where 
accessory genes are more likely to be found. This because of the different categories of core 
genes, where some core genes were always followed by accessory genes in the analysed 
genomes. All species had quite evenly distributed genes through the reference genomes for all 
categories of core genes. E. coli stood out from the other species with the most evenly 
distributed genes, i.e. it did not have any regions where different categories of core genes or 
accessory genes tended to be placed more often. The other five species all had some regions 
for different core gene categories where the gene density was higher. This indicated regions in 
the reference genome where different core genes and accessory genes sat closer together. 
Both C. coli and C. jejuni had a high gene density at the end of their reference genomes for 
the core genes always followed by another core gene. This could be because replication in 
bacteria is bidirectional, and thereby the core genes at the end of the genome are sitting close 
to oriC and will be replicated at the beginning of a replication fork. Because of this, the genes 
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around oriC will be prioritized in the replication step, and the core genes could be placed here 
because they have essential, central functions for the cells survival. C. coli had a very large 
gap in the reference genome where none of the core genes was placed. Most likely, this 
indicates that the region only had non-core genes and held a very large accessory segment. 
The gap could also be a result of the wrongly annotated gene that took part in the pan-genome 
analysis for C. coli. It might be that a large part of the genes that would have been annotated 
as core genes if the C. fetus was not part of the analysis should have been placed where the 
gap is. There were some smaller gaps in the reference genomes for other species as well, 
which could be regions where accessory segments are placed too. To increase the reliability of 
the placement of the genes in the genomes, and to be able to draw confident conclusions, the 
placement of genes should be investigated further. For each species, several different 
reference genomes could be used to see where the genes are placed. In this thesis, only one 
reference genome was used for each species, which makes it hard to make validated 
conclusions about the genes exact placements in the genome. However, some indications can 
still be seen.  

It was discovered that one genome in the C. coli dataset was not a C. coli but a C. fetus. This 
gave a gap in the pan-genome curve where a lot of new genes were added for this specific 
genome. Because of the wrongly annotated genome, the pan-genome analysis was affected a 
lot. Many genes that should have been classified as core genes were now most probably 
classified as accessory genes instead. Of course, this affects the number of core-, and 
accessory genes and the relative core genome size a lot for C. coli. If the wrongly annotated 
genome were not a part of the analysis, the number of core genes and the relative core 
genome size would be higher. Furthermore, there were two small gaps for C. jejuni as well. 
These genomes have not been investigated any further. Because of this, there is a risk that 
also these are wrongly annotated genomes, however, they could also just be genomes that 
contributed with a lot of new genes even though they are C. jejuni genomes. One reason why 
a genome of the same species could contribute with a higher number of new genes could be 
because they have a new plasmid that the genomes previously added to the analysis did not 
have. To prevent having wrongly annotated genomes in an analysis like this, it would be of 
good practice to have a pre-check of the genomes that goes through the database and make 
sure that the genomes are correctly annotated. It might be even more important in a project 
like this where the data were not annotated in the project but instead collected from different 
institutions. Different annotation pipelines contribute to a risk that some genomes have a 
lower quality of their annotations, which is a reason to why it could be good to annotate all 
genomes to be analysed with the same pipeline. If there would have been more time in this 
project, the wrongly annotated genome would have been replaced in the dataset and the 
analysis run again. 
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6 Conclusion 

In this thesis, a pan-genome analysis was run with BPGA for six bacterial species. The pan-
genome analyses ran successfully for a dataset of 1,000 genomes for E. coli and S. enterica, 
and 2,000 genomes for C. coli, C. jejuni, L. monocytogenes, and S. pneumoniae. All species 
were estimated to have open pan-genomes. From the functional annotation, it was seen that a 
large proportion of the core genes took part in central functions that are essential for the cells 
survival. The accessory genes, on the other hand, had a large proportion of its genes taking 
part in more specific functions which have not yet been studied. C. jejuni, L. monocytogenes, 
and S. enterica had the most conserved genomes among the studied species. E. coli and S. 
enterica had the most open and dynamic genomes, meaning they are more prone to take in 
new genes than the other species. Evidence showed that a portion of the core genes are placed 
in operons, and the operons are less dynamic and not open for letting in new genes. Other 
spots in the genomes were more dynamic and very prone to take in new genes. Most core 
genes were evenly distributed in the reference genomes for each species, although there were 
regions where the gene density was higher for the different categories of core genes too. Gaps 
in the reference genomes indicated spots where large accessory genomes might be placed. 
However, an extended analysis using more reference genomes should be done to draw 
confident conclusions from this. Finally, BPGA used a strict definition of the core genes, and 
in this project, it was shown that a softer limit for core genes might be more suitable for pan-
genome analyses using large datasets.  

To conclude, the pan-genome analysis could be successfully run for a large number of 
genomes for all species analysed during this project. It was shown that some species have 
more dynamic and more open genomes than others. Furthermore, it was shown that the 
dynamics in the genomes differ between different regions. Some regions in the genomes tend 
to more often take in accessory genes than others, indicating potential hotspots in the 
genomes.   

7 Future Outlook 

The work of this project could be expanded in several ways to get more knowledge about the 
core-, accessory-, and the pan-genome for the species analysed. Some of them are listed here:   

• Use a pre-check to look through the genomes in the database used. Sort out the 
genomes that are wrongly annotated, and re-annotate them as the right species instead.  

• Analyse larger datasets, either by running BPGA several times and then combining the 
results or by trying out another pan-genome tool. There is also the possibility to create 
a new software for analysing large datasets.  
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• Look more into specific genes which could be of interest. One example could be to 
look at the core gene pairs having the highest conservation percentage for the gene 
synteny.  

• Make comparisons using several reference genomes to make more confident 
conclusions about the genes exact placement in the genomes.  

• The gene-databases that were created for all species (explained in section 3.5) could 
be used for several new analyses that were not done in this project. One suggestion is 
to look at the annotations for all the classified genes and see if there are more e.g. 
drug-resistant genes found in the core genes or the accessory genes.  

• More species could be added for the analysis to get more insight into other species 
monitored in surveillance projects.  
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Appendix A – KEGG pathway categories 

The category metabolism consists of the following under categories: 

• Global and overview maps 
• Carbohydrate metabolism 
• Energy metabolism 
• Lipid metabolism 
• Nucleotide metabolism 
• Amino acid metabolism 
• Metabolism of other amino acids 
• Glycan biosynthesis and metabolism 
• Metabolism of cofactors and vitamins 
• Metabolism of terpenoids and polyketides 
• Biosynthesis of other secondary metabolites 
• Xenobiotics biodegradation and metabolism 
• Chemical structure transformation maps 

The category genetic information processing consists of the following under categories: 

• Transcription 
• Translation 
• Folding, sorting and degradation 
• Replication and repair 

The category environmental information processing consists of the following under 
categories: 

• Membrane transport 
• Signal transduction 
• Signalling molecules and interaction 

The category cellular processes consists of the following under categories: 

• Transport and catabolism 
• Cell growth and death 
• Cellular community – eukaryotes 
• Cellular community – prokaryotes 
• Cell motility 
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The category organismal systems consists of the following under categories: 

• Immune system 
• Endocrine system 
• Circulatory system 
• Digestive system 
• Excretory system 
• Nervous system 
• Sensory system 
• Development and regeneration 
• Aging 
• Environmental adaptation 

The category human diseases consists of the following under categories: 

• Cancer: overview 
• Cancer: specific types 
• Infectious disease: viral 
• Infectious disease: bacterial 
• Infectious disease: parasitic 
• Immune disease 
• Neurogenerative disease 
• Substance dependence 
• Cardiovascular disease 
• Endocrine and metabolic disease 
• Drug resistance: antimicrobial 
• Drug resistance: antineoplastic 

 

  



46 

 

Appendix B – COG distributions 

 

Figure A1. COG distribution of genes classified by BPGA for Campylobacter coli. 
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Figure A1. COG distribution of genes classified by BPGA for Campylobacter jejuni. 
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Figure A2. COG distribution of genes classified by BPGA for Escherichia coli. 

 

 

Figure A3. COG distribution of genes classified by BPGA for Listeria monocytogenes. 
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Figure A4. COG distribution of genes classified by BPGA for Salmonella enterica. 

 

 

Figure A5. COG distribution of genes classified by BPGA for Streptococcus pneumoniae.  
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Appendix C – KEGG distributions 

 

Figure A6. KEGG distribution of genes classified by BPGA for Campylobacter coli. 

 

 

Figure A7. KEGG distribution of genes classified by BPGA for Campylobacter jejuni. 
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Figure A8. KEGG distribution of genes classified by BPGA for Escherichia coli. 

 

 

Figure A9. KEGG distribution of genes classified by BPGA for Listeria monocytogenes. 
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Figure A10. KEGG distribution of genes classified by BPGA for Salmonella enterica. 

 

 

Figure A11. KEGG distribution of genes classified by BPGA for Streptococcus pneumoniae. 
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