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Abstract
Gavel, A. 2021. Statistical Methods in Quantitative Spectroscopy of Solar-Type Stars. Digital 
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and 
Technology 2052. 115 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1237-8.

Galactic archaeology is the research field that attempts to reconstruct the history of the Milky 
Way, using primarily the tools of astrometric studies and chemical studies. The latter in turn 
uses stellar spectroscopy. Thanks to technological advances, the field of stellar spectroscopy 
now has access to much larger amounts of observational data than it used to. At the same time, 
also thanks to technological advances, the field able to use increasingly more sophisticated 
modelling. This opens up for the possibility of attacking research problems in Galactic 
archaeology that were previously intractable. However, it also creates a problem: Access to 
greater amounts of data means that the random errors in studies will tend to shrink, while the 
systematic errors tend to stay of the same size. At the same time, improvements in modelling 
means that studies can look for increasingly subtle effects in their data.

Each article in this thesis attempts solve some specific problem within Galactic archaeology 
- where possible also developing a general method for handling that type of problem in a way 
that takes systematic errors into account. In Article I we document a code for estimating stellar 
parameters from spectra observed with UVES. We use a set of benchmark stars to evaluate the 
performance of the pipeline, and develop a general method for benchmarking similar codes. In 
Article II we estimate elemental abundances in spectra in the globular cluster M30 as a means 
of estimating the Parameter T0 in AddMix models of stellar evolution. At the same time we 
develop a general method for taking into account systematic errors in derived abundances 
when estimating parameters in stellar evolution models. In Article III we test whether it is 
possible to use machine learning to estimate alpha abundances from low-resolved BP/RP 
spectra from the Gaia satellite.
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1. Introduction

Stellar spectroscopy is the field of astronomy that uses the spectra of stars as
a tool for measuring their properties. These properties tend to be divided into
on the one hand the abundances of different elements, and on the other hand
the stellar parameters, such as temperature and surface gravity. These can in
turn be used to make inferences about processes inside the stars.

The field is relatively old, having appeared thanks to some technological
breakthroughs in the late 19th century. However, it has recently undergone
several observational and theoretical advances, which have themselves been
driven by technological development. One of the major observational im-
provements is the development of multifibre spectrographs. These allow the
measurement of spectra from hundreds of stars in the same amount of obser-
vation time as was previously necessary to observe just one. This has greatly
increased the amount of data available to spectroscopists. Two of the ma-
jor theoretical improvements consist of increasingly transitioning from one-
dimensional to three-dimensional models of stellar atmospheres, and loosen-
ing the assumption of Local Thermodynamic Equilibrium (LTE). These have
also become possible by improvements in technology. While it has always
been possible to write down such models on paper, it is only recently that com-
puters have become fast enough for them to become computationally tractable.

That said, a scientific field does not only consist of observation and theory.
An equally important part is the methods used to compare theory to observa-
tions. We believe that the development of such methods has somewhat lagged
behind the observational and theoretical improvements. This is a problem for
two reasons: Access to larger amounts of data means that the impact of statis-
tical errors shrinks, while the systematic errors tend to stay the same. At the
same time, improvements in theory means that we will be chasing increasingly
subtle effects in our data. At worst, this can lead to purported discoveries that
in reality are only measurements of the internal errors of the method used.

This problem is obviously too broad to tackle in its entirety. In this the-
sis, we will propose improved statistical methods for handling two common
problems in stellar spectroscopy: Estimating the performance of a pipeline
for estimating stellar parameters by fitting synthetic to observed spectra, and
estimating a parameter based on measured stellar abundances. We will also
explain how to use the techniques for broader classes of mathematically simi-
lar problems.

This line of argument will form one of the main threads running through this
thesis. The seconds thread will concern the field of Galactic archaeology. This
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is the field of astronomy that attempts to reconstruct the history of the Milky
Way. In this field stellar spectroscopy is one of the most widely used tools,
since spectroscopic measurements can be used to distinguish populations of
stars that otherwise appear similar. When used together with kinematic studies
such as the Gaia survey, this can be used to infer the formation history of those
stellar populations.

Since texts are usually easier to follow if they start with the concrete and
then go on to the abstract, we will begin with outlining the field of Galactic
archaeology in Chap. 2. Chapter 3 describes the spectroscopic techniques used
in the articles included in the thesis. We attempt to do this in enough detail
for it to be useful to another beginner spectroscopist. Chapter 4 describes
the statistical techniques that we developed for the articles included in the
thesis. In some cases we outline ways of generalising those techniques to
seemingly very different research questions. Chapter 5 summarises the three
articles included in this thesis. Chapter 6 summarises our conclusions, and
gives a final outlook. Chapter 7 briefly lists my contributions to the articles
included in this thesis. Chapter 8 gives a Swedish summary of the thesis.
Chapter 9 tries to acknowledge everyone who has in some way contributed to
the thesis. Chapter 10 contains two appendices, which discuss issues that have
no logical place elsewhere in the thesis, but I found too interesting to cut out
entirely. My own scientific work is mostly contained in Chaps. 4, 5, and 10,
while Chaps. 2 and 3 are intended to provide background knowledge.
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2. Galactic archaeology

This chapter attempts to outline the field of Galactic archaeology. Section 2.1
describes the current distribution of directly or indirectly observable matter
within the Milky Way. Section 2.2 describes how we arrived at our current
picture of the Milky Way, and the gaps in our knowledge. Section 2.3 describes
the ongoing work to get a more detailed picture of Galactic history, using
astrometric and spectroscopic studies.

2.1 The observable geometry of the Milky Way
We have a fairly good picture of the current shape of the Milky Way. Much
of the Galaxy can be observed using telescopes, working either in the optical
or some other wavelength range. There are some regions which we cannot
see, for the simple reason that there is too much material in the way, but in
practise this does not matter much: The regions we can see show a very clear
symmetry, as do other galaxies, which means that we can assume that the hid-
den regions look qualitatively similar to what we can see. We conventionally
divide the Galaxy into three main structures: the Disk, the Bulge and the Halo,
shown schematically in Fig. 2.1 These can in turn be divided into several sub-
structures (Schneider, 2015, Sect. 1.2.1).

The Disk is the approximately circular portion of the Galaxy, containing
most of the stars. There are two different ways one could divide the Disk into
sub-structures. The most visually obvious distinction is between the spiral
arms and the inter-arm region, shown in Fig. 2.2. The spiral arms are believed
to be temporary density waves in the rotating galaxy. That is, as stars orbit
the Galaxy they will pass in and out of the spiral arms, but during their pas-
sage through an arm they slow down, and this is what creates the arm-shaped
overdensity. The reason that the arms are brighter than the inter-arm regions is
not only that the stars are more densely packed, but also because they are re-
gions of star formation. Since the brightest stars are also the most short-lived,
they typically die before the density wave passes, leaving the inter-arm region
populated mostly by long-lived, faint stars (Schneider, 2015, Sect. 3.3.6).

While the spiral arms are visually striking, they are not of great interest to
us as stellar spectroscopists, since they are a purely kinematic phenomenon.
We are more interested in the distinction between the thick disk, old thin disk
and young thin disk. This is not obvious from pictures of the Galaxy, but the
distribution of stars can be described well in terms of three distinct groups.
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Figure 2.1. Schematic structure of the Milky Way galaxy, seen from the side. I: Bulge.
II: Young thin disk. III: Old thin disk. IV: Thick disk. V: Halo. Dark matter halo not
shown.

14



Figure 2.2. Structure of the Milky Way galaxy, seen from above. Image credit:
NASA/JPL-Caltech/ESO/R. Hurt
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Each one of these has a number density that drops off exponentially with the
perpendicular distance z from the Galactic plane. That is, they drop off as
∝ exp(|z|/h), where h is the scale height of the population. For the thick disk,
the scale height is 1500pc, while for the old thin disk it is 325pc and for the
young thin disk it is 100pc (Schneider, 2015, Sect. 2.3.1). For reasons we will
see, it is believed that the thick disk formed first, followed by the old and then
the young thin disk.

The Bulge is the central part of the Galaxy. It is bar-shaped and is a bit
thicker than the old thin disk, at a scale height around 400pc. It is considerably
redder than the rest of the Galaxy (Schneider, 2015, Sect. 2.3.5). Near the
centre of mass is the supermassive black hole Sagittarius A* (Schneider, 2015,
Sect. 2.6.3).

The Halo is an approximately spherical distribution of mass around the
Galactic centre. It is fairly dim since it contains very few stars, but it does
contain most of the Galactic mass, in the form of dark matter. It is conven-
tionally divided into the stellar halo, which is made up of stellar clusters and
lone stars, the Galactic corona, which is made up of hot gas, and the dark
matter halo (Schneider, 2015, Sects. 2.3.6, 3.3.7, 7.6). We do not currently
know what the latter is made of (Schneider, 2015, Sect. 1.1). ‘Dark matter’
is essentially a placeholder term for “something which we cannot observe, but
which based on its indirect effect seems to behave mostly like matter”.
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2.2 Known and unknown Galactic history
Currently, we understand the history of the Universe fairly well on the scale
of stars, on the scale of atoms, and on scales larger than galaxies. On the scale
of the Galaxy itself, we still only know the broad brush-strokes.

2.2.1 Stars
Stars form when molecular gas clouds undergo gravitational collapse: When
the outwards force from the gradient in the gas pressure and the inwards force
from gravity cancel out in a gas cloud, it is in hydrostatic equilibrium. This
equilibrium is stable to small perturbations, as the gas pressure gradient and
gravitational pull both increase if the cloud contracts, and decrease if it ex-
pands. However, there is a tipping point beyond which a cloud contracts so
quickly that the increase in the pressure gradient cannot keep up with the in-
crease in gravitational pull, since changes in gas pressure can only propagate
at the speed of sound in the gas. Once this happens, a runaway process begins
where the cloud keeps contracting until counteracted by some new source of
outwards pressure1. The tipping point can be alternately be described in terms
of the Jeans mass – the mass above which a spherical gas cloud with a par-
ticular temperature and particle density will collapse – or the Jeans radius –
the radius below which the spherical gas cloud will collapse. Usually, this
process is triggered by some external perturbation that compresses the cloud2,
but it can also happen through a cloud simply gradually cooling down, since
the Jeans mass increases with temperature. This process of gravitational col-
lapse only stops when individual clumps of gas in the cloud become so dense
that they start undergoing nuclear fusion. That is, nuclei start to fuse, forming
other nuclei that have more binding energy per nucleon. This releases energy
which is emitted as electromagnetic radiation, including visible light. This
creates a stronger pressure gradient, which halts the collapse. The radiation
pressure from these newly-formed stars also starts to disperse what remains of
the cloud (Carroll and Ostlie, 2014, Sect. 12.2).

The mass of a star determines its future life-span. As long as it has hydrogen
to burn, it will remain in more-or-less hydrostatic equilibrium, as the outwards
force from the gradient in gas pressure counteracts the inwards pull of gravity.
But at some point, it will exhaust the supply of hydrogen in the regions hot
and dense enough for fusion to happen (Carroll and Ostlie, 2014, Chapter
10). This will tend to be quicker the more massive the star is: For a 60M�
solar-mass star it takes three million years, for a star like the Sun it takes ten
billion years, and for a 0.1M� it takes in excess of the current age of the
Universe (Bertulani, 2013, Table 1.1).

1Assuming it stops at all, that is. Supermassive black holes have formed through direct collapse
of gas clouds in the early universe (Begelman et al., 2006).
2Hence the aforementioned increased star formation in the Galactic arms.
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In stars above 0.25M�3, the helium accumulates in the centre of the star,
forming an inert core while hydrogen fusion shifts to a shell around the core.
What happens near and around the core is necessary to understand the future
development of those stars. Initially, the helium itself will not undergo fu-
sion. This means that the core does not itself generate heat to counteract the
pull of gravity. In stars above 1.8M�, the gas pressure gradient is enough to
counteract gravity, but in the stars below the core will contract until the grav-
ity is counteracted by the electron degeneracy pressure – the pressure due to
Pauli’s exclusion principle preventing two fermions from occupying the same
quantum state (Carroll and Ostlie, 2014, Chap. 13).

For a star between 0.25-8M�, the shift of hydrogen fusion away from the
core causes the star to expand and become brighter but colder, turning it first
into a subgiant and then into a red giant (Carroll and Ostlie, 2014, Chap. 13).
If the stellar mass is above a threshold that lies somewhere in the range 0.25-
0.5M�, the core will at some point start to undergo helium fusion (Laughlin
et al., 1997). In the stars light enough for the core to be degenerate, the mate-
rial initially cannot expand in response to the rising temperature, which causes
much of the core to ignite practically all at once in a helium flash. In heavier
stars, the onset of helium fusion is a more gradual process. As the star con-
sumes helium, it will form a core of oxygen and carbon, and fusion will shift
to a shell around the core. The star will then shift from hydrogen fusion and
very rapid helium fusion, becoming an asymptotic giant branch star (AGB
star). During this variable phase, strong stellar winds will eject much of the
material of the star. The outer layers will form a planetary nebula around the
star, while the remaining core becomes a white dwarf – it will be small and
initially very hot, but it will no longer sustain nuclear fusion and is held up by
electron degeneracy pressure (Carroll and Ostlie, 2014, Chap. 13).

The stars lighter than about 0.25M� have a less dramatic life cycle: Since
convective flows move around material throughout the entire star they never
form a distinct core. Hence, they keep burning hydrogen until the entire mass
of the star turns into helium. During this process they are theoretically ex-
pected to first heat up, becoming blue dwarfs before cooling into white dwarfs.
However, this has not yet been observed, since the process takes longer than
the current age of the Universe (Adams et al., 2005, Sect. 3).

For a star above about 8M�, the end of the life cycle is considerably more
dramatic, ending in some form of core-collapse supernova – a release of en-
ergy so sudden that it tears the star apart, possible leaving a small remnant
behind. The pressure and temperature in the core eventually become high
enough for the carbon to begin fusion, forming neon, sodium, magnesium and
oxygen. In stars above about 10M�, gradual fusion will continue and produce

3All stellar mass thresholds in this section are fairly approximate. Different sources give slightly
different numbers, depending on the state of the art of stellar evolution modelling when they
were written.
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heavier elements, forming a structure of nested shells in the core. However,
this process cannot form elements heavier than iron in appreciable amounts:
Above this atomic number, the binding energy per nucleon decreases4, mean-
ing that fusion consumes energy rather than releasing it. Instead, a degenerate
iron core will form at the centre of the star. Once this passes a threshold
mass, two things start to happen: There is widespread electron capture as
electrons and protons start to merge into neutrons and neutrinos. There is also
photodisintegration, as highly-energetic photons break apart massive nuclei,
being absorbed in the process. Both of these remove much of the pressure that
used to resist the gravitational pull, causing the core of the star to collapse.
This usually results in the star being torn apart by an explosion, and usually
leaves behind some kind of remnant (Carroll and Ostlie, 2014, Chap. 15). In
a narrow mass range somewhere around 10M�, the supernova will instead
occur when the degenerate oxygen-neon-magnesium core starts to undergo
electron capture, which causes it to collapse while undergoing rapid nuclear
fusion (Nomoto and Hashimoto, 1986, Sect. VI).

The type of remnant depends on the mass of the remaining material, which
depends on the original mass of the star, and to some extent on chance. Below
2.2-2.9M�, depending on the rotation speed, the remnant will form a neu-
tron star. That is, the protons will merge with the electrons to form neutrons,
causing the atomic nuclei to merge into a single mass of neutrons, supported
by neutron degeneracy pressure, analogously to the electron degeneracy pres-
sure in the white dwarf (Carroll and Ostlie, 2014, Chapter 16). If the mass is
above the threshold, even this will be insufficient to support the star, and it will
collapse into a black hole (Carroll and Ostlie, 2014, Chapter 17).

A common tool for visualising the lives of stars is the Hertzsprung-Russell
Diagram5 (HR diagram) – a scatter plot of stars with axes of luminosity and
effective temperature6. We show an example in Fig. 2.3. On the HR-diagram,
the positions of newborn stars of different mass forms a curve called the main
sequence (Carroll and Ostlie, 2014, Sect 8.2). When they become red giants
they move upwards to the Red Giant Branch (RGB) above (Carroll and Ostlie,
2014, Sect 13.2).

4It is sometimes stated that iron-56 is the element with the most binding energy per nucleon.
This is not quite true: Nickel-62 has more, but it so happens that there are no reaction pathways
that can produce it in large amounts (Shurtleff and Derringh, 1989).
5It should probably be called the Rosenberg-Hertzsprung-Russell diagram, considering Hans O.
Rosenberg’s important work, but even getting Ejnar Hertzsprung’s contributions acknowledged
took more than a decade of argument within the astronomical community, during which many
would insist on only saying Russell diagram (Valls-Gabaud, 2014, Sect. 2).
6Sometimes, absolute magnitude is used instead of luminosity and B−V colour instead of ef-
fective temperature, making a colour-magnitude diagram instead. Since there is a monotonous
relationship between the quantities, this is essentially a rescaled version of the corresponding
HR diagram.
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Figure 2.3. Example Hertzsprung-Russell diagram. Image credit: Richard Pow-
ell. Retrieved June 15, 2021 from Wikimedia Commons, https://commons.
wikimedia.org/w/index.php?curid=1736396. Used under Creative Commons
Attribution-Share Alike 2.5 Generic license.
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2.2.2 Stellar clusters and stellar atmospheres
The group of stars created when a molecular gas cloud collapses and disperses
is called a stellar cluster. We typically distinguish between the globular clus-
ters, which formed early in galactic history, and the more recent open clusters.
The globular clusters are usually found in the galactic halo, while the open
clusters are more common in the galactic disk (Carroll and Ostlie, 2014, Sect
13.3). Open clusters typically disperse in less than 300Myr since they are very
loosely gravitationally bound (Schneider, 2015, Sect. 2.3.3).

The newborn stars will vary greatly in mass following a statistical distri-
bution called the initial mass function. Since the stars have approximately
the same age, they will approximately trace out a curve in the HR diagram
called an isochrone. The isochrone will have a distinct hook somewhere at the
hot end, marking the temperature above which all stars have already left the
main sequence. This feature is called the Turn-off Point (TOP). Isochrones are
sometimes used in the technique of isochrone fitting for estimating the ages of
stellar clusters (Carroll and Ostlie, 2014, Sect 13.3). This technique can also
be used to estimate temperature and other parameters describing the stars, as
discussed in Sect. 3.5.1.

Aside from being approximately the same age, stars in a cluster typically
start out chemically similar, since the gas in the cloud is fairly homogeneous.
However, they do not start out chemically identical, and they become more
distinct over time. The reason that they are not identical from the start – other
than inhomogeneities in the cloud – is that the stars do not form exactly at
once. There is enough time for short-lived members of the first generation
of stars to die and eject heavier elements into the cloud. In globular clusters
this creates the phenomenon of anticorrelations, where an excess in one ele-
ment statistically correlates with a deficiency in another, since nuclear fusion
transforms the latter element into the former (Cohen, 1978).

There are two processes that make the stars more distinct over time. The
obvious one is the formation of new elements in the stellar core. However,
this is uninteresting to us as spectroscopists, since it does not affect the stellar
atmosphere, which is what we can actually observe. The only exception to this
is the phenomenon of dredge-up, when convective flows reach so deep into the
star that they start pulling up elements from the core. What mostly changes the
stellar atmosphere is the tendency for elements to separate by depth over time:
Heavier elements tend to sink – gravitational settling – and opaque elements
tend to rise – radiative acceleration. These tendencies are counteracted by the
convective motions in the atmosphere, which mix up the chemical composition
again. The relative effectiveness of these processes depends on the mass of the
star, which means that in a stellar cluster the observed elemental abundances
will vary with the temperature, or some other proxy for mass (Michaud, 1970;
Richard et al., 2001).
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However, stellar evolution models which take all of these processes into
account are not able to reproduce the abundances actually observed in stel-
lar clusters. They invariably predict variations in abundance that are much
larger than those actually seen. There appears to be some Additional Trans-
port or Mixing Process (AddMix) that evens out the abundances even more
than convection can do on its own. This process is not well understood7 but it
is possible to reproduce observed abundances fairly well by postulating that it
takes the form of some kind of turbulent diffusion, with a diffusion coefficient
DT such that

DT ≡ ωDHe (T0)

(
ρ (T )
ρ (T0)

)−n

(2.1)

where ω is some real number, T0 is some reference temperature DHe (T0) is
the atomic diffusion coefficient of helium at the temperature T0, ρ (T ) is the
density at some temperature T , and n is some integer8 (Richer et al., 2000;
Richard et al., 2005). So far, it has been possible to constrain n to 3 and ω to
400 (Proffitt and Michaud, 1991; Richard et al., 2002, 2005). In Article II we
attempt to constrain T0 for the cluster M30, and find that it is somewhere in
the range log10 (T0/ [K]) = 6.09-6.2.

2.2.3 Elements
The matter in the early Universe was almost exclusively hydrogen, helium
and lithium. It was formed through Big Bang nucleosynthesis (BBN): The
collision of elementary particles in the first minutes after the Big Bang. While
it might seem difficult to model events very soon after something as dramatic
as the Big Bang, the early Universe was actually a fairly uncomplicated place,
consisting only of a homogeneous, isotropic gas. It is only afterwards that
complicated structures have developed. Because of that, the processes behind
BBN are mostly well understood, and current models can reproduce observed
abundances relatively closely (Coc and Vangioni, 2017).

The exception to this is lithium. Attempts at measuring primordial lithium
abundances consistently end up with values around a factor of 3 below those
predicted by BBN models. This is known as the cosmological lithium prob-
lem. There are many proposed solutions, which fall into four categories that
are not mutually exclusive. Some solutions propose that our observations are
simply flawed, so that measurements of lithium have systematic errors which
make them appear lower than they are (Fields, 2011). For example, Wang
et al. (2021) looks at how much lithium abundance estimates are affected by

7We describe it with a deliberately vague name to reflect the fact, but some authors use turbulent
mixing instead.
8Note that this formula is more general than it might seem: One could drop the interpretation
of DHe (T0) as having anything to do with diffusion of helium and simply write Eq. (2.1) as
DT = k (ρ (T )/ρ (T0))

−n, where k is some quantity with dimensions of length2/time.
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the approximations of one-dimensional stellar model atmospheres and Local
Thermodynamic Equilibrium (LTE)9. The next two categories propose that
our BBN models are flawed. At the simplest, parameters in the models could
be poorly measured. For example, Cyburt and Pospelov (2012) look at a
poorly-constrained nuclear energy level in boron-9, which could contribute
to enhancement of reactions that destroy beryllium-7, which otherwise pro-
duces lithium. At the more intriguing, it could be that accurate modeling
requires taking into account physics beyond the standard model. For exam-
ple, Jedamzik and Pospelov (2009) look at how different models of dark mat-
ter could introduce reaction pathways that destroy lithium or prevent it from
forming. The fourth category postulates that the measurements of current
abundances and BBN model predictions of primordial abundances are both
correct, but that some astrophysical process has since changed the abundances
from the primordial values. For example, Piau et al. (2006) proposes that
Pop III stars destroyed much of the primordial lithium.

This thesis does not attempt to resolve the cosmological lithium problem,
but we touch upon it in Article II. This article is part of the article series Atomic
diffusion and mixing in old stars. The article Gruyters et al. (2016) – the sixth
paper in that series – did study lithium and estimated primordial abundances of
2.48±0.10dex in the globular cluster M30, where BBN models would predict
2.72dex. However, it did so assuming AddMix with log10 (T0/ [K]) = 6.0.
Since our Article II also investigated M30 and found a higher value of T0, we
had to revise the estimated primordial abundance to 2.42-2.46dex, making the
measured discrepancy even worse.

Practically all elements heavier than lithium have since been formed through
stellar nucleosynthesis: As described above, the fusion processes in the stellar
core can create elements up to and including iron. The heavier elements are
created by neutron capture, as nuclei absorb neutrons. Depending on whether
the neutron flux is strong enough for unstable nuclei to decay between neu-
tron captures, we distinguish between the rapid neutron-capture process (r-
process) and the slow neutron-capture process (s-process) (Carroll and Ostlie,
2014, Sect 16.3). r-process elements are probably created in neutron-star
mergers and some supernovæ while s-process elements are mostly created in
AGB stars. In both cases, the deaths of the stars cause the elements to be
injected into the interstellar medium (Freiburghaus et al., 1999; Heiter, 2017).

2.2.4 Galaxies
In general, galaxies are believed to form through the gravitational collapse of
clumps of dark matter attracting primordial gas created in the Big Bang. This
gas invariably has some angular momentum to begin with – it would be an
extreme coincidence for the net moment of any large lump of matter to be

9We discuss these approximations in more detail in Sect. 3.8
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exactly zero – and as it contracts the moment of inertia decreases, forcing the
angular velocity to increase in order to conserve angular momentum. As the
material starts to spin it acquires a disk shape, through the same process as
flattens spun dough into a pizza. Since the dark matter does not interact by
anything other than gravity, it keeps its original shape and forms a dark halo
around the galaxy (Schneider, 2015, 10.4.1).

As described above, the primordial gas starts out consisting almost only
of hydrogen, helium and lithium, but gradually gets enriched with heavier
elements as successive generations of stars form and die.

Several simulations have been made that attempt to describe this process
from first principles, such as the Millenium Run and the Illustris project.
These simulations have managed to reproduce the large-scale structure of the
Universe fairly well. They even lead to the formation of structures that are
clearly galaxy-like. Unfortunately, while they often have some kind of spi-
ral structure, the detailed morphology looks very different from any actual
galaxy (Lemson and Virgo Consortium, 2006; Vogelsberger et al., 2014; Genel
et al., 2014)

2.2.5 The Milky Way
The Milky Way is believed to have formed through the same process as other
Galaxies. As the primordial gas started undergoing gravitational collapse, it
formed the first generation of stars, the Population III stars (Pop III) (Schnei-
der, 2015, Sect. 10.3.2). So far, none of these stars have been observed,
which is a natural consequence of the early Galaxy being both hot and metal-
poor: The Jeans mass increases with temperature, meaning that the only stars
that could form were very massive. When that first generation of stars died,
they seeded the interstellar medium with elements, which meant that the next
generation, the Population II stars (Pop II), were formed from gas that was
metal-poor but not entirely free of metals (Bromm et al., 2009). Many of these
stars still exist, but those that have since died went on to enrich the Galac-
tic medium with more metals. From this gas the Population I (Pop I) stars
formed, to which the Sun belongs (Schneider, 2015, Sect. 2.3.2).

This happened concurrently with the flattening of the disk, so that Pop II is
mostly found in the Halo, while Pop I is mostly found in the disk. In addition
to that, the stars in the Thin Disk are more metal-rich than those in the Thick
Disk. The reason for this is not completely clear: The straightforward expla-
nation would be that there was a gradual flattening of the gas component of the
Galactic disk, so that the Thick Disk stars have their current greater velocity
dispersion because they were originally created from gas with a greater veloc-
ity dispersion, but this may not be the case. It could be that the Thick Disk
stars originally had trajectories similar to the current Thin Disk, but that over
time they have been scattered by more close encounters with other stars, which
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most Thin Disk stars have not had the time for yet. It is also possible that the
Thick Disk was formed by several dwarf galaxies being absorbed by the early
Galaxy (Schneider, 2015, Sect. 2.3.2). It may even have been formed by
the absorption of a single dwarf galaxy dubbed Gaia-Enceladus (Helmi et al.,
2018).

This gives us a general picture of Galactic history, but note that it is still
fairly vague. Based on the information given here, an astronomer could make
some very general inferences, such as: The more metal-poor a star is, and the
more it moves transversely to the Galactic plane, the more likely it is to have
formed early, and vice-versa. To get a more detailed understanding, we need
to make use of several complementary observational techniques, which are
described in the next section.
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2.3 Inferring the details of Galactic history
In principle, given only the positions and velocities of the stars in the Milky
Way, it should be possible to go quite far in reconstructing the history of the
Galaxy. After all, given this dynamic information one can simply describe the
Galaxy as a large number of point masses following Newton’s laws, meaning
that it should be possible to ‘rewind’ Galactic history at least some distance
in time. The main problem would seem to be that far enough back, stars ‘col-
lide’ in the gas clouds that birthed them, which cannot be described purely
as an interaction of point masses. In practise, even within the regime where
stars can be described as point masses, this approach would very quickly run
into difficulties: It turns out that, for most initial conditions, a system of more
than two gravitationally interacting bodies is a chaotic system. That is, it is a
system such that if the state of the system is known at time t0 with some un-
certainty, then an extrapolation forward or backwards to some time t will have
an uncertainty that is exponential in |t− t0|. This means that it is practically
impossible to make measurements exact enough to allow meaningful extrapo-
lations outside a fairly narrow span of time (Goldstein et al., 2002, Chap. 11).
Hence, some additional constraint is needed.

One such constraint is given in the form of chemical information. When
stars are formed, they form in clusters, from material that is more-or-less
chemically homogeneous. These clusters tend to gradually disperse, but the
chemical similarities mostly remain, which can be used to identify their com-
mon origin. This is not completely foolproof, though: There are occasional
cases of doppelgänger stars, which by chance happen to be chemically very
similar to one another (Ness et al., 2018).

2.3.1 Astrometric surveys
Large-scale surveys measuring both 3D positions and 3D velocities of stars
appear surprisingly late in the history of astronomy, given that the scientific
question is fundamentally just “Where are the stars and where are they go-
ing?” There turn out to be basic technical reasons why this is so hard to do.
Purely positional surveys in 2D have been made through all of human history
– they began the moment anyone in pre-history noticed that the sky looks sim-
ilar from night to night, and started memorising the positions of the stars –
but it is very difficult to measure either the distance to a star or its velocity:
In principle, estimating the distance to a star is just a matter of trigonometry.
Given a well-defined reference frame, if one measures the direction to the star
at one point in time and waits half a year and repeats the measurement, the
angle between the two lines and the perpendicular distance traversed between
the measurements is enough to calculate the distance to the star. In practise,
this angle is so small that prior to the 20th century it was only possible to do
for a handful of very nearby stars (Carroll and Ostlie, 2014, Sect. 3.1). Once
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the distance is known, measuring the transversal component of the velocity
of a star is in principle just a matter of observing how the direction from a
particular point in the Earth’s orbit to the star changes over time – the proper
motion (Carroll and Ostlie, 2014, Sect. 1.3). The radial component of the ve-
locity can be estimated by observing the Doppler shift in the stellar spectrum,
which is simple as long as the stars are bright enough for spectral lines to be
visible (Carroll and Ostlie, 2014, Sect. 5.1).

From the ground, it is almost impossible to measure radial distance and
transverse velocity for stars that are not close to the Earth. Irrespective of
the technology used, atmospheric effects practically put a hard limit on how
small angles can be resolved. Hence, large-scale kinematic surveys of 3D po-
sitions and 3D velocities have only become possible through the use of space
telescopes (Gaia Collaboration, 2016b, Sect. 1).

The first large-scale space-based survey measuring position in 3D and ve-
locity in 2D ran in the years 1989-93, when the HIgh Precision PARallax COl-
lecting Satellite (HIPPARCOS) was launched by ESA. This led to the publica-
tion of two star catalogues: The HIPPARCOS Catalogue, which gives precise
3D positions and 2D velocities for 118200 stars; and the Tycho-2 Catalogue,
which gives less precise data for 2.5 million stars10 (Perryman et al., 1997;
Høg et al., 2000).

The first, and so far only, space-based survey measuring both position and
velocity in 3D began in 2013, with the launch of the Gaia11 space observa-
tory (Gaia Collaboration, 2016b). At the moment of writing, this mission is
still ongoing, and is expected to continue for as long as Gaia is able to keep
functioning – it has already exceeded its initial expected lifespan, but in 2024
it will have to shut down for lack of fuel.

The data collection of Gaia is a gradual process. It is not the case that dur-
ing one month, Gaia makes an authoritative measurement of the positions and
velocities of a certain number of stars, and the next month it goes on to mea-
sure a different set of stars. Rather, Gaia is constantly rotating, and as its field
of view sweeps across the sky it incrementally improves its positional data
for the stars covered. With a single observation of a star, it is impossible to
say anything more than the 2D position. After two observations, the distance
and transversal motion are still degenerate. But as the number of observations
increases, the error bars on those parameters shrink and the correlations be-
tween them will decrease. Over time, more and more stars move above the
quality threshold where the data can be used in scientific applications (Gaia
Collaboration, 2016b).

10This supercedes the previous Tycho Catalogue containing a subset of 1.0 million out of those
stars (Høg et al., 1997).

11The name is formally not an acronym: It was originally derived from Global Astrometric Inter-
ferometer for Astrophysics, during early planning stages when it seemed that an interferometric
method might be used. When the decision was made not to use interferometry, the name was
kept.
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As data has been collected and analysed, there has been a steady output of
public data releases. Data Release 1 (DR1) of 2016 contained one sample of
Gaia-only data, and a sample which combined information from Gaia and the
Tycho-2 catalogue. The Gaia-only data gave 2-dimensional positions for a bil-
lion objects, while the Gaia-Tycho data gave 3D-positions and 2D-velocities
for 2 million objects (Gaia Collaboration, 2016a). Data Release 2 (DR2) of
2018 is Gaia-only, and contains 3D-positions and 2D-velocities for 1.3 billion
objects and fully 3D data for a subset of 7 million of them (Forveille, Thierry
et al., 2018; Gaia Collaboration, 2018, a). The Early Data Release 3 (EDR3) of
late 2020 contains fully 3D data for 882 million objects and only 3D-positions
and 2D-velocities for another 585 million (Gaia Collaboration, 2021, b). At
the time of writing, the full Data Release 3 (DR3) is expected to be finished in
the middle of 2022.

2.3.2 Spectroscopic surveys
So far, the only way of studying the chemical composition of stars other than
the Sun is through spectroscopy. We describe the technical details in Sect. 3,
but the basic principle is fairly uncomplicated: The spectrum of a star is to
first approximation a black body curve, since the deeper regions of the atmo-
sphere are dense enough to function like a black body. Overlaid on this black
body curve are absorption lines, coming from atoms, ions and molecules in
the less dense region of the outer atmosphere. These absorption lines have
wavelengths that are unique to the species in question. The overall shape of
the line is a function of the number density of that species – as well as the
temperature and other physical properties of the star, collectively called the
stellar parameters. This means that if the stellar parameters are known, it is in
principle possible to use one or more absorption lines of a species to estimate
the abundance of that species. The stellar parameters can in turn be estimated
through several methods, including spectroscopy.

Unlike kinematic observations, high-quality spectroscopy can be made from
the ground. Hence, there have been multiple large-scale spectroscopic surveys.
During 2003-13, the RAdial Velocity Experiment (RAVE) used the Six De-
gree Field (6dF) multiobject spectrograph at the Anglo-Australian Telescope
(AAT) of the Anglo-Australian Observatory/Australian Astronomical Obser-
vatory (AAO)12 to observe more than 400000 stars. This was in some strict
sense a kinematic survey, since the main goal was to use the Doppler shift of
the spectra to estimate radial velocities, but as a happy side effect it was possi-
ble to use the spectra to estimate stellar parameters and abundances (Steinmetz
et al., 2006). As of 2021, the survey is on its sixth data release (Steinmetz et al.,
2020b,a). During 2011-14, the Apache Point Observatory Galactic Evolution
Experiment (APOGEE) used the Sloan 2.5m Telescope to observe spectra of

12The name was changed in 2010, preserving the acronym.
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146000 stars. Unlike RAVE, this survey was dedicated specifically to esti-
mating chemical abundances (Majewski et al., 2017). Starting in 2013, the
ongoing GALactic Archaeology with HERMES (GALAH) has been using the
High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on
the AAT to observe more than 500000 stars (Freeman et al., 2013). At the time
of writing, the survey is on its third data release (Buder et al., 2021).

During 2011-2018 Gaia-ESO Survey (GES)13 has been complementing the
astrometric Gaia survey with ground-based observations (Gilmore et al., 2012;
Randich et al., 2013). It uses the spectrographs GIRAFFE and UVES, which
we describe in more detail in Sect. 3.9. In brief, UVES has better resolution
than GIRAFFE, but requires more time to observe the same number of spectra.

The GES spectra are not analysed by a single method. Instead, for either
spectrograph there are several nodes, each tasked with estimating stellar pa-
rameters14 and abundances for the spectra. These estimates are then combined
in a way that uses scatter between and internal to nodes to estimate their reli-
ability, and then uses this to estimate the uncertainty in each final abundance
estimate. The underlying assumption is that since the major source of errors
in spectroscopically determined quantities is not noise, but systematics due to
choices in the analysis method, the only way to robustly estimate the uncer-
tainties in these quantities is through consulting multiple spectroscopists and
looking at the scatter between their results.

The author participated in the Internal Data Releases 5 and 6 (iDR5, iDR6)
of GES as part of the Lund-Uppsala-MPIA-Bordeaux-ANU (LUMBA) node.
The LUMBA pipeline for estimating stellar parameters is described in Arti-
cle I, which is summarised in Sect. 5.1. We use a branch of the pipeline for
estimating abundances in Article II, which is summarised in Sect. 5.2. The
abundance pipeline is not described in quite as much detail, since it is concep-
tually similar but simpler in implementation: The stellar parameter pipeline
attempts to estimate six free parameters based on several spectral lines, while
the abundance pipeline uses a single spectral line at a time to estimate two free
parameters, an abundance and a generic broadening parameter.

13Note that this abbreviation is mostly used internally within the Gaia-ESO Survey, and rarely
appears in publications.

14See Sect. 3.2 for a detailed explanation of what stellar parameters are.
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3. Stellar spectroscopy

This chapter attempts to outline the field of stellar spectroscopy. It is written
to be useful to somebody who is just starting out as a spectroscopist. Hence, it
covers the basic theory, but occasionally jumps into technical details such as
commonly encountered problems in spectroscopy or commonly used tools for
spectroscopy.

Section 3.1 describes how stellar spectra form in the first place. Section 3.2
describes the parameters typically used in models of stellar atmospheres and
their resulting stellar spectra. Section 3.3 explains what the spectral contin-
uum is, and how spectra are normalised to the continuum. Section 3.4 de-
scribes how stellar spectra are used to estimate the stellar abundances of ele-
ments. Section 3.5 describes how stellar spectra are used to estimate the stellar
parameters described in Sect. 3.2. Section 3.6 describes common practical is-
sues that tend to appear during attempts at making the estimates described
in Sects. 3.4 and 3.5, and how we dealt with them in the articles included in
the thesis. Section 3.7 describes the basic principles behind models of stellar
atmospheres and their resulting stellar spectra, and how they are used in the
technique of spectral fitting. Section 3.8 describes some common approxi-
mations that are typically made when calculating stellar spectra. Section 3.9
describes the spectrographs UVES and GIRAFFE, which were used in Arti-
cles I and II. Section 3.10 describes the most important software tools that
were involved in making the articles in this thesis.
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3.1 The formation of stellar spectra
Stellar spectroscopy studies the spectra of the light1 coming from stars. For
our purposes, a spectrum is any measurement of the intensity of the light as
a function of wavelength, possibly subject to some normalisation factor that
may change slowly with the wavelength. Stellar spectra contain information
about the star, since they are shaped by the processes in the stellar atmosphere.

In a single atom2, the electrons can inhabit certain discrete energy levels.
Transitioning between two energy levels requires the atom to either absorb or
emit a photon, with an energy corresponding to the difference between the
energy levels. This means that in isolation, an atom will be able to emit and
absorb light of wavelengths that are specific to that element. A collection of
atoms which are relatively widely separated, such as a diffuse gas, will still
tend to absorb and emit light at those energy levels. Hence, if light with a
continuous spectrum shines through the gas, this will leave absorption lines at
those wavelengths. At these lines the intensity typically does not drop to zero.
Instead, the lines will have a depth and width that correspond to the tempera-
ture, density and other properties of the gas. As the abundance of an absorber
increases, a line will pass through the regime of being weak, saturated and
strong. In the weak regime, the line is narrow, and responds to increases in
abundance mostly by becoming deeper. In the strong regime, the line has
reached its maximum depth, and responds to increases in abundance mostly
by becoming even wider. In the saturated stage in between, the line responds
only weakly to changes in abundance (Gray, 2008, Chaps. 1 & 13).

In addition to this line absorption, two types of continuous absorption ap-
pear once the energies involved are high enough. If the light is sufficiently
energetic, it will be able to detach electrons entirely. This bound-free absorp-
tion affects all wavelengths shorter than a threshold given by the minimum
amount of energy needed. While a certain amount of energy is needed for this
to happen in the first place, once there is an appreciable number of free elec-
trons moving around in the gas, they will start to attach to atoms and form ions.
In many of these, such as H−, the extra electron is very loosely bound, mean-
ing that bound-free absorption will start to affect much less energetic light.
In addition the free electrons themselves will absorb light, creating free-free
absorption (Gray, 2008, Chap. 8).

Everything said so far applies as long as the atoms are sufficiently widely
separated that they can be treated in isolation. If two atoms are put in close
proximity, the energy levels will split, allowing them to emit and absorb light
of a larger number of discrete wavelengths. If very many atoms are put in close
proximity, the energy levels become so numerous that they are practically im-
possible to distinguish. Hence, a dense lump of matter will be able to emit or
absorb a continuous range of wavelengths (Holgate, 2009, Sect. 6.2.2). Using

1For brevity, I will say ‘light’ rather than ‘electromagnetic radiation’ throughout this chapter.
2For brevity, I will say ‘atom’ rather than ‘atom or ion’, except when the distinction is important.
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statistical mechanics, it is possible to show that the emitted light will follow
a black body spectrum: a spectrum with a very specific shape which is deter-
mined by the temperature of the material. The peak of this spectrum will be
pushed towards shorter wavelengths as the temperature increases, at the same
time as the intensity increases at every wavelength (Gray, 2008, Chap. 6).

In a stellar atmosphere, both of these occur at different depths in the at-
mosphere. In the deeper regions of the star, the material is dense enough to
emit light following a black body spectrum, which is reshaped by both line
and continuous absorption as it passes through the less dense outer layers of
the stellar atmosphere. The position and shape of these spectral lines in prin-
ciple contains information which elements exist in the star, as well as in what
amounts. Stellar spectroscopy is the craft of actually extracting that informa-
tion as accurately as possible.
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3.2 Stellar parameters
In principle, a stellar spectrum is a function of everything that happens any-
where in the outer layers of the star. In practise, it is possible to replicate
stellar spectra with models that only require the elemental abundances and
a handful of stellar parameters as their input. In our work, we use a set of
seven stellar parameters. Note that more complex models do not necessar-
ily require more parameters: As we discuss in more detail in Sect. 3.8, the
parameters below describing microturbulence and macroturbulence are nec-
essary in one-dimensional models of the stellar atmosphere, but disappear in
three-dimensional models.

3.2.1 Effective temperature
The effective temperature is defined as the temperature of a perfect black body
with the same power output per unit area as the star. Intuitively, this can be
thought of as a way of expressing whether a star is hot or cold overall, even
though the temperature varies from place to place. As a rough rule of thumb,
the spectral lines tend to be deeper and wider in colder stars, and shallower
and narrower in hotter stars. For most lines, there is some temperature above
which the line becomes so weak that it is effectively impossible to measure. As
a shorthand for this, we tend to say that lines ‘disappear’ at some temperature,
and that hotter stars have ‘fewer lines’ than colder stars.

Over the range of stars discussed in this thesis, roughly 4000-8000K, this
has the effect that very hot stars and very cold stars are both difficult to study.
In the hottest stars there are so few visible lines that there is almost no infor-
mation there to work with. In the coldest stars the lines are instead so many
and so broad that most wavelengths are covered by multiple overlapping lines,
which makes it difficult to untangle what is actually seen.

We denote the effective temperature with Teff and express it in units of
Kelvin. Note that some authors prefer to look at the 10-logarithm of the ef-
fective temperature divided by Kelvin. Since the temperatures of the stars we
study are within a factor of 2 of each other, there is no reason for us to do that.

3.2.2 Surface gravity
The surface gravity is defined as the acceleration due to gravity somewhere
in the outer layers of the star. The exact position is obviously a bit arbitrary
– stars have no clearly defined surface – but for the stars we deal with in this
thesis the transition region between the stellar atmosphere and the vacuum of
space is thin enough that it does not matter.

We denote the effective temperature with

logg≡ log10
(
a/
[
cm/s2]) (3.1)
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where a is the acceleration due to gravity. Strictly speaking logg is a di-
mensionless quantity, but it is conventional within spectroscopy to speak of
any quantity calculated by taking a dimensionful quantity, dividing it by some
unit, and then taking the 10-logarithm, as though it had a unit called dex.

3.2.3 Metallicity
The metallicity is a measure of the fraction of the star made up of elements
other than hydrogen and helium. Note that strictly speaking this is not a stellar
parameter but an average over abundances, but it is treated as a stellar param-
eter in most applications.

We denote it as

[M/H]≡ log10

(
NM

NH

/
NM,�
NH,�

)
(3.2)

where NM denotes the number density of metals in the stellar atmosphere, and
NH denotes the number density of hydrogen. NM,� and NH,� denote the
corresponding quantities in the Sun. Like the surface gravity, this is referred
to as having units of dex. Note that by this definition [M/H] = 0 exactly for
the Sun.

Note that sometimes [Fe/H] is used instead to denote the metallicity, rather
than specifically the abundance of iron. This is done in SME (described in
Sect. 3.10.2) as well as in Article I.

3.2.4 Macroturbulence
The macroturbulence parameter is used in one-dimensional models of stel-
lar atmospheres to capture the effects of some kind of large-scale motions in
the stellar atmosphere. The exact physical interpretation is still controversial,
enough so that we defer discussion of the matter until Sect. 3.8. The ob-
servable effect of the macroturbulence is fairly simple: Features of the spec-
trum are broadened by a radial-tangential kernel, which assumes Doppler shift
from a Gaussian distribution of velocities in the atmosphere.

We denote the macroturbulence with vmac, with units of km/s.

3.2.5 Microturbulence
Analoguously to the macroturbulence parameter, the microturbulence param-
eter is used in one-dimensional models to describe some kind of small-scale
motion. In Sect. 3.8 we discuss different interpretations of what physical phe-
nomenon it actually is that the parameter captures the effects of. Whatever the
origin, microturbulence affects the overall line shape in ways that cannot be
modelled as a simple convolution.
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We denote the microturbulence with vmic, with units of km/s. Note that
some other authors prefer ξ instead.

3.2.6 Projected rotational velocity
Most stars rotate to some extent. This only affects the radiation coming from a
particular point on the stellar surface by Doppler-shifting it. Overall, however,
it causes the features of the stellar spectrum to be more smeared out, as it
becomes a superposition of spectra from points moving towards and away
from the observer. The strength of the effect on the observed spectra depends
on the inclination between the rotational axis of the star and the line-of-sight
to the observer – the effect is strongest if the equator of the star is closest to
us, and non-existent if a pole is closest.

We denote the projected rotational velocity with vsin i, with units of km/s.
Note that some authors prefer vrot instead.

3.2.7 Radial velocity
As discussed in Sect. 2.3.1, the radial velocity of stars is usually measured
using spectroscopic methods, since it has the effect of uniformly Doppler-
shifting the spectrum. In a strict sense this is not a stellar parameter, since it is
not actually an intrinsic property of the star but an effect of the relative motion
of the Earth and the star, but it is convenient to treat it as a stellar parameter.

We denote the radial velocity with vrad, with units of km/s.
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3.3 Continuum normalisation
In this thesis we mostly study stellar spectra observed with the echelle spectro-
graphs UVES and GIRAFFE, which are described in Sect. 3.9. The intensity
measured with an echelle spectrograph is equal to the true intensity multiplied
by some factor, which varies slowly with the wavelength. Before it is possible
to use a spectral line for any kind of analysis, it is necessary to compensate
for this – to normalise the spectrum. Typically this is done by shifting the
measured intensity so that the intensity which would have been there in the
absence of spectral lines – the continuum level – is set to 1. This seemingly
trivial technical problem turns out to be surprisingly difficult to solve accu-
rately, and inaccuracies can have a strong impact on all subsequent analysis.

In the articles discussed in this thesis, continuum normalisation is done
by first throwing away the parts of the spectrum that are not actively used
in the analysis, keeping around each wavelength region of interest a segment
which is short enough that the continuum level is approximately linear. Then
two regions are selected on either side of each segment, in which the flux is
thought to be close to the continuum. A straight line is fitted to those points,
and the intensity is shifted so that the line has a constant intensity of 1. In some
situations, the assumption of local linearity breaks down, which we discuss in
Sect. 3.6.2.

In Sect. 4.6 we describe an algorithm we developed for Article I for select-
ing the wavelengths to be used in the continuum normalisation. In Sect. 4.2,
we describe the analysis we did for Article II of the impact of errors in the
continuum normalisation.
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3.4 Determining abundances
Within the context of Galactic archaeology, the stellar abundances are typi-
cally the quantities of interest. Estimating stellar abundances is also relatively
simple, but requires that somebody has already estimated the stellar parame-
ters – which we describe how to do in the next section.

If the stellar parameters are known, the shape of a spectral line is usually
an invertible function of the corresponding abundance: If the abundance in-
creases, the line will deepen and widen. The simplest, and oldest, method is to
simply look at the drop in integrated normalised flux of the line: the equivalent
width. With the improvement of models and computer hardware it has become
possible to attempt to estimate abundances by fitting a model spectrum to the
observed spectrum, so-called spectral synthesis.

In itself, determining stellar abundances from spectral lines is relatively
simple. However, there are many practical problems that can arise, which
we describe in Sect. 3.6. There is also the question of how to actually use
the abundance estimates afterwards. In Sect. 4.2 we describe the statistical
framework that we had to develop to use abundances to answer the science
case of Article II, which required us to take into account the systematic errors.

In some situations it is not possible – or simply not necessary – to know the
abundances of individual elements. It may be sufficient to determine the over-
all metallicity [M/H], which we defined in Sect. 3.2.3, or the alpha abundance.
The latter is denoted [α/Fe] and describes an average abundance over the ele-
ments oxygen, magnesium, silicon, sulphur, calcium, and titanium, which are
mainly produced by the alpha-capture process – absorption of helium nuclei.
In Article III, which we summarise in Sect. 5.3 we describe a method for esti-
mating [M/H] and [α/Fe] from Gaia spectra, which have too poor resolution
for individual spectral lines to be visible.
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3.5 Determining stellar parameters
Estimating stellar parameters is typically a more complicated process than es-
timating abundances, since very few spectral lines are sensitive to one param-
eter alone. It is necessary to either study several lines at once, after selecting
them so that the degeneracies are broken, or to avoid spectroscopic methods
altogether.

All lines are sensitive to Teff, in ways which are not degenerate with the
other parameters. Hence, it is usually not necessary to look for lines that
are specifically sensitive to that parameter. In fact, it may be inadvisable –
in Sect. 3.6.2 we describe a failed attempt at using specifically Teff-sensitive
lines.

Strong metal lines are typically sensitive to logg. However, they are also
sensitive to the abundance of the element in question, meaning that weak lines
have to be included in the analysis as well to break the degeneracy. In Paper I
we use calcium and magnesium lines for this purpose. In addition, we use
singly ionised iron lines, which are also sensitive to logg.

[M/H] can be estimated by looking at iron lines, since iron abundance is
usually a good proxy for the abundances of all elements. Neutral iron lines
are only sensitive to [M/H] while ionised iron lines are sensitive to logg as
well. That said, in the context of pure abundance estimation it is usually not
necessary to determine [M/H]. As long as the lines used in the abundance
determination are not blended, the overall metallicity is not very important.

Strong lines are sensitive to vmic, but weak lines are not. Hence it is neces-
sary to include both strong and weak lines to break the degeneracy.

vmac and vsin i can usually not be determined separately, unless the spec-
trum is very well resolved. In most applications they can be described with a
single kernel that describes their combined effect. Alone or combined, these
parameters conserve equivalent width, which means they are not degenerate
with the abundances, and can be determined simultaneously with abundances.
This is what we do in Article II.

vrad can usually be estimated by comparison to some other well-known
spectrum at rest wavelength. As long as the spectra have roughly similar pa-
rameters and abundances, there will be spectral lines in the same places, albeit
with different shapes. This can be used to fit vrad manually, visually compar-
ing the two spectra. In Paper II, we automatically calculate vrad by using a
cross-correlation, followed by χ2-minimisation.

3.5.1 Non-spectroscopic determination
For stars in a stellar cluster, it is possible to estimate stellar parameters us-
ing photometry instead of spectroscopy. As described in Sects. 2.2.1-2.2.2, in
the space of the photometric quantities magnitudes and colour – the colour-
magnitude diagram – a group of stars with identical ages will lie along a
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uniquely defined curve – the isochrone. For each isochrone there is a corre-
sponding curve in Teff-logg space. By fitting an isochrone to the photometric
quantities and then translating the position of each star to the corresponding
position in Teff-logg space, it is possible to estimate those stellar parameters.
We use this technique in Article II, using V magnitudes and V − I colour to
determine those stellar parameters for stars in the cluster M30. However, there
are some complications that we discuss in Sect. 4.4.

In situations where the parameter vmic cannot be determined directly, it can
sometimes be estimated indirectly by using empirical correlations with other
parameters such as Teff and logg. We used this in Article II, since unlike
Teff and logg the parameter cannot be determined through photometry. We
strongly advise all spectroscopists to avoid this method if at all possible. In
Sect. 4.2.3 we describe how it impacted our systematic errors, and in Ap-
pendix 10.1 we discuss how many different empirical relations we had to
choose between. We also caution that some studies use empirical relations
without taking into account the effect on the systematic errors.
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3.6 Common issues
The basic reasoning behind both abundance and parameter fitting is simply
“The spectrum is a function of these things. By selecting wavelength regions
appropriately, you can pick out a part of the segment which is both in principle
an invertible function, and in practise is possible to model. That allows us to
estimate those things”. Unfortunately, the assumptions behind this reasoning
occasionally break down, since neither our observations nor our models are
perfect. Here we describe some common problems, and how to solve or work
around them.

3.6.1 Noise
Spectrographs measure photons, which are discrete quantities. Because of
this, there is an intrinsic amount of Poissonian noise in any spectrum. In ad-
dition, there is some level of internal noise in the spectrograph. The relative
error coming from these sources becomes smaller the longer the exposure of
the spectrum, but since observing time is expensive, most observations are
made according to some trade-off between noise and expense.

In addition, spectroscopic observations are usually made from the ground.
This means that the spectrum they observe is in reality the light from the star,
overlaid with the light from the night sky. The relative error from this source
does not decrease with the observation time. This is typically handled by
on each observation night having one or more sky fibres in the spectrograph,
which simply measure the spectrum of the night sky. This is then subtracted
from the stellar spectra, which is called sky subtraction.

Both of these sources of error were major issues in Article II, since the
spectra studied came from the distant cluster M30. In fact, the article focused
on that cluster precisely because the TOP stars are so faint that few people
have gone to the trouble of making this kind of measurement. In Article I, on
the other hand, we used spectra that by design had very low noise levels.

3.6.2 Excessive curvature
As described in Sect. 3.3 continuum normalisation typically assumes that the
continuum level of a wavelength segment is approximately linear. This ap-
proximation becomes worse the wider a segment is.

This became a problem during our work on Article I, where we initially
used hydrogen absorption lines – Balmer lines – of stellar spectra to estimate
Teff. These lines are in principle ideal for this purpose, since they are in-
sensitive to most other parameters. However, for reasons including the high
abundance of hydrogen, these lines are very wide. Because of their width, the
Balmer lines are blended (see Sect. 3.6.3 below) with multiple iron lines. We
did have an algorithm for ignoring the blended regions in our analysis, but we
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discovered that the width of the lines meant that the approximation of linear
continuum simply broke down. If the problem had been purely physical this
might have been resolvable – it might be possible to estimate the true curvature
of the continuum level over the Balmer lines – but unfortunately there was an
observational part to it as well: At least for UVES spectra, the Balmer lines for
multiple spectra of the same star will usually look visibly different. Happily,
we were able to solve the problem by simply removing the Balmer lines from
our analysis, but we advise other spectroscopists that Balmer lines probably
need to be used in manual fitting or not at all – attempts at including them in
an automated analysis pipeline like ours are unlikely to be successful3.

Note that there are spectral synthesis codes which allow fitting quadratic
curves to the continuum, but we would caution against attempting this: In the
spectra we have looked at, the ratio of continuum regions and spectral lines
is such that a segment almost always has to consist of one or two spectral
lines, with a little bit of continuum at the far edges of the segment. In this
situation, the curvature of the continuum is inherently so poorly constrained
that a quadratic fit can easily end up being worse than a linear fit.

3.6.3 Blending
Spectral lines are often blended, meaning that they overlap with other spectral
lines. If one line is used in an analysis, while being blended with another line
that is not taken into account by the analysis method, this will throw off the
results to some extent. This risk can be diminished by attempting to use lines
that are believed to be unblended – or that are blended with lines that are so
well characterised that they can be taken into account – but there is usually a
risk that some as-yet unknown line will affect the analysis. The impact of this
can sometimes be minimised by observing multiple lines of the same element,
and averaging together their results.

Note that what would be considered ‘blended’ is context-dependent. As we
mentioned in Sect. 3.2.1, most lines are strictly speaking blended, but the lines
they are blended with are so weak that they do not affect the analysis.

3.6.4 Saturation
As described in Sect. 3.1, there is a range of abundances for which a line will
be saturated, meaning that it only responds weakly to changes in abundance.
While the abundance is still in some strict sense an invertible function of the
line shape, noise and instrumental resolution mean that the abundance can
only be constrained to somewhere within a wide range. With some methods,
even this is only possible in principle, and in practise they will simply return

3See also Korn et al. (2007) for a detailed discussion of how the results in Gratton et al. (2001)
were partly an artefact of unreliable normalisation of Balmer lines.
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a spuriously precise value somewhere within that range. This happened to the
titanium line dubbed Ti4571 in Article II, which forced us to drop that line
from the analysis.
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3.7 Spectral synthesis and fitting
Model atmospheres can be made almost arbitrarily complex, but it is possible
to reproduce observed spectra fairly well by modelling stellar atmospheres
as one-dimensional (1D) systems with some elemental composition and two
thermodynamic parameters which vary with depth. There are several choices
one could make of which thermodynamic parameters to use, but a common
pick is pressure and temperature. The stellar atmosphere is 1D not in the
sense that the star is literally modelled as a line, but in the sense that the
state of the atmosphere is only assumed to change with one spatial coordinate,
depth. This can be done with either spherically symmetric geometry, where
the star is treated as a rotationally symmetric ball, or plane-parallel geometry
which assumes that the local curvature of the star is negligible. In Sect. 3.8,
we discuss 3D models.

Given this model, it is possible to calculate which fraction of the nuclei
of each element take the form of atoms, ions, and molecules. In the hotter
stars molecules cannot form in any appreciable amount, since chemical bonds
are immediately broken up. In this case, the problem simplifies to the Saha-
Boltzmann equations.

To go on to calculate the spectrum, it is necessary to have a line list, which
describes at least some of the spectral lines within the wavelength range of
interest. This again can be made very complex, but at a minimum it must con-
tain the wavelength, excitation energy and transition probability for each line.
All work in this thesis uses the line list compiled for use within GES (Heiter
et al., 2021).

Given this, the next step is so solve the radiative transfer equation, which
gives the intensity of radiation at a specific wavelength, emitted along a line
through the star. In principle, the solution is given by the integral over emis-
sion and absorption along the line all the way through the star. In practise, it is
common to assume that at a particular depth the star is effectively opaque, so
that it is enough to start with the black body emission when the line reaches
that depth, and then calculate the integral over emission and absorption.

Once this is done, it is necessary to take into account several sources of
line broadening, which shape the profile of each spectral line. There is nat-
ural broadening, which stems from the fact that the energy levels in an atom
cannot be perfectly precise, due to Heisenberg’s uncertainty principle. There
is thermal broadening, which stems from the Doppler shift due to the random
thermal motions of the atoms. There are multiple forms of pressure broaden-
ing, all of which stem from the energy levels of the atoms being shifted due to
perturbations from other particles in the stellar atmosphere. The most impor-
tant sub-types are linear Stark broadening, quadratic Stark broadening and
van der Waals broadening.
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In the next-to-final step, the stellar spectrum is calculated by, for each wave-
length solving the radiative transfer equation at a range of angles through the
stellar atmosphere, and then integrating over the entire stellar disk.

Finally, a realistic instrumental profile must be used to describe the spec-
trum one would actually see in a particular spectrograph. For the UVES and
GIRAFFE spectra in Paper I and II respectively, this was done by simply
convolving the spectrum with a Gaussian with a width corresponding to the
resolution of the instrument. This is accurate enough to allow us to work
with wavelength segments short enough that the normalisation can be approx-
imated as a linear function, but as we discovered with the Balmer lines (see
Sect. 3.6.2), this leaves out the effect of drift in the normalisation on larger
scales. In Paper III, which used Gaia spectra, it was necessary to use a more
complicated model of the instrumental profile.

In Articles I and II, we used synthetic spectra for the purpose of spectral
fitting. That is we adjust the parameters of the model spectra until they are
as similar they can be to the observed spectra, and take the corresponding
parameters to be our best estimate of the true parameters4. The fitting itself is
done by minimising a modified χ2-sum. In Sect. 4.2.7, we discuss the question
of how to estimate errors in the resulting estimates.

4We avoid the philosophical question of to what extent a star actually has, say, a ‘true’ micro-
turbulence.
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3.8 Common approximations
For Articles I and II we used the spectral synthesis code Spectroscopy Made
Easy (SME), which is described in more detail in Sect. 3.10.2. SME makes
several approximations when modelling stellar spectra, which are shared by
many other synthesis codes. It assumes that radiation transport in the stellar
atmosphere occurs in Local Thermodynamic Equilibrium (LTE), meaning that
the temperature does not vary significantly compared to the mean free path of
photons. When solving the radiative transfer equation, this means that the ab-
sorption and emission at each point in the atmosphere is a black body spectrum
given by the temperature at that depth. SME treats the stellar atmosphere in
1D. Both approximations become poorer in certain situations.

The circumstances under which the LTE approximation gives poor results
for line formation models are complex, but it is possible to state some very
rough rules of thumb: In general the LTE approximation becomes worse when
the atmosphere becomes less dense, since this increases the mean free path of
photons. This makes NLTE effects especially important in giant stars. They
also tend to be more important in the cores of strong lines, since the cores
mostly form further out in the atmosphere (Gray, 2008). In stars similar to
the Sun, there is a tendency for lines to become shallower in the bluewards
portion of the spectrum and deeper in the redwards. There is also a tendency
for strong lines to become deeper. NLTE effects do not just change the shape
of the individual lines, they also change the ionisation balance for the element
in question from what the Saha equation would predict, which affects all lines
of that element. If a line is deeper that means that there is more absorption,
which means that more particles are being lifted out of that particular atomic
level. For lines involving levels for which little additional energy is needed
to detach an electron, this can lead to overionisation. For neutral strong lines
it can instead lead to underionisation (Kiselman, 1999). In practise, the dom-
inant effect tends to be overionisation. For the temperatures and elements
we looked at in Article II – Mg, Ti and Fe – singly ionised particles tend to
greatly predominate over neutral particles. This means that that neutral lines
become noticeably shallower, while the deepening of singly ionised lines is
fairly small. In metal-poor stars there are two partly-counteracting tendencies:
On the one hand, the radiation field is stronger, which tends to increase overi-
onisation due to NLTE. On the other hand, lines are weaker, meaning that they
form in deeper regions of the atmosphere, where NLTE is less important.

The main drawback of the 1D approximation is that it essentially imposes
the assumption of hydrostatic equilibrium, since large-scale mass flows other
than pure rotation or pulsation are only possible if material is free to move
up in some regions and down in others at the same depth5. This means that a
naïve 1D model will predict stellar spectra with much narrower lines than are
actually observed. It is possible to reproduce fairly well the line broadening

5That said, energy transport by convection is taken into account in model atmospheres.
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seen in real spectra by introducing turbulent flow, which is taken to consist of
isotropic flows of material. This is typically parametrised in terms of macro-
turbulence and microturbulence, which describe flows on distance scales re-
spectively longer and shorter than the mean free path of photons. However,
this has several drawbacks. Pragmatically, it has the problem that it introduces
two free parameters into analyses, which makes calculations longer and con-
clusions less certain. Theoretically, it has the problem that neither parameter
has a clear physical interpretation: Both parameters were originally introduced
to describe isotropic turbulent flow, but comparison to 3D simulations indicate
that the effects of both parameters can be well replicated even when the models
do not actually include such turbulent flow. The effects ascribed to macrotur-
bulence seem to be better explained by large-scale convective flow, while the
effects ascribed to microturbulence are better explained by gradients in the
convective flow (Asplund et al., 2000, Sect. 8).
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3.9 UVES and GIRAFFE
The Very Large Telescope (VLT) at Paranal, Chile, consists of four 8.2-meter
Unit Telescopes (UT). The second of these, UT2, is connected to an instru-
ment called the Fibre Large Array Multi Element Spectrograph (FLAMES).
FLAMES in turn feeds the two spectrographs Ultraviolet and Visual Echelle
Spectrograph (UVES) and GIRAFFE6 (Pasquini et al., 2002). The spectro-
graphs are both echelle spectrographs, meaning that they separate light into
a spectrum using a diffraction grating with relatively widely spaced grooves,
and a fairly high angle of incidence for the incoming light.

The spectrographs have been designed with different trade-offs in perfor-
mance, which makes them to some extent complementary. As a rule of thumb
UVES has higher resolution but can only observe 8 stars at a time, while GI-
RAFFE has lower resolution but can observe 132 stars at a time. Roughly
speaking, GIRAFFE has a resolution of R ≡ δλ/λ around 20000-25000 for
the settings used within GES, while UVES has R around 47000 (Pasquini et al.,
2002; Dekker et al., 2000).

The GES survey almost only uses spectra taken with either GIRAFFE or
UVES. However, some of the benchmark spectra used to estimate the perfor-
mance of different analysis methods use spectra observed with other spectro-
graphs. These benchmark stars are described in more detail in Sect. 4.1.1

6This is not an acronym, despite the uppercase spelling. The name was chosen by the team on
the basis that the instrument looks like a giraffe.
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3.10 Software tools
Throughout the work on the articles in this thesis, we have used several impor-
tant pieces of code. We describe them quickly here, with occasional digres-
sions about features, misfeatures or outright bugs that may be useful to other
spectroscopists.

3.10.1 MARCS
Model Atmospheres with a Radiative and Convective Scheme (MARCS) is a
code for modelling the stellar atmospheres. It uses a 1D atmosphere in hydro-
static equilibrium, with either a spherical or plane-parallel geometry. It has
existed in various forms since the 1970s, with a standardised version being
published in 2008 (Gustafsson et al., 2008).

In Articles I and II we used a grid of MARCS model atmospheres which
were in turn used by SME to model spectra. In Article III we instead used
spectra calculated directly with MARCS.

3.10.2 SME
Spectroscopy Made Easy (SME) is a code for modelling stellar spectra, and
fitting synthetic spectra to observed spectra. The first published version is from
1996, and it has been continuously updated and improved since. A description
of the first release of SME can be found in Piskunov and Valenti (1996) and
a more up-to-date description in Piskunov and Valenti (2017). In Articles I
and II we used SME to fit observed spectra. In both cases we used SME with
a grid of model spectra calculated using MARCS.

In order to fit to observed spectra, SME requires the user to define a number
of masks. It is necessary to specify a line mask, which states which pixels
should actually be used in the fit. To do continuum normalisation, it is also
necessary to specify a continuum mask. Note that these pixels do not need
to be true continuum. SME can do acceptable fitting if the continuum mask
covers spectral lines, as long as the lines are sufficiently well characterised
that SME can model them.

When fitting synthetic spectra to observed spectra, SME minimises a good-
ness-of-fit metric defined as

χ
2
SME ≡

n

∑
i=0

Oi (Oi−Ei)
2

σ2
i

(3.3)

where the n pixels covered by the line mask are indexed by i, Oi is the observed
intensity of pixel i, Ei is the model intensity of pixel i and σi is the uncertainty
in Oi. This differs from the usual Pearson’s χ2-sum in the additional factor
of Oi. This is intended to capture a rule-of-thumb that spectroscopists tend to
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use when fitting spectra manually: There are two things that make observed
spectra and model spectra differ from each other. There is noise, which shifts
the observed intensity (almost) symmetrically, and there are imperfections in
the model. One of the most important imperfections is that the line list is in-
complete: There are several lines in reality that are not included in the model.
Hence, the best fit is usually one where the model spectrum lies slightly above
the observed spectrum (Nikolai Piskunov, priv. comm). To minimise χ2

SME,
SME uses the Levenberg algorithm7.

Different versions of SME have used different methods for estimating the
errors in derived quantities. The oldest method assumes that the only source of
error is pixel noise, while the newer method attempts to take systematic errors
into account. Neither method can be said to be better than the other in an
absolute sense. The newer method is better for estimating errors in quantities
estimated using multiple lines, while the older method is probably better for
abundances estimated using a single line (Thomas Nordlander, priv. comm).
While SME does not have a simple toggle for switching between the methods,
it is relatively easy to modify the SME code to restore the older method. This
is described in more detail in Sect. 4.5.

3.10.3 IDL
A surprising amount of astronomy software, including SME8, is written in
an otherwise-obscure programming language from the 70s: Interactive Data
Language (IDL). This is mostly a matter of historical contingency: Up until
the 1990’s, IDL was more-or-less unique as a combination of programming
language and visualization tool, which caused many astronomers at the time
to decide to use it (priv. comm. Andreas Korn). Today it is no longer unique,
but there is so much code written in IDL that it would require a very large
investment of labour to migrate it to some other language.

This is problematic for several reasons. One is that since IDL is very old,
it is simply less easy to use than more recent languages, and permits coding
practices that are now considered harmful. A more serious problem is that
IDL is proprietary, and the licence management system is fairly strict: In ad-
dition to having to own an IDL licence to run IDL code, the user must be
able to continously access the IDL licence server. It is also only possible to
run a limited number of IDL processes in parallel using one licence. This is
a severe problem when using IDL for large surveys such as GES, since these
require running multiple analyses in parallel. It is possible to run IDL without
contacting the licence server by running it in virtual machine mode, but this

7It is sometimes referred to as the Levenberg-Marquardt algorithm, but Levenberg (1944)
and Marquardt (1963) proposed slightly different algorithms, and the one used in SME is the
version proposed by Levenberg.
8However, Ansgar Wehrhahn has recently been working on the development of the Python-
based PySME. We encourage all SME users to use this above IDL SME.
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requires pressing a button in the IDL Virtual Machine splash screen that ap-
pears on start-up. Writing scripts to do this automatically is trivial in principle,
but explicitly forbidden by the licence agreement (Harris Geospatial Solutions,
2021, Sect. 9).

When using IDL, we also used two important libraries. One is the IDL
Astronomy User’s Library (IDLAstro/astrolib), which contains a selection of
tools specifically for astronomy. We also made extensive use of the Coyote
IDL library, which simply contains a large number of useful functions. We
also used the Coyote homepage, which contains many guides explaining oth-
erwise baffling quirks of IDL9 (Fanning, 2015).

3.10.4 Python
Where possible, we have used the programming language Python. This has
the twin advantages of being both new and widely used. Being new means
that the syntax is very streamlined. Being widely used means that for most
problems, somebody somewhere already has a ready solution. The process of
using other people’s solutions has been simplified through the use of modules.
These are open-source code packages, containing Python functions that have
been assembled to solve some overall type of problem. In the work on this
thesis, we have made use of the following modules:
• SciPy: A collection of libraries for scientific computing (Virtanen et al.,

2020). Among other things, it contains the following modules:
– NumPy: The main purpose of this library is to allow efficient cal-

culations using arrays (Harris et al., 2020).
– matplotlib: This library consists entirely of functions for making

plots (Hunter, 2007). All plots in this thesis and the included arti-
cles were made with matplotlib.

• astropy: This is a library of functions used within astronomy (Astropy
Collaboration et al., 2013, 2018). In particular, we have made use of
astropy.io to handle files in the FITS format (described below), and as-
tropy.coordinates when handling the Gaia spectra in Article III.
• scikit-learn: A library of tools for machine learning (Pedregosa et al.,

2011). We used their implementation of the ExtraTrees algorithm in
Article III.
• emcee: A library implementing Goodman and Weare’s Affine Invariant

Markov Chain Monte Carlo Ensemble sampler (Foreman-Mackey et al.,
2013). We used this for estimating the probability distributions in Arti-
cles I and II.

In addition to the modules themselves, use of Python is simplified by the fact
that the solutions to both common and uncommon problems can be found on

9In particular, a user having problems with IDL mysteriously accessing files that are not actually
in the IDL path should read The IDL Path Problem from Hell.
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stackoverflow10. While we do not cite them individually, this thesis owes a
great debt to countless pseudonymous stackoverflow users.

3.10.5 The FITS format
The astronomy community often uses the Flexible Image Transport System
(FITS) format (Pence, W. D. et al., 2010). The spectral files used for Articles I
and II use the FITS format. The GES line list used in both articles was dis-
tributed internally in the FITS format. GES also uses FITS for communicating
the results of analyses.

In IDL, there are several built-in functions for handling FITS files. In
Python, the astropy module contains functions for handling FITS files inside
the sub-module astropy.io (Astropy Collaboration et al., 2013, 2018). There
is also the open-source program topcat, which can be used to inspect files in
several formats including FITS (Taylor, 2005). However, we caution that the
format is not implemented quite consistently on different platforms. We have
occasionally found crucial differences between a FITS file opened with topcat
and the same file opened with astropy.

10https://stackoverflow.com/
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4. Statistics

This chapter discusses the statistical methods that were used in the articles
included in this thesis. Where we developed the methods, it attempts to explain
not only what the methods were and how they work, but why they were not
defined some other way. This is not described in much detail in any of the
articles.

Section 4.1 describes the statistical method that we developed for Article I
to estimate the performance of a pipeline for estimating stellar parameters
from spectra observed with the UVES spectrograph. Section 4.2 describes
the statistical method that we developed for Article II to constrain a para-
meter in a stellar evolution model, based on abundances derived from spectra
observed with the GIRAFFE spectrograph. Section 4.3 describes the Extra-
Trees algorithm, which we used in Article III. Section 4.4 discusses some
issues with spectroscopic techniques which involve comparisons to stellar
isochrones, since we used such techniques in Articles I and II. Section 4.5
discusses the still mostly-unsolved problem of how to estimate uncertainties
in abundances or stellar parameters derived through spectroscopy. Section 4.6
describes the algorithm that we developed for Article I to define the continuum
mask used for normalising our spectra. Section 4.7 describes the method for
coadding spectra that we developed for Article II.
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4.1 Estimating performance for stellar parameter
pipelines

Part of the work that led to Article I consisted of trying to improve the pipeline
used by LUMBA to estimate stellar parameters. After some false starts we
realised that we did not have a well-defined method for estimating the perfor-
mance of the pipeline, which meant that it was hard to evaluate whether a par-
ticular change had actually made the pipeline better or worse. This prompted
us to develop a method that we believe can be used in general to test stellar
parameter pipelines.

Within GES, and many similar surveys, the usual tool for estimating the per-
formance of a stellar parameter pipeline is a sample of benchmark stars. These
are stars whose stellar parameters have been measured using methods other
than spectroscopy, such as through their radius and bolometric flux (Blanco-
Cuaresma et al., 2014). By letting a pipeline analyse spectra of the benchmark
stars, one can then get an independent estimate of how well it performs, which
would not be possible by comparing spectroscopic estimates to each other.
Ideally, this should reveal approximately what the systematic errors of the
pipeline are, for a particular type of star. If, for example, a pipeline consis-
tently gives parameter estimates that are 100K too high for Solar-type stars,
one can then lower its estimates for Solar-type stars by that much.

In practise, there are many different ways one could go about this estimation
of the systematic errors. Here, we describe the method used within Article I.
We also compare it to a method used within Gaia-ESO, and attempt to show
that our method is somewhat more accurate. Unfortunately, as we will see, it
is ‘accurate’ in the sense that it reports larger uncertainties on the estimates of
the systematic errors, but these uncertainties more correctly reflect reality.

4.1.1 Gaia FGK benchmark stars
The GES benchmark sample is described in detail in Blanco-Cuaresma et al.
(2014). The stars are sorted into the four categories Solar-type stars, F dwarfs,
FGK subgiants and red giants. Table 4.1 shows the full list of benchmark stars,
and the number of spectra per star.

In Article I, we investigate the performance for each category separately.
This on the assumption that the performance of the pipeline does vary with
the stellar parameters, but that it does so slowly enough to be approximately
constant within a type of benchmark stars.

The spectra were not all observed with UVES. Many were instead con-
volved to the resolution of UVES after being observed with the spectrographs
ESPaDOnS, HARPS, NARVAL and ATLAS. In some cases this was due to
necessity, since not all of the stars are visible from the latitude of Paranal. We
were able to use the spectra from ESPaDOnS and NARVAL, but not those
from HARPS and ATLAS, since the dichroic gaps of those spectrographs
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Table 4.1. Gaia-ESO benchmark stars. A similar but less detailed table is shown in
Article I. A number of the benchmark stars were left out of the analysis, for reasons
described in detail in the body text of Sect. 4.1.1.

Star type Star Spectra Comment

Solar-type stars

The Sun 9
18 Sco 3
µ Ara 3
µ Cas A 1
α Cen A 2
α Cen B 1 Not used
τ Cet 3
β Vir 3
HD 22879 2

F dwarfs
Procyon 6
HD 49933 2
HD 84937 5

FGK subgiants

η Boo 2
δ Eri 4
ε For 1
β Hyi 3
HD 140283 5

Red giants

Arcturus 5
β Ara 1
α Cet 3 Not used
ξ Hya 2
µ Leo 2
ψ Phe 2 Not used
γ Sge 1 Not used
α Tau 2 Not used
ε Vir 3
HD 107328 2
HD 122563 5 Not used
HD 220009 2
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overlapped with lines that were used by our pipeline. This forced us to drop
α Cen B from the analysis, since the one spectrum of that star was observed
with HARPS.

Note that it is possible to criticise the assumption of spectrographs being
interchangeable up to resolution. During the work on internal Data Release 6
(iDR6) of GES, we had access to 13 UVES spectra of HD 22879. We found
that the parameter estimates for those spectra tended to cluster with time, so
that spectra that were observed during the same night tended to have similar
errors in the estimated parameters. In most cases it was not clear what caused
the difference, but we did find that at some point between 2013 and 2015
the appearance of the spectra changes so strongly that it is visible to the eye,
which correlated with a large shift in the errors. This could be taken to imply
that UVES is not equivalent to itself at different points in time, in which case
it cannot be equivalent to any other spectrograph at all points in time. How-
ever, it is also possible that the clustering is not due to the UVES spectrograph
itself, and instead comes from spectral reduction issues internal to GES. Dur-
ing iDR6 we did find and report some spectra being affected by line doubling,
which led to the sample being sent through a second round of quality control,
and part of the sample being updated. HD 22879 was not found to be among
the affected stars, but it is possible that the spectra had more subtle issues that
were not detected at the time. In any case, we believe that the spectrographs
are close enough to equivalent to allow us to get meaningful results.

4.1.2 Model of pipeline error
Let us assume that we are trying to estimate some stellar parameter p, such
as Teff. Let index i denote different benchmark stars and index k denote indi-
vidual observations of a particular star. Let pi,k denote the estimate of stellar
parameter p given by running spectrum k of star i through the pipeline. Let
ptrue

i denote the true value of p for star i.
We model the difference between the estimate and the true value as having

three components
pi,k = ptrue

i + epipe + ei + ei,k (4.1)

The error term epipe is assumed to depend on ptrue
i , but with a sufficiently

slow variation that it can be treated as constant for stars of the same type as
star i. The error term ei is assumed to vary from star to star according to some
statistical distribution with mean 0, while remaining constant for all spectra
of a particular star. The error term ei,k is assumed to vary from spectrum
to spectrum of a star, according to some statistical distribution with mean 0.
We will make the assumption that the distributions of ei and ei,k are normal
distributions1 with standard deviations σ star and σ spec, respectively. In this

1We will assume that most random variables follow normal distributions. This is common
practise, but we want to point out that we are not entirely comfortable with it. See MacKay
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model, the performance of any pipeline for a particular type of star can be
fully characterised by the parameters epipe, σ star and σ spec.

Each one of the error terms has a relatively straightforward interpretation:
The term epipe is intended to represent the errors inherent to the pipeline, and
which have a fairly consistent effect within a volume of parameter space. For
example, if a line used by the pipeline is modelled with an incorrect line
strength, this will affect all similar stars by a similar amount. The term ei
is intended to represent errors coming from how the idiosyncracies of a par-
ticular star violates the assumptions built into the pipeline. For example, if a
line used by the pipeline is blended with another line, then this will affect that
star to an extent determined by the abundance of the blended element within
that particular star. The term ei,k is intended to represent errors coming from
the idiosyncrasies of the individual spectra. For example, the Poissonian noise
will be uncorrelated from spectrum to spectrum.

We believe that each of the terms in Eq. (4.1) is necessary to model the
error in a way that is appropriate for testing the pipeline using benchmark
stars. In Sect. 4.1.7 we will look at a similar model which leaves out the term
ei, and explain why we believe this is a mistake. That said, once the errors
have been estimated for a particular pipeline using this method, it is likely to
be unnecessarily complex for most actual science cases. In most studies there
will only be one spectrum for each star, meaning that ei and ei,k cannot be

distinguished. Only the combined scatter with width
√

(σ star)2 +(σ spec)2 will
appear. In some studies the number of stars studied may be large enough that
only epipe matters in practise. Even so, Eq. (4.1) is necessary to use benchmark
stars to make a reasonable estimate of epipe.

It would be possible to make this model more realistic by including more
terms: one could also have a term espectrograph, representing the different char-
acteristics of the different spectrographs used for observing the benchmark
spectra; one could have a term etime, representing the effect of when an obser-
vation was made; one could have a term eS/N,i,k, representing asymmetry in
the error caused by Poissonian noise. These suggestions are not as frivolous
as they might seem: as discussed in Sect. 4.1.1, we have found indications
that different spectrographs have slightly different characteristics; as also dis-
cussed in Sect. 4.1.1, we have also found indications that the characteristics
of the UVES may change slightly over time; as discussed in Sect. 4.6, the ef-
fect of Poissonian noise on the derived parameters does not necessarily have
mean zero. However, we do not believe we could constrain a model of the
error with more parameters than those included in Eq. (4.1), with the number
of benchmark stars we have.

(2003, 23.2) for an argument that this practise is at least partly based on a misunderstanding of
the central limit theorem.
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4.1.3 Model of benchmark error
What makes the benchmark stars qualify as benchmarks is not that their pa-
rameters are known exactly, but that they are known with methods indepen-
dent of spectroscopy. For all benchmark stars except for the Sun, there are
appreciable uncertainties on the stellar parameters. (The Sun in turn has other
problems, which we discuss in Sect. 4.1.9). This uncertainty also needs to be
taken into account, but the model does not need to be as complex as that for
the pipeline error.

We assume that each fundamental estimate pfund
i can simply be described

as
pfund

i = ptrue
i + efund

i (4.2)

where efund
i follows a normal distribution with standard deviation σ fund

i . We
take the literature values of the fundamental values and their stated uncertain-
ties as our estimates of pfund

i and σ fund
i .

Note that we do not take into account the possibility of systematic errors
in the fundamental estimates. While such errors certainly do exist, there is no
way of disentangling them from epipe. This means that if we wanted to include
them, we could do so by keeping Eq. (4.1) as it is, but reinterpreting epipe

as the difference in systematic errors between fundamental and spectroscopic
parameter estimates.

4.1.4 Likelihood function
We want to estimate the error parameters epipe, σ star and σ spec. The infor-
mation that we in principle have available is a sequence of stellar parameter
estimates

{
p j,k
}

, a sequence of fundamental parameter estimates
{

pfund
j

}
,

and the estimated standard deviations in those estimates
{

σ fund
j

}
. Whichever

statistical framework we want to use for this2, we will need to start with the
likelihood of getting those estimates, given the known

{
pfund

j

}
and

{
σ fund

j

}
,

and the unknown epipe, σ star and σ spec.

Definitions and notation
We denote3 the likelihood function as:

Pfull ≡ P
({

p j,k
}∣∣∣∣{pfund

j

}
,
{

σ
fund
j

}
,epipe,σ star,σ spec

)
(4.3)

2As already mentioned, we will use a Bayesian framework, but it would be trivial to reframe
our approach in Frequentist terms.
3In everything that follows, we will use the notation that P(x|y) refers to the probability of x
given y.
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This probability depends in some way on the likelihoods of getting the esti-
mates

{
pi,k
}

for each individual star i, given some values of pfund
i , σ fund

i , epipe,
σ star and σ spec. We denote these as:

Pi ≡ P
({

pi,k
}∣∣∣pfund

i ,σ fund
i ,epipe,σ star,σ spec

)
(4.4)

Each Pi in turn depends on both the probability of getting that sequence
{

pi,k
}

,
given some specific value of ptrue

i , as well as the probability of a star actually
having that ptrue

i , given the values pfund
i and σ fund

i of the fundamental parame-
ters. We denote these as:

Ptrue
i ≡ P

({
pi,k
}∣∣∣ptrue

i ,epipe,σ star,σ spec
)

(4.5)

Pfund
i ≡ P

(
ptrue

i

∣∣∣pfund
i ,σ fund

i

)
(4.6)

The probability Pfund
i is, as we will see below, given directly by our model of

the benchmark error. The probability Ptrue
i in turn depends on the probability

Pei⇒pi
i of getting a sequence

{
pi,k
}

– given some value of the error term ei,
together with ptrue

i , epipe and σ spec – and on the probability Pei
i of getting that

value ei. We denote these as:

Pei⇒pi
i ≡ P

({
pi,k
}∣∣∣ptrue

i ,ei,epipe,σ spec
)

(4.7)

Pei
i ≡ P

(
ei|σ star) (4.8)

The probability Pei
i is, as we will see below, given directly by our model of

the error. The probability Pei⇒pi
i in turn depends on the probability of getting

a particular estimate pi,k, given the error parameters and the true parameter
value ptrue

i . We denote this as:

Pi,k ≡ P
(

pi,k|ptrue
i ,ei,epipe,σ spec

)
(4.9)

Formalisation of model
Since we assume that the star-to-star error is uncorrelated outside of that taken
account in the term epipe, it follows that

Pfull =
N

∏
i=0

Pi (4.10)

The probability for a particular sequence
{

pi,k
}

is given by the integral over
the probability of getting that sequence given a particular value of ptrue

i , mul-
tiplied by the probability of that ptrue

i , given the estimated pfund
i :

Pi =
∫

∞

−∞

Pfund
i Ptrue

i d ptrue
i (4.11)
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Given the assumptions in Sect. 4.1.3, the probability of a particular value of
ptrue

i given a particular pfund
i is given by:

Pfund
i =

1√
2πσ fund

i
exp

(
−
(

ptrue
i − pfund

i
)2

2
(
σ fund

i

)2

)
(4.12)

The probability of getting a particular sequence of values
{

pi,k
}

is the integral
over all possible errors ei over the probability of getting that sequence given a
particular value of the error term ei, multiplied by the probability of that error
term

Ptrue
i =

∫
∞

−∞

Pei⇒pi
i Pei

i dei (4.13)

The probability of getting a sequence of values
{

pi,k
}

given some value of the
error term ei is the product of the probability for all the individual values pi,k.

Pei⇒pi
i =

ni

∏
k=0

Pi,k (4.14)

Given the assumptions in Sect. 4.1.2, the probability of a particular value of
pi,k, given some value of ei, is given by:

Pi,k =
1√

2πσ spec
exp

(
−
(

ptrue
i + epipe + ei− pi,k

)2

2(σ spec)2

)
(4.15)

The assumptions in Sect. 4.1.2 also mean that the probability of a particular
value of ei is given by

Pei
i =

1√
2πσ star

exp

(
− e2

i

2(σ star)2

)
(4.16)

Given this, we can see that Pfull is in principle a function of epipe, σ star and σ spec,
with no parameters that are not already known.

Derivation
We insert Eq. (4.15) into Eq. (4.14), which gives us

Pei⇒pi
i =

1

(2π)ni/2 (σ spec)ni
exp

(
−

ni

∑
k=0

(
ptrue

i + epipe + ei− pi,k
)2

2(σ spec)2

)
(4.17)
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We insert Eq. (4.17) together with Eq. (4.16) into Eq. (4.13), and move every-
thing independent of ei outside the integral.

Ptrue
i =

exp
(

∑
ni
k=0

(ptrue
i +epipe−pi,k)

2

2(σ spec)2

)
(2π)

ni+1
2 (σ spec)ni σ star

×

×
∫

∞

−∞

exp

(
−ni (σ

star)
2
+(σ spec)2

2(σ specσ star)2 e2
i −2

ni

∑
k=0

ei
(

ptrue
i + epipe− pi,k

)
2(σ spec)2

)
dei

(4.18)

We use the standard integral∫
∞

−∞

exp
(
−ax2−2bx

)
dx =

π

a
exp
(

b2

a

)
(4.19)

For brevity, we introduce the shorthand

Ai ≡
ni

2
(

ni (σ star)2 +(σ spec)2
) (4.20)

Bi ≡
1

2
(

ni (σ star)2 +(σ spec)2
) (niepipe−

ni

∑
k=0

pi,k

)
(4.21)

Ci ≡
1

2(σ spec)2

(
ni

∑
k=0

(
epipe− pi,k

)2
−

(σ star)
2 (

∑
ni
k=0

(
epipe− pi,k

))2

ni (σ star)2 +(σ spec)2

)
(4.22)

Di ≡ (2π)ni/2 (σ spec)ni−1
(

ni
(
σ

star)2
+(σ spec)2

)
(4.23)

This turns Eq. (4.18) into

Ptrue
i =

exp
(
−Ai (ptrue

i )
2−2Bi ptrue

i −Ci

)
Di

(4.24)

For brevity and consistency, we introduce an analogous shorthand for Eq. (4.12):

Ei ≡
1

2
(
σ fund

i

)2 (4.25)

Fi ≡−
pfund

i

2
(
σ fund

i

)2 (4.26)

Gi ≡
(

pfund
i
)2

2
(
σ fund

i

)2 (4.27)

Hi ≡
√

2πσ
fund
i (4.28)
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This shortens Eq. (4.12) into

Pfund
i =

exp
(
−Ei (ptrue

i )
2−2Fi ptrue

i −Gi

)
Hi

(4.29)

We insert Eq. (4.18) and Eq. (4.29) into Eq. (4.11)

Pi =
1

DiHi

∫
∞

−∞

exp
(
−(Ai +Ei)

(
ptrue

i
)2−2(Bi +Fi) ptrue

i − (Ci +Gi)
)

d ptrue
i

(4.30)

We use the standard integral∫
∞

−∞

exp
(
−ax2−2bx− c

)
dx =

√
π

a
exp
(

b2

a
− c
)

(4.31)

This turns Eq. (4.30) into

Pi =
1

DiHi

√
π

Ai +Ei
exp

(
(Bi +Fi)

2

Ai +Ei
− (Ci +Gi)

)
(4.32)

We insert Eq. (4.32) into Eq. (4.10)

Pfull = π
N/2

N

∏
i=0

1
DiHi
√

Ai +Ei
exp

(
(Bi +Fi)

2

Ai +Ei
− (Ci +Gi)

)
(4.33)

This gives us the likelihood function, expressed only in variables that are either
known, or that are the three that we wish to estimate.

Note that for numerical reasons, all actual calculations are done using the
log-probability corresponding to Eq. (4.33):

logPfull =
N
2

logπ+

+
N

∑
i=0

(
− log(DiHi)−

1
2

log(Ai +Ei)+
(Bi +Fi)

2

Ai +Ei
− (Ci +Gi)

)
(4.34)

4.1.5 Priors and resulting posterior
To calculate the posterior on the parameters, we need to assume some priors.
In Article I, we choose to use flat priors, so that any value of epipe, σ spec and
σ star is initially taken to be equally likely. This means that the posterior is
simply equal to the normalised likelihood.

In retrospect, this was not an optimal choice. A Bayesian could object to
it on the following grounds: While it might seem that the choice of a flat
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prior makes the least assumptions about the parameters, this is not actually
true. There are flat priors and there are uninformative priors, and it is only in
special cases that they are the same thing. In our case, a flat prior happens to
be an uninformative prior for a location parameter such as epipe, but it is not for
scale parameters such as σ star and σ spec (von Toussaint, 2011, Sect. II.D.1).
Meanwhile, a Frequentist could object to it on the grounds that by picking
a flat prior we have made our method completely equivalent to a maximum-
likelihood method, and that this makes it unnecessary to bring in the Bayesian
framework to begin with.

While this part of analysis is aesthetically unpleasant, we do not believe that
it affects the results much. In general, while there is much controversy about
the correct choice of Bayesian priors – and whether there even is a ‘correct’
choice – it usually has a surprisingly small effect on the results (Trotta, 2017,
Sect. 3.1).

4.1.6 Implementation
Given a set of parameter estimates

{
pi,k
}

for a set of benchmarks, together
with fundamental parameter estimates

{
pfund

i
}

and corresponding uncertain-
ties

{
σ fund

i
}

, Eq. (4.34) in principle gives the (unnormalised) posterior proba-
bility of any particular combination of error parameters epipe, σ star and σ spec.

We use an affine invariant ensemble sampler to estimate the normalised
posterior. We refer the reader to Foreman-Mackey et al. (2013) for a detailed
description of the sampler, and to MacKay (2003, Chap. 29) for the underlying
theory of sampling probability distributions.

4.1.7 Comparison to a Gaia-ESO method
Gaia-ESO has tried and used a number of different methods for using the
benchmark stars. This includes one that is similar to ours, with one important
difference: Notation aside, it uses a formula analoguous to Eq. (4.1) that is
essentially

pi,k = ptrue
i + epipe + ei,k. (4.35)

That is, the term ei is missing. This makes a very large difference for how
much information about epipe one could hope to get out of a single benchmark
star. By simply having enough spectra of a star, the impact of ei,k can be
made negligible. Hence, according to Eq. (4.35), the only real limitation on
how well benchmark star i allows us to constrain epipe is set by the error efund

i .
In principle, a single benchmark star with very many spectra and very well-
known fundamental parameters will be sufficient to cancel out the effect of
systematic errors on all similar stars. On the other hand, the error model in
Eq. (4.1) implies that even if we had all those things for that benchmark star,

62



the quirks inherent to that star itself would put a bound on how well we can
know epipe, even within that region of parameter space.

This might not be a big problem, if one could expect ei to be comparatively
small. Then one could in practise still constrain epipe very well with enough
spectra and sufficiently well-known fundamental parameters. Unfortunately,
in Article I, we found that σ star is generally of comparable size to σ spec. This
means that at least for our pipeline, multiple benchmark stars are necessary to
constrain epipe even within a small volume of parameter space.

Note that it could in principle turn out that most pipelines do not behave like
this, and our pipeline has some design flaw which makes it uniquely sensitive
to the quirks of the individual benchmark stars. If so, that would be a happy
discovery for everyone except us. Since we are obviously a biased source,
we will not spend time on apologia for the LUMBA pipeline, but we note
that during iDR5 and iDR6 the pipeline did not stick out as performing either
unusually badly or unusually well compared to the other pipelines.

If this is representative of pipelines in general, all pipelines in surveys using
a similar approach to Gaia-ESO would need to use an approach similar to what
we have described here, using an error model resembling Eq. (4.1). This has an
immediate implication for anyone trying to define a set of benchmark stars for
that survey. Within Gaia-ESO there has been a widespread assumption that rel-
atively few benchmark stars are sufficient to constrain performance within the
most-populated regions of parameter space, and that since the survey already
has those, the natural next step is to find benchmark stars in the less-populated
regions of parameter space. Our findings imply that this would not neces-
sarily be a good investment of resources, and that the survey might benefit
more from finding more benchmark stars in the most-populated regions. This
is a bit unfortunate, since finding benchmark stars in less-populated regions
would mean finding very rare and unusual stars, which would be interesting to
do, while our recommendation is just to find large numbers of very ordinary
stars instead.

4.1.8 Generality of method
We want to emphasise that our method is very general. In principle, the un-
derlying assumptions can be summarised as:

“We have made noisy measurements of a quantity x for a large number of
doodads. However, we do not actually care about x. We care about a different
quantity y. We have a black box which when given measurements of x outputs
estimates of y. We have some special doodads for which we have managed to
make noisy but uncorrelated measurements of y. For some of those, we may
have multiple measurements of x. Based on this, how can we figure out how
good our black box is?”
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It so happens that in our case the doodads are stars; each x is a vector of
wavelengths, a vector of pixel fluxes and a vector of pixel flux uncertainties;
each y is the stellar parameters Teff, logg and [Fe/H]; the special doodads
are stars with fundamental parameters; and the black box is the LUMBA
UVES stellar parameter pipeline. However, none of the mathematics dis-
cussed throughout Sect. 4.1 crucially depends on this. Anyone facing a sit-
uation similar enough that it can be summarised as in the paragraph above
should be able to use an approach very similar to ours.

4.1.9 Using only Sun as benchmark
Early in our work on Article I, we only used the Sun as a benchmark, and
not the full set of benchmarks. Our assumption was that the Sun is the ideal
benchmark, so that once we got correct results for the Sun, the pipeline would
be almost functioning. At that point, only a little tweaking would be needed
to get good results for the entire benchmark sample. This turned out not to
work, and looking in detail at what happened and why might help clarify why
we ended up choosing the approach that we did.

By tweaking many details in the pipeline – in our minds optimising it –
we did manage to get almost exactly correct stellar parameters for the Sun.
Once we started testing other benchmark stars, we discovered something puz-
zling. The derived parameters for the benchmarks were in many cases very far
off, even for stars very similar to the Sun. Most dramatically, we found that
the derived logg for the Sun and the Solar twin 18 Sco consistently differed
by 0.4dex, four times as much as the true discrepancy of 0.1dex. This even
though both the observed and fitted model spectra for the stars are almost in-
distinguishable by eye. This meant that at least one of the implicit assumptions
behind our work was wrong.

The mistake was not our assumption that the Sun is the best benchmark
star: The stellar parameters genuinely are known with great precision4, and
there are Solar spectra with such high S/N that they are practically noise-
free. The mistake was in our assumption that the performance for one high-
quality benchmark star is necessarily representative for similar stars, which
as described in Sect. 4.1.2 is not necessarily true: Sometimes a benchmark
star will violate the assumptions built into a pipeline in a way that causes a
measurement error that has nothing to do with noise, yet differs from otherwise
similar stars.

This is what prompted us to develop an explicit model of the error instead
of relying on our gut feelings for how errors should behave, and to include
an error term that varies from star to star but is independent of the S/N and
other qualities of individual spectra. This is the term ei in Eq. (4.1). Once
we had this explicit model, it became clear that our attempts at ‘optimising’

4In the case of [Fe/H], it is known exactly by definition.
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the pipeline had in fact introduced a systematic error such that esyst+eSun ≈ 0,
where esyst is the systematic error for Sun-like stars while eSun is the error term
ei for the Sun specifically. This created a pipeline that gave good results for the
Sun, but not necessarily for any other star in existence. Improving the pipeline
then required us to accept that the results would end up being worse for the
Sun, even as they became better for most stars. Later, we learned that this is a
known issue with SME: Analyses of the Sun often give strange results, and it
is not entirely clear why. It probably has something to do with the observation
conditions: Since it is not actually possible to point a spectrograph directly at
the Sun, all ‘Solar’ spectra are actually spectra of sunlight reflecting off other
celestial bodies, or Rayleigh-scattered day- or twilight (Thomas Nordlander,
priv. comm.)

Cause of apparent intuitive correctness of method
I personally have a strong intuition telling me that the argument for using
the Sun alone as a benchmark should be correct. It seems that a noise-free
spectrum should give an estimate free of random error, and that it should be
impossible for a deterministic process applied to data without random error to
create an estimate that itself has a random error. Even so, we have empirically
shown that this is not correct. That makes it interesting for me to try to un-
derstand where that intuition comes from and why it fails. (To readers who do
not share this intuition, this section is likely to be completely uninteresting).

I believe that the answer is that the decomposition of an error into a random
and a systematic part depends on what larger set the measurement is supposed
to be sampled from. However, this is not sufficiently emphasised in statis-
tics courses, which causes us – or at least me – to develop strong, incorrect
intuitions about this.

As a concrete example, imagine that we use SME to estimate Teff for some
spectrum. This estimate will differ from the true value by some amount. Now
we ask whether the pixel noise in the spectrum will contribute to the random
or the systematic part of the error. My gut response is that since pixel noise
is random, it should contribute to random error. In reality, it depends. If we
imagine that this estimate is done as part of a larger study, where we estimate
Teff for several different spectra of the star, then the pixel noise will tend to
contribute to the random error in the estimate. On the other hand, say that
this estimate is done as part of a study to test the performance of SME by
analysing that specific spectrum repeatedly with different starting parameters.
In that case, the pixel noise will be constant from one estimate to the next,
and therefore contributes to the systematic error. In short, the decomposition
into random and systematic is not well-defined for a single measurement, but
requires us to refer to some larger set of measurements.

In my experience, this is not emphasised in statistics courses. For exam-
ple Taylor (1997) makes no mention of anything like this. That makes it easy
to think of ‘randomness’ and ‘systematicness’ as being inherent properties of
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the noise, which one could then expect to propagate separately through an
analysis.
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4.2 Estimating parameters based on measured
abundances

In Article II we estimate abundances of titanium, iron and magnesium for a
sample of stars in the cluster M30. We then use those to estimate T0, which is
a free parameter in certain stellar evolution models. For any value of T0, these
models give some prediction of abundances as functions of Teff.

At first glance, this looks like a similar problem to that in Article I: We
have a set of spectra for a group of stars, and we estimate some numerical
quantity for those stars. It so happens that the quantity is elemental abundances
instead of stellar parameters, but it would seem that we should be able to use an
approach similar to that described in Sect. 4.1. What prevents us from doing
so is that there are no relevant benchmark stars for abundances. If we use
the term ‘benchmark star’ in the strict sense, as a star for which the relevant
quantity has been estimated by means independent of spectroscopy, then the
only abundance benchmark star is the Sun. We can estimate the abundances
of the Sun by studying the composition of primitive meteorites, which formed
from the same material as the Sun (Asplund et al., 2021). This prevents us
from using the general approach described earlier.

Since we cannot use the more general method, we had to develop a method
which is better adapted to the specific research question that we are trying
to answer. In Article II itself, this method is essentially described as a fin-
ished product: The underlying assumptions are explained, a likelihood func-
tion is derived, and a framework for interpreting the likelihood function is
given. Here, we try to explain the method in a format that more closely fol-
lows the work process, explaining issues that turned up along the way, and
some other methods that could have been used, and why we rejected them.

4.2.1 Basic problem
The underlying problem that we attempted to solve in Article II can be sum-
marised as:

We have a model of stellar evolution which predicts abundances in M30
as a function5 of Teff. This model contains a number of free parameters, the
most important being T0 and the assumed initial abundance in the cluster. We
are interested in finding out T0, while the initial abundance is only interesting
to the extent that it is needed to constrain T0. Within a fairly wide range,
shifting the initial abundance only adds a constant offset aoffset to the predicted
abundances. We have made abundance estimates ai for stars in M30, for a
number of spectral lines. We know Teff for those stars relatively accurately,
but ai is subject to both random scatter and systematic error. Given this, how
well can we constrain T0?

5Among our stars there is a one-to-one relationship between Teff and logg, so for convenience
we will only speak of dependence on Teff throughout this discussion.
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We will start by discussing the effect of the systematic errors in the mea-
sured abundances, and then explain how we dealt with random scatter and the
choice of initial abundance.

4.2.2 Parameter dependence in the systematic errors matter
One method which is commonly used in this type of situation is that of dif-
ferential analysis. This is built on the assumption that the systematic errors
are approximately constant over the entire range of Teff. Given this, one can
simply look at the difference in abundances between the RGB and the TOP,
and select the value of T0 for which the model predictions most closely re-
constructs this. This would neatly cancel out both the systematic errors in the
derived abundances, and the offset aoffset.

The problem with this approach is that the underlying assumption is false.
In Article I, we showed that the systematic errors in derived quantities, includ-
ing [M/H], have a strong dependence on the stellar parameters. In fact, since
the estimates of [M/H] in Article I were made using multiple iron lines, whose
individual quirks can be expected to cancel out to some extent, we should ex-
pect the effect to be stronger for the single-line abundances estimated in Arti-
cle II.

4.2.3 Estimating bounds on the size of the systematic error
The reasoning in the last sections puts us in an uncomfortable position: We
know that our systematic errors are large, and that they have a non-trivial de-
pendence on Teff. We also have no way of measuring them directly. We only
know that our derived abundances ai are the sum of the true abundance atrue

i ,
some random error ei and some systematic error function esyst

i (Teff). That is

ai = atrue
i + esyst

i (Teff)+ ei (4.36)

To make the problem tractable, we start by attempting to find outer bounds on
the systematic error.

As a general rule, the biggest source of systematic error in spectroscopic
studies tends to be inaccuracies in the continuum placement. As discussed
in more detail in Sects. 3.3 and 4.6, fitting observations to a stellar spectrum
requires estimating the continuum level. This cannot be done exactly, and in
general one cannot expect the estimates to be symmetrically distributed around
the true continuum level. This creates one major source of systematic error.

In our specific case, a second major source of systematic uncertainty is the
choice of vmic. This parameter, which is discussed in more detail in Sect. 3.8,
is as necessary as Teff and logg for making abundance estimates. Unfortu-
nately, unlike Teff and logg, it cannot be estimated from photometry. In the
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spectra observed in Article II, there are also no lines that can be used to reli-
ably estimate vmic separately from the abundance estimates themselves6. The
only tool left is to use empirical relations, which estimate vmic as a function of
Teff, logg and possibly [M/H], based on measurements found in the literature.
Unfortunately, there are many empirical relations available, and in the process
of testing them out, we found that they give very different results. In Sect. 10.1
we discuss in more detail the formulæ that we considered in the early stages
of writing the article, and how much they differ in their predictions. For now,
it is enough to say that we ended up settling on the ‘Sitnova-Mashonkina’ re-
lationship, based on Sitnova et al. (2015) and Mashonkina et al. (2017), but
this was a fairly arbitrary choice that would have to be taken into account as a
major source of systematic uncertainty.

We now make the assumption that if we can put conservative upper bounds
on the systematic errors stemming from continuum placement and choice of
vmic, they will be enough to also contain the systematic errors stemming from
other sources. Given this we can get bounds on the systematic errors for each
star by running nine analyses for each star, where each analysis takes some
combination of the best, highest and lowest estimates for the continuum level
and the choice of vmic. Note that this implicitly assumes that the ranges of
continuum placement and vmic are small enough that the derived abundance
is a monotonous function of those parameters. Based on visual inspection we
found an outer bound on the error in the continuum placement of ±0.5%, and
based on the comparisons detailed in Sect. 10.1 we found an outer bound on
the error in vmic of ±0.3km/s.

4.2.4 Estimating what a plausible systematic error could look
like

The approach described in Sect. 4.2.3 is sufficient to put a bound on the sys-
tematic error for each individual star. In principle, we could use this to esti-
mate the likelihood for our derived abundances given a particular value of T0,
allowing the assumed true abundance of each star to lie in whichever position
within that bound that maximised the likelihood. This would allow us to put
some bounds on T0, but it implicitly uses a very unrealistic model of the sys-
tematic errors: While we do know that the systematic errors vary enough that
they cannot be treated as constant, we also know that they do not vary over
very short scales of Teff. The analysis we just sketched out does not make use
of the last piece of knowledge, since it treats it as equally plausible that two
stars with nearly-identical stellar parameters have nearly-identical systematic
errors, and that they sit on opposite ends of the bounds. We would prefer an
analysis that takes into account that while systematic errors are likely to vary
over long intervals of Teff, they do not vary on very short scales.

6See Sect. 10.1 for a discussion of our attempt to do this.
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One way of doing this would be to simply declare that the systematic errors
have to fit some slowly-changing function, such as a second-degree polyno-
mial, or a third-degree polynomial, or something else. The problem with this
approach is that the choice of function is essentially arbitrary, and it would not
be clear how much the results depended on that choice. A more informative
approach would be to select a range of functions with increasing complexity,
and then somehow penalise the more complex functions when interpreting the
results as evidence. That is, if two values of T0 can give the same likelihood for
generating the same observed abundances, but to do so one of them requires
a much more complex model of the systematic error, then the value with a
simpler error model should be treated as more plausible. The best tool we
have found for doing this is Akaike’s Corrected Information Criterion, AICc.
Formally, the AICc for a particular model in the light of some data is defined
as

AICc = 2k+
2k (k+1)
n− k−1

−2ln L̂, (4.37)

where n is the number of data points, k is the number of free parameters in the
model, and L̂ is the maximum likelihood of the data given the model.

We discuss the criterion in more detail in Sect. 10.2. For now, it is enough
to understand the following:
• For each model, the data give some value of AICc
• The absolute value of AICc is uninteresting
• The difference ∆AICc between models can be used to estimate which

one of them is closest to reality – for a very specific definition of ‘close-
ness’
• The higher the likelihood of the data given a model, the better
• The more free parameters a model has, the worse

This means that we can get an AICc value for each combination of T0 and
assumed error model. In Article II, we display them in a table, with a layout
similar to that sketched out in Table 4.2.

T0 lowest,
simplest error
model

T0 second lowest,
simplest error
model

. . .
T0 highest,
simplest error
model

T0 lowest,
second simplest
error model

T0 second lowest,
second simplest
error model

. . .
T0 highest,
second simplest
error model

...
...

. . .
...

T0 lowest,
most complex
error model

T0 second lowest,
most complex
error model

. . .
T0 highest,
most complex
error model

Table 4.2. Schematic picture of the table of combinations of stellar evolution models
and systematic error models from Article II.
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As we progress into more and more complex models of the error, they will
eventually be rated very low by the criterion, since the added complexity does
not increase explanatory power. As it turned out, we found in Article II that
there was a small range of T0 values which were consistently preferred, irre-
spective of the error model chosen. In the worst case, we could have found that
there were a range of T0 values combined with different error models that were
rated by AICc as having similar explanatory value. In that case, we would have
had to conclude that our study was in fact so sensitive to systematics that no
meaningful conclusions could be drawn from it.

The only question remaining is to make a choice of the error models. In
Article II we choose to use polynomials of increasing order. There is no strong
theoretical motivation for this, and arguably some other choice would have
been more optimal. The only real advantage of this is that most people seem to
chose polynomials, so it makes our results more likely to be easily comparable
to others.

4.2.5 Group spectra
Aside from the systematic errors having a dependence on Teff, we found that
they depend on S/N. This in turn depends on Teff, for the simple observational
reason that the cooler stars are larger and therefore brighter. We could in
principle have tried to bake this into our analysis of the systematic errors,
but we instead solved it through the technique of creating ‘group spectra’.
This method consists of averaging together spectra with similar parameters,
effectively turning them into a higher-S/N spectrum with approximately those
parameters.

The method assumes that adding together spectra from stars with similar
stellar parameters will create a spectrum that behaves in the analysis essen-
tially like a spectrum of a single star with higher S/N. This obviously requires
the stellar parameters to be relatively close together – adding together a red
giant and a TOP star will produce a spectrum resembling no star that could
physically exist. With this method we created group spectra with approxi-
mately equal S/N, hopefully cancelling out this source of systematic error.

4.2.6 Intrinsic scatter in abundances
In Eq. (4.36) we showed our model of how estimated abundances differ from
the true abundances. At the time, we skimmed over the issue that even if a
stellar evolution model with some value of T0 is exactly correct, this would
not mean that the true abundance of a star is equal to that predicted by the
model for a star with that effective temperature. There is some amount of
intrinsic scatter among the stars, which needs to be taken into account.
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We assume that this intrinsic scatter follows a normal distribution with
mean zero around the abundances atrend

i (T0) predicted by the stellar evolution
models, with some standard deviation σX, int which is specific to each element.
For the standard deviations we chose 0.1dex for magnesium, which is affected
by anticorrelations, and 0.05dex for titanium and iron, which are not. All of
these are probably overestimates for stars that are part of the same cluster, so
at worst they make our conclusions seem less certain than they actually are.

Our use of group spectra implicitly assumes that the variations between the
spectra are small enough that the fluxes are linear functions of each param-
eter. Given this assumption, the intrinsic scatter for group spectra should be
σX, int/

√
nstar, where nstar is the number of stars in a group spectrum.

4.2.7 Random uncertainty in estimates
In addition to systematic errors and intrinsic scatter, there will be some ran-
dom uncertainty in the derived abundances, due to pixel noise and similar ob-
servational effects. We assume that this random scatter follows a normal dis-
tribution with mean zero, and standard deviations σi equal to the uncertainty
reported by SME. However, this required us to decide which SME estimate to
choose.

As described in Sect. 4.5, earlier versions of SME estimated uncertainties
in derived quantities based on the covariance matrix generated in the fitting,
as described in Piskunov and Valenti (1996). More recent versions instead
estimate them using the heuristic algorithm described in Piskunov and Valenti
(2017). While we believe this algorithm is an improvement in most cases, it
is probably not appropriate for single-line abundances. Hence, we rewrote our
copy of SME to use the older method.

4.2.8 Likelihood function
Taking into account the argument in Sect. 4.2.6, and the fact that the initial
abundance is not known, the expression for the derived abundances (4.36)
takes the following form:

ai = atrend
i (T0)+aoffset +aint

i + esyst
i + ei, (4.38)

where atrend
i (T0) is the value predicted by the stellar evolution models, aoffset

is some Teff-independent offset stemming from the arbitrary choice of initial
abundance in the stellar evolution models, aint

i is drawn from a normal distri-
bution with mean zero and a standard deviation σX, int, esyst

i is a polynomial in
Teff and ei is drawn from a normal distribution with mean zero and standard
deviation σi.

Given the assumed random scatter described in Sect. 4.2.7, this means that
the likelihood for a particular abundance estimate ai and element X is given
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by

L(ai) =


exp−atrend

i (T0)+esyst
i −ai

2(σ2
i +σ2

X, int)√
2π

(
σ2

i +σ2
X, int

) ,ai + esyst
i ∈

[
amin

i ,amax
i
]

0,ai + esyst
i /∈

[
amin

i ,amax
i
]
,

(4.39)

where σX, int for a group spectrum is rescaled as described in Sect. 4.2.6.
The ai are assumed to be uncorrelated by construction, since we have al-

ready built in correlations in the systematic error model. Hence, the likelihood
for the full sequence of estimates is given by

L({ai}) =
n

∏
i=0

L(ai) . (4.40)

As in Article I, we use the Python module emcee to find the maximum of this
function.

4.2.9 Recommendations for future studies
Based on these discussions, we can make some recommendations for similar
studies.

Our first recommendations are fairly concrete and have to do with vmic.
Ideally, one should attempt to observe a spectral range that allows determining
vmic directly. If that is not possible, the uncertainty in vmic has to be explicitly
taken into account in the analysis: As shown in Sect. 10.1, there is no way
of indirectly estimating vmic that is not to a great extent arbitrary. One should
also attempt to predict ahead of time which lines are the most sensitive to
vmic. In our case, it happily turned out that of the lines we observed, Mg4704
was much less sensitive than the other lines, but we could just as easily have
ended up discovering that all lines were highly sensitive, making our analysis
essentially useless except as a cautionary example.

When selecting which lines to observe, study what the stellar evolution
models actually predict for the elements in questions. The dependence of ai
on Teff is not interesting in itself. What does matter is the dependence on T0.
That is, ∂ai/∂T0. This should have as high a value as possible, at least within
some range of Teff. As a rough rule of thumb, it is better if it changes very
quickly within a small range of Teff, since it is less likely that systematic errors
will create the illusion of a sharp shift in a very narrow range, than that they
will create an apparent slow shift over a wide range.

73



4.2.10 Reliability of method
The method used in Article II was developed during the process of writing
that article, and has never been tested before. When motivating the method,
we started by in Sect. 4.2.2 essentially dismissing the method of differential
analysis, which has been used for a very long time. This might make a reason-
able reader unwilling to trust our results.

Our response is to agree that you should not trust the results of this method
until it has been used by several other people, but to point out that if you do
not trust this method, you probably should not trust the more common method
of differential analysis either. In our analysis we take two sources of system-
atic error into account, and assume that the systematic error function will look
either like a constant offset or something more complicated. Simply ignoring
those sources of systematic error and assuming that the systematic error func-
tion has to be a constant offset would result in our analysis being equivalent
to differential analysis. That is, our method differs from differential analysis
essentially in being more pessimistic about how strongly our conclusions can
be justified on the basis of our data.

4.2.11 Generality of method
As with the method for estimating the performance of pipelines for determin-
ing stellar parameters, the method we developed here can be generalised to
many other situations. The underlying assumptions can be summarised as:

“We have made measurements of quantities x for a large number of doo-
dads. We have also done something complicated to get estimates of some
quantity y for the same doodads. However, we do not actually care about ei-
ther x or y. What we care about is a parameter a in a model that predicts
y = fa(x). We know that our measurements y are subject to a systematic error
yerr = g(x). Based on this, how well can we constrain a?”

It so happens that in our case the doodads are stars; each x is the stellar
parameters for the stars; each y is the derived abundances for stars; and fa is a
stellar evolution model. However, as long as it is possible to derive some ab-
solute bounds on g(x), something similar to the analysis discussed throughout
Sect. 4.2 should be possible.
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4.3 The ExtraTrees algorithm
In Article III we attempted to find out whether it is possible to use machine
learning for estimating [α/Fe] for BP/RP spectra observed with the Gaia. We
picked the Extremely Randomised Trees (ExtraTrees) algorithm as representa-
tive of machine learning in general, on the assumption that it was close enough
to optimal that it would behave qualitatively the same as more sophisticated
algorithms. That is, if it was possible to pick out a signal in our data with the
ExtraTrees algorithm, another algorithm might pick out a stronger signal, but
it would not be able to pick out a signal where the ExtraTrees algorithm only
saw noise. Due to space constraints, we did not discuss in the article how the
algorithm actually works.

4.3.1 Formal definition
The ExtraTrees algorithm is an example of an ensemble method. The basic
idea behind ensemble methods is fairly simple: Assume that we have some
base estimator, which is a machine learning algorithm so naïve that it barely
performs better than chance. Train very many such base estimators, in a way
that ensures that their results are uncorrelated. Then combine their results in
some way: If the task is classification, the natural choice is to let them vote,
and if the task is regression, a natural choice is to take the average of all out-
puts. This can give surprisingly accurate results, despite the poor performance
of each individual estimator. These algorithms are also highly parallelisable,
since each base estimator is trained and runs without input from any of the
others (Geurts et al., 2006, Sect. 1).

The base estimator of the ExtraTrees algorithm is the decision tree (Geurts
et al., 2006, Sect. 2). In general, a decision tree is any algorithm that can be
visualised as a tree graph, such that the algorithm starts at the root and then
at each node makes a binary choice about how to continue down through the
tree based on whether some feature of the data falls above or below a thres-
hold value, and each leaf node is a verdict about what label to assign to the
data (Shalev-Shwartz and Ben-David, 2014, Chap. 18). Specifically in the
context of machine learning, a decision tree also requires some algorithm for
deciding which choice to make at each node. This is typically done recur-
sively, by at each node looking at the subset of the data that could reach the
node, and somehow defining a choice of feature and threshold that best sepa-
rates the labels. In the context of regression, rather than categorisation, ‘best’
is typically defined as minimising the mean-squared error (MSE). For the Ex-
traTrees algorithm7, the choice of feature and threshold is made by initially
generating a list of candidate criteria by randomly assigning some treshold
to each feature. Out of this list, the node is assigned the criterion that best
separates the data (Geurts et al., 2006, Sect. 2.1).
7As the name implies, most other algorithms involve less randomisation.

75



4.4 Comparisons to isochrones
In Article I we gauge the performance of the stellar parameter determination
pipeline by comparing how close the derived parameters for stars in the cluster
M67 are to the isochrone for that cluster. In that article, the comparison is done
in Teff-logg space. In Article II we estimate stellar parameters for stars in the
cluster M30 by shifting the stars to the closest point on the isochrone. In that
article, the comparison is done in Vmag–(V − I)colour space. In both cases, we
make caveats about how this is not as straightforward as it seems, and refer the
reader to Valls-Gabaud (2014) for a lengthier discussion. Here, we attempt to
describe the problem in more detail.

The fundamental problem is the same in both cases: Isochrones do not
exist in a metric space. That is, whether we are working in Teff-logg space or
Vmag–(V − I)colour space, there is no natural definition of the distance between
two points. This means that the question of which point on the isochrone is
‘closest’ to the measured parameters for a star, and how ‘close’ it is, does
not have a well-defined answer. This is most obvious in the case of Teff-logg
space: Asking which is ‘closest’ of a point 100K away and a point 0.1dex
away is clearly an apples-to-oranges comparison, and asking for the ‘length’ of
a diagonal covering 100K and 0.1dex is simply meaningless, but the argument
holds in Vmag–(V − I)colour space as well.

Since we are using the isochrone for parameter estimation, we would like to
define distance in such a way that the closest point on the isochrone is that with
the highest probability of generating the measurement. Unfortunately this runs
into problems. First of all, we need well-defined errors on our measurements.
In the case of the Teff and logg estimates in Article I we do have uncertainties,
but we do not for the Vmag and (V − I)colour estimates in Article II. The second
problem needs to be phrased differently depending on whether we want to use
Frequentist or Bayesian language. In Bayesian terms, we would say that we
need a prior on the measured parameters. That is, we need to know how likely
a generic star is to be at a particular point on the isochrone. Without a detailed
physical model of stellar clusters, there is no easy way to get such a prior. One
could attempt to get around the problem by choosing a uniform prior, so that
the probability density is the same across the entire isochrone. This runs into
the problem we described in the beginning: Since this is not a metric space,
there is no uniquely defined ‘uniform’ probability density. That is, there is
nothing that tells us that a segment of the isochrone covering xK along the
Teff axis should contain the same amount of probability mass as a segment
covering ydex along the logg axis. The problem is more difficult to express
clearly in Frequentist terms, although it is known a priori that the problem
must be there since Frequentist parameter fitting is equivalent to Bayesian
parameter fitting that starts out with a uniform prior and discards all but the
maximum of the posterior. One way of expressing it is that the problem is
very sensitive to the choice of parametrisation, so that if we arbitrarily start
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measuring effective temperature in tens of K or surface gravity in tenths of
dex, we could get very different results8.

We do not attempt to find a fundamental solution to this problem. As dis-
cussed in Valls-Gabaud (2014), the problem is well-known and unsolved. In-
stead, we simply note that every time we use isochrones the results should be
taken with a few grains of salt.

8Note that this strictly speaking applies to all Frequentist parameter fitting. One can always
force a Frequentist parameter fit to give a particular result simply feeding it the problem
parametrised in a sufficiently perverse way. In most cases, however, there is some unique
parametrisation which most people will agree is the sensible one to use. In this case, there
is no such natural parametrisation.
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4.5 Error estimation
SME offers two ways of calculating the statistical errors in the estimated pa-
rameter p. Neither method is completely ideal, but each one is the more ap-
propriate in certain situations.

The first method estimates the error in each fitted parameter based on the
diagonal of the covariance matrix generated by the fitting algorithm. This
effectively assumes that the only source of error is pixel noise. This method
was the one used in older versions of SME (Piskunov and Valenti, 1996).

The second method uses a heuristic algorithm that tries to take into account
the existence of systematic errors. It assumes that the estimates are based on
fitting to multiple lines at once, and tries to take into account differing system-
atic errors from line to line due to uncertainties in the line parameters (Priv.
comm. Thomas Nordlander). It works by first picking out a subset of pixels.
Initially, each pixel i which is used in the fitting and whose flux has a non-
zero derivative with respect to p is selected. Then, out of those the algorithm
selects the ones for which the residual Ri between the observed and best-fit
flux Fi is less than 5 times the flux uncertainty. As long as the model flux is
approximately a linear function of p, the change ∆p needed for the residual to
become zero is given by

∆p =
Ri

∂Fi/∂ p
(4.41)

All the pixels together give a distribution of ∆p values. The width of the
central 68% is taken as the best estimate of the uncertainty in p (Piskunov and
Valenti, 2017). This method is used from SME version 433 onwards. That
said, it is easy to restore the older method, by commenting out some lines in
the SME code file sme_solve.pro.

We used the second method for Article I, since the stellar parameter pipeline
that we were testing does make estimates based on multiple lines, as implic-
itly assumed by the method. However, in Article II we were working with
abundances estimated from single lines. Hence, we modified our SME code
to restore the first method.

78



4.6 Continuum mask algorithm
As described in Sect. 3.10.2, early versions of SME need a user-defined mask
to fit the continuum. In Article I we developed an algorithm for defining that
mask. For reasons of space, the description of the algorithm ended up rele-
gated to Appendix D in the article, where it is presented with no real justifica-
tion. Here, we attempt to clarify why that algorithm is defined as it is.

There are two main sources of error when fitting the continuum. There
is the observational problem that each pixel is affected by Poissonian noise.
There is also the theoretical problem that our models never have a full line list,
meaning that pixels which we think are pure continuum may actually be part
of a faint spectral line. If only either one of these error sources existed, and
the continuum was simply offset by a constant factor, there would be a single
demonstrably correct way of defining the continuum mask.

If we had a complete line list but pixel noise, the solution would be to as-
sign the brightest model pixels to the continuum mask, on the assumption that
these are closest to the continuum. What fraction of the total number of pixels
should be considered the brightest would need to be tested out empirically, but
there would probably be a fairly wide range of viable values. This is essen-
tially how the pipeline attempted to define the mask in versions of the pipeline
prior to Article I. This had the problem that occasionally, there would be a
fairly deep line inside the continuum mask, which would noticeably lower
the fitted continuum relatively to the true level. Presumably, there were also
other cases where shallower unknown lines lowered the fitted continuum to an
extent not immediately obvious to the eye.

If we had no pixel noise but an incomplete line list, the solution would be to
assign the brightest observed pixels to the continuum mask, on the assumption
that these are free of missing lines. Again, this would require an arbitrary
choice of what fraction should be considered the brightest. If this algorithm
was used on a real-world noisy spectrum, it would systematically place the
fitted continuum too high, since given a number of genuine continuum pixels,
it would preferentially select those where the noise was unusually bright over
those where the noise was unusually dim.

In short, the algorithm that would be correct in one idealised case will tend
to push the continuum too low when applied to real-world data, and the al-
gorithm that would be correct in the other idealised case would tend to push
the continuum too high instead. Hence, we invent a hybrid algorithm which
tries to compromise between them. In addition, the algorithm tries to avoid
atmospheric emission lines.

Formally the algorithm is defined as follows. We introduce the parameters
cmodel, cobs and efrac

9. First, a preliminary fitting is done by fitting a straight
line to the brightest points in the spectrum. This hopefully mostly gets rid of

9In Article I we use a slightly different notation using cfrac and cwt, defined such that cmodel ≡
cfrac and cobs ≡ cfrac · cwt. This is hopefully slightly clearer.
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the slope of the spectrum. In the next step we assign to the continuum mask
those pixels such that

1. The observed intensity is among the cobs+efrac brightest, but not among
the efrac brightest

2. The model intensity is among the cmodel + efrac brightest.
In the case that this results in fewer than ten pixels being assigned to the con-
tinuum mask in either the left or right one-third of the segment, cobs and cmodel
are gradually scaled up until they include ten.

Among the criteria, removing (1) would recover the algorithm that would
be optimal under perfect modelling, while removing (2) would recover the
algorithm that would be optimal with perfect observations. The parameter efrac
has the effect of allowing us to remove pixels that are affected by emission.
Empirically, we got the best results around cobs = 0.2, cmodel = 0.6, and efrac =
0.005.
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4.7 Coaddition and cleaning of contaminants
In Article II, we worked with a set of spectra observed with the GIRAFFE
spectrograph. These had been observed over multiple observation nights, so
that there were around 30 individual spectra for each faint star, and around
5 for the brighter stars. These spectra had low signal to noise, with the S/N
reported by the GIRAFFE spectral reduction pipeline going as low as 3.2.
Initially we also worked with spectra from Scheutwinkel (2019), which were
also badly contaminated by cosmic rays. There was roughly one per 10Å in
the spectra from the individual observation nights, meaning that there would
be three per 1Å in most spectra if we simply averaged the spectra together.
Hence, we implemented an algorithm for removing cosmic rays. At the end,
this turned out to be unnecessary, since other issues with the files prompted
us to download spectra from the ESO Archive Science Portal (Alberto et al.,
2019). These had already been cleaned of cosmics, making that part of the
algorithm reduntant. For completeness, we describe the algorithm here.

First a barycentric correction is applied to each spectrum to be co-added.
This ensures that the spectra have a common wavelength scale. A full radial
velocity determination is not done until after the final co-addition, since the
individual spectra are too noisy to permit this to be done accurately.

We denote the individual spectra for a star by k and the pixels of the spec-
trograph by i. We denote the number of spectra for star k by n and the number
of pixels per spectrum by N.

Each spectrum is given a preliminary normalisation, by dividing the pixel
fluxes fi,k by the integrated flux ak over the spectrum. Each normalised flux
should then follow an approximate normal distribution centered around the
true flux, up to some overall normalisation constant.

We calculate a preliminary weighted average f wt over all spectra for each
pixel.

f i =

∑
n
k=0

fi,k/ak

(σi,k/ak)
2

∑
n
k=0

1

(σi,k/ak)
2

(4.42)

where σi,k is the uncertainty in pixel flux fi,k.
We then calculate the differences ∆ fi,k ≡ fi,k − f i. For pixels unaffected

by cosmics, this will follow a normal distribution with mean 0 and standard
deviation

σ f i,k
=

√(
σi,k

ak

)2

+σ2
f i
+2σ fi,k, f i

(4.43)
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where

σ f i
=

1√
∑

n
k=0

1

(σi,k/ak)
2

(4.44)

and

σ fi,k f i
=

1

∑
n
l=0

1

(σi,l/al)
2

(4.45)

Let us now assume that we are willing to have an algorithm for flagging cos-
mics strict enough that on average ntype1 pixels will be flagged in a spectrum
entirely lacking cosmics. In that case, we should flag all pixels with fluxes
more than cσ f i,k

above f i, where

c =
√

2erf−1
(

1− 2ntype1

Nn

)
(4.46)

Since cosmic rays generally affect several adjacent pixels, but not necessar-
ily all of them enough to raise them above this cutoff, we also flag the 5 nearest
to either side as well. Note that while this will result in more than ntype1 pixels
being incorrectly flagged as cosmic rays, this is not a problem: Our reason
for imposing ntype1 is concern with the bias that comes from truncating the
normal distribution followed by non-cosmic pixels. Incorrectly flagging pix-
els because they happen to be close to an incorrectly flagged pixel does not
impose any bias, it only decreases the amount of data.

In the final spectra, each pixel flux is the weighted average over all spectra,
but with flagged pixels given zero weight. The uncertainties are calculated
according to (4.44), again with flagged pixels treated as though σi,k = ∞.

This is implemented in a Python module which itself makes use of the mod-
ules SciPy, Astropy (Virtanen et al., 2020; Astropy Collaboration et al., 2013,
2018). Once the coaddition is finished, the radial velocity is estimated by com-
parison to the star HD 140283, using an algorithm by Ansgar Wehrhahn: First
a cross-correlation is used to derive a first guess. Then a χ2-minimisation is
performed, on the assumption that the spectra are now close enough for this
not to get stuck in a local minimum (Wehrhahn, 2020).

82



5. Summary of articles

5.1 Article I
As described in Sect. 2.3.2, GES contains multiple nodes tasked with estimat-
ing stellar parameters and abundances from spectra taken with the UVES spec-
trograph. One of those is the Lund-Uppsala-MPIA-Bordeaux-ANU (LUMBA)
node. During the work on Internal Data Release 5 (iDR5), Gregory Ruchti of
Lund University was in charge of doing the UVES analyses for LUMBA. Part-
way through, he fell ill, and the author had to take over.

After iDR5 was finished, we continued work on developing and improving
the LUMBA pipeline. This involved developing a method for measuring what
was an improvement. This led to Article I, which describes the pipeline. It
describes how the pipeline works in enough detail that we believe that it is
completely replicable. That is, a dedicated spectroscopist could write a practi-
cally equivalent pipeline based on the information in the article. However, for
reasons of brevity we had to leave out some details of why the pipeline was
written the way it is. This is a bit unfortunate, since in reality it is more likely
that a spectroscopist would want to know the general principles of building
pipelines than to want to replicate our pipeline in detail.

5.1.1 Scientific approach in article
The pipeline attempts to fit model spectra to the observed spectra over wave-
length ranges that cover spectral lines sensitive to the stellar parameters, while
avoiding wavelengths that are known to be difficult to model. To do the fitting
the pipeline uses the spectral synthesis code SME (described in Sect. 3.10.2),
together with a grid of stellar atmospheres calculated with the MARCS code
(described in Sect. 3.10.1) and the GES line list, described in Heiter et al.
(2021).

All of the lines used are sensitive to Teff and vmic, in ways that in concert
is not degenerate with the other parameters. They are also sensitive to the
broadening coming from vmac and vsin i together, in such a way that we can
estimate the overall broadening separately from the other parameters, but not
distinguish vmac and vsin i. This is in practice not a problem, since those pa-
rameters are generally not of interest on their own. Finally, each line is either
jointly sensitive to either logg and some metal abundance, or only to the abun-
dance:
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• Strong neutral calcium lines: Sensitive to logg and the calcium abun-
dance
• Weak neutral calcium lines: Sensitive to the calcium abundance
• Strong neutral magnesium lines: Sensitive to logg and the magnesium

abundance
• Weak neutral magnesium lines: Sensitive to the magnesium abundance
• Singly-ionised iron lines: Sensitive to logg and [M/H]
• Neutral iron lines: Sensitive to [M/H]

Together, this allows the pipeline to estimate Teff, logg, [Fe/H], vmic, as well
as the joint broadening from vmac and vsin i. Note that the pipeline cannot
reliably determine vrad.

The performance of the pipeline was estimated by testing the pipeline on
benchmark stars – stars with stellar parameters already known from methods
independent of spectroscopy. This was done using the Gaia FGK benchmark
stars, which are described in 4.1.1. The development for a reliable method
of benchmarking stellar parameter pipelines was probably a more important
outcome of the work process than the pipeline itself, but it gets relatively little
space in the article. Hence, we describe the method in detail in Sect. 4.1. In
brief, the performance of a pipeline is characterised in terms of the parameters
epipe, σ star and σ spec. The parameter epipe describes a systematic offset, which
is assumed to be constant for all benchmark stars of a particular type. The pa-
rameter σ star describes a random scatter which varies from star to star, but not
between spectra of a particular star. The parameter σ spec describes a random
scatter that varies from spectrum to spectrum.

5.1.2 Main conclusions in article
Testing the pipeline on the Gaia-ESO FGK benchmark spectra resulted in the
estimates of the performance parameters shown in Table 5.1 on page 86. Based
on this, we concluded that the pipeline was accurate enough for the type of
work it had been designed for, although performance was noticeably worse
for red giants.

5.1.3 Important conclusions not in the article
During work on the pipeline, we made some useful discoveries about what not
to do. This is not the kind of material that gets included in articles, but it is
arguably of equal interest to other spectroscopists as the pipeline itself is.

As described in Sect. 3.6.2, when the pipeline first came into our hands
it used the Balmer lines Hα and Hβ to provide a constraint on Teff. It used
a relatively complicated algorithm for defining the line mask specifically for
these lines. During development we gradually removed both lines from the
analysis, and found that this improved the results greatly, removing the major
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part of our spectrum-to-spectrum scatter. Our initial worries that we would
be unable to constrain Teff without a specifically Teff-sensitive line turned out
to be unfounded, since all lines have some Teff dependence which is often not
degenerate with the other parameters. Based on this, we would recommend
against any attempts at using Balmer lines for automatic parameter determi-
nation, although they may still be used in analyses where the line masks are
defined by hand for each spectrum.

As described in Sect. 4.1.9, we originally used the Sun as a benchmark
to test the performance of the pipeline. Our assumption was that since the
Sun has very well-known stellar parameters, and the spectra have such high
quality that they are practically noiseless, this would be the ideal test. This
turned out to be a mistake: The Sun has different systematic errors than other
stars with almost identical stellar parameters, and so our attempts at tweaking
the pipeline to give good results for the Sun resulted in it only giving good
results for the Sun. Based on this, we would recommend against ever using a
single benchmark star to evaluate the performance of a pipeline, and to use an
approach like that described in Sect. 4.1 instead.

As described in Sect. 4.1.7, GES uses a different method for estimating the
performance of stellar parameter pipelines. This method implicitly assumes
that the systematic error will be almost identical for stars with almost identi-
cal stellar parameters. At least for our pipeline, this assumption is not even
approximately true. Similar stars can have different systematics, due to quirks
unique to each star.
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Table 5.1. Best estimates of the error parameters for the stellar parameters Teff, logg
and [M/H] for the four types of benchmark star. Offset and spectrum-to-spectrum
scatter specific to the Sun are also included.

Stellar Star type epipe σ star σ spec

parameter
Teff The Sun −25±4 . . . 10
– Solar-type −30±40 80±40 20±40
– F dwarfs 50±40 190±40 20±40
– FGK subgiants 0±20 50±20 60±40
– Red Giants 50±20 30±20 70±20
logg The Sun −0.070±0.004 . . . 0.01
– Solar-type −0.04±0.03 0.07±0.03 0.02±0.04
– F dwarfs 0.08±0.05 0.13±0.08 0.08±0.06
– FGK subgiants 0.02±0.03 0.11±0.03 0.15±0.03
– Red Giants 0.15±0.01 0.14±0.02 0.12±0.02
[M/H] The Sun 0.008±0.003 . . . 0.008
– Solar-type 0.003±0.004 0.020±0.002 0.016±0.002
– F dwarfs 0.019±0.008 0.080±0.008 0.034±0.008
– FGK subgiants −0.03±0.02 0.05±0.02 0.06±0.02
– Red Giants −0.07±0.05 0.05±0.05 0.06±0.05
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5.2 Article II
As described in Sect. 2.2.2, the elemental abundances seen in the atmospheres
of stars in a stellar cluster vary with Teff, due to several processes that cause el-
ements to gradually rise or sink over long time scales. Many of these processes
are well understood, but there is an Additional Mixing or Transport Process
(AddMix) that we still do not understand well. There are models of stellar
evolution which attempt to model AddMix while making as few assumptions
as possible. This lack of assumptions comes at the cost of introducing a large
number of free parameters, which must be estimated empirically. In Article II
we attempt to estimate the parameter T0 in such a model.

5.2.1 Scientific approach in article
We had theoretically predicted abundances as a function of Teff for a number
of different elements, assuming a range of different values of T0

Our observations consisted of 177 spectra taken with the GIRAFFE spec-
trograph. We coadded these spectra into group spectra with a S/N≈ 100. The
stellar parameters Teff and logg were already known from photometry, while
vmic was estimated using an empirical relation. There were five spectral lines
that were visible over the entire Teff range covered by the spectra. We show
the lines in Table 5.2. Two of these were left out of the analysis, the Ba4554
since there are no model predictions for that element, and Ti4571 because that
line turned out to be saturated, as described in Sect. 3.6.4.

Line name Species Line centre
[
Å
]

Comment
Ba4554 Ba II 4554.0290 Not used
Ti4563 Ti II 4563.7574
Ti4571 Ti II 4571.9713 Not used
Fe4583 Fe II 4583.8292
Mg4702 Mg I 4702.9909

Table 5.2. The spectral lines studied in Article II.

For the group spectra we derived stellar abundances, using a pipeline which
is essentially a simpler version of that described in Article I. We then compared
these abundances to those predicted by the models. This comparison required
us to take Teff dependent systematic errors into account. This was a fairly
involved process, which is described in Sect. 4.2.

5.2.2 Main conclusions in article
We found that log10 (T0/ [K]) is most likely somewhere in the range 6.09-
6.20. This has an immediate implication for Paper VI in the same article
series, Gruyters et al. (2016). That paper used a value of 6.0 and found an
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initial abundance for lithium of A(Li)init = 2.48± 0.10dex. This was a sur-
prise at the time, since it is quite far below the abundance of 2.72dex predicted
from BBN models. Article I compounds this surprise, since the range 6.09-6.2
corresponds to a starting abundance of 2.42-2.46dex.

5.2.3 Implication for similar studies
During the work on the article, we also learned several things of possible in-
terest to anyone planning a study of this kind.

First of all, many studies assume that systematic errors only affect the mea-
sured abundances through a constant, Teff independent, offset. We found that
at least in our case, this assumption is very dubious. We found that in what we
considered the best implementation of our analysis, models of the systematic
error as a constant and linear offset were about equally compatible with the
data (See Sect. 4.2 for details). We also found that relatively small changes in
the implementation – such as switching to the continuum fitting algorithm de-
scribed in Sect. 4.6 – were enough to entirely rule out constant-offset models
of the error.

Secondly, the study also started out with the assumption that as long as Teff,
logg and [M/H] are already known from photometry, it is easy to estimate
vmic using some empirical relation. For example, this is the approach taken
by Paper VI. We discovered that in fact, there is a wide range of possible
empirical relations to choose from. We show the full range considered in
Appendix 10.1. This choice of relation has a strong impact on abundances
on the cool end of the temperature range. We also concluded that the relation
used in Paper VI is probably not appropriate: It was estimated based on Pop I
stars, while M30 is made of Pop II stars. When we used it on our spectra it
gave physically impossible derived abundances at the cool end, in the sense
that the abundance trend did not level out at any point.

Finally, we found a bug in the Linux libraries for SME versions 503, 520,
536 and 542. The bug has since been reported and fixed. To the best of our
knowledge, the effect of the bug is slight, but we recommend any author whose
work depends on Linux SME of version 542 or earlier to download a more
recent version and verify this by rerunning at least part of the analysis.

5.2.4 1D-LTE, 1D-NLTE and 3D-LTE
There was one part of the study that was originally intended to be a fairly
major part of the article, but which unfortunately turned out to be infeasible.
As described in Sect. 3.8, SME by default uses the approximations of one-
dimensional stellar atmospheres (1D), and local thermodynamic equilibrium
(LTE). This is computationally efficient, but gives worse results than a full
3D-NLTE analysis. While we did not have the ability to do a full 3D-NLTE
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analysis, we did have the ability to make either a 3D-LTE analysis or a 1D-
NLTE analysis. Hence, we planned to run some lines in 3D-LTE and some
in 1D-NLTE, depending on which was most suitable for that element, by the
criteria below. A a sanity check we would also compare to the results of taking
the other option, as well as simple 1D-LTE.

For the 3D-LTE calculation, we did spectrum synthesis using the SCATE
code on the STAGGER grid of 3D hydrodynamic model atmospheres (Hayek
et al., 2011; Magic et al., 2013). We sampled the temporal evolution by using
20 snapshots, selected at regular intervals, from each hydrodynamic simula-
tion.

For titanium and iron, we could not initially make a definite statement that
either 3D-LTE or 1D-NLTE was better. For the Mg4702 line, we did expect
1D-NLTE to be much better. In fact, 3D-LTE might actually be worse for
that line than mere 1D-LTE (Nordlander, T. et al., 2017). The reason for this
is that Mg I, unlike Ti II and Fe II, takes very little energy to ionise. This
makes it much more sensitive to the ultraviolet (UV) flux from deeper layers
in the atmosphere. Since this energy transfer is not local, it violates the LTE
assumption. By Planck’s law the UV flux is strongly temperature-dependent.
Since 3D models tend to have steeper temperature gradients than 1D models,
they have to take NLTE into account to simulate this species sensibly (Thomas
Nordlander, Priv. comm).

As it turned out, the 3D calculations did not work. When we applied 3D
corrections to the derived abundances, we found that they did not level out at
the cool end of the temperature range, similarly to our results using a poorly-
chosen method for estimating vmic. We believe the underlying cause is line
saturation, as described in Sect. 3.6.4. Because of this, we had to move the 3D
results from the main body of the article to Appendix D.
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5.3 Article III
The Gaia space observatory described in Sect. 2.3.1 is primarily designed for
astrometry. However, it does have the ability to measure very low-resolved
spectra, using the Blue Photometer (BP) and Red Photometer (RP). The com-
bined BP/RP-spectra have a resolution varying from 13 to 85 over the spectral
range, too low for individual spectra lines to be visible.

The conventional spectroscopic methods described in Chap. 3 all assume
that the spectra have distinct spectral lines. Once the resolution is poor enough
that spectral lines blend into each other and the surrounding continuum, they
become inapplicable. It will still be possible to infer stellar parameters like
Teff, which affect the overall shape of the spectrum, but one could assume
that the spectra will contain no information about elemental abundances. A
counter-argument to this assumption would be that even if an individual spec-
tral line is unresolved, an elemental abundance affects the depth of all lines
of that element, as well as the continuum. As long as the element has large
numbers of lines, this should affect the overall shape of the spectrum in some
measurable way.

In practise, it has already been shown that BP/RP spectra can be used to es-
timate the overall metallicity [M/H], if not individual abundances (Liu et al.,
2012). In Article III, we investigate the possibility of going one step fur-
ther and measuring the α-element abundance [α/Fe]. This is not the same as
measuring individual elemental abundances, but it is enough to sort stars into
different populations.

It would in principle be possible to do this analogously with the more con-
ventional spectral synthesis described in Sect. 3.7. One could generate model
spectra, and then fit those to the observed spectrum. The problem is that since
the analysis would have to cover a very wide wavelength interval, it would be
necessary to know how the overall normalisation changes over the spectrum.
Instead of simply knowing the resolution of the BP and RP, it would be nec-
essary to have a detailed model of the Gaia instrumental profile, as well as the
effects of interstellar extinction. We do have such a model1, but it is known
not to be perfect, to the extent that we did not trust our ability to do so reliably.

In short, we know that there should be some deterministic relationship be-
tween stellar parameters and the observed spectra, but we do not have a re-
liable explicit model of that relationship. This is the situation that machine
learning methods excel at dealing with. As long as there is a subset of Gaia
spectra that do have known [α/Fe], they can be used to train a model to figure
out the relationship between spectra and [α/Fe].

1Information about the model of the Gaia instrumental profile will be publicly released as part
of Gaia DR3. All statements made here about the instrument model are based on personal
communications with Rosanna Sordo.
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5.3.1 Scientific approach in article
We selected the ExtraTrees algorithm as a representative of machine learning
methods in general. The method is described in more detail Sect. 4.3. The
important assumption behind this choice is that the performance of the Extra-
Trees algorithm is sufficiently close to the best algorithms that if it revealed
itself to be completely incapable of determining [α/Fe], no better algorithm
would be likely to manage either.

We initially tested training an ExtraTrees model on a sample of spectra
with stellar parameters known from Data Release 2 of the GALAH survey
(the survey is described in Sect. 2.3.2). We used cross-validation to verify that
it could approximately recreate the parameters of a sample statistically similar
to its training sample. Then we applied the model to a sample of Gaia spectra
without known parameters. This showed a realistic Galactic structure, with
a [Fe/H]-rich, α-poor Galactic Disk, and vice-versa for the Halo. This was
made into a Gaia Image of the Week (Gavel et al., 2020).

However, while this did show that the model gave [α/Fe] estimates that
were correct on average, it could not tell us whether it was actually using the
causal effect of [α/Fe] on the spectrum, or merely the correlation of [α/Fe]
with other parameters that have stronger effects on the spectrum. For models
using the ExtraTrees algorithm, it is in general very difficult to get a clear idea
of what features of the data it has actually learned to use – they are sometimes
referred to as black box models for that reason.

To test this, we generated a grid of synthetic spectra, which lacked the cor-
relations of the GALAH sample. These spectra were not – for the reasons ex-
plained above – expected to look exactly like genuine, observed spectra. How-
ever, they were realistic enough that we believed they could reveal whether
the information needed by the ExtraTrees algorithm was even present in the
spectra, and second whether the model trained on observed data was actually
seeing the causal effect of [α/Fe] or the correlation with other parameters.

We trained a model on the synthetic spectra and again used cross-validation
to verify that it could approximately recreate the parameters of a sample sta-
tistically similar to its training sample. However, when we applied it to the
GALAH sample we found it could not give useful [α/Fe] estimates, even if it
did relatively well for other stellar parameters. Similarly, the model trained on
the GALAH sample could not give useful estimates for the synthetic sample.

This showed that the models had not learned to use the causal effect of
[α/Fe] on the spectra, but some indirect correlation with other parameters. At
the most trivial, it could be that the model was simply using the Galactic trend
of [α/Fe] as a function of [Fe/H].

To test this possibility, we acquired a sample from the Gaia-Enceladus
structure (the structure is described in Sect. 2.2.5). This sample is observa-
tionally similar to the other Gaia sample, but has a different trend of [α/Fe] as
a function of [Fe/H]. We found that the estimates by a model trained on the
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GALAH sample did not follow the true trend of Gaia-Enceladus, but that they
also did not simply follow the overall Galactic trend.

This again showed that the model was relying on indirect correlations, but
also verified that it did not only use the correlation with [Fe/H]. Even though
we had no additional means of finding out what those correlations were, it
showed that the estimates were non-trivial enough to be potentially useful.

5.3.2 Main conclusions in article
It is possible to estimate [α/Fe] based on Gaia BP/RP spectra using machine
learning methods such as ExtraTrees, but there are several caveats that need to
be kept in mind: While a model trained on the GALAH sample will produce
[α/Fe] that are on average fairly close to the correct values, it does not appear
to do so by using the causal effect of [α/Fe] on the shape of the spectrum.
Instead, it uses the correlation between [α/Fe] and other parameters, which
do affect the spectrum. This means that while the method does give [α/Fe]
estimates that are good on average, it cannot distinguish two stars that only
differ in [α/Fe].

For cool dwarf stars it might be possible to actually use the causal effect
of [α/Fe] on the spectrum, since they have strong titanium oxide molecular
lines which very noticeably affect the spectrum. Unfortunately, those stars are
inherently less bright, meaning that those observed by Gaia sample a relatively
small fraction of the Galactic volume.

92



6. Final summary and outlook

The field of Galactic archaeology depends crucially on the techniques of stel-
lar spectroscopy. In many cases, these techniques suffer from systematic er-
rors that are of comparable size to the physical effects that current studies are
looking at. This means that the standard methods of parameter fitting and
hypothesis testing that are taught in basic statistics courses may not be appro-
priate, since those methods implicitly assume that systematic errors are negli-
gible compared to statistical errors. In addition the systematic errors are often
ill-conditioned, meaning that they vary in non-trivial ways. This means that
it may also not be appropriate to use some of the standard methods that have
been developed specifically within the field of stellar spectroscopy, since those
methods assume that the systematic errors have relatively trivial behaviour. In-
stead, it is often necessary to develop statistical analysis tools appropriate to
the specific research question.

In Articles I and II we developed statistical tools for two relatively common
cases: evaluating the performance of a pipeline for parameter estimation, and
estimating model parameters based on spectroscopically derived quantities.
We have also sketched out how those tools can be used for seemingly very
different problems.

We believe that in the coming decades, the field of stellar spectroscopy will
have to devote more resources to developing statistical tools, if it is to keep
delivering reliable results. Thanks to technological improvements, the field is
getting access to increasingly larger volumes of data, which inherently makes
systematic errors a larger part of the total error in any analysis.

In addition to conventional spectroscopy, the field is increasingly adopting
the use of machine learning. In Article III we look at the possibility of using
machine learning to extract α abundances from Gaia spectra, which have too
low resolution for individual spectral lines to be visible. We find that it is
possible to do, but there are several caveats that have to be kept in mind when
interpreting the results. In general, we recommend testing machine learning
methods in situations where it seems like they could plausibly be useful, since
this requires a relatively small investment of effort while potentially having
large payoffs.
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7. Contributions to included papers

7.1 Article I
Gregory Ruchti and Pieter Gruyters originally branched off the LUMBA UVES
stellar parameter pipeline from the LUMBA Giraffe stellar parameter pipeline,
which had been written by Karin Lind. Gregory was in the process of prepar-
ing it for use for internal Data Release 5 (iDR5) of Gaia-ESO when he sud-
denly fell ill and had to hand it over to me. I used the pipeline in iDR5 and the
subsequent iDR6, after which we decided to publish an article documenting it.

I continued the work of making the pipeline suitable for UVES spectra. I
developed the framework for testing the pipeline. The article was written by
me with input from the coauthors.

7.2 Article II
Andreas Korn and Pieter Gruyters defined and executed the observational
project, as part of the article series Atomic diffusion and mixing in old stars.
A preliminary analysis of the data had already been performed as a Masters’
project by Kilian Scheutwinkel under supervision of Andreas Korn, and work-
ing closely with Pieter Gruyters.

I created the algorithm for coadding and cleaning the spectra. I branched
off a pipeline for analysing our Giraffe spectra, using the LUMBA UVES
abundance pipeline as a basis. The LUMBA UVES abundance pipeline had in
turn been branched off by Gregory Ruchti from the original LUMBA Giraffe
abundance pipeline written by Karin Lind. I defined the statistical framework
for interpreting the results. The article was written by me with input from the
coauthors, with Thomas Nordlander writing parts of Sect. 4.4.2.

7.3 Article III
Rene Andrae and Morgan Fouesneau defined the project and did an initial test.
I did the analysis and developed the tools for evaluating the results. The article
was written by me with input from the coauthors.
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8. Svensk sammanfattning

Denna avhandling handlar om galaxarkeologi, och fokuserar på utveckling av
statistiska metoder för spektroskopiska studier inom galaxarkeologi.

Galaktisk arkeologi är det forskningsområde som försöker rekonstruera Vin-
tergatans historia. De två huvudsakliga verktygen för detta är astrometriska
och kemiska studier. Astrometri är studiet av var astronomiska objekt är och
hur de rör sig. Detta kan låta enkelt, och är det rent konceptuellt, men i prakti-
ken är det mycket svårt att genomföra för stjärnor som inte råkar ligga mycket
nära Solen. Den första storskaliga astrometriska studien gjordes först i slutet
av 1900-talet, med HIPPARCOS-satelliten. I skrivande stund pågår en myc-
ket större studie med rymdteleskopet Gaia, som i och med Early Data Rele-
ase 3 har mätt position i tre dimensioner och hastighet i två dimensioner för
1,5 miljarder stjärnor. Kemiska studier ser på ämnena i stjärnornas yttre atmo-
sfärer. Detta görs i huvudsak genom studier av stjärnors spektra: mätningar av
stjärnljusets intensitet som funktion av våglängd. Stjärnspektra innehåller ab-
sorptionslinjer som reflekterar stjärnans kemiska sammansättning, samt dess
andra fysikaliska egenskaper. Eftersom alla stjärnor ursprungligen fötts i ho-
par av kemiskt mer eller mindre homogen gas så kan spektroskopiska studier
identifiera stjärnor som har ett gemensamt ursprung, även efter att stjärnho-
pen upplösts och medlemmarna spridits slumpmässigt genom Galaxen. Astro-
metriska studier kan då användas tillsammans med dessa kemiska data för att
rekonstruera Galaxens historia längre bakåt i tiden än vad som skulle vara
möjligt med något enskilt av dessa verktyg.

Tack vare flera tekniska framsteg inom observationell stjärnspektroskopi så
har vi idag tillgång till mycket större mängder data än som tidigare varit möj-
ligt. Med multifiberspektrografer så går det att observera hundratals spektra
under samma observationstid som tidigare bara hade räckt till en stjärna. Sam-
tidigt så har teknisk utveckling också lett till framsteg inom teoretisk stjärn-
spektroskopi, eftersom snabbare processorer och större datorminnen gör det
möjligt att använda modeller som tidigare hade varit beräkningsmässigt ohan-
terliga. Förbättringarna inom observation och teori leder dock till nya problem
som måste lösas. Större mängder data innebär generellt sett att de slumpmässi-
ga felen i analyser sjunker, medan de systematiska felen förblir desamma. Mer
sofistikerade modeller innebär samtidigt att spektroskopister kommer leta ef-
ter allt mindre effekter i sina data. Det gör att det blir allt mer viktigt att ta fram
statistiska metoder som på ett realistiskt sett tar hänsyn till de systematiska fel
som finns i datat.
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I var och en av artiklarna i denna avhandling så försöker vi lösa något pro-
blem inom galaxarkeologi. I två av artiklarna så utvecklar vi även en generell,
och generaliserbar, metod för att lösa problem av liknande typ.

I Artikel I så dokumenterar vi en kod för att utifrån spektra tagna med spekt-
rografen UVES ta fram stjärnparametrarna effektivtemperatur, ytgravitation,
metallicitet, mikroturbulens och makroturbulens. Vi använder en uppsättning
spektra från stjärnor med kända stjärnparametrar för att uppskatta storleken
på de systematiska och statistiska felen i kodens uppskattningar. Samtidigt så
utvecklar vi en generell statistisk metod för att med denna sorts testspektra
uppskatta felen i analyskoder av denna typ. I avhandlingen så skissar vi också
hur denna metod kan generaliseras för att testa verktyg som utifrån någon typ
av data uppskattar någon typ av parameter, och det finns testfall för vilka de
korrekta parametervärdena är kända.

I Artikel II så uppskattar vi grundämneshalter från spektra av stjärnor i
stjärnhopen M30 för att uppskatta parametern T0, som ingår i så kallade Add-
Mix-modeller: Trots att stjärnor i stjärnhopar föds nästan kemiskt identiska så
finns det flera processer som får sammansättningen i den yttre atmosfären att
förändras över tid. Till exempel så får tyngdkraften tyngre partiklar att sjun-
ka, medan strålningstrycket lyfter mindre genomskinliga partiklar. Modeller
av stjärnutveckling som tar med alla dessa processer förutspår att halterna av
grundämnen i stjärnhopar borde variera med temperaturen – vilket de ock-
så gör, men mycket mindre än modellerna förutser. AddMix-modeller antar
att det finns någon ytterligare process som vi ännu inte identifierat som på
något sätt blandar gasen i atmosfärens olika lager och på så sätt jämnar ut
halterna. Eftersom processen inte är känd så innehåller dessa modeller flera
fria parametrar, som genom olika studier har begränsats mer och mer. I denna
artikel så försöker vi att för M30 begränsa parametern T0, som beskriver hur
stark AddMix-processen är. Vi kommer fram till att log10 (T0/ [K]) ligger nå-
gonstans i intervallet 6.09-6.20. Samtidigt så utvecklar vi en generell metod
för att utifrån halter uppskattade från stjärnhopsspektra uppskatta parametrar
i stjärnutvecklingsmodeller, som tar hänsyn till att haltuppskattningarna har
temperaturberoende systematiska fel. I avhandlingen så skissar vi också hur
denna metod kan generaliseras för att uppskatta någon parameter i modeller
som beskriver hur någonting mätbart beror på en variabel, där det är känt att
mätvärdena har ett systematiskt fel som beror på variabeln.

I Artikel III så testar vi om det är möjligt att med hjälp av maskininlärning
utifrån Gaia-satellitens BP/RP-spektra ta fram uppskattningar av halten av al-
faprocessgrundämnen: Gaia-satelliten har en viss förmåga att mäta spektra,
men spektrumen har såpass låg upplösning att det inte går att urskilja enskil-
da absorptionslinjer, vilket gör att vanliga spektroskopiska metoder inte går
att använda. Samtidigt så kan man vänta sig att formen hos Gaia-spektrumen
till viss grad borde påverkas om väldigt många absorptionslinjer ändras samti-
digt, även om de var och en inte går att urskilja. Det är dock svårt att modellera
hur, eftersom instrumentprofilen för Gaia-spektrumen till viss del inte är känd.
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Vi har också tack vare den spektroskopiska studien GALAH tillgång till alfa-
halten för en delmängd av Gaia-spektrumen. Vi testar därför om det går att
träna en modell byggd på ExtraTrees-algoritmen till att uppskatta alfahalter
för Gaia-spektra, utifrån de observerade spektrumen och alfahalterna, utan att
ha en explicit modell för spektrumens beroende på alfahalterna. Vi kommer
fram till att det i princip går, men att det finns väsentliga begränsningar i hur
resultaten kan användas. Även om alfahaltsuppskattningarna i genomsnitt lig-
ger nära sanningen så är de i huvudsak baserade på alfahaltens korrelation med
andra egenskaper hos stjärnan, som i sin tur har en effekt på spektrumet, och
inte alfahalternas direkta effekt på spektrumet. Det innebär att metoden inte
går att använda för att särskilja två stjärnor som enbart skiljer sig i att de har
olika alfahalter.
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10. Appendices

10.1 Estimating vmic through empirical relations
As mentioned in Sect. 3.5.1, during the work on Article II it was necessary
to estimate the microturbulence parameter vmic before the abundances could
be estimated. In the article we settled on the formulæ described in Sitnova
et al. (2015) and Mashonkina et al. (2017), which we jointly dub ‘Sitnova-
Mashonkina’. The relationship in Sitnova et al. (2015) applies to dwarf stars,
while that in Mashonkina et al. (2017) applies to giant stars. Both have the
form

vsit-mash
mic = ξ0 +a(Teff/10000 [K])+b logg+ c [Fe/H] (10.1)

where ξ0 and the coefficients differ depending on the type of star, as shown
in Table 10.1. We arbitrarily chose to put the dividing line between giant
and dwarf at logg = 3.5dex. We judged that Sitnova-Mashonkina was the
best relationship out of those we found, since it was estimated based on stars
similar to those in M30, but we want to show all the other relationships that
we also considered and rejected. If nothing else, to give the reader a candid
look at the number of researcher degrees of freedom in this type of analysis.

Table 10.1. Values of the coefficients in Eq. (10.1), depending on the type of star.
Parameter Dwarf Giant

(logg > 3.5dex) (logg≤ 3.5dex)
ξ0 -0.21 1.47
a 5.6 4.90
b - 0.43 - 0.47
c 0.06 - 0.08

In Article I, we estimated starting values for vmic using a relation which was
at the time used within Gaia-ESO, which we dub ‘GES old’. Since vmic was
a free parameter in that analysis, and only needed a starting value somewhere
in the right ballpark. This relationship starts with comparing the other stellar
parameter estimates to two reference values

Tref = 5500K (10.2)
loggref = 4.2dex (10.3)

The microturbulence is then estimated as

vges old
mic = ai,1 +ai,2 (Teff−Tref)+ai,3 (Teff−Tref)

2 (10.4)
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Table 10.2. Parameters in the ‘GES old’ formula.
Parameter Teff > Tref and logg > loggref Otherwise

ai,1 1.1 1.1
ai,2 1.6 ·10−4 1.0 ·10−4

ai,3 0 4.0 ·10−7

where the values of the coefficients depend on the stellar parameters, as shown
in Table 10.2.

The ‘GES old’ formula was also used in Gruyters et al. (2016), the sixth
article in the article series. However, Gaia-ESO has since replaced this with
a more accurate relation, which we dub ‘GES new’. This introduces three
reference stellar parameters and six additional parameters. The formula is

vges new
mic = ξ0 +ai,1 (Teff−Tref)+ai,2 (Teff−Tref)

2+

+bi,1 (logg− loggref)+bi,2 (logg− loggref)
2+

+ ci,1 ([Fe/H]− [Fe/H]ref)+ ci,2 ([Fe/H]− [Fe/H]ref)
2 (10.5)

where ξ0, the three reference parameters and the six coefficients depend on
whether the stellar parameters fall above certain thresholds, as shown in Ta-
ble 10.3.

Table 10.3. Parameters in the ‘GES new’ formula.
Parameter logg≥ 3.5 or Teff ≥ 5200K Teff < 5200K

ξ0 1.10 1.47
Tref 5787. 4798.
ai,1 6.04 ·10−4 4.58 ·10−4

ai,2 1.45 ·10−7 2.16 ·10−7

loggref 4.14 2.38
bi,1 −3.33 ·10−1 −5.08 ·10−1

bi,2 9.77 ·10−2 −7.71 ·10−2

[Fe/H]ref -0.33 -0.71
ci,1 6.94 ·10−2 2.20 ·10−1

ci,2 3.12 ·10−2 5.45 ·10−2

However, both Eq. (10.4) and Eq. (10.5) were calibrated on Pop I stars,
and probably are not appropriate for M30. A better choice might be the vmic
relation found in Gruyters et al. (2014), the fifth paper in the article series.
This was based on NGC6752, which is at least more similar to M30. The
relation, which we dub ‘Paper V’, is a simple linear fit to the vmic estimated
for the stars in that article, and has the formula

vPaper V
mic = 1.3+6.25 ·10−4 (Teff−5200K) (10.6)

Another possible choice we considered was to ourselves make a quadratic fit
to the estimated vmic in Korn et al. (2007), the first paper in the article series.
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We dub this choice ‘Paper I’, and it gave the formula

vPaper I
mic = 1.74+3.15 ·10−4T shift

eff +1.22 ·10−7 (T shift
eff
)2

(10.7)

where for numerical reasons we have introduced

T shift
eff = Teff−5608K

Finally, we also tried the approach of directly estimating vmic. We used the
lines shown in Table 10.4. We then made a linear fit to the stars with logg <
3.0, since the lines were barely perceptible in the warmer stars. We dub this
choice ‘Direct’ and it gave the formula

vdirect
mic =−0.0486loggshift +1.75km/s (10.8)

where for numerical reasons we have introduced

loggshift = logg−2.39dex (10.9)

It is not clear how accurate this formula would be for the dwarf stars, given that
it extrapolates far outside of the temperature range of the data that it is based
on. Pragmatically, this might not be a big problem: In the context of Article II
the parameter vmic is not interesting in itself. It is only a tool for estimating
abundances. Since the spectral lines used for the abundance estimate are much
less vmic-sensitive at the hot than the cold end, it is not very important to have
accurate estimates for dwarfs. Even so, we decided that formula was based on
so little data that it was better to use the Sitnova-Mashonkina formula.

Figures 10.1 and 10.2 show the vmic predicted by Eqs. (10.1)-(10.7) for each
group spectrum. Figure 10.1 shows the vmic as functions of Teff while Fig. 10.2
shows them as functions of logg. We show both since it might be tempting
to try to evaluate the reliability of the formulæ by eye based on how quickly
they postulate that vmic changes, and we want to emphasise that this depends
on the choice of parametrisation. The figures also show the vmic measured
using the lines in Table 10.4. The estimates made using the formulæ cover a
range of about 0.6km/s, which is the basis for our assumption in Article II that
vmic can only be estimated to within±0.3km/s. The attempted measurements
using vmic-sensitive lines stay within the reasonable region for the hotter stars,
but become essentially meaningless at low temperatures. In many cases values
are missing entirely since the fitting failed to converge.
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Figure 10.1. Estimated vmic using Eqs. (10.1)-(10.7) as a function of Teff, together with
measurements made using the lines listed in Table 10.4. Since not all of the formulæ
gives vmic as a function of Teff alone, we use markers to show the vmic of the individual
group spectra.

Figure 10.2. Same data as in Fig. 10.1 above, but vmic shown as a function of logg.
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Table 10.4. Iron lines used in the attempted measurement of vmic in Article II.

Line centre
[
Å
]

Species Line mask
[
Å
]

Segment mask
[
Å
]

start end start end
4547.0169 Fe1 4546.80 4547.20 4530.00 4553.99
4547.8470 Fe1 4547.50 4548.20 – –
4555.8868 Fe2 4555.00 4556.80 4554.00 4563.00
4576.3329 Fe2 4576.00 4576.90 4573.00 4577.99
4580.0531 Fe2 4579.60 4580.20 4578.00 4584.99
4582.8296 Fe2 4582.50 4583.00 – –
4583.8292 Fe1 4583.50 4584.30 – –
4592.6511 Fe1 4592.00 4593.00 4588.50 4599.49
4595.3584 Fe1 4595.10 4595.60 – –
4598.1169 Fe1 4597.80 4598.40 – –
4602.9407 Fe1 4602.40 4603.50 4599.50 4604.99
4607.6451 Fe1 4607.40 4607.80 4605.00 4608.99
4611.2788 Fe1 4610.90 4611.60 4610.00 4612.99
4619.2880 Fe1 4619.00 4619.70 – –
4620.5128 Fe2 4620.15 4620.85 4618.00 4627.99
4625.0450 Fe1 4624.65 4625.35 – –
4626.1515 Fe1 4625.80 4626.45 – –
4629.3310 Fe1 4628.95 4630.55 4628.00 4631.49
4632.9114 Fe1 4632.50 4633.30 4631.50 4641.99
4637.5031 Fe1 4637.20 4638.30 – –
4643.4634 Fe1 4643.10 4643.70 4642.00 4644.00
4647.4342 Fe1 4647.00 4647.80 4645.00 4658.99
4654.4978 Fe1 4654.05 4654.90 – –
4656.4523 Fe1 4656.20 4656.70 – –
4661.9703 Fe1 4661.70 4662.10 4659.00 4664.99
4666.7495 Fe2 4666.50 4666.90 4665.00 4672.49
4668.1341 Fe1 4667.90 4668.40 – –
4678.8457 Fe1 4678.50 4679.00 4675.00 4681.99
4691.4116 Fe1 4691.10 4691.70 4687.00 4699.99
4710.2833 Fe1 4710.00 4710.60 4700.00 4719.99
4727.3946 Fe1 4727.00 4727.70 4720.00 4738.99
4728.5457 Fe1 4728.30 4728.90 – –
4731.4476 Fe2 4731.00 4731.00 – –
4733.5914 Fe1 4733.20 4734.00 – –
4736.7729 Fe1 4736.40 4737.10 – –
4741.5294 Fe1 4741.20 4741.90 4739.00 4743.99
4745.7998 Fe1 4745.50 4746.20 4744.00 4752.00
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10.2 Comments on our use of AICc
In Article II we use Akaike’s Information Criterion to compare a set of differ-
ent models, as described in Sect. 4.2. In the article text we quickly describe the
information criterion, but only gesture vaguely at why we chose that method
and reject others. Earlier drafts of the article did include a more detailed ex-
planation, but we were forced to conclude that it entered domains of statistical
esoterica that would be of very little interest to most readers. We direct the
reader to Burnham and Anderson (2003) for a full discussion, but in this ap-
pendix we attempt an intuitive explanation of the criterion and why we prefer
it to other tools.

Say that we have a sample of measurements, and a set of hypotheses which
claim to explain the measurements. We want to make some quantitative state-
ment about of how probable each hypothesis is, in light of the data. Unfortu-
nately, there is no known statistical method that will allow us to do that, and it
is not clear that one exists even in principle. What does exist is a collection of
statistical methods that each answers a slightly different question. One basic
reason why this is so, is that when using statistical analysis to test scientific
hypotheses, there is the step where the hypotheses is translated into statisti-
cal language – as assertions that the measurements are samples drawn from
a statistical distribution. Whatever the merits of the underlying scientific hy-
potheses, these statistical models are all almost certain to be false: Whatever
statistical distribution reality draws samples from, there is no reason why, out
of the set of all mathematical functions that exist, it would chose those that
can be specified in a few lines. Hence, it is not clear that the Fisher-Pearson
method taught in most basic statistics courses – of attempting to ‘falsify’ the
hypotheses by testing if their likelihood falls below a set threshold – is par-
ticularly meaningful. After all, they are known a priori to be false. Simply
by drawing enough samples, we can always get the likelihood of our obser-
vations to fall below any significance threshold. Similarly, the Bayesian ap-
proach taught in more advanced statistics courses – of using the likelihood to
turn prior probabilities on each hypothesis into posterior probabilities – may
not be meaningful either. After all, for the reasons already stated, the prior
probability on each hypothesis should be zero.

The information criterion takes as given that each statistical hypothesis is
false, and simply tries to estimate how close it is to the true distribution, which
is unknown and probably unknowable. ‘Closeness’ in this case being defined
as the degree of information lost when using the model distribution to model
the true distribution. Note that this is not a replacement for either Frequentism
or Bayesianism. The information criterion can be derived from either Fre-
quentist or Bayesian grounds, and in Article II our discussion implicitly uses
a Bayesian framework. It is however, different from the most common types
of Frequentist and Bayesian hypothesis testing.
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All this said, it is possible to criticise this approach. While the information
criterion is the best in terms of out-of-sample error – that is, it would be opti-
mal for guessing what the result would be if we observed more stars in M30
– it is not clear that it is the best for testing truth of scientific hypotheses. In
fact, Burnham and Anderson (2003) almost certainly would disagree with our
using the information criterion for hypothesis testing. Even so, they concede
that making inferences based on a single model selected by the information
criterion as close to the truth is at least “not terrible” (Burnham and Anderson,
2003, Sect 8.9). This is not exactly a ringing endorsement, but gives some sup-
port to our view that our method is the so-far least bad approach of handling
the type of research problem in Article II.

106



References

Adams, F. C., Bodenheimer, P., and Laughlin, G. (2005). M dwarfs: planet formation
and long term evolution. Astronomische Nachrichten, 326(10):913–919.

Alberto, M., Magda, A., Nausicaa, D., Vincenzo, F., Nathalie, F., Olivier, H., Uwe,
L., Mubashir, K. A., Laura, M., Joerg, R., Martino, R., Devendra, S., Chiara, S.,
Malgorzata, S., Felix, S., Ignacio, V., and Stefano, Z. (2019). The New Science
Portal and the Programmatic Interfaces of the ESO Science Archive. In Teuben,
P. J., Pound, M. W., Thomas, B. A., and Warner, E. M., editors, Astronomical Data
Analysis Software and Systems XXVII, volume 523 of Astronomical Society of the
Pacific Conference Series, page 433.

Asplund, M., Amarsi, A. M., and Grevesse, N. (2021). The chemical make-up of the
Sun: A 2020 vision. arXiv e-prints, page arXiv:2105.01661.

Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C., and Stein, R. F.
(2000). Line formation in solar granulation. I. Fe line shapes, shifts and
asymmetries. Astronomy & Astrophysics, 359:729–742.

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim,
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