Conformational Changes in Insulin Regulated Aminopeptidase

Sebastian Moes

Degree Project in Computational Medicinal Chemistry, 45 hp, Spring Semester 2021

Examiner: Christian Sköld

Division for Drug Design and Development
Department of Medicinal Chemistry
Faculty of Pharmacy
Uppsala University
To Friends and Family and my delightful Girlfriend that helped me through this project
Table of Contents

Summary ... 5
Abstract ... 7
Introduction .. 8
Purpose ... 12
Methods ... 12
 Protein Preparation ... 17
 Pseudoresidue Creation ... 17
 MD simulation Preparation ... 18
 MD analysis .. 18
Results and Discussion .. 20
 PCA analysis .. 20
 Ligand Interaction Maps ... 26
 Distances ... 27
Additional simulations .. 27
Conclusion ... 28
References ... 29
Summary

Around the world the elderly population is growing, and many new challenges are presenting themselves to the field of pharmacy. Dementia and age-related cognitive decline are among the most pressing challenges to overcome if we wish to improve the quality of life for our aging population. To meet this need, computational techniques are being used to investigate new targets for drugs that can alleviate or even cure these conditions, a feat no current drugs can accomplish. One target of particular interest is called Insulin Regulated Aminopeptidase (IRAP). The IRAP enzyme exists primarily in the brain, and serves several functions, including breakdown of neuropeptide hormones in brain areas associated with memory and cognition. By inhibiting the action of IRAP, the breakdown of these neuropeptides is prevented, which has been shown in many animal studies to have a positive effect on conditions such as Alzheimer’s disease and age-related cognitive decline. To develop better drugs learning how existing compounds inhibit the IRAP enzyme function is paramount. Using computational modelling and simulation of IRAP inhibitors when attached to the IRAP enzyme, we can draw conclusions about how future drugs need to be designed to maximize safety and efficacy. In this work natural substrates of IRAP, as well as four known inhibitors were simulated and examined to determine how these inhibitors exert their effects on the enzyme. A recently developed spiro-oxindole inhibitors developed in the host lab previously was studied and a promising binding pose was found that could become a basis for designing better drugs that take advantage of this information. The techniques used in this project are also applicable to other enzymes and could lead to useful methods for investigating potential drugs with computational modelling.
Abstract

Global disease burden due to age related cognitive decline and dementias, especially Alzheimer’s disease, are a growing public health problem. Current treatments fail to completely prevent or cure dementia. A target of interest is the Insulin Regulated Aminopeptidase (IRAP) enzyme, inhibitors of IRAP have shown promise in preventing and reversing neurological degeneration associated with dementia. Structural information about IRAP when bound to an inhibitor is lacking, however, and future ligand design depends on knowledge of the mechanism of inhibition. We used long term MD simulations of IRAP bound to various ligands to investigate the conformational changes undergone by IRAP. PCA analysis was also used to investigate larger changes in the enzyme. A highly stable pose for a known spiro-oxindole inhibitor was found with key interactions between the ligand and SER546 and TYR 954, providing useful data for the design of future inhibitors of the IRAP enzyme.
Introduction

The field of computational chemistry can be said to have begun in the early part of the 20th century when the first theoretical chemical calculations were performed by Walter Heitler in 1927\(^1\). Heitler’s work would set the stage for quantum calculations that would later be done on computers. Since then, the field of computational chemistry has grown to become an integral part of research in chemistry and pharmacy\(^2\). As the power of computers has grown, so too have our abilities to simulate larger and more complex systems with many thousands of atoms, such as the interactions between proteins and ligands. The gold standard method for accurate simulations of atomic systems are quantum mechanical calculations. Quantum mechanical calculations allow robust and highly accurate predictions in small systems of a few atoms but requires an incredible amount of computing power. In order to simulate an entire protein consisting of thousands of atoms a different representation is required. Molecular Dynamics (MD) is a computational technique which uses Newton’s laws of motion to calculate the position and momentum of a system over a given time period with arbitrary temporal resolution. Molecular dynamics simulations use an atomistic representation of molecules modelled in forcefields which dictate the properties of individual atoms and the forces atoms exert and receive from nearby atoms. These forcefields are calculated based on quantum mechanical calculations and experimental data. There are many forcefields for different purposes, for our calculations we used the optimized potentials for liquid simulations OPLS-AA (all atoms) forcefield.

Neurodegenerative disorders are a major problem affecting an ever-increasing number of people as life expectancy continues to rise globally\(^3\). Dementia is the most common type of neurodegenerative disorders, and of dementia cases Alzheimer’s disease is the most frequently diagnosed\(^4\). Neurodegenerative diseases involve the degradation of the brain and/or cognitive function. Current treatments such as cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists, for example memantine, treat only symptoms but fail to cure or reverse cognitive decline\(^5\). One exciting new avenue for treatment of neurodegenerative degenerative diseases is the Insulin Regulated Aminopeptidase (IRAP)
enzyme of the M1 aminopeptidase family. Metallo-type 1 (M1) aminopeptidases are a subfamily of metallopeptidases which are important for cell maintenance, defense and development. An important function of IRAP is the degradation of peptide hormones such as oxytocin, vasopressin and angiotensin III. It is also involved in the translocation of GLUT4 after insulin-stimulation as well as in MHC class I antigen presentation by trimming the N-terminal of cross-presenting peptides. IRAP is highly expressed in brain regions associated with memory and cognition. Previous work has shown that cognitive decline can be alleviated and prevented by inhibition of the IRAP enzyme. Albiston et al. (2001) have identified IRAP to be the AT4 receptor, that binds Angiotensin IV (Ang IV) and LVV-hemorphin. Ang IV and its analogues have been identified to improve memory and learning abilities. It is believed that the cognitive improvements are mediated through the binding to IRAP, even though the involvement of other binding sites are being investigated as well. Although the exact mechanisms of action are not yet understood, evidence strongly suggests that IRAP plays a key role in memory and cognition. A proposed mechanism of action for the cognition enhancing effects of IRAP inhibition via Ang IV and its analogues is that inhibition leads to prolonged half-lives of neuropeptides that may potentiate memory and learning e.g., arginine vasopressin, oxytocin and somatostatin. Wallis et. Al (2007) demonstrated that the levels of circulating vasopressin are elevated in IRAP knockout mice.

The Family of M1 aminopeptidases share two distinct binding motifs that are located at the C-terminal domain and are involved in the catalysis of peptide substrates: the GXMEN exopeptidase motif, an N-terminal recognition site essential for peptide substrate selectivity and the HEXXH zinc-binding motif (see Figure 1). In humans nine different M1 aminopeptidases can be found, either as integral membrane proteins or located in the cytoplasm. One of them is the type II integral membrane protein, the IRAP enzyme. IRAP consists of three main domains, an N-terminal cytoplasmic domain, an extracellular/intracellular domain containing the catalytic site as well as the C-terminal, and a transmembrane domain. The 160 kDa enzyme is expressed in a wide range of cells with particularly high levels found in neuronal and placental cells where it is involved in a variety of physiological processes.
Figure 1. Structure of the three main domains of IRAP: The extracellular C-terminal domain with the catalytic site containing HEXXH and GAMEN, the transmembrane domain and the N-terminal cytoplasmic domain. Adapted from Vear et al. (2020). Copyright © 2020 Vear, Gaspari, Thompson and Chai. Created with BioRender.com

The catalytic extracellular domain of the IRAP enzyme consists of four domains, hereafter referred to as D1 through D4. The D2 domain contains the active site also called the S1 pocket, inhabited by a zinc ion bonded to histidine 468 and 464, and glutamines 431, 465 and 487. A region of interest is the GXMEN (GAMEN in IRAP) loop highlighted in figure 2, a short loop from GLY428 to ASN432. The glycine in the GAMEN loop is critical for enzyme function, and any mutation in this residue results in a loss of catalytic activity\(^\text{19}\). The GAMEN loop of IRAP is conserved across related metallopeptidases\(^\text{20}\), however the GAMEN loop of IRAP is capable of adopting two conformations, open and closed as can be seen in Figure 3. The open and closed conformation of GAMEN correspond to open and closed form of the IRAP enzyme which itself represents simply an increase in volume of the S1 pocket. This change in the difference in volume is an attractive property to utilize in order to create highly specific IRAP inhibitors without off target effects at related peptidases. Figure 4 demonstrates the difference in GAMEN loop conformations between IRAP and very closely related Endoplasmic Reticulum Associated Peptidase (ERAP). ERAP is an important enzyme in regulation of cytokine production and inflammatory responses, as well as production of MHC proteins that
aid in immune cell recognition. Inhibitors which affect ERAP could have highly detrimental effects, thus specificity for IRAP over ERAP is critical to consider when designing inhibitors. An important feature of the GAMEN loop in the IRAP enzyme is that the ability to adopt both open and closed conformations allow it to accommodate large cyclic peptide substrates. Comparatively ERAP has far less flexibility and can be considered to only exist in the closed form, reducing the size of the accessible volume in the active site21,22. The difference in size and shape of the active site between ERAP and IRAP is an important feature to take advantage of when examining the features of the IRAP protein relevant to medicinal computational chemistry and the design of new ligands.

\textbf{Figure 2.} Shown here is the structure of the IRAP monomer of interest. In the center of the structure the Zinc is visible, represented by a grey sphere. Directly up and to the left of the grey Zinc is the GAMEN loop represented by blue sticks to indicate the location.

This thesis concerns the interactions between ligands chosen based on previous works in the Åqvist Lab and published structures of the IRAP as outlined in Table 1. The binding pocket of
IRAP is known to change upon substrate binding23, though comparison between structures using long MD simulations is absent from the literature.

Purpose

The main goal of this thesis was to determine how known inhibitors of the IRAP enzyme affect the conformation of the IRAP enzyme during a long-term simulation of the enzyme with and without ligands. To this end three known inhibitors, a natural substrate, and two inactive substrates will be modelled, compared and used to draw conclusions about future drug design projects concerning the IRAP enzyme (ligands outlined in Table 1). A key element of the investigation is determining the overall structural changes undergone by the IRAP enzyme when bound to an inhibitor, as well as determining which ligand-protein interactions are promising targets to examine when developing a quantitative structure-activity relationship (QSAR).

Methods

In order to analyse the conformational change, principal component analysis (PCA) was used to analyse the totality of distances between all alpha-carbon atoms in the protein structure24. PCA allows the analysis of high dimensional data, in this case over thirty thousand distances were included. PCA works by projecting dimensional data onto a plane and rotating the plane of the data to minimize the cross-sectional size of the resulting dataset it is projected onto a lower dimensional plane, in this way changes in the structure of the protein could be detected that are too small to detect by visual inspection alone. The different IRAP structures selected for analysis were taken from the PDB database and structures generated by others in the group as outlined in Table 1. The different IRAP structures correspond to different conformations possibly owing to the presence of various ligands as this work intends to show. The structure 4PJ625 (simulation 1) was chosen because it contains only a lysine bound to the zinc in the active site. 5C9726 (simulation 2) is a structure published alongside 4Z7I26 (simulation 4), 5C97 contains no ligand in the active site which provides a baseline conformation of the unbound enzyme. 4Z7I (simulation 4) is an IRAP structure with a
pseudopeptide transition state analogue that mimics antigenic peptides which are cleaved by IRAP27. 5MJ623 (simulation 3) was chosen because the paper associated with that IRAP structure showed evidence of conformational change due to ligand binding, and thus is a structure of interest. The 4 IRAP structures created from the IRAP structure created by the host group represent the IRAP enzyme with a spiro-oxindole inhibitor plus Leu-pNA (Leucine \textit{para}-nitroaniline), a chromogenic substrate for aminopeptidases used in many assays to detect or characterize IRAP28–31 (simulation 5), IRAP with Ang IV (simulation 6), with only the spiro-oxindole inhibitor (simulation 7), and with only Leu-pNA (simulation 8)32. This structure was based on 4PJ6 and used a crystal structure of closely related enzyme alanine-aminopeptidase (APN) to generate a docked pose of Ang IV33, this docked pose was superimposed onto 4PJ6 to generate the structure in simulation 6. To create the structure in simulation 5, the spiro-oxindole ligand and leu-pNA was docked onto the 4PJ6 structure. Structures in simulations 7 and 8 were created from 4PJ6, with either the Leu-pNA deleted or the spiro-oxindole ligand deleted.

\textbf{Table 1:} IRAP Structures selected for investigation with structure of the ligands contained therein. For each structure that contains a ligand, another set of simulations were run with that ligand deleted.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Ligand</th>
<th>Conformation</th>
<th>Ligand Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB id 4PJ6</td>
<td>Sim1</td>
<td>Lysine</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>PDB id 5C97</td>
<td>Sim2</td>
<td>None</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>PDB id 5MJ6</td>
<td>Sim3</td>
<td>7O2 Inhibitor</td>
<td>CLOSED</td>
<td></td>
</tr>
<tr>
<td>PDB id 4Z7I</td>
<td>Sim4</td>
<td>Transition State Analogue</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>Spiro-oxindole Structure</td>
<td>Sim5</td>
<td>Spiro-oxindole inhibitor with Leu-pNA</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Spiro-oxindole structure with Ang IV</td>
<td>Sim6</td>
<td>Angiotensin IV (Ang IV)</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>Spiro-oxindole structure with Spiro</td>
<td>Sim7</td>
<td>Spiro Oxindole Inhibitor</td>
<td>OPEN</td>
<td></td>
</tr>
<tr>
<td>Spiro-oxindole structure with LeuPna</td>
<td>Sim8</td>
<td>Leu-pNA</td>
<td>OPEN</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Comparison of superimposed IRAP structures, 5PJ6 a closed conformation of the GAMEN loop in white, 4Z7I in yellow, 4PJ6 in green, and 5C97 in pink. Ligands are clustered in background represented as sticks. The three open forms of the IRAP enzyme are close together in the lower middle portion of the image, the lone closed form in white notably different in position.
Figure 4. Contrast between GAMEN loop conformations of IRAP and closely related ERAP enzymes. IRAP open conformation (5C97) in magenta, IRAP closed (5MJ6) in yellow. ERAP1 and ERAP2 structures from PDBid 2YD0 and 3SE6 respectively showing the closed form of the ERAP GAMEN loop. Differences in the open and closed forms can be seen on the left side of the image. Ligands for the various structures can be seen represented as sticks in the center of the image.
Protein Preparation

3D structures of the IRAP structures relevant to this study were downloaded from the Protein Data Bank, (PDB ids: 4PJ6, 5C97, 5MJ6, 4Z7I). Another structure from previous work in this lab was also included (Table 1). Chain A from each structure was used, along with any ligands included, simulations were then done on the structure with and without the ligand. Proteins were prepared using the protein preparation wizard in Shrödinger Maestro. Hydrogens were added to the structures, bonds to metals added, disulphide bonds created and waters deleted beyond 5Å. Missing loops and side chains were modelled and added using the Prime module. Het states were generated using Epik. H-bond assignment and optimization was done at pH of 7.4 with water orientations sampled (where there were waters), the structure was then minimized using the OPLS3e force field to an RMSD value of 0.30Å. Topologies for the ligands were generated using the LigParGen server. The forcefield used for further simulations in this work is the OPLS-AA, and the ligand parameters obtained with the LigParGen server. Modifications to the forcefield were made to the parameters of the zinc atom to reflect developments in the study of the properties of zinc. Hydrogens were added to the structures, bonds to metals added, disulphide bonds created and waters deleted beyond 5Å. Missing loops and side chains were modelled and added using the Prime module. Het states were generated using Epik. H-bond assignment and optimization was done at pH of 7.4 with water orientations sampled (where there were waters), the structure was then minimized using the OPLS3e force field to an RMSD value of 0.30Å. Topologies for the ligands were generated using the LigParGen server. The forcefield used for further simulations in this work is the OPLS-AA, and the ligand parameters obtained with the LigParGen server. Modifications to the forcefield were made to the parameters of the zinc atom to reflect developments in the study of the properties of zinc.

Pseudoresidue Creation

The pseudopeptide transition state analogue from the 4Z7I structure file was created by both automatic and manual parameterization. The properties of Leucine were used for the leucine-like branch of the pseudoresidue, with the portion after the second beta carbon...
parameterized with LigParGen with an extra carbon atom added to represent the alpha carbon to which the new beta carbon will be bound to. The two sets of parameters are combined in the amino acid database file used by GROMACS manually, the new bonds written, and improper dihedrals added for the new phenyl ring on the pseudoresidue. The atom names had to be edited completely from the LigParGen parameters and structure in order to be compatible with GROMACS, since the carbon and hydrogen naming schemes differ. Finally, the pseudopeptide can be simply combined with the IRAP structure and converted to gro format by pdb2gmx. Thereafter the simulation proceeded as the other systems.

MD simulation Preparation
The protein structure files were converted to GROMACS format with pdb2gmx, which also generated the protein topology. The ligand structure files from LigParGen were added to the protein structure file, and the topologies included in the topol.top file gmx solvate and genion were used to solvate the protein in water molecules using the TIP3P water model, and generate counter ions to neutralize the protein as well as set the concentration of salt to a physiological 0.1M NaCl. The MD simulations were performed using GROMACS v. 2021$^{38-45}$. Energy minimization was performed for 1ps, then equilibration for 5000 steps at 310K. The simulations were run in triplicate for 100ns to allow time for conformational changes in the structure of the IRAP protein to occur. The trajectories were aligned using gmx_trjconv to center the protein in the water box.

MD analysis
Analysis of the trajectories was done using the mdtraj46 and sklearn47 python packages. Trajectories were stripped of solvents and then the backbone alpha carbon atoms were selected for analysis. Pairwise distances between all alpha carbons were calculated using the combinations python package and used as features in the PCA analyses. Pairs of trajectories were combined to generate the PCA model, then compared on a single plot, each pair of simulations were compared during analysis. Trajectories were visualized using Visual Molecular Dynamics (VMD)48 and Pymol.
After initial MD equilibration, a refined stable configuration of the ligand in simulation 7 was found, and so an additional three simulations were performed using the final frame of the simulation in question as a starting point. Particle velocities were randomly generated at the start of the three new simulations in order to ensure the three runs were not identical.
Results and Discussion

PCA analysis

Many of the changes in the protein are too small to detect using simple tools like gmx distance which only look at a single distance at a time. The variability in a distance calculation over the course of 100ns is quite high as shown in figure (distances) and detecting trends may be impossible for a human reader. The PCA analysis reduces many thousand, or even millions of distances into a 2D plot.

A difference in structure between IRAP trajectories with ligands and without ligands could be seen after PCA analysis. Structural differences between the trajectories were determined from the PCA analysis of the trajectory and investigation into specific residue distances and angles.

Figure 5. Comparison between all replicates of simulation 8 (with Leu-pNA substrate) and a version of simulation 8 (Sim8 no sub in the figure) where the substrate was removed before energy minimization.
In figure 5 the PCA analysis of the distances between the two trajectories show a narrower range of difference between a ligand free and substrate occupied IRAP. Relative to figure 6 the variance in the two principal components is lesser, with much more overlap between the trajectories in the PCA space.

Figure 6. Comparison between simulation 6 and a version of simulation 6 with the ligand (Ang IV) deleted before energy minimization. Since the distribution of all the trajectories appears randomly spread across the same area of the PCA plot, we conclude that the ligand did not affect much the behavior of simulations.
Figure 7. Simulation 1 (structure 4PJ6) vs Trajectory 6, which includes Ang IV. A clear difference in the simulations can be seen across primary component 1, indicating the presence of specific ligands causes a conformational change.

A large difference can be seen between the simulation 1 (4PJ6) trajectory compared to simulation 6 in figure 7, which has Ang IV bound in the active site. The variance in PC2 is similar between the two trajectories. Figure 8 shows how the two trajectories differ when not compressed on PC1. The individual plots show there is some variance between trajectories, but those differences become compressed into a single dimension when plotted beside each other. A clear difference can be seen between, as well as within each set of trajectories. The variance in PC2 shared by both sets of trajectories could be a result of the natural movement of the protein in water, and the variance in PC1 explained by the different conformational changes caused by the ligand.
Figure 8. Comparison between trajectory 1 and 6 showing the relatively low variance within each set of triplicate trajectories, 8A shows trajectories from simulation 1, and 8B shows simulation 6. The load

Figure 9: Comparison of PCA results from a comparison between simulation 2 (without a ligand) and simulation 5 (with a spiro-oxindole ligand) generated from analysis of only residues within 12Å of the zinc atom at any point during the simulation. Separation in both principal components is observed, though the spread within each group appears to follow a similar diagonal trend.
Visual analysis of frames chosen by centroid clustering of the PCA results shown in figure 9 shows a dramatic shift in residues GLU295 to ALA298 (figure 10). With a ligand bound those residues are stable and moving towards the ligand during the simulation, with GLU295 stabilizing the zinc which is in turn bound to the ligand, this can also be seen in figure 11 (GLU295 has the number 136 in that structure) where GLU295 is bound to the N-terminal of Ang IV in simulation 6. The shrinking of the accessible volume of the active site could be the main mechanism of inhibition, preventing the bulky substrates from displacing inhibitors.

Figure 10: Centroid clustering analysis of frames in simulations 2 and 5. Clusters 0 through 4 (bottom left) correspond to simulation 5 and clusters 5 through 10 correspond to simulation 2. (B) shows the outlier cluster 7 in contrast with the structures of the other trajectories, the blue loop is adopting a very different position from the other trajectories, on the left an alpha helix is adopting a different conformation.

Simulations 5 and 6, which are simulations with the spiro-oxindole inhibitor and with Ang IV, respectively (shown in figure 12) demonstrate a very similar conformational change. Analysis of the trajectories visually show a similar result, in figure 12A the alignment between all clusters is fairly close, which is confirmed by RMSD analysis as shown in figure 13B. The notable outlier is replicate 3 of simulation 5, where the ligand migrates out of the active site and the IRAP enzyme changes in response.
Figure 11: Comparison between simulation 5 and simulation 6, clusters 0 through 3 correspond to frames in simulation 5. Clusters 4, 5, and 6 correspond to simulation 6.

Figure 12: Frames generated by clustering analysis of simulations 5 and 6 superimposed together are shown in (A), relatively minor changes can be seen between the superimposed structures. RMSD analyses of the superimposed and aligned trajectories are shown in (B) which compares the RMSD of each of the three replicates of simulation 5, with each individual replicate of simulation 6. The third replicate of simulation 5 (in
orange on each graph) deviates due to the ligand leaving the S1 pocket, which causes a reversion of IRAP back to an unbound state.

Ligand Interaction Maps

Contact maps were generated between the ligand and protein for some simulations, in order to show interactions between the ligands and certain residues.

The contact map in figure 13 shows the interaction between Ang IV and the IRAP protein over the course of one 100ns MD simulation. The most stable interactions are near the N terminal, which is close to the zinc ion required for catalytic activity. Interaction between the N terminal and the GAMEN loop residues, here numbered 269-273 (due to alternate numbering scheme in the structure), can be seen.

![Figure 13](image)

Figure 13. Interaction map of simulation 6 (with Ang IV) in the active site of IRAP. 13(A) is a snapshot from frame 0 of the trajectory, 13(B) shows the contacts in the last frame of the trajectory. 13(C) is the total average of interactions between the peptide substrate and the IRAP protein during the trajectory trajectory.
Distances

Figure 14: Comparison between distance measurements between the alpha carbons of GLY428 and PHE544 of two trajectories; Figure A compares the distances over the course of simulation 6 which included Ang IV. Figure B shows the same distances during a simulation of the same structure with Ang IV excluded.

Distance calculations were more difficult to gain information from. The distance graphs seen in figure 14 show the distance between two residues on opposite sides of the catalytic S1 pocket with the catalytic zinc bisecting the line formed between the two residues. The distances are very similar though figure 14A indicates that Ang IV in the active site caused some expansion in the distance across the S1 pocket, though the difference could be explained by the protein equilibrating rather than actual conformational change resulting from the presence of the Ang IV analogue.

Additional simulations

After the first round of simulations, a very stable ligand binding pose was detected in simulation 7. The three additional simulations revealed the pose was very stable, all three replicates maintained a very similar pose to the starting frame despite random velocities being added to the simulation parameters. The resulting trajectories were very stable, with a maximum RMSD from the initial frame of 0.24nm.
Figure 15: The position of the spiro-oxindole ligand at the start of the extra 100ns simulation for all three trajectories (A) and after 100ns of additional simulation with each trajectory in a different colour (B). The binding pose is quite stable, the interactions between serine 546 and Tyrosine 954 driving the binding and providing strong targets for drug design.

The interactions between the spiro-oxindole inhibitor and the IRAP protein are outlined in Figure 5. An interesting possibility in the mechanism of binding at this position is the flexibility of the tyrosine, to stabilize a wider range of positions, and the serine at position 548. If the electrostatic interaction between the ligand and serine 546 fail, due to movement of the protein or ligand, the interaction can be re-established with either serine.

Conclusion

PCA is a valuable tool for reducing complex data into a format that humans can read. This technique was useful in detecting differences in the movement of a protein when a ligand is bound compared to no ligand. Distance plots can be useful when enzyme dynamics are well understood, but when movement in the protein is concerted across many residues PCA analysis of total distances or distances of a selection of residues can be valuable. The movement in IRAP seems to be on a large scale throughout the protein, being able to detect tiny changes in the overall conformation of a the IRAP protein is therefore a valuable tool.
Based on the PCA data the presence of a ligand in the binding pocket has an effect on the conformation of the IRAP enzyme. The effect of the inhibitor on the conformation seems to resemble the change caused by substrate or substrate mimicking ligands. The conformational change in the IRAP protein in the presence of an inhibitor during an MD simulation can therefore be a valuable tool in research into new IRAP inhibitors. Residues of interest are the two serines at position 546 and 548, and the tyrosine at position 961.

This project would have benefitted from longer term simulations of each other ligands, in order to determine stable interactions over a great time period. The addition of more ligands, as well as weaker inhibitors could lead to further insight on which specific interactions and conformational changes in the IRAP enzyme are important for the design of IRAP inhibiting drugs.

In a future project using the PCA tool to compare specific distance pairs between entire regions or set of residues could lead to deeper insights into the conformational changes a protein undergoes in a variety of situation, from ligand binding or pH changes, or temperature changes, or a huge variety of situations that lead to protein dysfunction. Future work including closely related enzymes ERAP and APN with ligands could also illuminate the mechanism underlying enzyme selectivity for one ligand or another.

References

(10) Lew, R. A.; Mustafa, T.; Ye, S.; McDowall, S. G.; Chai, S. Y.; Albiston, A. L. Angiotensin AT4 Ligands Are Potent, Competitive Inhibitors of Insulin Regulated Aminopeptidase
https://doi.org/10.1046/j.1471-4159.2003.01852.x.

https://doi.org/10.1002/cne.20585.

https://doi.org/10.1152/ajpendo.00440.2007.

https://doi.org/10.1530/JME-17-0033.

