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Abstract

Quantum computers can theoretically perform certain tasks which
classical computers at realistic times could not. Operating a quan-
tum computer requires precise control over the system, for instance
achieved by adiabatic evolution, and isolation from the environment
to retain coherence. This report combines these two, somewhat con-
tradicting, error preventing techniques. To reduce the run-time a
transitionless quantum driving algorithm, or, adiabatic shortcut, is
employed. The notion of Noiseless Subsystems (NS), a generalization
of decoherence free subspaces, are used for robustness against environ-
mental decoupling, by creating logical qubits which act as a noiseless
code. Furthermore, the adiabatic shortcut for the NS code is applied
to a refocusing scheme (spin-echo) in order to remove the dynamical
phase, sensitive to error propagation, so that only the Berry phase
is effectively picked up. The corresponding Hamiltonian is explicitly
derived for the only two cases of two-dimensional NS: N = 3, 4 qubits
with total spin of j = 1/2, 0, respectively. This constitutes geometric
quantum computation (GQC) enacting a universal single-qubit gate,
which is also explicitly derived.



Sammanfattning

Kvantdatorer kan teoretiskt utföra vissa uppgifter som klassiska
datorer vid realistiska tider inte kan. Att köra en kvantdator kräver
exakt kontroll över systemet, till exempel genom adiabatisk utveck-
ing, och isolering fr̊an omgiviningen för att beh̊alla koherens. Denna
rapport kombinerar dessa tv̊a, n̊agot motsägelsefulla, tekniker för fel-
hantering. För att minska körtiden används en överg̊angsfri kvantkörn-
ingsalgoritm, ocks̊a kallad adiabatisk genväg. Konceptet brusfria del-
system, en generalisering av dekoherensfria underrum, används för
robusthet mot sammanflätning med omgivningen genom att skapa lo-
giska kvantbitar som fungerar som en brusfri kod. Vidare tillämpas
den adiabatiska genvägen för den brusfria koden p̊a ett spinn-eko för
att eliminera den dynamiska fasen, som är känslig för felpropagering,
s̊a att endast Berrys fas, som är okänslig för felpropagering, effek-
tivt plockas upp. Motsvarande Hamiltonian härleds uttryckligen för
de enda tv̊a fallen av tv̊adimensionella brusfria delsystem: 3 eller 4
kvantbitar med respektive totalspinn j = 1/2 och 0. Detta möjliggör
beräkning med en geometrisk kvantdator baserad p̊a en universell en-
kvantbitsgrind, som ocks̊a härleds explicit.
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1 Introduction

Quantum computing (QC) holds the potential of performing certain tasks
in substantially shorter time compared to what classical computers would
[1]. The most famous example of this is Shor’s algorithm [2] which prime-
factorizes numbers in polynomial time, the difficulty of which the most promi-
nent encryption scheme RSA is built. The dangers of rendering classical
encryption schemes obsolete are handled through the field of quantum cryp-
tography, where fundamentally safe ways of communicating information are
devised [3]. This in turn suggests application such as a quantum internet. In
more theoretical realms the computers would be quantum systems, and as
such would naturally model quantum systems better than any classical com-
puter, for instance enabling improved studies of material properties.

QC is performed by manipulating the wave function of the system so that
when measured a desired result or solution is obtained. The manipulations
are performed via so-called quantum gates which are unitary operators [4]
on the qubits making up the system. Important to QC is universality, where
a set of quantum gates can perform any operation. For instance the single-
qubit Hadamard and phase gates, and one conditional two-qubit gate are
sufficient for this. This report will only discuss single-qubit dynamics, and
therefore only single-qubit universality.

The sensitive nature of the quantum regime makes the system prone to error,
where tiny disturbances can render the computer useless. This report dis-
cusses methods for error prevention, although methods for error correction
are also possible. There are two main challenges at present: (i) preserving
coherence of the system, thus retaining the encoded information, and (ii) pre-
cise control of the system so that the desired operations can be performed, in
turn solving the correct problem. This report will investigate a combination
of the following solutions: (i) encoding in noiseless subsystems (NSs) [5], a
generalization of decoherence-free subspaces, where an abundance of qubits
form a protection against environmental influences, i.e., noise; and (ii) adia-
batic shortcut [6], where the system evolves adiabatically exactly in arbitrary
time, as opposed to the adiabatic approximation [7], which improves asymp-
totically as time of evolution tends to infinity.

An NS code with the adiabatic shortcut for spin-1
2

particles under the influ-
ence of a magnetic field is derived for both three and four physical qubits so
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that a logical qubit is described. The two resulting codes are then discussed
for feasible implementation, and possible further examinations are suggested.
To further increase robustness a refocusing scheme called spin-echo [8] is em-
ployed to remove the dynamical phase developed and thus enabling unitaries
using only Berry’s phase [9]. Since Berry’s phase is less sensitive to noise
errors than its dynamical counterpart, the spin-echo scheme may further im-
prove the robustness of the proposed gates.

2 Background

2.1 Qubit

Qubits are the quantum version of the classical bit. In its most general form
a qubit, being a quantum system, is described as

|ψ〉 = α |0〉+ β |1〉 , (1)

where 〈n|m〉 = δnm and α, β ∈ C are the probability amplitudes fulfilling
|α|2 + |β|2 = 1, which describe with what probability a measurement would
give |0〉 or |1〉. The non-descriptive aspect, apart from orthonormality, of
the {|0〉 , |1〉} basis, provide the means of describing any two-level system. It
could be the spin up or down of an electron {|↑〉 , |↓〉}, the horizontal and
vertical polarization of light {|H〉 , |V 〉}, or even a ground and excited state of
energy levels {|g〉 , |e〉} in an atom or ion. In turn this fact provides multiple
avenues of realising a quantum computer. Important to note is that when
measured the result is either |0〉 or |1〉 and values ”0” or ”1”, thus returning
a classical value. Therefore any operations made on a qubit must be able to
preserve its ”quantumness”.

2.2 Quantum gates

The foundation of computer operation in information processing is the enact-
ment of logic gates on the information bits constituting the system. In QC
these gates are realized through unitary operators U , i.e., UU † = U †U = I,
with I as the identity.

Among the advantages of QC is the ability to take superpositions of qubits,
of which the Hadamard gate H is the unitary most commonly employed. It
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is defined as

H =
1√
2

(
1 1
1 −1

)
(2)

in the computational basis, although any unitary which places the qubit in
a superposition is valid. The effect on a qubit differs if it is in the |0〉 or |1〉
state as follows:

H |0〉 =
|0〉+ |1〉√

2
,

H |1〉 =
|0〉 − |1〉√

2
.

(3)

There are also other single-qubit gates such as the Pauli-gates coinciding with
the Pauli operators σx, σy, σz and the phase shift gate φ defined as

φ =

(
1 0
0 eiφ

)
. (4)

The Hadamard and φ-gate are sufficient for all single-qubit operations in or-
der to transform a system of n qubits into an arbitrary product state. Hence,
clever combination of H and φ constitutes single-qubit universality.

To achieve total universality, a conditional two-qubit gate possible of entan-
glement is required. This report, however, will focus only on single-qubit
dynamics.

2.3 Noiseless subsystem

The Hilbert H space spanned by N qubits as spin-1/2 particles can be de-
composed according to [10] as

H ∼=
⊕
j

Cnj ⊗ Cdj , (5)

where j denotes the total spin, dj = 2J + 1 the dimension of the subspace,
and

nj =
N !(2j + 1)

(N/2 + 1 + j)!(N/2− j)!
(6)

the multiplicity of said subspace. For example in the case of N = 2 qubits a
singlet and triplet is obtained, which is expressed in terms of the decompo-
sition

H = C1 ⊗ C1 ⊕ C1 ⊗ C3. (7)
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The theory of NS is the attempt to create systems robust against global
decoherence induced by the interaction with the environment. The error
operators A corresponding to this form of decoherence can be decomposed,
similarly to the Hilbert space decomposition, as

A ∼=
⊕
j

Inj ⊗Mdj . (8)

Hence the error only affects the CdJ tensor-factor, meaning the subspace
elements can be transformed but the multiplicity of the subspace is pre-
served.

In view of this, encoding information in the multiplicity would be robust
against global environmental effects, i.e., noise. This can be done by creating
an NS code based on operators acting as S = Sns⊗ Inf , i.e., only acting non-
trivially on the multiplicity which is noiseless. This motivates the notation
|i〉 |j,mj〉N for the NS-code, where |i〉 being the noiseless factor indexes the
multiplicity of each subspace, |j,mj〉 being the noisefull (nf) factor denotes
a specific element of the subspace coinciding with the typical notation for a
total spin state, and N the number of qubits.

The combination of NS with GQC has been demonstrated for both the adi-
abatic, and non-adiabatic case in [10,11], respectively.

2.4 Adiabatic cyclic evolution

A state’s parameters are more difficult to control over time than those of the
Hamiltonian dictating its evolution. To have the Hamiltonian evolving the
state in a controlled manner doing it slowly over a long time is of importance.
This means entering the adiabatic regime. The adiabatic theorem [7] states
that an eigenstate of the Hamiltonian, if evolved slowly enough, will stay
in that eigenstate over the full evolution, up to a phase. For an arbitrary
Hamiltonian, with instantaneous eigenstates such that

H0(t) |ψn(t)〉 = En(t) |ψn(t)〉 , (9)

the adiabatic approximation gives the states driven by H0(t) as∣∣∣ψ̃n(t)
〉

= ei(δn+γn) |ψn(t)〉 , (10)
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with the dynamical phase

δn = −1

~

∫ t

0

〈ψn(t′)|H0(t′)|ψn(t′)〉 dt′, (11)

and in the case of cyclic evolution, that is, |ψn(0) = |ψn(T )〉〉 for some T the
geometric Berry phase [9]

γn = i

∮
C

〈
ψn(~R)

∣∣∣∇~R

∣∣∣ψn(~R)
〉
· d~R. (12)

Here ~R(t) is the parameter-vector describing the time-dependence of |ψn(t)〉
and traces out the path C on the Bloch sphere.

2.5 Spin-echo

In order to get a purely geometric gate, the dynamical phase must be elimi-
nated. This would provide robustness against dynamical errors. A refocusing
scheme called spin-echo [8] is employed. The method is as follows: an adi-
abatic evolution is traced, from which a dynamical and a Berry phase are
obtained. This is done twice where the second one is done so backwards.
Surrounding these evolutions are two π-transformations which flip the states
(orthogonally). This is illustrated in Fig.(1). In the end both eigenstates will
have picked up the same dynamical phase contribution, making it a global
phase. Since that kind of phase is non-physical it can be neglected with-
out affecting the state. The Berry phase obtained will be different for the
respective eigenstates, meaning a non-trivial gate can be induced.

z

y

x

(a)

θ z

y

x

(b)

z

y

x

(c)

θ z

y

x

(d)
Figure 1: (a) and (c) are the two adiabatic cycles traced in opposite direc-
tions. (b) and (d) are the π-transformations, half-circle rotations around the
y-axis.
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2.6 Adiabatic shortcut

The great experimental challenge of adiabatic evolution is the necessarily
long run-time. In order to overcome this a correctional term can be added
to the Hamiltonian [6]. If H0(t) describes the adiabatic evolution as in (10),
then H(t) = H0(t) +H1(t) with

H1(t) = i~
∑
m 6=n

|ψm〉〈ψm| ∂tH0(t) |ψn〉〈ψn|
En − Em

(13)

is a transitionless Hamiltonian, meaning it evolves the eigenstates exactly
for all time due to the transition amplitudes being zero. Because of this the
evolution can be induced at an arbitrary speed, without the risk of losing
control of the prepared state.

3 Theory and results

3.1 Noiseless code

By choosing to work with the decomposed subspaces Cnj ⊗ Cdj where the
multiplicity nj = 2, an NS-code simulating a logical qubit is can be produced.
By using Eq.(6) it can be shown that the only two such cases are when using
N = 3 and N = 4 qubits, and when the total spin is j = 1/2 and j = 0,
respectively. Thus the two subsystems C2 ⊗ C2 and C2 ⊗ C1 for 3 and 4
physical qubits are obtained, respectively.

Via the Clebsch-Gordan procedure, detailed in Appendix A, with |0〉 :=
|1/2, 1/2〉 and |1〉 := |1/2,−1/2〉, the following is obtained:

|0〉 |1/2, 1/2〉3 =
1√
2

(|010〉 − |100〉),

|0〉 |1/2,−1/2〉3 =
1√
2

(|011〉 − |101〉),
|1〉 |1/2, 1/2〉3 =

1√
6

(2 |001〉 − |010〉 − |100〉),

|1〉 |1/2,−1/2〉3 =
1√
6

(|011〉+ |101〉 − 2 |110〉),

(14)
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and

|0〉 |0, 0〉4 =
1

2
(|0101〉 − |1001〉 − |0110〉+ |1010〉),

|1〉 |0, 0〉4 =
1

2
√

3
(2 |0011〉 − |0101〉 − |1001〉 − |0110〉 − |1010〉+ 2 |1100〉).

(15)

The Hamiltonian used is described by the logical Pauli matrices, which are
as follows:

X ⊗ Inf = (|1〉〈0|+ |0〉〈1|)⊗ Inf ,
Y ⊗ Inf = (i |1〉〈0| − i |0〉〈1|)⊗ Inf ,
Z ⊗ Inf = (|0〉〈0| − |1〉〈1|)⊗ Inf .

For a more physical expression the operators are written in terms of the
permutation operators Pij = (I+~σi·~σj)/2, where ~σi = (σx, σy, σz)i is the Pauli
vector corresponding to the physical qubit i. This is possible because the
spin and permutation operators commute, that is [Sz, Pij] = 0, so they share
eigenbasis. This substitution, described in detail in Appendix B, yield:

N = 3 :



X ⊗ Inf =
1√
3

(P23 − P13),

Y ⊗ Inf =
i√
3

(P23P13 − P13P23),

Z ⊗ Inf =
1

3
(P13 + P23 − 2P12),

(16)

and

N = 4 :



X ⊗ Inf =
1

2
√

3
(P13P24 − P14P23 + P14 + P23 − P13 − P24),

Y ⊗ Inf =
i

4
√

3
(P34P14 + P24P12 + P13P12 + P34P23

− P14P34 − P12P24 − P12P13 − P23P34),

Z ⊗ Inf =
1

6
(P13 + P14 + P23 + P24 − P13P24 − P14P23)

+
1

3
(P12P34 − P12 − P34).

(17)
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As a last step the operators are written in terms of the physical Pauli vectors
according to the definition of the permutation operator, yielding:

N = 3 :



X ⊗ Inf =
1

2
√

3
(~σ2 · ~σ3 − ~σ1 · ~σ3),

Y ⊗ Inf =
1

4
√

3
~σ1 · (~σ2 × ~σ3),

Z ⊗ Inf =
1

6
(~σ1 · ~σ3 + ~σ2 · ~σ3 − 2~σ1 · ~σ2),

(18)

and

N = 4 :



X ⊗ Inf =
1

8
√

3
(~σ1 · ~σ4 + ~σ2 · ~σ3 − ~σ1 · ~σ3 − ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4)),

Y ⊗ Inf =
1

8
√

3
(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3)− ~σ1 · (~σ2 × ~σ4)− ~σ2 · (~σ3 × ~σ4)),

Z ⊗ Inf =
1

24
(~σ1 · ~σ3 + ~σ1 · ~σ4 + ~σ2 · ~σ3 + ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4))

− 1

12
(~σ1 · ~σ2 + ~σ3 · ~σ4 + (~σ1 × ~σ4) · (~σ3 × ~σ2)).

(19)
Present in Eq.(18) and Eq.(19) are Heisenberg terms −Jij(~σi · ~σj), which
describe the magnetic nature of the exchange interaction between two spins.
Depending on the sign of Jij it is either ferromagnetic (positive) or anti-
ferromagnetic (negative), which is directly related to whether the two spins
are aligned or anti-aligned. This is a well-studied model regularly employed
in materials science for simulations, where the spins are distributed on a
lattice.

More exotic are the three-spin interactions ~σi · (~σj × ~σk). These are anti-
symmetric exchange interaction, connected to the notion of chirality [12], a
sort of ”handedness”, where the permutation of the spins occurs in a cycle
such as |123〉 → |312〉 or |123〉 → |231〉. This sort of interaction has been
found to occur in single-molecule magnets, for instance [13] used an equilat-
eral triangular setup of Cu2+ ions and used a chiral base similar to Eq.(18).
In [14] they managed to synthesise such chiral interactions for clusters of up
to 5 spins.

Even more complex are the four-spin terms (~σi × ~σj) · (~σk × ~σl). These
terms have come up in four-spin cyclic exchange phenomena, which have been
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studied in spin-ladder models as a coupling between vector chiralities [15,
16]. The terms have for instance been observed contributing in a significant
manner to the magnetic properties of manganites in [17].

3.2 Adiabatic shortcut to spin-echo

To obtain a Hamiltonian with an adiabatic shortcut the following starting
Hamiltonian is defined:

H0(t) = γ ~B0(t) · ~S, (20)

where γ is the gyromagnetic ratio and

~S =
~
2
~Σ =

~
2

(X, Y, Z), (21)

the spin vector. Moreover, define

~b0(t) :=
~B0(t)∣∣∣ ~B0(t)

∣∣∣ =
~B0(t)

B0(t)
, (22)

as the direction of the magnetic field. As shown in [6] the correction Hamil-
tonian Eq.(13) takes the form

H1(t) = (~b0(t)× ∂t~b0(t)) · ~S. (23)

The total Hamiltonian inducing a transitionless evolution is therefore

H(t) = (γ ~B0(t) +~b0(t)× ∂t~b0(t)) · ~S =: γ ~B(t) · ~S. (24)

The direction of the magnetic can generally be expressed as:

~b0(t) = (sin θ cosωt, sin θ sinωt, cos θ), (25)

which in turn yields the total magnetic field

~B(t) =
(
B0 − 1

γ
ω cos θ

)
sin θ(êx cosωt+ êy sinωt)

+
(
B0 cos θ + 1

γ
ω sin2 θ

)
êz,

(26)
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where from now on the field strength B0(t) = B0 is taken to be constant.
This leads to the transitionless Hamiltonian

H(t) =
~
2

(
γB0 − ω cos θ

)
sin θ cos(ωt)X

+
~
2

(
γB0 − ω cos θ

)
sin θ sin(ωt)Y

+
~
2

(
γB0 cos θ + ω sin2 θ

)
Z.

(27)

By defining

ω0 := γB0 cos θ + ω sin2 θ,

ω1 := (γB0 − ω cos θ) sin θ,
(28)

the Hamiltonian (27) simplifies to

H(t) =
~
2
ω1 cos(ωt)X +

~
2
ω1 sin(ωt)Y +

~
2
ω0Z

=
~
2

[ω1(cos(ωt)X + sin(ωt)Y ) + ω0Z].

(29)

The refocusing sequence, as described earlier is

C → π → C̃ → π, (30)

where C is the path traced by the eigenstates |ψn(t)〉 of the Hamiltonian
H0(t) driven by H(t), and C̃(ω) = C(−ω) is the same path traced back-
wards. The π transformation is enacted after each cycle and described by
the Hamiltonian

H(t) = γ ~Bπ(t) · Ŝ, (31)

with
γ ~Bπ(t) = (0, ωπ, 0), (32)

and so

H(t) =
~
2
ωπY. (33)
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The sequence can now be described by a Hamiltonian divided up as

H(t) =



H(1)(t) , 0 ≤ t ≤ 2π

ω
,

H(2)(t) , t1 ≤ t ≤ t1 +
π

ωπ
,

H(3)(t) , t2 ≤ t ≤ t2 +
2π

ω
,

H(4)(t) , t3 ≤ t ≤ t3 +
π

ωπ
≡ τ,

(34)

where t1 >
2π
ω

, t2 > t1 + π
ωπ

, and t3 > t2 + 2π
ω

. Worth noting again is that
the states driven are not the eigenstates of H(t) but of H0(t). The shortcut
obtained enables the evolution to exactly track the instantaneous eigenstates
of H0(t), even though the evolution is performed in non-adiabatic time. A
consequence of this is that the Berry phase is unaffected by the shortcut,
apart from being picked up faster.

The magnetic fields corresponding to the cyclic paths will have different open-
ing angles, meaning that a change in angle to the rotational axis will have to
be made in the lab, however the field-strength the same for both evolutions.
By defining the difference of the magnetic fields to be their relative vector,
~B(13) := ~B(1) − ~B(3) = 2

γ
ω sin θ(− cos θ cosωt, cos θ sinωt, sin θ) is obtained.

Note that the relative vector scales with ω, meaning the speed at which
the evolution is traced dictates the difference in magnetic fields. This is a
direct consequence of the adiabatic shortcut since the ω factor arose from
the correction term, it can also be seen since the adiabatic approximation
is letting ω << 1 and the relative vector would be close to zero, thus ne-

glected. The respective magnitudes do not differ because
∣∣∣ ~B(1)

∣∣∣ =
∣∣∣ ~B(3)

∣∣∣ =

B0

√
1 +

(
ω
γB0

sin θ
)2

is unaffected by a sign change of ω. The discussed

aspects are illustrated below in Fig.(2).
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z

x

~B(1)

~B(3)
2
γ
ω sin2 θ

Figure 2: The difference in magnetic field for the first and second cycle, in
the xz-plane.

In the following subsections the Hamiltonian from Eq.(34) is expressed ex-
plicitly for the 3 and 4 physical qubits respectively constituting the NS
code.

3.2.1 3 physical qubits, j = 1/2

Substituting for the Pauli operators X, Y, Z in the previously derived code
Eq.(18) yields

H(t) =
~
2
ω1

(
cos(ωt)

1

2
√

3
(~σ2 · ~σ3 − ~σ1 · ~σ3) + sin(ωt)

1

4
√

3
~σ1 · (~σ2 × ~σ3)

)
+

~
2
ω0

1

6
(~σ1 · ~σ3 + ~σ2 · ~σ3 − 2~σ1 · ~σ2)

(35)

and gathering terms result in

H(1)(t) =− ~
6
ω0~σ1 · ~σ2

+
~
12

(
ω0 −

√
3ω1 cos(ωt)

)
~σ1 · ~σ3

+
~
12

(
ω0 +

√
3ω1 cos(ωt)

)
~σ2 · ~σ3

+
~

8
√

3
ω1 sin(ωt)~σ1 · (~σ2 × ~σ3).

(36)
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For H(3)(t), where ω → −ω, define ω̃0,1(ω) := ω0,1(−ω), yielding

H(3)(t) =− ~
6
ω̃0~σ1 · ~σ2

+
~
12

(
ω̃0 −

√
3ω̃1cos(ωt)

)
~σ1 · ~σ3

+
~
12

(
ω̃0 +

√
3ω̃1 cos(ωt)

)
~σ2 · ~σ3

− ~
8
√

3
ω̃1 sin(ωt)~σ1 · (~σ2 × ~σ3).

(37)

The π-transformation is simply

H(2)(t) = H(4)(t) =
~ωπ
8
√

3
~σ1 · (~σ2 × ~σ3). (38)

The interactions of the spins are illustrated below in Fig.(3).

1

2

3 1

2

3

Figure 3: The dots represent the physical qubits. The left diagram represents
the interactions of the path C induced by H(1)(t) and H(3)(t). The right
diagram represents the π-transformation of H(2)(t) and H(4)(t). The straight
arrows correspond to the Heisenberg interaction. The circle shows the chiral
interaction, where the direction is determined by the sign.
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3.2.2 4 physical qubits, j = 0

The same procedure but for the j = 0 Pauli operators yields

H =
~

16
√

3
ω1 cos(ωt)

× (~σ1 · ~σ4 + ~σ2 · ~σ3 − ~σ1 · ~σ3 − ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4))

+
~

16
√

3
ω1 sin(ωt)

× (~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3)− ~σ1 · (~σ2 × ~σ4)− ~σ2 · (~σ3 × ~σ4))

+
~
48
ω0

× (~σ1 · ~σ3 + ~σ1 · ~σ4 + ~σ2 · ~σ3 + ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4)

− 2(~σ1 · ~σ2 + ~σ3 · ~σ4 + (~σ1 × ~σ4) · (~σ3 × ~σ2))).

(39)

Gathering interaction terms,

H =− ~
24
ω0~σ1 · ~σ2

+
~
48

(
ω0 −

√
3ω1 cos(ωt)

)
~σ1 · ~σ3

+
~
48

(
ω0 +

√
3ω1 cos(ωt)

)
~σ1 · ~σ4

+
~
48

(
ω0 +

√
3ω1 cos(ωt)

)
~σ2 · ~σ3

+
~
48

(
ω0 −

√
3ω1 cos(ωt)

)
~σ2 · ~σ4

− ~
24
ω0~σ3 · ~σ4

+
~

16
√

3
ω1 sin(ωt)(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3))

− ~
16
√

3
ω1 sin(ωt)(~σ1 · (~σ2 × ~σ4) + ~σ2 · (~σ3 × ~σ4))

+
~
48

(
ω0 +

√
3ω1 cos(ωt)

)
(~σ1 × ~σ2) · (~σ3 × ~σ4)

− ~
24
ω0(~σ1 × ~σ4) · (~σ3 × ~σ2),

(40)
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and finally gather coefficients to obtain

H(1)(t) =
~
48

(
ω0 +

√
3ω1 cos(ωt)

)
(~σ1 · ~σ4 + ~σ2 · ~σ3 + (~σ1 × ~σ2) · (~σ3 × ~σ4))

+
~
48

(
ω0 −

√
3ω1 cos(ωt)

)
(~σ1 · ~σ3 + ~σ2 · ~σ4)

+
~

16
√

3
ω1 sin(ωt)(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3))

− ~
16
√

3
ω1 sin(ωt)(~σ1 · (~σ2 × ~σ4) + ~σ2 · (~σ3 × ~σ4))

− ~
24
ω0(~σ1 · ~σ2 + ~σ3 · ~σ4 + (~σ1 × ~σ4) · (~σ3 × ~σ2)).

(41)

The counter-rotating path is therefore

H(3)(t) =
~
48

(
ω̃0 +

√
3ω̃1 cos(ωt)

)
(~σ1 · ~σ4 + ~σ2 · ~σ3 + (~σ1 × ~σ2) · (~σ3 × ~σ4))

+
~
48

(
ω̃0 −

√
3ω̃1 cos(ωt)

)
(~σ1 · ~σ3 + ~σ2 · ~σ4)

− ~
16
√

3
ω̃1 sin(ωt)(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3))

+
~

16
√

3
ω̃1 sin(ωt)(~σ1 · (~σ2 × ~σ4) + ~σ2 · (~σ3 × ~σ4))

− ~
24
ω̃0(~σ1 · ~σ2 + ~σ3 · ~σ4 + (~σ1 × ~σ4) · (~σ3 × ~σ2)).

(42)

The π-transformations are

H(2)(t) = H(4)(t) =
~ωπ

16
√

3
(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3)

− ~σ1 · (~σ2 × ~σ4)− ~σ2 · (~σ3 × ~σ4)).

(43)

The interactions of the spins are illustrated below in Fig.(4).
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Figure 4: The dots represent the physical qubits. The left diagram represents
the interactions of the path C induced by H(1)(t) and H(3)(t). The right
diagram represents the π-transformation of H(2)(t) and H(4)(t). The straight
arrows correspond to the Heisenberg interaction. The colored triangles shows
the chiral 3-spin interactions, where the direction is determined by the sign.
The squares show the 4-spin interactions of coupled vector chiralities.

3.3 Single-qubit gates

Exploiting the Berry phase enacting single-qubit gates is possible. First the
original Hamiltonian

H0(t) =
~γB0

2

(
cos θ sin θe−iωt

sin θeiωt − cos θ

)
(44)

diagonalizes to

|ψ0(t)〉 = cos
θ

2
|0〉+ sin

θ

2
eiωt |1〉 , E0 =

~γB0

2
,

|ψ1(t)〉 = − sin
θ

2
|0〉+ cos

θ

2
eiωt |1〉 , E1 = −~γB0

2
.

(45)

Notice the time-dependence of the eigenstates is solely in the eiωt factor. As
mentioned previously this motivates a time-dependence parameter-vector, in
this case ~R = ωt =: ϕ with the cyclic path ϕ ∈ [0, 2π]. Hence, the Berry
phases γx (x = 0, 1) obtained are:

γ0 =

∮
C

i 〈ψ0|∇R|ψ0〉 · d~R

= i

∫ 2π

0

(cos
θ

2
〈0|+ sin

θ

2
e−iϕ 〈1|)i sin

θ

2
eiϕ |1〉 dϕ

= −π(1− cos θ),

(46)
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and

γ1 =

∮
C

i 〈ψ1|∇R|ψ1〉 · d~R

= i

∫ 2π

0

(− sin
θ

2
〈0|+ cos

θ

2
e−iϕ 〈1|)i cos

θ

2
eiϕ |1〉 dϕ

= −π(1 + cos θ).

(47)

Two observations can be made. First, these are the phases acquired by the
corresponding eigenstates of H0(t) evolving with the Hamiltonian H(1)(t) as
previously described. The corresponding phase for the orthogonal evolution
H(3)(t) would be calculated simply by changing the sign on the upper limit
of the integration, thus resulting only in an overall sign change. If the first
evolution is denoted by Cx and the second, backwards, evolution C̃x, then
the phases acquired would be γx and γ̃x, respectively, hence γ̃x = −γx .

Second, the phases can be related to the solid angle Ω = 2π(1 − cos θ) of
the traced out paths of |ψ0〉 and |ψ1〉. It can be directly observed that
γ0 = −Ω/2. The second phase can be worked out as γ1 = −2π + Ω/2.
Since these phases are actually expressed in exponentials as eiγx , there is
redundancy in any additional factor of 2π, that is they describe the same
physics since eiγ1 = ei(−2π+Ω/2) = e−i2πeiΩ/2 = eiΩ/2. In view of this the Berry
phases can be expressed as

γx = (x− 1

2
)Ω. (48)

Applying these two observations to the refocusing scheme yield

|ψx〉
Cx→ ei(δx+γx) |ψx〉

π→ ei(δx+γx) |ψx⊕1〉
C̃x→ ei(δx+δx⊕1+γx−γx⊕1) |ψx⊕1〉
π→ ei(δx+δx⊕1+γx−γx⊕1) |ψx〉 ,

(49)

where ⊕ is addition mod 2. The dynamical contribution is identical for
both starting eigenstates because the shortcut does not contribute to the
phase, which can be seen by calculation of the correction Hamiltonian inte-
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grands:

〈ψ0(t)|H1(t)|ψ0(t)〉 =

(
cos θ

2

sin θ
2
eiωt

)† ~ω sin θ

2

(
sin θ − cos θe−iωt

− cos θeiωt − sin θ

)(
cos θ

2

sin θ
2
eiωt

)
=
~ω sin θ

2

(
cos θ

2

sin θ
2
eiωt

)†( − sin θ
2

cos θ
2
eiωt

)
=
~ω sin θ

2

(
− cos

θ

2
sin

θ

2
+ sin

θ

2
cos

θ

2

)
= 0,

〈ψ1(t)|H1(t)|ψ1(t)〉 =

(
− sin θ

2

cos θ
2
eiωt

)† ~ω sin θ

2

(
sin θ − cos θe−iωt

− cos θeiωt − sin θ

)(
− sin θ

2

cos θ
2
eiωt

)
=
~ω sin θ

2

(
− sin θ

2

cos θ
2
eiωt

)†(
cos θ

2

sin θ
2
eiωt

)
=
~ω sin θ

2

(
− cos

θ

2
sin

θ

2
+ sin

θ

2
cos

θ

2

)
= 0.

(50)

This is the same as 〈ψx(t)|H1(t)|ψx(t)〉 = ~
2
ω sin θ 〈ψx(t)|ψx⊕1(t)〉 = 0, mean-

ing 〈ψx(t)|H(t)|ψx(t)〉 = 〈ψx(t)|H0(t)|ψx(t)〉, and so the dynamical phases
are unaffected. Moreover, the total contribution is a global phase and can be
neglected. In the eigenbasis {|ψ0〉 , |ψ1〉} the transformation (49) corresponds

to the phase gate ΦΩ : |ψx〉 → U(Ω) |ψx〉 = ei(x−
1
2

)2Ω |ψx〉, i.e.,

U(Ω) = e−iΩ |ψ0〉〈ψ0|+ eiΩ |ψ1〉〈ψ1| . (51)

Rewriting this in terms of the computational basis {|0〉 , |1〉} via the expres-
sions for the eigenstates and, which is of great importance, setting t = 0 to
obtain the instantaneous eigenstates which are acted upon in the scheme,
yield the unitary

U(θ,Ω) =

(
cos2 θ

2
e−iΩ + sin2 θ

2
eiΩ −i sin θ sin Ω

−i sin θ sin Ω sin2 θ
2
e−iΩ + cos2 θ

2
eiΩ

)
, (52)

or U(θ,Ω) = e−iΩ~n·
~Σ, where ~n = (sin θ, 0, cos θ). For U(θ,Ω) to be universal θ

and Ω must be able to vary independently, but as previously defined Ω(θ) =
2π(1− cos θ), and so another ϑ is required. This can be obtained by rotating
the magnetic field around some symmetry axis, in this case the y-axis [18]
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(or by changing basis as was done in [19]) such that: ~B′ = Ry(ϑ − θ) ~B, in
turn producing the rotated direction ~n′ = Ry(ϑ− θ)~n, i.e.,

~n′ =

 cos(ϑ− θ) 0 sin(ϑ− θ)
0 1 0

− sin(ϑ− θ) 0 cos(ϑ− θ)

sin θ
0

cos θ

 =

sinϑ
0

cosϑ

 . (53)

The result is the universal unitary

U(ϑ,Ω) =

(
cos2 ϑ

2
e−iΩ + sin2 ϑ

2
eiΩ −i sinϑ sin Ω

−i sinϑ sin Ω sin2 ϑ
2
e−iΩ + cos2 ϑ

2
eiΩ

)
, (54)

where, by definition, ϑ and Ω can now be varied independently. Moreover,
due to the spherical symmetry the Berry phases remains the same. This is
because the same path is traced, only in a rotated frame, and as such the
solid angles remains the same.

For two unitaries U1, U2 to contribute to universality it is necessary that
[U1, U2] 6= 0, which can be shown to equate to

sin Ω1 sin Ω2 sin(ϑ1 − ϑ2) 6= 0. (55)

Simply choosing ϑ1 − ϑ2 6= 0± nπ, where n ∈ Z, takes care of the issue. By
letting ϑ1 = 0 the unitary

U1(0,Ω1) =

(
e−iΩ1 0

0 eiΩ1

)
, (56)

is obtained which is equivalent to the φ-gate up to a global phase eiΩ1 . Now
for the second gate, let ϑ2 = π/2, then

U2

(π
2
,Ω2

)
=

(
cos Ω2 −i sin Ω2

−i sin Ω2 cos Ω2

)
. (57)

Furthermore, either set Ω2 = π/2 to obtain the equivalent to spin-flip

U2

(π
2
,
π

2

)
=

(
0 −i
−i 0

)
. (58)

up to the phase e3iπ/2, or set Ω2 = π/4 to obtain

U2

(π
2
,
π

4

)
=

1√
2

(
1 −i
−i 1

)
. (59)

which is a so-called ”equal weighted superposition gate”, the same type of
gate as in Eq.(2), the Hadamard gate.
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4 Outlook

The scheme should be extended to include two-qubit interactions in order
to achieve universality. This could be done for instance via an Ising model
as previously done in [8] for a single physical qubit undergoing adiabatic
evolution.

Experimental testing of the derived systems is naturally of interest.

The magnetic field used in this report was assumed to have constant strength.
Consequences of letting it vary in time could be explored, perhaps leading
to simpler expressions.

The NS code with adiabatic shortcut can be applied to other schemes than
spin-echo. It can also be used on non-adiabatic schemes.
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5 Conclusions

Quantum computers hold the potential to change the information processing
landscape. To realize these machines certain obstacles, such as error pre-
vention, need addressing. The notion of noiseless subsystems was used to
construct the two possible codes capable of simulating a single logical qubit
resilient against global entanglement to an environment. An adiabatic short-
cut leading to transitionless driving of eigenstates was implemented along-
side the noiseless code to perform geometric quantum computation via a
refocusing sequence, or, spin echo, in turn eliminating the dynamical phase
so that only the Berry phase remained. Furthermore, two universal sets of
single-qubit unitaries were explicitly derived. Thus several errors have been
prevented, where the system is robust against environmental effects, random
local parameter fluctuations, and perhaps most importantly, the run-time
required for this security has been eliminated due to the adiabatic shortcut.
Observed in the NS code were the three- and four-spin interactions connected
to scalar and vector chirality, interactions observed in single molecular mag-
nets, 2D quantum solids and more. Several avenues of continued research
related to the derived code and implementation have been suggested, such
as, extending the scheme to include two-qubit gates and experimentally test
the proposed gates.
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[19] E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M. Johansson,
and K. Singh, Non-adiabatic holonomic quantum computation New J.
Phys. 14, 103035 (2012).

23



A Qubit addition

Denote |0〉 = |1/2, 1/2〉 and |1〉 = |1/2,−1/2〉 and |i〉 ⊗ |j〉 = |ij〉. The
lowering operator S− will be used to obtain the superposition of states that
describes the total state vector. It acts on a state as follows S− |s,m〉 =
~C− |s,m− 1〉 with C− =

√
(s+m)(s−m+ 1) being the Clebsch-Gordan

coefficients. The total state is generally expressed as

|s1, s2; s,m〉N =
∑
m1,m2

〈s1,m1; s2,m2|s1, s2; s,m〉 |s1,m1; s2,m2〉

where the inner products are the C−’s and N denotes the number of qubits.
The lowering operator for the total state is the sum of the lowering operator
for the separate states as follows S− = S1− ⊗ 1̂ + 1̂ ⊗ S2−, this implies that
the ~ factor will appear on both sides of the equation and can therefore be
omitted from the calculations. To begin with, calculate the operation on the
qubits |0〉 , |1〉. The |1〉 will just equal zero since it’s the lowest state. For |0〉
C− = 1 so S− |0〉 = ~ |1〉, and since ~ is omitted lowering a single spin-1/2 is
generated by the Pauli lowering operator σ− = |1〉 〈0|.

The method to obtain all the total states for n qubits will be to start with
the highest possible state from |s1 − s2| ≤ s ≤ |s1 + s2| and define it as
|s = s1 + s2,m〉 = |0〉1 ⊗ ...⊗ |0〉N

2 qubits

Add two s = 1/2, which gives s = 0, 1. Starting with s = 1

|1, 1〉2 = |00〉

acting with lowering operator yield

S− |1, 1〉2 = (S1− ⊗ 1̂ + 1̂⊗ S2−) |00〉
⇒

√
2 |1, 0〉2 = |10〉+ |01〉

⇔ |1, 0〉2 =
1√
2

(|10〉+ |01〉)
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and lowering once again to get

S− |1, 0〉2 = (S1− ⊗ 1̂ + 1̂⊗ S2−)
1√
2

(|10〉+ |01〉)

⇒
√

2 |1,−1〉2 =
2√
2
|11〉

⇔ |1,−1〉2 = |11〉

The lowest possible state is expected to be a single term of the lowest states of
the qubits, since this process works analogously by using the raising operator
starting from the lowest possible state.

The triplet has been obtained, there is also a singlet for the case s = 0 i.e.
|0, 0〉. Compare with the state with same m, that is |1, 0〉 and try to construct
an orthogonal total state. By choosing

|0, 0〉2 =
1√
2

(|01〉 − |10〉),

the singlet and triplet for 2 qubits are

|0, 0〉2 =
1√
2

(|01〉 − |10〉)
|1, 1〉2 = |00〉

|1, 0〉2 =
1√
2

(|10〉+ |01〉)

|1,−1〉2 = |11〉

3 qubits

For N ≥ 3 number of qubits start with the same process as for the N = 2
case, that is begin with the highest possible state and then use the lowering
operator, followed by finding orthogonal states for lower s. But the results
from lower N can be reused to get around a lot of the calculations by adding
the qubit to the different subspaces, e.g. the triplet. For N = 3 that looks
like

|3/2, 3/2〉3 = |000〉 = |1, 1〉2 ⊗ |0〉

A2



since the lowering operator acting on |1, 1〉2 has already been calculated it
simplifies things,

√
3 |3/2, 1/2〉3 =

√
2 |1, 0〉2 ⊗ |0〉+ |1, 1〉2 ⊗ |1〉

⇔ |3/2, 1/2〉3 =
1√
3

(
√

2 |1, 0〉2 ⊗ |0〉+ |1, 1〉2 ⊗ |1〉).

The procedure continues until the lowest state,

2 |3/2,−1/2〉3 =
1√
3

(2 |1,−1〉2 ⊗ |0〉+
√

2 |1, 0〉2 ⊗ |1〉+
√

2 |1, 0〉2 ⊗ |1〉)

⇔ |3/2,−1/2〉3 =
1√
3

(|1,−1〉2 ⊗ |0〉+
√

2 |1, 0〉2 ⊗ |1〉),

and

√
3 |3/2,−3/2〉3 =

3√
3
|1,−1〉2 ⊗ |1〉

⇔ |3/2,−3/2〉3 = |1,−1〉2 ⊗ |1〉 .

Thus the quadruplet has been obtained. Now for the doublet. Examine
|3/2, 1/2〉 to see what anti-symmetry can be made in order to construct the
|1/2, 1/2〉 state vector, just as in the N = 2 case.

|3/2, 1/2〉3 =
1√
3

(
√

2 |1, 0〉2 ⊗ |0〉+ |1, 1〉2 ⊗ |1〉)

choose

|1/2, 1/2〉3 =
1√
3

(
√

2 |1, 1〉2 ⊗ |1〉 − |1, 0〉2 ⊗ |0〉),

and lowering to get

|1/2,−1/2〉3 =
1√
3

(2 |1, 0〉2 ⊗ |1〉 −
√

2 |1,−1〉2 ⊗ |0〉 − |1, 0〉2 ⊗ |1〉)

=
1√
3

(|1, 0〉2 ⊗ |1〉 −
√

2 |1,−1〉2 ⊗ |0〉).

Finally add a qubit to the singlet to obtain some |1/2, 1/2〉3 state vector

|1/2, 1/2〉3 = |0, 0〉2 ⊗ |0〉 ,
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and lowering to get
|1/2,−1/2〉3 = |0, 0〉2 ⊗ |1〉 .

At last substitute in the N = 2 states to get the two doublets and the
quadruplet 

|0〉 |1/2, 1/2〉3 =
1√
2

(|010〉 − |100〉),

|0〉 |1/2,−1/2〉3 =
1√
2

(|011〉 − |101〉),
|1〉 |1/2, 1/2〉3 =

1√
6

(2 |001〉 − |010〉 − |100〉),

|1〉 |1/2,−1/2〉3 =
1√
6

(|011〉+ |101〉 − 2 |110〉),

|0〉 |3/2, 3/2〉3 = |000〉 ,

|0〉 |3/2, 1/2〉3 =
1√
3

(|001〉+ |010〉+ |100〉),

|0〉 |3/2,−1/2〉3 =
1√
3

(|011〉+ |101〉+ |110〉),

|0〉 |3/2,−3/2〉3 = |111〉 .

4 qubits

As done in the N = 3 case we use the previous results to form the new total
state vectors:

|2, 2〉4 = |0000〉 = |3/2, 3/2〉3 ⊗ |0〉 ,

and lowering to get

2 |2, 1〉4 =
√

3 |3/2, 1/2〉3 ⊗ |0〉+ |3/2, 3/2〉3 ⊗ |1〉

⇔ |2, 1〉4 =
1

2
(
√

3 |3/2, 1/2〉3 ⊗ |0〉+ |3/2, 3/2〉3 ⊗ |1〉)

=⇒
√

6 |2, 0〉4 =
1

2
(2
√

3 |3/2,−1/2〉3 ⊗ |0〉+
√

3 |3/2, 1/2〉3 ⊗ |1〉+
√

3 |3/2, 1/2〉3 ⊗ |1〉)

|2, 0〉4 =
1√
2

(|3/2, 1/2〉3 ⊗ |1〉+ |3/2,−1/2〉3 ⊗ |0〉)
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=⇒
√

6 |2,−1〉4 =
1√
2

(2 |3/2,−1/2〉3 ⊗ |1〉+
√

3 |3/2,−3/2〉3 ⊗ |0〉+ |3/2,−1/2〉3 ⊗ |1〉)

⇔ |2,−1〉4 =
1

2
(
√

3 |3/2,−1/2〉3 ⊗ |1〉+ |3/2,−3/2〉3 ⊗ |0〉)

=⇒ 2 |2,−2〉4 =
1

2
(3 |3/2,−3/2〉3 ⊗ |1〉+ |3/2,−3/2〉3 ⊗ |1〉)

⇔ |2,−2〉4 = |3/2,−3/2〉3 ⊗ |1〉 .

To get the corresponding |1, 1〉4 compare to |2, 1〉4, from which it can be seen
that

|1, 1〉4 =
1

2
(
√

3 |3/2, 3/2〉3 ⊗ |1〉 − |3/2, 1/2〉3 ⊗ |0〉)

and lowering to get

√
2 |1, 0〉4 =

1

2
(3 |3/2, 1/2〉3 ⊗ |1〉 − 2 |3/2,−1/2〉3 ⊗ |0〉 − |3/2, 1/2〉3 ⊗ |1〉)

⇔ |1, 0〉4 =
1√
2

(|3/2, 1/2〉3 ⊗ |1〉 − |3/2,−1/2〉3 ⊗ |0〉)

=⇒
√

2 |1,−1〉4 =
1√
2

(2 |3/2,−1/2〉3 ⊗ |1〉 −
√

3 |3/2,−3/2〉3 ⊗ |0〉 − |3/2,−1/2〉3 ⊗ |1〉)

⇔ |1,−1〉4 =
1

2
(|3/2,−1/2〉3 ⊗ |1〉 −

√
3 |3/2,−3/2〉3 ⊗ |0〉)

Now to add a qubit to the doublets. With the employed procedure, the
resulting states will be identical until substitution, and so it is only required
to do once. Start with

|1, 1〉4 = |1/2, 1/2〉3 ⊗ |0〉

and lower to get

√
2 |1, 0〉4 = |1/2,−1/2〉3 ⊗ |0〉+ |1/2, 1/2〉3 |1〉

⇔ |1, 0〉4 =
1√
2

(|1/2,−1/2〉3 ⊗ |0〉+ |1/2, 1/2〉3 |1〉)

=⇒
√

2 |1,−1〉4 =⇔ 1√
2

(|1/2,−1/2〉3 ⊗ |1〉+ |1/2,−1/2〉3 ⊗ |1〉)

|1,−1〉4 = |1/2,−1/2〉3 ⊗ |1〉 .

The corresponding |0, 0〉4 is

A5



|0, 0〉4 =
1√
2

(|1/2, 1/2〉3 ⊗ |1〉 − |1/2,−1/2〉3 ⊗ |0〉).

All subspaces have now been expressed and the proper substitutions from
the N = 3 results can be made to obtain the 2 singlets, 3 triplets, and 1
quintuplet:

|0〉 |0, 0〉4 =
1

2
(|0101〉 − |1001〉 − |0110〉+ |1010〉),

|1〉 |0, 0〉4 =
1

2
√

3
(2 |0011〉 − |0101〉 − |1001〉 − |0110〉 − |1010〉+ 2 |1100〉),

|0〉 |1, 1〉4 =
1√
6

(2 |0010〉 − |0100〉 − |1000〉),

|0〉 |1, 0〉4 =
1

2
√

3
(2 |0011〉 − |0101〉 − |1001〉+ |0110〉+ |1010〉 − 2 |1100〉),

|0〉 |1,−1〉4 =
1√
6

(|0111〉+ |1011〉 − 2 |1101〉),

|1〉 |1, 1〉4 =
1

2
√

3
(3 |0001〉 − |0010〉 − |0100〉 − |1000〉),

|1〉 |1, 0〉4 =
1√
6

(|0011〉+ |0101〉+ |1001〉 − |0110〉 − |1010〉 − |1100〉),

|1〉 |1,−1〉4 =
1

2
√

3
(|0111〉+ |1011〉+ |1101〉 − 3 |1110〉),

|2〉 |1, 1〉4 =
1√
2

(|0100〉 − |1000〉),

|2〉 |1, 0〉4 =
1

2
(|0101〉 − |1001〉+ |0110〉 − |1010〉),

|2〉 |1,−1〉4 =
1√
2

(|0111〉 − |1011〉),

|0〉 |2, 2〉4 = |0000〉 ,

|0〉 |2, 1〉4 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉),

|0〉 |2, 0〉4 =
1√
6

(|0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉),

|0〉 |2,−1〉4 =
1

2
(|0111〉+ |1011〉+ |1101〉+ |1110〉),

|0〉 |2,−2〉4 = |1111〉 .
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B Permutation operators

The Permutation operators Pij are of interest to express the Hamiltonians
used in more physical terms than spin operators. This is possible because
the permutation operator Pij = (Iij + ~σi · ~σj)/2⊗ I = (|00〉 〈00|+ |11〉 〈11|+
|01〉 〈10| + |10〉 〈01|)ij ⊗ I, with ~σi = (σx, σy, σz)i (the identity tensor factor
acts on the other indices), commutes with the spin operator Sz. This means
they share a common eigenbasis, therefore the states can be expanded in
terms of permutations instead of the spin states. In both cases N = 3 and
N = 4 the Hamiltonian is in terms of the Pauli matrices like so:

X ⊗ Inf = (|1〉〈0|+ |0〉〈1|)⊗ Inf
Y ⊗ Inf = (i |1〉〈0| − i |0〉〈1|)⊗ Inf
Z ⊗ Inf = (|0〉〈0| − |1〉〈1|)⊗ Inf

General relation

For two permutation operators taken together which combined act on 3 qubits
3-qubit the following relations are true,

PikPij − PijPik =
1

2i
~σi · (~σj × ~σk)

PjkPij − PijPjk =
i

2
~σi · (~σj × ~σk)

PjkPik − PikPjk =
1

2i
~σi · (~σj × ~σk)

with i < j < k and proven below. In this report i, j, k, l ∈ {1, 2, 3, 4}
where depending on if it is the 3 or 4 qubit system there will be a 1̂l tensor
factor which will not affect the system, so it is omitted. The cyclic relation
σa · σb = εabcσc where a, b, c ∈ x, y, z and εabc is the Levi-Civita symbol will
be used. It is only required show one of these relations, proven by assuming
the first relation hold to get

PikPij − PijPik = PkiPji − PjiPki
i→ k

k → j

j → i

⇒ PjkPik − PikPjk =
1

2i
~σk · (~σi × ~σj)
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The circular relation of triple yield

PjkPik − PikPjk =
1

2i
~σk · (~σi × ~σj) =

1

2i
~σi · (~σj × ~σk),

and

PikPij − PijPik = PikPji − PjiPik
i→ j

j → i

⇒ PjkPij − PijPjk =
1

2i
~σj · (~σi × ~σk)

Permutation of any two operators in a triple product is anti-symmetry so,

PjkPij − PijPjk =
1

2i
~σj · (~σi × ~σk) =

i

2
~σi · (~σj × ~σk).

The first relation is derived below.

PikPij − PijPik =
1

4
(I + ~σi · ~σk)(I + ~σi · ~σj)−

1

4
(I + ~σi · ~σj)(I + ~σi · ~σk)

=
1

4
[(~σi · ~σk)(~σi · ~σj)− (~σi · ~σj)(~σi · ~σk)]

=
1

4
[(σx ⊗ 1̂⊗ σx + σy ⊗ 1̂⊗ σy + σz ⊗ 1̂⊗ σz)

× (σx ⊗ σx ⊗ 1̂ + σy ⊗ σy ⊗ 1̂ + σz ⊗ σz ⊗ 1̂)

− (σx ⊗ σx ⊗ 1̂ + σy ⊗ σy ⊗ 1̂ + σz ⊗ σz ⊗ 1̂)

× (σx ⊗ 1̂⊗ σx + σy ⊗ 1̂⊗ σy + σz ⊗ 1̂⊗ σz)]

=
1

4
[σ2
x ⊗ σx ⊗ σx + σxσy ⊗ σy ⊗ σx + σxσz ⊗ σz ⊗ σx

+ σyσx ⊗ σx ⊗ σy + σ2
y ⊗ σy ⊗ σy + σyσz ⊗ σz ⊗ σy

+ σzσx ⊗ σx ⊗ σz + σzσy ⊗ σy ⊗ σz + σ2
z ⊗ σz ⊗ σz

− (σ2
x ⊗ σx ⊗ σx + σyσx ⊗ σy ⊗ σx + σzσx ⊗ σz ⊗ σx

+ σxσy ⊗ σx ⊗ σy + σ2
y ⊗ σy ⊗ σy + σzσy ⊗ σz ⊗ σy

+ σxσz ⊗ σx ⊗ σz + σyσz ⊗ σy ⊗ σz + σ2
z ⊗ σz ⊗ σz)]
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=
1

4
[1̂⊗ σx ⊗ σx + iσz ⊗ σy ⊗ σx − iσy ⊗ σz ⊗ σx

− iσz ⊗ σx ⊗ σy + 1̂⊗ σy ⊗ σy + iσx ⊗ σz ⊗ σy
+ iσy ⊗ σx ⊗ σz − iσx ⊗ σy ⊗ σz + 1̂⊗ σz ⊗ σz
− (1̂⊗ σx ⊗ σx − iσz ⊗ σy ⊗ σx + iσy ⊗ σz ⊗ σx
+ iσz ⊗ σx ⊗ σy + 1̂⊗ σy ⊗ σy − iσx ⊗ σz ⊗ σy
− iσy ⊗ σx ⊗ σz + iσx ⊗ σy ⊗ σz + 1̂⊗ σz ⊗ σz)]

=
i

2
(σx ⊗ σz ⊗ σy + σy ⊗ σx ⊗ σz + σz ⊗ σy ⊗ σx

− σx ⊗ σy ⊗ σz − σy ⊗ σz ⊗ σx − σz ⊗ σx ⊗ σy)

=
−i
2

∣∣∣∣∣∣
σx σy σz
σx σy σz
σx σy σz

∣∣∣∣∣∣
=

1

2i
~σi · (~σj × ~σk)
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3 qubits

The permutation operators are:

P12 = |010〉〈100|+ |000〉〈000|+ |110〉〈110|+ |100〉〈010|
+ |011〉〈101|+ |001〉〈001|+ |111〉〈111|+ |101〉〈011|

P13 = |000〉〈000|+ |111〉〈111|+ |101〉〈101|+ |100〉〈001|
+ |001〉〈100|+ |010〉〈010|+ |110〉〈011|+ |011〉〈110|

P23 = |000〉〈000|+ |111〉〈111|+ |011〉〈011|+ |010〉〈001|
+ |001〉〈010|+ |100〉〈100|+ |110〉〈101|+ |101〉〈110|

I = |000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |100〉〈100|
+ |011〉〈011|+ |101〉〈101|+ |110〉〈110|+ |111〉〈111|

Hence the following:

X ⊗ Inf =
1√
3

(P23 − P13)

Z ⊗ Inf =
1

3
(P13 + P23 − 2P12).

Use commutation relations to get the representation for Y ⊗ Inf since [Z ⊗
Inf , X ⊗ Inf ] = [Z,X]⊗ Inf = 2i · Y ⊗ Inf . We find

Y ⊗ Inf =
1

2i
[Z ⊗ Inf , X ⊗ Inf ]

=
1

2i
(

1√
3

(P23 − P13)
1

3
(P13 + P23 − 2P12))− 1

3
(P13 + P23 − 2P12)

1√
3

(P23 − P13))

=
i

6
√

3
((P13 + P23 − 2P12)(P23 − P13)− (P23 − P13)(P13 + P23 − 2P12))

=
i

6
√

3
(P23P13 + P23P23 − 2P23P12 − P13P13 − P13P23 + 2P13P12

− P13P23 + P13P13 − P23P23 + P23P13 + P12P23 − 2P12P13)

Simplify by gathering terms and using PijPij = I, since permuting two ob-
jects twice is the same as having done nothing, i.e., identity. This yields

Y ⊗ Inf =
i

6
√

3
(2P23P13 − 2P23P12 − 2P13P23 + 2P13P12

+ 2P12P23 − 2P12P13).
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Investigate the action of the operators on a general vector:

P23P13(1, 2, 3) = P23(3, 2, 1) = (3, 1, 2)

P23P12(1, 2, 3) = P23(2, 1, 3) = (2, 3, 1)

P12P13(1, 2, 3) = P12(3, 2, 1) = (2, 3, 1)

P12P23(1, 2, 3) = P12(1, 3, 2) = (3, 1, 2)

P13P23(1, 2, 3) = P13(1, 3, 2) = (2, 3, 1)

P13P12(1, 2, 3) = P13(2, 1, 3) = (3, 1, 2)

Notice that P23P12 = P12P13 = P13P23 and P23P13 = P12P23 = P13P12, there-
fore the final result is

Y ⊗ Inf =
i√
3

(P23P13 − P13P23).

In summary, for N=3 physical qubits the Pauli operators are:

X ⊗ Inf =
1√
3

(P23 − P13)

Y ⊗ Inf =
i√
3

(P23P13 − P13P23)

Z ⊗ Inf =
1

3
(P13 + P23 − 2P12).

Furthermore, the true interest is to express these through Heisenberg inter-
action terms ~σi ·~σj. This is done by substituting the Pij with their definition,
with the identity tensor factor 1̂ omitted, to obtain

X ⊗ Inf =
1

2
√

3
(~σ2 · ~σ3 − ~σ1 · ~σ3)

Y ⊗ Inf =
1

4
√

3
~σ1 · (~σ2 × ~σ3)

Z ⊗ Inf =
1

6
(~σ1 · ~σ3 + ~σ2 · ~σ3 − 2~σ1 · ~σ2).
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4 qubits

The permutation operators are:

P12 = |0000〉〈0000|+ |0011〉〈0011|+ |0001〉〈0001|+ |0010〉〈0010|
+ |1100〉〈1100|+ |1111〉〈1111|+ |1101〉〈1101|+ |1110〉〈1110|
+ |0100〉〈1000|+ |0111〉〈1011|+ |0101〉〈1001|+ |0110〉〈1010|
+ |1000〉〈0100|+ |1011〉〈0111|+ |1001〉〈0101|+ |1010〉〈0110|

P13 = |0000〉〈0000|+ |0101〉〈0101|+ |0001〉〈0001|+ |0100〉〈0100|
+ |1010〉〈1010|+ |1111〉〈1111|+ |1011〉〈1011|+ |1110〉〈1110|
+ |0010〉〈1000|+ |0111〉〈1101|+ |0011〉〈1001|+ |0110〉〈1100|
+ |1000〉〈0010|+ |1101〉〈0111|+ |1001〉〈0011|+ |1100〉〈0110|

P14 = |0000〉〈0000|+ |0110〉〈0110|+ |0010〉〈0010|+ |0100〉〈0100|
+ |1001〉〈1001|+ |1111〉〈1111|+ |1011〉〈1011|+ |1101〉〈1101|
+ |0001〉〈1000|+ |0111〉〈1110|+ |0011〉〈1010|+ |0101〉〈1100|
+ |1000〉〈0001|+ |1110〉〈0111|+ |1010〉〈0011|+ |1100〉〈0101|

P23 = |0000〉〈0000|+ |1001〉〈1001|+ |0001〉〈0001|+ |1000〉〈1000|
+ |0110〉〈0110|+ |1111〉〈1111|+ |0111〉〈0111|+ |1110〉〈1110|
+ |0010〉〈0100|+ |1011〉〈1101|+ |0011〉〈0101|+ |1010〉〈1100|
+ |0100〉〈0010|+ |1101〉〈1011|+ |0101〉〈0011|+ |1100〉〈1010|

P24 = |0000〉〈0000|+ |1010〉〈1010|+ |0010〉〈0010|+ |1000〉〈1000|
+ |0101〉〈0101|+ |1111〉〈1111|+ |0111〉〈0111|+ |1101〉〈1101|
+ |0001〉〈0100|+ |1011〉〈1110|+ |0011〉〈0110|+ |1001〉〈1100|
+ |0100〉〈0001|+ |1110〉〈1011|+ |0110〉〈0011|+ |1100〉〈1001|

P34 = |0000〉〈0000|+ |1100〉〈1100|+ |0100〉〈0100|+ |1000〉〈1000|
+ |0011〉〈0011|+ |1111〉〈1111|+ |0111〉〈0111|+ |1011〉〈1011|
+ |0001〉〈0010|+ |1101〉〈1110|+ |0101〉〈0110|+ |1001〉〈1010|
+ |0010〉〈0001|+ |1110〉〈1101|+ |0110〉〈0101|+ |1010〉〈1001|

I = |0000〉〈0000|+ |0001〉〈0001|+ |0010〉〈0010|+ |0100〉〈0100|
+ |1000〉〈1000|+ |0011〉〈0011|+ |0101〉〈0101|+ |1001〉〈1001|
+ |0110〉〈0110|+ |1010〉〈1010|+ |1100〉〈1100|+ |0111〉〈0111|
+ |1011〉〈1011|+ |1101〉〈1101|+ |1110〉〈1110|+ |1111〉〈1111|
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From these, with some work,

X ⊗ Inf =
1

2
√

3
(P13P24 − P14P23 + P14 + P23 − P13 − P24)

Z ⊗ Inf =
1

3
(P12P34 − P12 − P34) +

1

6
(P13 + P14 + P23 + P24 − P13P24 − P14P23).

Again use the commutation relation to obtain

Y ⊗ Inf =
1

2i
[Z ⊗ Inf , X ⊗ Inf ]

=
i

2
((X ⊗ Inf )(Z ⊗ Inf )− (Z ⊗ Inf )(X ⊗ Inf )),

By using PijPij = I, PijPklPij = Pkl, IPij = Pij, and trying to identify
different permutation sequences that have the same effect, i.e. as was done
for the N = 3 case, yields

Y ⊗ Inf =
i

4
√

3
(P34P14 + P24P12 + P13P12 + P34P23

− P14P34 − P12P24 − P12P13 − P23P34),

with the substitutions for equal operating tabulated at the end of the ap-
pendix. Thus for N=4 qubits the Pauli operators are

X ⊗ Inf =
1

2
√

3
(P13P24 − P14P23 + P14 + P23 − P13 − P24),

Y ⊗ Inf =
i

4
√

3
(P34P14 + P24P12 + P13P12 + P34P23

− P14P34 − P12P24 − P12P13 − P23P34),

Z ⊗ Inf =
1

3
(P12P34 − P12 − P34) +

1

6
(P13 + P14 + P23 + P24 − P13P24 − P14P23).

Moreover, expressed in Heisenberg interaction terms:

X ⊗ Inf =
1

8
√

3
(~σ1 · ~σ4 + ~σ2 · ~σ3 − ~σ1 · ~σ3 − ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4)),

Y ⊗ Inf =
1

8
√

3
(~σ1 · (~σ3 × ~σ4) + ~σ1 · (~σ2 × ~σ3)− ~σ1 · (~σ2 × ~σ4)− ~σ2 · (~σ3 × ~σ4)),

Z ⊗ Inf =
1

24
(~σ1 · ~σ3 + ~σ1 · ~σ4 + ~σ2 · ~σ3 + ~σ2 · ~σ4 + (~σ1 × ~σ2) · (~σ3 × ~σ4))

− 1

12
(~σ1 · ~σ2 + ~σ3 · ~σ4 + (~σ1 × ~σ4) · (~σ3 × ~σ2)),
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where the 4-spin interactions are described by the scalar quadruple product
defined as

(~σi × ~σj) · (~σk × ~σl) = (~σi · ~σk)(~σj · ~σl)− (~σi · ~σl)(~σj · ~σk) =

∣∣∣∣~σi · ~σk ~σi · ~σl
~σj · ~σk ~σj · ~σl

∣∣∣∣
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Table 1: Permutation equalities used

P13P12 P12P23

P13P14 P34P13

P13P23 P12P13

P13P34 P12P23

P14P12 P12P24

P14P13 P34P14

P14P24 P12P14

P14P34 P34P13

P23P12 P12P13

P23P13 P12P23

P23P24 P34P23

P23P34 P24P23

P24P12 P12P14

P24P14 P12P24

P24P23 P34P24

P24P34 P34P23

P13P12P34 P12P34P24

P13P14P23 P12P34P13

P13P24P12 P12P14P23

P13P24P14 P12P34P23

P13P24P23 P12P34P14

P13P24P34 P12P13P24

P14P12P34 P12P34P23

P14P13P24 P12P34P14

P14P23P12 P12P13P24

P14P23P13 P12P34P24

P14P23P24 P12P34P13

P14P23P34 P12P14P23

P14P34P12 P12P34P23

P23P12P34 P12P34P14

P23P13P24 P12P34P23

P24P12P34 P12P34P13

P24P14P23 P12P34P24

P34P13P24 P12P14P23

P34P14P23 P12P13P24

P13P24P12P34 P14P23

P13P24P14P23 P12P34

P14P23P12P34 P13P24

P14P23P13P24 P12P34
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