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Abstract
The spin-lattice coupling is due to itinerant electrons interacting with both spins
of ions and phonons, mediating a coupling between magnetic spin moments and
lattice vibrations. In this project, the coupling is studied systematically for finite
quantum spin chains of size 2 – 10. The coupling is included in a Hamiltonian
model with the Heisenberg exchange interaction and an external magnetic field
resulting in an eigenvalue problem which is solved numerically to find phase dia-
grams of the magnetic moment of the system depending on an external magnetic
field and the lattice vibration parameter α. The eigenvalue problem is also solved
analytically for the 2-ion chain, dimer, and 3-ion chain, trimer, systems. Based
on these phase diagrams two propositions are made: the effect of the coupling is
larger than an external magnetic field and the behavior of the coupling converges
to a common phase diagram for larger spin chains.

Sammanfattning
Kopplade spinn- och vibrationsfrihetersgrader beror på kringvandrande elektroner
som växelverkar med både spin och fononer, vilket förmedlar en koppling mellan
magnetiskt spinmoment och gittervibrationer. I detta projekt studeras denna
koppling systematiskt för ändliga spin-kedjor av 2–10 joner. Systemet beskrivs av
en Hamiltonian med Heisenberg modellen som beskriver spin-spin kopplingen samt
ett externt magnetiskt fält. Detta egenvärdesproblem löses analytiskt för dimer-
och trimersystem samt numeriskt för längre kedjor. Lösningarna används för att
ta fram fasdiagram av de magnetiska momenten av kedjorna beroende på externt
magnetfält och spin- och vibrationsfrihetsgradsparametern α. Baserat på dessa
fasdiagram, framförs två propositioner: kopplingens effekt är större än ett externt
magnetfält och kopplingens beteende konvergerar till ett enhetligt fasdiagram för
större spinnkedjor.
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1 Introduction
Magnetism is a fundamental part of society today, from refrigerators to cars to
computers. It is important to understand and study the fundamental properties
of magnetism to continue to be able to discover, explore, and understand novel
materials and their properties.

A relatively obscure and unknown part of magnetism is the relationship be-
tween the individual magnetic moments, a result of spins, in the material and the
mechanical vibrations of the positions of the spins, i.e. lattice vibrations. This is
governed by the spin-lattice coupling, which is the subject of this work. Funda-
mental understanding of the spin-lattice coupling is important for many reasons
and there are many future applications including the emerging field of spintronics
and magnonics (devices working on the principles of spin waves and magnetism)
([1], [2]).

One recent example of a project making use of the phenomenon of the spin-
lattice coupling is an experiment which proved that sound waves can generate
coherent spin waves (spin waves are a collective excitation of spins) [3]. While
this experiment does not discuss the coupling, the result implies that this coupling
exists and can be used with great effect.

The spin-lattice coupling behavior might also be a factor in temperature ac-
tivated ferromagnetism. Recently published results show experimentally that
some ferromagnets become more ferromagnetic at higher temperatures, which
goes against previously known results ([4], [5]).

The purpose of this work is to systematically observe and describe the effect
of the spin-lattice coupling on a finite spin chain. The simplest cases, that of
the dimer with two interacting spins and trimer with three, are studied both
analytically and numerically, whilst higher order systems are studied exclusively
numerically.
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2 Theory

2.1 Magnetism

Magnetism in materials is a quantum mechanical phenomenon. Due to an un-
paired electron, an atom will have a spin magnetic moment, and if these moments
are aligned the material will have a non-zero magnetization. The magnetic mo-
ment orientations may be influenced by an applied magnetic field. In the case
of diamagnetism, the moments will orient to counteract the imposed field and in
paramagnetic materials the moments will align with the applied field. Ferro- and
antiferromagnetic materials exhibit a property called spontaneous magnetization,
where the moments may align without an imposed field when below a critical
temperature. This is also called ordered magnetism and is due to the exchange
interaction. Ferromagnetic materials are strongly magnetic with all spins aligned,
whereas antiferromagnetic materials have pairwise oppositely aligned spins and
thus has no net magnetization [6].

2.2 Heisenberg Hamiltonian

A useful model of ferromagnetism is the Heisenberg Hamiltonian, which is used to
describe the exchange interaction between localized electron spins ([7],[6]). The
model is best realized in materials which are magnetic insulators with localized
magnetic moments due to unfilled electron shells [8]. However, the model is useful
to describe general magnetic phenomena [9].

The Heisenberg Hamiltonian is defined as follows:

H = −
∑
ij

Ji,jSi · Sj (1)

with spin operators Si,j and exchange constant Ji,j. The indices i represent ion
positions and j are the adjacent ion, see Figure 1. In this work, these are spin 1/2
particles, such as electrons, and the spin operators are Sx,y,z = σx,y,z/2 with Pauli
matrices σx,y,z. The exchange constant Ji,j describes the interaction between the
spins and can be used to model different types of magnetism. For antiferromag-
netism, a negative exchange coupling is used since this returns an antiferromag-
netic state as its minimum energy state. For ferromagnetism a positive constant
is used analogously.

Figure 1: Linear Heisenberg spin chain with exchange coupling Jij, spin operators
Si, and lattice sites Ri.

In this study, the exchange coupling is assumed to be equal between each
consecutive lattice site and zero for any site further than nearest neighbor. This
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can be assumed since the exchange is due to electrons and should decrease with
inverse radius in a linear system.

The Heisenberg Hamiltonian can then be found for general N-size systems
using the dimer Hamiltonian and projecting this on longer spin chains. For a
dimer the Hamiltonian is

H2 = −JS1 · S2 (2a)
= −J(Sx1Sx2 + Sy1S

y
2 + Sz1S

z
2) (2b)

= −J/4(σx1 ⊗ σx2 + σy1 ⊗ σ
y
2 + σz1 ⊗ σz2) (2c)

= −J/4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (2d)

and the basis of the dimer Hamiltonian is
| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

 . (3)

For the trimer, the dimer Hamiltonian is projected as follows

H3 = H2 ⊗ σ0 + σ0 ⊗H2 (4)

where σ0 is the 2x2 identity. By induction, it is seen that for a system of N
interacting spins, the Hamiltonian is then given by

HN+1 = HN ⊗ σ0 + σ0 ⊗HN . (5)

2.3 Zeeman term

An applied external homogeneous magnetic field can be included in the model
which breaks the rotational symmetry of the Heisenberg Hamiltonian [8]. The
term describing the field is called the Zeeman term. This term is included since
an external field is easily controlled in an experimental setting. The direction of
the magnetic field is chosen to be the z-direction. Here the parameter B0 = gµBB,
where g is the g-factor which is equal to 2 for pure spin moments, µB ≈ 5.8 ∗ 10−5
eVT−1 is the Bohr magneton, and B is an applied magnetic field in Tesla. B0

thus has the units eV.

HZeeman = B0

∑
i

Si (6)

The magnetic term is for N interacting ions:
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HB
2 = B0σ

0 ⊗ Sz︸ ︷︷ ︸
R2

+Sz ⊗B0σ
0︸ ︷︷ ︸

L2

(7a)

HB
3 = R2 ⊗ Sz︸ ︷︷ ︸

R3

+Sz ⊗ L2︸ ︷︷ ︸
L3

(7b)

...
HB
N+1 = RN ⊗ Sz + Sz ⊗ LN (7c)

where σ0 is the identity in size 2×2 and Sz = σz/2 the spin operator in z.

2.4 Anisotropy term

Anisotropy is the property of a material to have different properties on depending
on which symmetry axis the magnetic moment lies in. A material may have an
axis on which a smaller magnetic field is necessary for magnetization, this is the
easy axis, as opposed to an axis which requires the largest magnetic field for
magnetization, the hard axis.

This property is described by the term

Hanisotropy = −
∑
ij

Szi IijS
z
j . (8)

2.5 Spin-lattice coupling

The spin-lattice coupling is the relationship between the mechanical vibrations of a
lattice and the magnetization due to the spin of ions localized at the lattice points.
This coupling contributes to a number of phenomena in magnetic materials [10].

Phenomenologically, the origin of this coupling is the electron-phonon coupling
and the interaction between electrons and the magnetic moments [11]. Phonons
are quasiparticles which represent lattice vibrations and the electron-phonon cou-
pling regards electron scattering of ions and phonon excitations, i.e. ionic vibra-
tions. Itinerant, roaming, electrons then also interact with the magnetic moments
of the ions. Thus, the electron mediates a coupling between the magnetic mo-
ments, spins, and the ion displacement, i.e. lattice vibrations. The electrons that
mediate the coupling are part of the electronic background and this is an indirect
exchange. See Figure 2.

The coupling is given by

Hspin-lattice = −
∑
ij

SziAij · 〈Qj〉 (9)

where Szi are the spin operators in the z-direction, Aij are the spin-lattice param-
eters, and 〈Qj〉 are the average displacement of ions in the lattice. The tensorial
nature of the coupling is a result of previous research [11]. The variable 〈Qj〉, i.e.
the average displacement is non-zero in the case of anharmonic oscillation of the
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Figure 2: Electron exchange between ions in a metal.

lattice. For T = 0K this variable is zero, as well as for harmonic oscillation. The
coupling is linear to the spin.

For a dimer, trimer and N chain system the spin-lattice Hamiltonian is given
by:

Hvib
2 = Sz ⊗ ασ0 + ασ0 ⊗ Sz (10a)
Hvib

3 = Sz ⊗ ασ0 + σ0 ⊗Hvib
2 (10b)

...
Hvib
N+1 = Sz ⊗ ασ0 + σ0 ⊗Hvib

N (10c)

where α =
∑

ij Aij〈Qj〉 and σ0 the identity of relevant size. The parameter α is
used extensively as the measure of vibration and lattice distortion and has the
unit eV.

2.6 Model Hamiltonian

The model Hamiltonian for an atomistic finite spin chain with the Heisenberg
term, Zeeman term, and the spin-lattice coupling then becomes

H = −
∑
i,j

(Ji,jSi · Sj + Szi IijS
z
j + SziAij · 〈Qj〉) +B0

∑
i

Si (11)

where the exchange integral is only non-trivial for nearest neighbors in spin chain,
i.e. Jij is zero for non-consecutive i,j. Anisotropy is excluded from this study by
setting Iij to zero for all cases and is not considered further.

2.7 Net Magnetic Spin Moment

The magnetization of the system is the total magnetic moment of the system, i.e.
how many spin up and down there are in the state which describes the system.
The net magnetization of the system is understood by finding the probabilities
of each state using statistical mechanics. For a closed system, such as the one
studied in this report, the Gibbs distribution gives these probabilities:
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pij =
e−εiβ∑
i e
−εiβδij

(12)

where β = 1/kbT and εi are the energy eigenvalues. This means that the most
probable state is the lowest energy state, the ground state. The magnetic moment
is then given by

M = tr(xPx†Z) (13)

where P is a matrix with diagonal elements pij, x are the eigenvectors, Z is the
projection of the z direction spin operator on the chain. Z is found for an N length
chain as:

Z2 = Sz ⊗ σ0 + σ0 ⊗ Sz (14a)
Z3 = Sz ⊗ σ0 + σ0 ⊗ Z2 (14b)

...
ZN+1 = Sz ⊗ σ0 + σ0 ⊗ ZN (14c)

3 Method
The model Hamiltonian, Eq. 11, is solved numerically for interacting chains of
2 – 10 spins. For the dimer and trimer systems, the eigenvalue problem is also
solved analytically. Computing ability limits the chain size, since the Hamiltonian
increases exponentially as 2N × 2N where N is the number of interacting spins.

The eigenvalue problem is solved numerically in Matlab by first generating the
Hamiltonian of the desired chain length though separate functions, then by ap-
plying the built-in function eig(). This returns the eigenvalues and eigenvectors.
The magnetic moment of the system is then found using these results by finding
the probability of each state through the Gibbs distribution, Eq.12. The sum of
the probabilities are confirmed to be one. By varying parameters B0 [eV] and α
[eV], filled contour plots of the magnetic moment are generated. Other variable
parameters are the exchange constant J [eV] and the temperature T [K].

The scripts necessary to generate the plots presented in this report are available
in Appendix A and accompanying functions are in Appendix B.

A note can be made about the contour plots, i.e. phase diagrams, which
make up the majority of the results. The diagrams show how regions of the same
moment value form depending on B0 and α. Due to the quantized nature of
the chains, the moments are a multiple of 1/2 and any other moment is a linear
combination of different moment configurations. For example, the trimer has four
possible pure moments ±1.5 and ±0.5. The value ±1.5 is only possible for one
state respectively, | ↑↑↑〉 and | ↓↓↓〉, while ±0.5 is possible either as a single state
or a linear combination of those with two up spins and one down and, respectively,
one up spin and two down.

6



4 Results
In this section the dimer and trimer solutions are studied in detail and phase
diagrams of the magnetic moment are presented for several finite spin chains. The
exchange constant J is chosen to be negative, i.e. a antiferromagnetic coupling,
and has the value -0.1 eV unless noted otherwise. The temperature is set to 3K
in the Gibbs distribution and the resolution of the figures is 101×101 (α × B0)
unless noted otherwise.

4.1 Dimer

The dimer is the simplest case of the atomistic spin interactions since this has
the minimal degrees of freedom with only two ions. This system is solved both
analytically and numerically and thus forms a solid foundation upon which higher
dimensional systems can be understood.

The Hamiltonian is

H = −JS1 · S2 −
∑
ij

SziAij · 〈Qj〉+B0

∑
i

Si (15a)

=


−J/4− α +B0 0 0 0

0 J/4 −J/2 0
0 −J/2 J/4 0
0 0 0 −J/4 + α−B0

 (15b)

where α =
∑

ij Aij〈Qj〉. This system has energies

−J/4∓ α±B,−J/4, 3J/4. (16)

In the case of the parameter α vanishing, the solutions are a singlet state
(ES = −3J/4, |S〉 = 1/

√
2(| ↑↓〉 − | ↓↑〉)) with no degeneracy and a triplet state

(ET = J/4, {| − 1〉 = | ↓↓〉, |1〉 = | ↑↑〉, |0〉 = 1/
√
2(| ↑↓〉 + | ↓↑〉)}) with a

degeneracy of 3. The ground state is the triplet state for a ferromagnetic coupling
(J > 0) and for an antiferromagnetic coupling (J < 0) it is the singlet state.

The energy spectrum for non-vanishing parameter α is presented in Figure 3a
as well as the net magnetic moment. The existence of lattice vibrations break
up the degeneracy of the energy spectrum. Here it is seen that for |α| > 0.1
eV one of the triplet states, either | − 1〉 or |1〉, becomes the ground state and
the net magnetic moment is no longer zero, but -1 or 1. In Figure 3b, the net
magnetic moment depending on both an applied field in the z-direction as well as
α is presented.
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Figure 3: The energy spectrum and net magnetic moment of a dimer with no
applied B-field. In Figure 3a, the meeting point of purple, yellow and red is the
triplet solution and blue is the singlet state. The singlet state is the ground state,
until |α| > 0.1 eV, after which one of the states | ↑↑〉 or | ↓↓〉 becomes the ground
state. The color switch between blue and red is a result of the plotting, and the
singlet state is constant at -0.75 eV. The switching of the ground state is also
shown in Figure 3b, when the ground state magnetization becomes non-trivial for
large enough |α|.

4.2 Trimer

The trimer is the second system which is studied. This is the second smallest and
is described by an 8×8 Hamiltonian. The net magnetic moment is presented in
Figure 6a.

The basis for the trimer is(
| ↑↑↑〉 | ↑↑↓〉 | ↑↓↑〉 | ↑↓↓〉 | ↓↑↑〉 | ↓↑↓〉 | ↓↓↑〉 | ↓↓↓〉

)T
(17)

where the first has magnetic moment +1.5, next two have +0.5, then one -0.5 and
+0.5, then two -0.5 and lastly -1.5.

The region borders indicating phase transitions of the magnetic moment of
the system is studied in more detail by setting J = 0 eV, see Figure 5. A trivial
exchange constant results in a diagonal Hamiltonian and no linear combinations
of states. The figure is similar to one with a non-zero J , see Figure 6a, but shifted
along the B0 axis.

The Hamiltonian of the trimer in matrix form is:

H3 =

−
1

2



J
2
− 3α+B0 0 0 0 0 0 0 0

0 −α J
2

0 0 0 0 0

0 J
2

−J
2
− α−B0 0 J

2
0 0 0

0 0 0 α 0 J
2

0 0

0 0 J
2

0 −α 0 0 0

0 0 0 J
2

0 −J
2
+ α−B0

J
2

0

0 0 0 0 0 J
2

+α 0

0 0 0 0 0 0 0 −J
2
+ 3α+B0


. (18)
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Magnetic moment for N = 2
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Figure 4: Net magnetic moment for dimer with varying B-field and α. This shows
the same results as Figure 3b but with a varying B0 and smaller α-axis. The
white region are NaN values. The jagged transitions between the regions are due
to artefacts in the plotting.

Magnetic moment for N = 3
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Figure 5: Net magnetic moment of trimer with J = 0 eV.

By setting the exchange constant J = 0 eV, the Hamiltonian is diagonal and the
eigenvalues are

1

2



−3α+B0

−α
−α−B0

α
−α

α−B0

α
3α+B0


. (19)

These eigenvalues can be used to describe the phase transitions. For negative
α, two states can take the minimum, ground state, eigenvalue: α−B0 with | ↓↑↓〉
when α > −B0 and 3α + B0 with | ↓↓↓〉 when α < −B0. Then for positive α
values there are also two states which can take the most negative value: | ↑↑↑〉 for
α > −B0 and | ↑↓↑〉 when α < −B0.
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4.3 Longer spin chains

The phase diagrams of the net magnetic moment is also found for larger systems
of 3 to 10 interacting spins in a linear chain, see Figures 6 and 7. The resolution
is decreased for calculations of Figure 7b since this is a very large calculation.
White spaces in Figure 7 are caused by NaN values, since the Gibbs distribution
term becomes too large for the computer to calculate.

The figures are all colored according to their possible highest and lowest mag-
netic moment configuration, with dark red for N/2 and dark blue for -N/2. The
spin-lattice coupling parameter α runs between -0.5J and +0.5J and the magnetic
field B0 between -2J and 2J .

The phase diagrams show a behavior of convergence to a common phase dia-
gram for longer spin chains. Compare in particular Figures 7a and 7b, with N =
9 and N = 10. These two figures are quite similar to each other with the moment
regions having similar positions and the phase transitions between them straight-
ening out. It should be noted that the resolution of N = 10 is lower. As the spin
chain becomes longer, more moment regions are present and the phase transition
divisions between regions appear to become constant values of α. Symmetry is
also exhibited in all systems.

In both odd and even systems, the number of regions with positive versus
negative moments are equal. For odd numbered chains, there are (N+1)/2 posi-
tive/negative moment regions, and for even numbered there are N/2. So both the
trimer and N = 4 system have two positive moment regions and two negative.

In all systems, the observation can be made that for α < 0 the net magnetic
moment is generally negative and for α > 0 the net magnetic moment is generally
positive. There are exceptions to this in the even numbered chain, for example
the orange and light blue regions of Figure 6b exist for both positive and negative
α. The coupling parameter α acts effectively as a magnetic field.

In the phase diagrams of odd numbered chains, Figures 6a, 6c, 6e, and 7a, there
are common features. There is a clear phase transition at α = 0 for all values of
B0, this is also a symmetry line over which the plot is mirrored in the opposite
sign according to the sign of α. The lowest and highest magnetic moment (dark
blue and dark red) always occur with a negative external magnetic field. The
moments closest to zero (±0.5) occur always adjacent to α = 0 line and flip every
other odd chain of being in the top half of the figure and bottom half, compare
Figures 6c and 6e. This corresponds to whether the number of positive/negative
regions (N+1)/2 is even or odd.

The even numbered spin chains also have common features, see Figures 4, 6b,
6d, 6f, and 7b. These Figures show mirroring symmetry over some diagonal. Here
the lowest magnetic moments (dark blue) occur at positive external magnetic fields
and the highest (dark red) at negative. There is diagonal flipping of the systems,
the green unmagnetized regions exist in quadrants I and III and quadrants II and
IV, every other even chain. For example compare Figures 4, 6b, 6d. There is
symmetry over some diagonal line in quadrants I and III when the number of
positive/negative moment regions (N/2) is odd (example N = 6, Figure 6d), and
quadrants II and IV when this number is even (example N = 4, Figure 6b).
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Magnetic moment for N = 3
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(a) N = 3. Yellow (+0.5), light blue (-0.5),
dark blue (-1.5), dark red (+1.5).

Magnetic moment for N = 4
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(b) N = 4. Green (0), orange (+1), dark
blue (-2), light blue (-1), dark red (+2).
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(c) N = 5. Yellow (+0.5), orange (+1.5),
dark red (+2.5), light blue (-0.5), blue (-
1.5), dark blue (-2.5).

Magnetic moment for N = 6
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(d) N = 6. Green (0), yellow (+1), red
(+2), dark red (+3), light blue (-1), blue
(-2), dark blue (-3).

Magnetic moment for N = 7

-0.05 0 0.05

-0.2

-0.1

0

0.1

0.2

B
0

-3

-2

-1

0

1

2

3

(e) N = 7.

Magnetic moment for N = 8
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(f) N = 8.

Figure 6: Net magnetic moments of systems with 3-8 interacting spins.
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Magnetic moment for N = 9
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(a) N = 9.

Magnetic moment for N = 10
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(b) N = 10.

Figure 7: Net magnetic moments of systems with 9 and 10 interacting spins. For
both figures, the diagram is of lower resolution than others, with a grid of 51x51.

4.4 Temperature dependence

The net magnetic moment of systems with different temperature in the Gibbs
distribution are also calculated. In Figure 8, the net magnetic moment for a dimer
at 30K and 300K is presented. Here it is clearly seen that at higher temperatures
the separation between states is smeared out compared to Figure 4 where the
division between regions is distinct. This temperature dependence is also shown
in the case of the trimer and quadmer systems, presented in Figure 9 and 10
respectively.
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Figure 8: Temperature dependence of the net magnetic moment of a dimer.
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Magnetic moment for N = 3
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Figure 9: Temperature dependence of the net magnetic moment of a system of 3
interacting spins.
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Figure 10: Temperature dependence of the net magnetic moment of a system of
4 interacting spins.

5 Discussion
The purpose of this project is to observe the dependence of the spin-lattice cou-
pling on a finite spin chain. Figures 6 and 7 present pictures of the effect of the
spin-lattice coupling parameter α. The features of these phase diagrams show
that they seemingly converge to a common phase diagram for larger spin chains
and positive moment regions exist for positive α and negative for negative α with
no clear dependence on the sign of the external magnetic field.

Convergence of the phase diagrams as the spin chains are longer implies that an
analytic model of the spin-lattice coupling behavior can perhaps be found through
future studies. The results presented here, suggest that the moment regions will
become a gradient, the absolute moment value increasing with |α| and the phase
transitions between regions will possibly exist at constant values of α.
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The feature that for positive α the magnetic moment is positive and for neg-
ative α the moment is negative suggests the proposition that the spin-lattice
coupling parameter α acts as a magnetic field on the system and may be much
stronger than an applied external field.

Another feature that corroborates this hypothesis, is how in the even chains the
most negative moment region exists where the z-direction of the applied magnetic
field is positive and thus oppositely aligned. Likewise, in both the even and odd
chains, the most positive moment region appears when the applied field is aligned
in the negative z-direction, oppositely to the state.

The 30K and 300K phase diagrams of the moments of chain length 3 and 4,
Figures 9 and 10, show that the effects of α are present at higher temperatures,
such as room temperature. Larger temperatures result in smearing out of the
region divisions. This may imply that lattice vibrations could be a reason for the
temperature activated ferromagnetism recently discovered in certain materials by
Dhara, et.al. (2016) [4] and Mondal, et.al. (2020) [5].

In an experimental setting this study could be used to predict results and
therefore it is important to look at realistic values of the parameters used. The
parameter α is the basis of this study. It describes the size of the coupling. Real-
istic values of the parameter are smaller than what is presented in the theoretical
calculations, and should more reasonably be on the order of J/10. Relevant values
of J are on the order of meV to eV; in this study J = -0.1 eV is used. Further,
is the question whether α may be negative which does not have an answer as of
yet, but for the purpose of being general this possibility is included in this study.

Another parameter value that needs to be discussed is B0 which describes the
external applied magnetic field. Since this is a theoretical work, this parameters
minimum and maximum values are much larger than what would be used in any
physical experiment, since B0 = 0.1 eV ≈ 950 T. These large values are included
since they can be and to give a broader picture of the effect of the coupling.

This theoretical study presents a framework on which both future theoretical
and experimental work can be based. The strengths of this being a theoretical
study are that the results give a wider picture of the effect of the spin-lattice
coupling on a finite spin chain due to the flexibility of the calculations made. The
results present phase diagrams of the moment of the system for up to chains of
length 10; this means that observations of systemic changes can be discussed, such
as an apparent convergence.

However, the study has some limitations as well. With more efficient coding
and larger computation capacity, larger spin chain systems could be observed.
The work is also limited to the nearest neighbor approximation for the Heisen-
berg model as well as a one-dimensional lattice. The model is a bi-linear model
and thus also limited to pairwise interactions. Further, there are many results
presented for which no physical explanation is given. One goal with this work
was to systematically describe the effect of the coupling and this is not fulfilled in
its entirety, rather observations are made of the features of the effects and some
speculations are made. This study presents many unanswered questions about the
spin-lattice coupling and its effect on spin chains. Future studies on the current
topic are therefore recommended.
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There are many ways of continuing this work. Improving coding efficiency and
computing capacity would lead to phase diagrams of larger systems which could
show the convergence more clearly. While this would provide more ground to
make observations on the systemic effects of the lattice vibrations, more impor-
tantly, more work is necessary to describe the physical effects and find analytical
descriptions of the coupling. Due to this work being limited to one-dimensional
systems of interacting spins, it would also be prudent to present the same results
for two- and three-dimensional lattice configurations. It might also be relevant to
study internal magnetic field effects.

6 Conclusion
The magnetic moments of finite spin chains of different lengths with a spin-lattice
coupling and applied external magnetic field are presented. These constitute a
systematic observation of the effects of the spin-lattice coupling. The phase di-
agrams present features such as a large dependence on the sign and size of the
lattice vibration coupling parameter α and an indication that the effects converge
for larger chain systems. Two propositions are made on the basis of these fea-
tures: that the effects of α converge to a common phase diagram for long spin
chains and that the effects of the coupling is stronger than external magnetic field
effects. High temperature behaviour is also presented, and shows that the spin-
lattice coupling is relevant at room temperature. Further studies must be made
on the coupling to understand the behavior and an analytical model be made.
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A Main scripts

A.1 NSpinsystem_alphaVarying.m

1 %finding energy spectrum for N spin system with
Heisenberg model for exchange interaction (S),
lattice vibration (vib) and magnetic field (B) and
net magnetic spin moment (moment) is also found

2
3
4 % parameters
5 N = 2; % minimum N = 2
6 J = -0.1; %[eV] exchange coupling constant
7 B0 = 0.000; % [eV] magnetic field
8 alpha = linspace (-2*abs(J) ,2*abs(J) ,101); %[eV]
9 T = 3; %[K]
10
11 % constants
12 kb = 8.617342E-5; %[eV/K] Boltzmanns constant
13 beta = 1/(kb*T);
14 SSz = SpinMatrix(N);
15
16 % Hamiltonian
17 [S, f] = HeisenbergTerm(N); % f is the factor (1/2)^N
18 B = MagneticTerm(B0, N);
19
20 lenAlpha = length(alpha);
21 eigvec = zeros (2^N,2^N,lenAlpha);
22 eigval = zeros (2^N,2^N,lenAlpha);
23
24 for idx = 1: lenAlpha %vary alpha
25 vib = VibrationTerm(alpha(idx), N); %lattice part of

hamiltonian
26
27 H = -J*f*S-vib+B; %hamiltonian
28 [eigvec(:,:,idx), eigval(:,:,idx)] = eig(H); %

eigenvectors and eigenvalues
29 end
30
31 % reshaping eigenvalue matrix (4 x4xlenAlpha) into matrix

lenAlpha x 4 with eigenvectors in columns for
plotting

32 ev = zeros(lenAlpha , 2^N);
33 figure (1)
34 clf
35 for idx = 1:2^N



36 ev(:,idx) = reshape(eigval(idx ,idx ,:), [lenAlpha ,1])
;

37
38 plot(alpha , ev(:,idx), '-', 'Linewidth ', 3)
39 hold on
40 end
41
42 hold off
43 title(['Eigenvalues for N = ', num2str(N), ' atoms with

B_0 = ', num2str(B0)])
44 xlabel('\alpha', 'FontSize ', 14)
45 ylabel('Energy eigenvalues ', 'FontSize ', 14)
46
47
48 % calculating and plotting net magnetic spin moment
49
50 Gdist = zeros (2^N,2^N);
51 prob = zeros(lenAlpha ,1);
52 moment = zeros(lenAlpha ,1);
53 for idx = 1: lenAlpha
54 x = diag(eigval(:,:,idx)); % eigenvalues in column

vector
55 xx = eigvec(:,:,idx);
56 Gdist (:,:) = diag(exp(-x*beta))/sum(exp(-x*beta)); %

Gibbs distribution
57 prob(idx) = trace(Gdist (:,:));
58 moment(idx) = trace(real(xx*Gdist*xx ')*SSz);
59 end
60
61 figure (2)
62 clf
63 plot(alpha , moment , 'Linewidth ', 3)
64 title(['Net magnetic spin moment with B_0 = ', num2str(

B0)])
65 xlabel('\alpha', 'FontSize ', 14)
66 ylabel('Net magnetic moment ', 'FontSize ', 14)
67 set(gcf ,'units','centimeters ','position ' ,[0 0 16 14])
68 yticks ([-1 -0.5 0 0.5 1])
69 xticks ([ -0.2 -0.1 0 0.1 0.2])
70 set(gca , 'FontSize ', 14)
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A.2 Phasediagrams_NSpinSystem.m

1 % finding magnetic moments of finite spin systems of N
interacting spins with varying spin -lattice coupling
parameter alpha and external magnetic field B0

2
3 % parameters
4 N = 2;
5 J = -0.1;
6 I = -J/1000; % anisotropy
7 alpha = linspace (-0.5*abs(J) ,0.5*abs(J) ,101);
8 B0 = linspace (-2*abs(J), 2*abs(J) ,101);
9 T = 3; %[K]
10
11 % constants for magnetic moment calculation
12 kb = 8.617342E-5; %[eV/K] Boltzmanns constant
13 beta = 1/(kb*T);
14 SSz = SpinMatrix(N);
15
16 % Hamiltonian terms
17 [S, f] = HeisenbergTerm(N); %Heisenberg model , f is the

factor (1/2)^N
18 anis = AnisotropyTerm(I,N);
19
20 lenAlpha = length(alpha);
21 lenB0 = length(B0);
22 moment = zeros(lenAlpha ,lenB0);
23
24 for bidx = 1:lenB0 % vary B0
25 B = MagneticTerm(B0(bidx), N);
26
27 for aidx = 1: lenAlpha %vary alpha
28 vib = VibrationTerm(alpha(aidx), N); %lattice

part of hamiltonian
29
30 H = -J*f*S-vib+B; %hamiltonian
31 [eigvec , eigval] = eig(H);
32
33 x = diag(eigval); % eigenvalues in column vector
34 xx = eigvec;
35 Gdist = diag(exp(-x*beta))/sum(exp(-x*beta)); %

Gibbs distribution
36 moment(aidx ,bidx) = trace(real(xx*Gdist*xx ')*SSz

);
37 end
38 end
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39
40 % plotting %%%%%%%%%%%%%%%%%%%
41 figure (1)
42 clf
43 contourf(alpha , B0, moment ', 100, 'LineStyle ', 'none')
44 caxis([-N/2,N/2])
45 colormap jet
46 colorbar
47 %title(['Net magnetic moment for N = ', num2str(N),'

interacting spins '], 'FontSize ', 11)
48 title(['Magnetic moment for N = ', num2str(N), ' and T =

', num2str(T), ' K'], 'FontSize ', 16)
49 xlabel('\alpha', 'FontSize ', 20)
50 ylabel('B_0', 'FontSize ', 16)
51 yticks ([ -0.2 -0.1 0 0.1 0.2])
52 xticks ([ -0.05 0 0.05])
53 %set(gcf ,'units ','centimeters ','position ',[0 0 16 14])
54 set(gca , 'FontSize ', 14)
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B Functions

B.1 HeisenbergTerm.m

1 function [H, factor] = HeisenbergTerm(N)
2 % function [H, factor] = HeisenbergTerm(N)
3 % function to find the spin -operator tensor product for

any number of interacting spins (N)
4
5 % pauli matrices
6 sx = [0 1; 1 0];
7 sy = [0 -1i; 1i 0];
8 sz = [1 0; 0 -1];
9
10 Sx = kron(sx,sx);
11 Sy = kron(sy,sy);
12 Sz = kron(sz,sz);
13
14 S = Sx + Sy + Sz;
15
16 idx = 2;
17 while idx < N
18 S = kron(S,eye (2)) + kron(eye(2),S);
19 idx = idx + 1;
20 end
21
22 H = S;
23 factor = (1/2)^N;

B.2 VibrationTerm.m

1 function [vib] = VibrationTerm(alpha , N)
2 % function [vib] = VibrationTerm(alpha , N)
3 % function to generate vibration matrix (alpha matrix)

for N interacting spins with coupling alpha
4
5 sz = 1/2*[1 0; 0 -1]; %pauli in z
6 Id = eye(2); % identity
7
8 right = kron(sz, alpha.*Id);
9 left = kron(alpha .*Id, sz);
10
11 idx = 2;
12 while idx < N
13 vib = right + left;
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14 right = kron(sz , alpha.*eye(2^ idx));
15 left = kron(eye (2), vib);
16 idx = idx + 1;
17 end
18
19 vib = right + left; %lattice vibration part of

hamiltonian

B.3 MagneticTerm.m

1 function [B] = MagneticTerm(B0, N)
2 % function [B] = MagneticTerm(B0, N)
3 % function to generate magnetic field term in

Hamiltonian with strength B0 for N interacting spins
4
5 s = 1/2*[1 0; 0 -1]; %sz pauli matrix
6 Id = eye(2); % identity
7
8 right = kron(s, B0.*Id);
9 left = kron(B0.*Id, s);
10
11 idx = 2;
12 while idx < N
13 right = kron(s, right);
14 left = kron(left , s);
15 idx = idx + 1;
16 end
17
18 B = right + left; %magnetic part of Hamiltonian

B.4 AnisotropyTerm.m

1 function [ani] = AnisotropyTerm(I, N)
2 % function [ani] = AnisotropyTerm(I, N)
3 % function to generate anisotropy term in Hamiltonian

with strength I for N interacting spins
4
5 sz = 1/2*[1 0; 0 -1]; %pauli in z
6 sz2 = sz^2;
7 Id = eye(2); % identity
8
9 right = kron(sz2 , I.*Id);
10 left = kron(I.*Id , sz2);
11
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12 idx = 2;
13 while idx < N
14 ani = right + left;
15 right = kron(sz2 , I.*eye(2^idx));
16 left = kron(I.*eye(2), ani);
17 idx = idx + 1;
18 end
19
20 ani = right + left; %anisotropy part of Hamiltonian

B.5 SpinMatrix.m

1 function [SS] = SpinMatrix(N)
2 % function [SS] = SpinMatrix(N)
3 % function to create the spin matrix for finding net

magnetic moment of system with N interacting atoms in
z direction

4
5 s0 = eye(2);
6 s = [1 0; 0 -1]/2; %sz
7
8 S1 = kron(s,s0);
9 S2 = kron(s0,s);
10 SS = S1+S2;
11
12 idx = 2;
13 while idx < N
14 SS = kron(s0, SS) + kron(s, eye(2^ idx));
15 idx = idx + 1;
16 end

23


