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Abstract

Developing new methods for estimating population
divergence times from sequence data

Karl Svärd

Methods for estimating past demographic events of populations are 
powerful tools in order to get insights of otherwise hidden pasts. 
The genetic data of people is a valuable resource for these purposes 
as patterns of variation can inform of the past evolutionary forces 
and historical events that generated them. There is, however, a lack 
of methods within the field that uses this information to its full 
extent. That is why this project has looked at developing a set of 
new alternatives for estimating demographic events.

The work done has been based on modifying the purely sequence based 
method TTo (Two-Two-outgroup) for estimating divergence times of two 
populations. The modifications consisted of using beta distributions 
to model the polymorphic diversity of the ancestral population in 
order to increase the max sample size possible. The finished project 
resulted in two implemented methods: TT-beta and a partial variant of 
MM. TT-beta was able to produce estimations in the same region as TTo 
and showed that the usage of beta distributions had real potential. 
For MM there only was a partial implementation able to be done, but 
this one also showed promise and the ability to use varying sample 
sizes to estimate demographic values.
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Nya metoder för att få studera vår historia

Vår historia är något som intresserar folk av alla åldrar och ursprung. Var kommer våra
förfäder ifrån, vilka händelser har de upplevt, hur såg det ut på deras tid? Alla frågor
som många idag söker svar på. Till deras hjälp används arkeologiska fynd, gamla berät­
telser och bevarade skrifter, klassiska metoder som gett oss större delen av våran nutida
förståelse. Vi kan följa våran utveckling som en art, från överlevnad i små grupper av
jägare till medborgare i komplexa civilisationer. Men, som med det mesta, så har även
dessa metoder sina nackdelar. Luckor befinner sig fortfarande i våran historia och my­
cket bygger på antaganden gjorda på enstaka källor.

Men med modern teknik behöver detta inte nödvändigtvis vara fallet. De senaste år­
tiondena har visat en explosiv ökning av potential inom studerandet av våran interna
databank, den genetiska arvsmassan. Nya metoder har gjort det mycket lättare att få
tillgång och extrahera den djupa mängd information som gömmer sig inombords. Detta
har visat att en persons genetiska kod säger mer än enbart vilken ögonfärg man har och
hur snabbt man kan springa. Mönster av variation sedda över hela dataset i större folk­
grupper har visats sig kunna berätta om historiska och evolutionära händelser som skett
förr i tiden.

Tecken på att detta är ett relativt nytt område märks dock tydligt. Det nuvarande utbudet
av metoder som har potentialen att utvinna historiska händelser från genetisk data är
för tillfället begränsat. Detta är i kombination med att många av metoderna bygger på
antaganden gjorda av en populations historia innan dess att resultat ens är färdiga. Det
här projektet har haft som mål att försöka uppdatera fältet med några nya metoder baser­
ade på att man som användare slipper ge alltför begränsande antaganden, och istället ge
resultat direkt från given genetisk data.

Metoderna som har utvecklats är en fortsättning på en befintligt metod inom fältet för
uppskattning av hur länge sedan två populationer delade sig från varandra. Arbetet har
bestått av att modifiera denna metod för att kunna arbeta med större mängder data och då
teoretiskt ge uppskattningar av bättre kvalité. För att uppnå detta så är de nya metoderna
baserade på användningen av numeriska metoder för att lösa en serie med komplexa och
informativa ekvationer om två populationers demografiska förflutna. Detta har resulterat
i två metoder som tillsammans visar stark potential för fortsatt arbete och utveckling.
Varianterna visar uppskattningarna av splittider som är åtminstone lika bra som meto­
den den är baserad på, men är fortfarande långt från att presenteras som en helt färdig
metod på grund av dess instabilitet. Idéer på framtida arbetssteg är som tur många och
förhoppningsvist så kan grunden definierat i det här arbetet leda till en full lösning i
framtiden.
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ABC Approximate Bayesian computation

DNA Deoxyribonucleic acid

MM Many­Many method
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1 Background

The strive to understand our history and events which occurred long past has always
been present in people throughout the years. Initially in the form of stories orally passed
down through generations, then followed by written records and archaeological find­
ings in more modern times. These studies have made it possible for us to follow the
advancement of us as a species, from simple hunter­gatherers to members of complex
civilizations. But not everything about our history can clearly be interpreted from these
sources. Significant gaps or otherwise unrefined assumptions exist, especially from our
early years as a species where mostly sparse skeletal remains are our only clues. While
a lot of knowledge still can be gathered from these with the classical methods, the real
potential lies within in the form of information dense genetic material.

The vast genomic data existing within each individual contain more information than
solely the genetic code deciding personal looks and abilities. Patterns of genetic vari­
ation among individuals in populations can also be used for inferring the evolutionary
forces and historical events that generated them. This discovery, in addition to the in­
creasing availability of sequenced human DNA, has opened many possibilities to un­
cover or refine our knowledge of the demographic history of the human race. Genetic
data gathered from sources such as skeletal remains can be used to estimate events such
as ancient migrations and size changes of populations that otherwise would be hard to
interpret (Schraiber & Akey 2015).

However, areas of improvement still exists within the field as the number of available an­
alytical methods is limited, and inmany cases, are too reliant on prerequisite assumptions
of a population’s past. This master’s thesis project aims at improving the selection of
current demographic inference methods by continuing the previous work of developing
a novel alternative called ’MM’ (Many­Many). It is a method for inferring demographic
events of two populations, that in theory will circumvent these prior assumptions and
thus be able to give more accurate estimations. The project will be based on modifying
an already existing method named ’TT’ (Two­Two) which can estimate population di­
vergence times from given sample data (Sjödin et al. 2021). The modifications consist
of using the family of probability density functions called beta distributions to model the
diversity in the ancestral population. In theory, this will increase the maximum sample
size from each population, which in turn should lead to an increase of statistical power
and make it possible to estimate more parameters such as historic changes in population
size.

1



1.1 Coalescent Theory

One of themost commonly used tools within population genetics is the stochastic process
known as ’the coalescent’, or alternatively ’Kingman’s coalescent’ named after its first
discoverer John Kingman (Kingman 1982). While being purely based on probabilistic
mathematics, it has showed real prowess of modeling the genealogical history of a set of
individuals. The process is based on the approach of modeling a set of genetic samples
backwards in time from a given starting state. Followed by retroactively adding any
possible mutations that could have occurred on the constructed lineages. This has proven
on many occasions to both be effective and give solid predictions (Wakeley 2009).

The principle of the coalescent has the added bonus that it can be applied on a wide range
of different models of evolution, from neutral models where no selection or population
size changes occur, to more complex ones when combining with other methods for sim­
ulation. The process consists of iteratively sampling (with replacement) the parents to
all samples in the current generation. This makes it possible for two or more lineages
to receive the same parent, or in other words coalesce. These steps are then continued
until all lineages coalesce into one (Wakeley 2009).

1.2 Simulating Genetic Ancestry

One of the major benefits resulting from the coalescent’s effectiveness is the set of com­
putationally efficient and fast computer algorithms made possible for simulating genetic
samples and their ancestry (Wakeley 2009). This is especially useful for generating in
silico data to be compared with observed values gathered from real life scenarios in order
to get increased insights of a population’s past. However, implementations of this have
faced issues when scaling the tasks to the sizes required for modern day genome wide
analyses on hundreds of thousands of samples. A result of the constant improvements
happening within the field of genetic sequencing. Newer alternatives has thus been de­
veloped with better scalability and better processing of extensive simulations. One such
software is the population genetics simulator msprime, based on the open source tree
sequence software tskit (Kelleher et al. 2016). A tree sequence, or succint tree sequence
as they are formally called, represents the relationships between genetic sequences in a
way in which informs on the full genetic ancestry and gives a lossless compression of
DNA datasets (Kelleher et al. 2019). The use of these give msprime an efficient simu­
lation process even for large datasets, and the ability to save finished simulations more
space­efficiently in the form of TreeSequence files.
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1.3 Estimating Demographic Events

In the absence of sufficient records or other types of concrete proof, estimation of past
demographic events is our best bet to get insights on our past. Many different approaches
for this exists, but they all rely on the gold mine of information that is genetic sequences.

1.3.1 Model Based Methods

Many already existing methods for estimating demographic events like divergence times
rely on performing simulations on sets of models of evolution. The results from these
tests are then compared to what can be observed empirically in order to assess the plausi­
bility of the usedmodel. Approximate Bayesian Computation (ABC) is one suchmethod
which uses a rejection algorithm in order to decide how well a model fits to given ob­
served data. However, the task of choosing which models to test and what parameters
to use can be quite the challenging task for methods such as these as the set of different
models to choose from is very large. This also increases the risk of missing out on some
of the underlying demographic information existing within the data (Beaumont et al.
2002).

1.3.2 TT Method

Recent developments have tried to circumvent the issues inherent to the earlier men­
tioned methods by instead estimating demographic parameters without specifying the
exact underlying model. One example is the so­called ‘Two­Two (TT)’ method for esti­
mating divergence time by relying on sequence data from two sampled haploid genomes
from each of two populations. The method assumes a general split model without mi­
gration between the two sampled populations and a constant ancestral population size,
but is robust to low levels of admixture and requires no assumptions about past popula­
tion sizes in the daughter populations. Model parameters are then estimated by solving
probabilistic equations based on the observed genetic variation and coalescent theory.
The genetic variation in this case comes from the observed instances of eight possible
sample configurations regarding if a position is conserved from the ancestral population
or derived (0, 1 or 2 per population). The total number of sample configurations is eight
in this case as the two monomorphic cases (0,0 and 2,2) is combined into one. Popula­
tion time estimates are ultimately gathered from each of the two branches in the model,
resulting in two final estimates (Schlebusch et al. 2017) (Sjödin et al. 2021).

A closely relatedmethod named ’Two­Two­outgroup (TTo)’ is another alternative which
is a continuation of the prior method. By additionally sampling from an outgroup popu­
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lation, that split sometime before the main investigated divergence event, you can ascer­
tain if observed derived variants are older than the split or not. This makes it possible to
ignore the possibility of novel mutations occurring down the line and the method does
not require the assumption of a constant ancestral population size. New equations can
thus be derived that are more robust to past changes in the ancestral population size
(Sjödin et al. 2021).

The MM method is the next logical step of the TT and TTo method. By modeling the
polymorphic diversity with beta distributions, you free up a lot of previous restrictions
and make it possible for the method to work with flexible number of samples per pop­
ulation. The extra information gathered from the potential increase of sample data also
results in the method in theory being able to estimate historic changes in the sizes of the
daughter populations.

1.4 Modelling allele frequencies with Beta Distributions

Beta distributions are a family of continuous probability distributions within statistics.
They are characterized by their two positive shape parameters, a and b, that give them a
wide range of possible shapes. The density of a beta distribution, defined on the interval
[0, 1], follows the formula:

xa−1(1− x)b−1

B(a, b)

The high level of flexibility of the formula has led to uses within several fields of study
where you want to model a distribution within limited ranges. One such is within popu­
lation genetics, where the use of beta distributions has seen much use. Different forms
of the beta distributions has been used in several cases to model the allele frequencies
in populations. One such example is the Balding–Nichols model, presented in 1995,
which models the allele frequencies in specifically sub­divided populations (Balding &
Nichols 1995).

1.5 Aims

The goal of this project is first to develop a method called TT­beta, a modified version
of TTo that has been modified to use beta distributions to model the polymorphic fre­
quency spectra of the ancestral population. After this, focus will be shifted towards
trying to implement MM based on the same principles as TT­beta. The performance of
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both methods will be assessed on simulated data, with the addition of testing it on real
data in the case of TT­beta.

2 Material and Methods

The work done during the project can be divided up into several steps: implementing
method, testing results on simulated genetic data and, if the prior tests showed enough
promise, running the method on available actual sequence data from different human
populations.

2.1 Implementations

The implementations has been done primarily in Python, with some additional C scripts
in the case of the MM method. Bash scripts was also written for running large tasks
on the computing cluster resources provided by the Swedish National Infrastructure for
Computing (SNIC) at UPPMAX.

2.1.1 Setting up TT­beta

Before trying to implement the MM method, another more slimmed down alternative
currently named ’TT­beta’ was worked on first. This was a version of the TTo method
that had been modified to rely on beta distributions in a similar manner as the theory
behind MM. Following the calculations in Appendix A, the equation set

r1 ≡
1

4

2p2,1 + p1,1
α2

r2 ≡
1

4

2p1,2 + p1,1
α1

s ≡ 1

4

p1,1
α1α2

can be derived from sample configuration data. These r and s values don’t represent
any real life values by themselves, but gives rise to further valuable conclusions (such
as the estimated divergence time) when basing the ancestral population’s polymorphic
frequency spectra on beta distributions. pi,j is the probability of the sample configuration
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with i derived and 2 − i ancestral in population 1, and j derived and 2 − j ancestral in
population 2. This is in this case estimated by the counts of a sample configuration
(mi,j) divided by the total count of all configurations (mtot). The αi parameters are
conditional estimates taken from the theory behind the TTo method and informs of the
probability of two lineages in the population coalescing before the estimated time of the
split (Sjödin et al. 2021). The counts used in this case is conditional on the outgroup,
meaning that only sites where the derived variant has been observed in the outgroup
sample considered. These counts are marked with a * to make this difference clear.

α1 =2
m∗

1,0 +m∗
1,2 +m∗

1,1

2(m∗
1,0 + 2m∗

2,0 +m∗
2,1) +m∗

1,1

α2 =2
m∗

0,1 +m∗
2,1 +m∗

1,1

2(m∗
0,1 + 2m∗

0,2 +m∗
1,2) +m∗

1,1

As further shown in Appendix A, basing the ancestral population’s polymorphic fre­
quency distribution on the beta distribution results in the third degree equations

r =
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

s =
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

where r denotes either r1 or r2 as they result in the same equation. Using the previously
known r1, r2 and s values you then can estimate which a and b parameters gives the best
fit to the given sample data. This was done with numerical optimization methods from
the Python package SciPy, where the full selection of suitable algorithms were tested
in order to find a solution to a and b based on the r and s equations. This process was
done twice for each of the two possible variants of the r function as they result in two
different equation systems to be solved, which each one giving their own divergence
time estimates T per population. The 4 in total estimates were finally calculated with:

T1,1 =
2m1,0 +m1,1 + 4m2,0 + 2m2,1

4mtot

− a1b1
(a1 + b1)(a1 + b1 + 1)

T1,2 =
2m1,0 +m1,1 + 4m2,0 + 2m2,1

4mtot

− a2b2
(a2 + b2)(a2 + b2 + 1)

T2,1 =
2m0,1 +m1,1 + 4m0,2 + 2m1,2

4mtot

− a1b1
(a1 + b1)(a1 + b1 + 1)

T2,2 =
2m0,1 +m1,1 + 4m0,2 + 2m1,2

4mtot

− a2b2
(a2 + b2)(a2 + b2 + 1)

6



Where T1,1 and T1,2 are the two estimates of the divergence time of population 1 using,
respectively, the r1 and r2 based estimates of a and b. T2,1 and T2,2 are the two estimates
of the divergence time of population 2.

2.1.2 Setting up MM

The implementation of the MM method was limited to be able to fit within the range of
this thesis project. Instead of aiming for a complete method for estimating divergence
times, only a subset of parameters were estimated: a, b, τA and τB. Following Appendix
B, the two first parameters are from the beta distribution (like TT­beta) and the two τ
values are the drift parameters in the daughter populations A and B. They are defined as

τ =

∫ t

0

dz

2N(z)

where t is the divergence time in generations away from the population and N(z) is the
diploid population size z generations away in the same direction.

The main part of the MMmethod heavily relies on the two probabilities g (Tavaré 1984)
and h (Slatkin 1996). The first denoting the probability of there being k ancestors at the
scaled time τ in a sample of n gene­copies:

gn,k(τ) =
1(
k
2

) n∑
i=k

e−(
i
2
)τ
(
i

2

) n∏
l=k,l ̸=i

(
l
2

)(
l
2

)
−

(
i
2

)
when n < k ≤ 2, with special cases gn,n(τ) = e−(

n
2
)τ and gn,1(τ) = 1−

∑n
k=2 gn,k(τ).

The other probability is defined by

h(m, l; i, j) =

(
m−1
i−1

)(
l−1
j−1

)(
m+l−1
i+j−1

)
and describes the probability of havingm derived lineages and l ancestral lineages when
there arem+ l lineages in total, given that there were i derived and j ancestral lineages
when there were i+ j lineages in total.

The process of estimating demographic parameters then comes from determining which
scenario results in the highest probability given the observed counts of the possible sam­
ple configurations (mA, lA,mB, lB). The limitations put in place for the MMmethod in
this case led to that only a partial solution was looked into where you ignored the pos­
sibility that the derived mutations are younger than the ancestral population. In practise
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ignoring sample configurations where the derived allele only occurs in one population,
with the exception of monomorphic cases. You get

P (SB = {mB, lB} ∧ SA = {mA, lA})

=

mA∑
iA=0

lA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iA + iB, b+ jA + jB)

B(a, b)
h∗(τA;mA, lA; iA, jA)h

∗(τB;mB, lB; iB, jB)

with
h∗(τ ;m, l; i, j) =

(
i+ j

i

)
h(m, l, i, j)gm+l,i+j(τ)

andB(x, y) is the beta function. The SciPy package was also used in this case in order to
find the most probable values for a, b, τA and τB. A Python function was set up that took
the 4 parameters as input and returned the total probability from the formula above. The
output was in the end inverted (multiplied by ­1) in order to turn it into a minimization
problem better fit for SciPy’s wide range of minimization functions.

2.2 Simulating data

The simulated data used to test the effectiveness of the created variants of TT beta and
MMwas created with the software msprime and ran on the UPPMAX cluster to facilitate
runs with up to 10000 replicates. Performances where calculated from a set of demo­
graphic models simulating different historical events that could have occurred around
the time of a population split. These include changes to the ancestral population size:
constant, bottle­neck, expansion or shrinking. A model with a bottleneck event occur­
ring in one of the daughter populations was also tested. The simulations ran with 2
generated samples per daughter population, resulting in a total sample size of 4. Excep­
tions from this came when testing the MM implementation as runs with 2, 4, 6, 8 and 10
samples per population was simulated. Saved performance values plotted in the form of
histograms from Python’s Matplotlib package for presentation purposes.

2.3 Testing on real datasets

The TT­beta implementation was as a final test also ran on real sample data available
from human populations. The dataset used was the same as in Sjödin et al, with 11 indi­
viduals from the HGDP (Human Genome Diversity Project) and the Denisovan genome
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and Altai Neanderthal genome from (Meyer et al. 2012) and (Prüfer et al. 2014). The
HGDP samples contained individuals of, amongst others, French, Sardinian and african
populations (Sjödin et al. 2021). All were compared against each other using three dif­
ferent outgroups: baa, archaic and Mbunti populations (see Sjödin et al for details).
Estimates of divergence times, the beta distribution and its shape defining parameters a
and bwere collected and then plotted for visualisation purposes with a range of R scripts.

3 Results

The TT­beta method, in addition to the partial MM implementation, was successfully
implemented in Python with the optimize package from SciPy. Both alternatives were
also able to be tested on large simulated datasets produced from a range of different
demographic modules that were able to be executed on UPPMAX. As this process was
relatively problem free, enough time was also available to perform tests on real human
population data.

3.1 Implementation of TT­beta

The r and s equation system were written in Python as a func­
tion taking the vector [a,b] as input and returning the re­
formed equations: [a*b*(a+1)/((a+b)*(a+b+1)*(a+b+2)) - r,
a*b*(a+1)*(b+1)/((a+b)*(a+b+1)*(a+b+2)*(a+b+3))-s] that approaches
zero when a and b is estimated correctly. This is in accordance to the format required
for the root solving algorithms of scipy.optimize. Mainly the root finding functions
fsolve and root were tested for this purpose because of their wide range of different
algorithms available, but also other alternatives like least_squares and minimize
were tested candidates. In the end, root using its hybr algorithm was the best
performing alternative with both fast running time and accurate results.

However, one important observation during testing was the big impact that the starting
guess had on the method’s final guess. Results could in some cases be extremely dif­
ferent just because it was handed a starting value in a hard to solve region. This was
accounted for by creating a specialized root finding function, using root, that for a min­
imum of 500 iterations randomizes the starting value within a given search space of
a = [0, 1] and b = [1, 10000], as the assumptions for a panmitic ancestral population
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requires 0 < a < 1 and 1 < b. The best root found from this search is finally given as
output.

Two additional variants of this TT­beta implementation was also experimented with
when it was observed that guesses not always followed the assumption of a pan­
mitic ancestral population with b values in some cases being outside its given range.
The alternatives TT­beta ’bound’ and ’converted’ were set up, where the former used
least_squares to only look for solutions within the allowed interval, and the later that
simply converted the results from the normal TT­beta method by changing any values
outside the allowed interval to the closest one within.

3.1.1 TT­beta performance

The methods from each of the three different versions of TT­beta were tested on the set
of demographic models created with msprime. All simulations ran with 10000 replicates
and were also tested on classical TT and TTo. Results for TT­beta were promising and
showed the majority of values around the true divergence time of 50,000 years. How­
ever, in some cases extreme miscalculations were found. As shown in figure 1 and 2.

Figure 1: Histogram showing the estimates of normal TT­beta from simulated data of an ancestral
bottleneck. The blue line represents the true divergence time.
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Figure 2: Boxplot showing the estimates of normal TT­beta from simulated data of an ancestral
bottleneck. The blue line represents the true divergence time and black dots the instances of
outliers.

Using R, outliers were extracted from the boxplots (like figure 2) and then hidden from
the dataset they came from. This resulted in trimmed plots that were much easier to
interpret (figure 3).

Figure 3: Trimmed histogram showing the estimates of normal TT­beta from simulated data of
an ancestral bottleneck, after outliers have been removed. The blue line represents the true
divergence time.
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This shows quite a wide distribution of different estimates, but with a clear weight on
the true divergence time. An interesting observation from this spread is the presence of
also negative time estimates. The trimmed performances across all tested demographic
models on the normal TT­beta is summarized in figure 4 and shows that this is a common
trend for most of the observed demographic models. A wide distribution of different
estimates, ranging from highs of 150,000 plus years to lows of almost negative 50,000
years, but with the calculated mean still notably close to the true divergence time value.

Figure 4: Summary of all trimmed boxplots from the runs of the normal TT­beta method.

Summaries of the bound and converted TT­beta alternatives showed a similar spread
of guesses but with mean values farther away from the truth (see Appendix C). In the
appendix you can also see how the base TT and TTo performed on the same data.

3.2 Implementation of MM

The probabilistic functions h and h∗, central to the MM method, were implemented as
a series of Python functions containing all the parts required according to the theory.
The g function was written in C++ and could be connected to the otherwise fully Python
based system. A function to be optimized, called f, was created from these parts in such
a way that took a, b, τA and τB as input and returned the probability of them existing
according to the already given information: samples sizes nA, nB, the observed set of
configurations and their countsm. The output was also inverted (multiplied with−1) in
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order to fit the requirements of SciPy’s minimize function. Other alternatives were also
tested but minimize with its default solving algorithm performed the best in accuracy
and with relatively good speed compared to the other solving algorithms from function.
The optimization was performed within the boundaries possible of the variables: a > 0,
b > 0, τA > 0, τB > 0. One difference from the TT­beta implementation was that only
one starting guess was used (τA = 0.2, τB = 0.8, a = 0.0005, b = 1), as the running
time took several times as long and it would not be feasible to use a similar method of
finding the optimal one for each case.

3.2.1 MM performance

Only the estimated τ parameters could be compared to their true values as a result of the
partial implementation of MM performed in this report . This is because a and b for the
moment don’t have any formulas in this scenario which could be used to derive them
(but a should probably be close to 0 and b larger than 1). It is for this reason that only
the τ values will be observed from the performance tests.

Simulations were run on four different demographic modules with 4 samples per pop­
ulation: basic split model, ancestral bottleneck, ancestral shrinking population and 0.2
levels of admixture after split. An extra four runs were also performed that tested the
effect of sample size, with: 2, 6, 8 or 10 samples per population on a basic split model.
All observedmodels should in theory have the same τ values as the daughter populations
are constant of size 10000 and the divergence event is constant at 50,000 years ago. This
should result in τA = 0.1 and τB = 0.1.

Similarly to the results of TT­beta, instances of extreme outliers also persisted in some
cases for the MM method and required trimming to be able to see the true distribution
(see Appendix D). This showed an interesting trend that fewer samples seems to dras­
tically worsen the quality of the estimations. As shown in figure 5 where results from
tests where 4 and 8 samples per population is compared.
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Figure 5: Comparison of τ estimations from MM when using 4 samples per population or 8.
Unfortunately, drastic differences in number of replicates had to be used, with 1000 for (4,4) and
50 for (8,8).

This trend was made even more obvious when comparing to the rest of the different
sample setups used (figure 6). The limited testing on different demographic models,
however, didn’t seem to have any notable effect on the estimations.

Figure 6: Summary of all trimmed boxplots from the runs of MM on different samples sizes and
demographic models.
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3.3 Tests on real data

The runs of the normal TT­beta method on the previously mentioned population data
gave rise to divergence times estimates as shown in Appendix D, and interestingly dis­
plays some of the tendencies already seen on the runs of simulated data. Both time
estimate alternatives (T1 and T2) result in more or less the same values and some com­
binations of populations have managed to result in negative divergence times.

Observing the estimated a and b parameters from these tests (see Appendix D) also
showed that almost all of them landed within the acceptable and expected intervals de­
rived earlier, with a values just above 0 and b’s around 1. The only exceptions of this
came from the Neanderthal ­ Denisovan pairing, which gave negative values far from
the others, and the Dai ­ Han one that failed to return any at all. Plotting all the result­
ing beta distributions from these estimates also gave interestingly non­diverse ancestral
frequency spectra (see Appendix D).

4 Discussion

The aim of this project was to explore the possibility of developing a novel method
for estimating past divergence times of populations. The results show a real possibility
behind the theory of the two investigated methods, even though the circumstances of the
project resulted in only TT­beta being able to be properly tested and assessed.

4.1 TT­beta as a new method

The successful implementation of the TT­beta method was not something certain be­
forehand as it had not been explored practically before. So just the fact that it is able to
give values in the same region as unmodified TT and TTo is immediately a good sign
for the possibilities of using beta distribution to model ancestral frequency spectra. This
is especially the case as the numerical methods tested for the purpose of finding these
values were limited to only those available to the SciPy package. Extending the search
of numerical methods, or possibly even developing one tailor made for the task at hand,
could have beneficial effects on the running time and accuracy.
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4.1.1 Run time and accuracy

The performance of the TT­beta method also highlighted some issues that could stem
from the reliance on numerical solvers: relatively slow running times and a certain
volatility that could result in extreme instances of incorrect estimations. Like mentioned
before, this could be improved with the choice of implementation, but it can never be
faster than the purely formula based TT and TTo alternatives. The largest effect of this
extra running time will be seen in cases that require large number of runs, but single use
cases won’t notice this effect as much as the run time at most only is a few tenths of a
second longer. The volatility of the TT­beta results are probably easier to fix with either
the fine tuning of the numerical method used or by increasing the number of different
start guesses leading to more robust estimates.

4.1.2 Compared to TT and TTo

When excluding the outliers, the performance of the TT­beta method really resembled
those of TT and TTo (see Appendix C). All methods performed well on the demographic
models with varying admixture between the populations directly after the split, with only
some loss of accuracy as the amount of admixture increases. The effect of changes in the
daughter population sizes was however made clear, as a bottleneck event occurring in
population 2 resulted in averages far below the true value. But with the clear distinction
that both TTo and TT­beta were able to handle it better than TT. A bottleneck in the
ancestral population, on the other hand, proved to be less of a problem for the methods.
Effects on performance was then later seen again as the model with a declining ancestral
population seemed to greatly affect TT, but not TTo or TT­beta as much. In summary,
these results points towards TT­beta at least replicating the performance of TTo, and
improves on the results of the normal TT method.

Onemajor difference of the TT­beta version is, however, the seemingly increased chance
of failing to give any estimates at all. A decent chunk (approximately 15%) was con­
stantly returned as NaN­values, for the most part completely unrelated to which demo­
graphic model used. It should however be noted that this didn’t seem to impact the
overall distribution of values, but should be kept in mind when running the method.

4.1.3 Runs on real data

The tests on real population data cemented a lot of the different observations seen ear­
lier. Some populations produced negative time estimates (which of course is an error),
one pairing failed to give any estimates at all and one gave values far from what you
would expect. But one of the most interesting findings came from plotting the resulting
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beta distributions from the estimated a and b values (see Appendix D). It seems that all
populations gave estimations very similar to each other, with surprisingly little varia­
tion. The reason for this is unclear, and could either be a sign of worry that the model
is too constrictive and biased, or that it is a common pattern within the observed pop­
ulations. This is however impossible to know with the limited information at hand as
further testing would be required to determine such things.

4.2 MM and its potential

The implementation and testing of the MM method was quite limited as a result of the
time available at that stage of the project. Because of this, it is hard to give an honest
and concrete assessment on it as a method for estimating divergence times. What can be
said is that potential absolutely exists, and that the central theory behind it have proven
to work practically in the form of TT­beta.

A few trends could also be seen from the small set of runs conducted on the partial MM
implementation estimating the τ values for each of the two daughter populations. Sam­
ple size seemed to have the largest effect on the estimates with all tests with fewer than
8 samples per population experiencing a spread out set of τ values, with τB seemingly
being more inaccurate. This probably comes from the fact that τB worked with a starting
guess of 0.8 (compared to 0.2 of τA) and seemed to get stuck there in instances with fewer
samples. But when using 8 or more they instead seem more accurate and precise. The
small amount of admixture didn’t seem to have any notable effect on the estimates with
values almost identical to those without admixture, but larger demographic events like a
declining ancestral population had a large impact on both mean value and spread. These
conclusions should however be taken with grain of salt as the larger runs required low­
ering the number of replicates from 1000 to 50, partly because the MM method became
significantly slower when scaling the problem size.

4.3 Future work

The work within this area is far from done, with more needed to produce a method in the
way as described in the beginning if this report. A first thing would be to perform more
extensive analyses of both TT­beta and the current version of MM in order to get a better
grasp of how the methods perform in more complex demographic model. It would also
be interesting to test different sample configurations of samples per population in the
case of MM. These tests would also be a good opportunity to try other sets of numeri­
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cal methods, or alternatively to optimize ones currently in use as that could be further
explored.

The next step would then be to try to implement the rest of the theory behind MM in
order to get the full method up and running. This would hopefully reach the original goal
of the report to produce a novel method with the potential of more statistically significant
divergence time estimates and the ability infer past changes in the daughter population
sizes.

4.4 Conclusion

The limited MM implementation, and especially the associated TT­beta method, has
shown potential for the use of beta distributions to create novel methods for estimating
divergence times. TT­beta was able to be fully implemented in Python and gave promis­
ing results, performing on at least the level of classical TTo. But coming with the cost of
being slightly slower and having a decreased reliability. Tests on real human population
data cemented these findings and shed light on possible issues with negative estimates
being returned. Time limitations resulted in only a partial MM implementation, but it
still achieved functionality and could give quite accurate estimations when the sample
size used was large enough.
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Appendix A - Theory behind TT-beta

June 2, 2021

1 Intro
The density of a Beta distribution with parameters a and b is

xa−1(1− x)b−1

B(a, b)

This is a density for a stochastic variable in the interval (0, 1) so that the integral
from 0 to 1 is 1. It follows that∫ 1

0

xm+a−1(1− x)l+b−1dx

= B(m+ a, l + b)

∫ 1

0

xm+a−1(1− x)l+b−1

B(m+ a, l + b)
dx = B(m+ a, l + b)

In a population with polymorphic derived frequency distribution modelled by
a Beta(a, b) distribution, the probability to obtain m derived and l ancestral
alleles in a sample of size m+ l at a polymorphic site is(

m+ l

m

)∫ 1

0

xm(1− x)l
xa−1(1− x)b−1

B(a, b)
dx

=

(
m+ l

m

)
1

B(a, b)

∫ 1

0

xm+a−1(1− x)l+b−1dx

=

(
m+ l

m

)
B(m+ a, l + b)

B(a, b)

Since

Γ(n+ x) = (n+ x− 1)Γ(n+ x− 1)
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so that

B(m+ a, l + b) =
Γ(m+ a)Γ(l + b)

Γ(m+ l + a+ b)

=
(m+ a− 1)(l + b− 1)

(m+ l + a+ b)

Γ(m+ a− 1)Γ(l + b− 1)

Γ(m+ l + a+ b− 1)

=
Πm−1

i=0 (a+ i)Πl−1
j=0(b+ j)

Πm+l−1
i=0 (a+ b+ i)

Γ(a)Γ(b)

Γ(a+ b)

=
Πm−1

i=0 (a+ i)Πl−1
j=0(b+ j)

Πm+l−1
i=0 (a+ b+ i)

B(a, b)

we get(
m+ l

m

)∫ 1

0

xm(1− x)l
xa−1(1− x)b−1

B(a, b)
dx =

(
m+ l

m

)
Πm−1

i=0 (a+ i)Πl−1
j=0(b+ j)

Πm+l−1
i=0 (a+ b+ i)

2



Reformulating TT
Relating to anm (with n = m+ l) in the TT-paper we get

a21 =

(
2

1

)
Π0

i=0(a+ i)Π0
j=0(b+ j)

Π1
i=0(a+ b+ i)

= 2
ab

(a+ b)(a+ b+ 1)

a31 =

(
3

1

)
Π0

i=0(a+ i)Π1
j=0(b+ j)

Π2
i=0(a+ b+ i)

= 3
ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)

=
3

2

b+ 1

a+ b+ 2
a21

a32 =

(
3

2

)
Π1

i=0(a+ i)Π0
j=0(b+ j)

Π2
i=0(a+ b+ i)

= 3
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

=
3

2

a+ 1

a+ b+ 2
a21

a41 =

(
4

1

)
Π0

i=0(a+ i)Π2
j=0(b+ j)

Π3
i=0(a+ b+ i)

= 4
ab(b+ 1)(b+ 2)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

=
4

2

(b+ 1)(b+ 2)

(a+ b+ 2)(a+ b+ 3)
a21 =

4

3

b+ 2

a+ b+ 3
a31

a42 =

(
4

2

)
Π1

i=0(a+ i)Π1
j=0(b+ j)

Π3
i=0(a+ b+ i)

= 6
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

=
6

2

(a+ 1)(b+ 1)

(a+ b+ 2)(a+ b+ 3)
a21 =

6

3

a+ 1

a+ b+ 3
a31 =

6

3

b+ 1

a+ b+ 3
a32

a43 =

(
4

3

)
Π2

i=0(a+ i)Π0
j=0(b+ j)

Π3
i=0(a+ b+ i)

= 4
a(a+ 1)(a+ 2)b

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

=
4

2

(a+ 1)(a+ 2)

(a+ b+ 2)(a+ b+ 3)
a21 =

4

3

a+ 2

a+ b+ 3
a32

This is furthermore consistent with (from the TT-paper):

a21 =
1

2
a41 +

2

3
a42 +

1

2
a43

a31 =
3

4
a41 +

1

2
a42

a32 =
1

2
a42 +

3

4
a43

Plugging in the expressions for a41, a42 and a43 in the expressions for the proba-
bility of the different sample configurations making the fewest assumptions (see
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TT paper) we get:

p1,0 =2(1− α1)µν1 + 2α1µt1

+ 2α1
ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)

(
1− α2

a+ 1

a+ b+ 3

)
p0,1 =2(1− α2)µν2 + 2α2µt2

+ 2α2
ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)

(
1− α1

a+ 1

a+ b+ 3

)
p2,0 =(1− α1)µt1 − (1− α1)µν1

+
ab

(a+ b)(a+ b+ 1)

(
1− α1

b+ 1

a+ b+ 2
− α2

a+ 1

a+ b+ 2
+ α1α2

(a+ 1)(b+ 1)

(a+ b+ 2)(a+ b+ 3)

)
p0,2 =(1− α2)µt2 − (1− α2)µν2

+
ab

(a+ b)(a+ b+ 1)

(
1− α2

b+ 1

a+ b+ 2
− α1

a+ 1

a+ b+ 2
+ α1α2

(a+ 1)(b+ 1)

(a+ b+ 2)(a+ b+ 3)

)
p1,1 =4α1α2

a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

p2,1 =2α2
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

−2α1α2
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

p1,2 =2α1
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

−2α1α2
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)
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Implying that

p1,0 +
1

2
p1,1 =2(1− α1)µν1 + 2α1µt1 + 2α1

ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)

p0,1 +
1

2
p1,1 =2(1− α2)µν2 + 2α2µt2 + 2α2

ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)

p2,0 +
1

2
p2,1 =(1− α1)µt1 − (1− α1)µν1 − α1

ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)
+

ab

(a+ b)(a+ b+ 1)

p0,2 +
1

2
p1,2 =(1− α2)µt2 − (1− α2)µν2 − α2

ab(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)
+

ab

(a+ b)(a+ b+ 1)

p2,1 +
1

2
p1,1 =2α2

a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

p1,2 +
1

2
p1,1 =2α1

a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

p1,1 =4α1α2
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

and

1

2
p1,0 +

1

4
p1,1 + p2,0 +

1

2
p2,1 =µt1 +

ab

(a+ b)(a+ b+ 1)

1

2
p0,1 +

1

4
p1,1 + p0,2 +

1

2
p1,2 =µt2 +

ab

(a+ b)(a+ b+ 1)

Reformulating TTo
If α1 and α2 is known (as under the TTo set up), we get the equations

r1 ≡ 1

4

2p2,1 + p1,1
α2

=
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

r2 ≡ 1

4

2p1,2 + p1,1
α1

=
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

s ≡ 1

4

p1,1
α1α2

=
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)
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writing r for either r1 or r2

r =
a(a+ 1)b

(a+ b)(a+ b+ 1)(a+ b+ 2)

s =
a(a+ 1)b(b+ 1)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)
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Appendix B - Theory behind MM

June 2, 2021

1 Intro
The density of a Beta distribution with parameters a and b is

xa−1(1− x)b−1

B(a, b)

This is a density for a stochastic variable in the interval (0, 1) so that the integral
from 0 to 1 is 1. It follows that∫ 1

0

xm+a−1(1− x)l+b−1dx

= B(m+ a, l + b)

∫ 1

0

xm+a−1(1− x)l+b−1

B(m+ a, l + b)
dx = B(m+ a, l + b)

Also

τ =

∫ t

0

dz

2N(z)

where t is the time in generations away from population A and N(z) is the
diploid population size z generations away from population A (in the same
direction as t) We also rely on the being the probability of there being k ancestors
at time τ to a sample of n gene-copies, gn,k(τ). Specifically

gn,k(τ) =
1(
k
2

) n∑
i=k

e−(
i
2)τ

(
i

2

) n∏
l=k,l ̸=i

(
l
2

)(
l
2

)
−
(
i
2

)
for n < k ≤ 2 with special cases gn,n(τ) = e−(

n
2)τ and gn,1(τ) = 1−

∑n
k=2 gn,k(τ)

([?, ?]).

2 Sample distribution of mA derived and lA an-
cestral in one and mB derived and lB ancestral
in another population

Now we center the derivation on the derived frequency in the population where
population A and population B eventually merge (population C). Write a and
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b for the shape parameters of the frequency distribution in population C. We
also define

h(m, l; i, j) =

(
m−1
i−1

)(
l−1
j−1

)(
m+l−1
i+j−1

)
which is the probability of m derived lineages when there are m + l lineages
given that there were i derived lineages when there were i+ j lineages ([?]).

2.1 Ignoring branch specific mutations
To derive P (SB = {mB , lB} ∧ SA = {mA, lA}), first ignore the possibility that
the derived mutation is younger than population C (note that this is not even
possible if both mB > 0 and mA > 0) and write

P (SB = {mB , lB} ∧ SA = {mA, lA})

=

∫ 1

0

 mA∑
iA=0

lA∑
jA=0

gnA,iA+jA(τA)h(mA, lA; iA, jA)

(
iA + jA

iA

)
xiA(1− x)jA


×

 mB∑
iB=0

lB∑
jB=0

gnB ,iB+jB (τB)h(mB , lB ; iB , jB)

(
iB + jB

iB

)
xiB (1− x)jB


× xa−1(1− x)b−1

B(a, b)
dx

=
1

B(a, b)

mA∑
iA=0

lA∑
jA=0

mB∑
iB=0

lB∑
jB=0

gnA,iA+jA(τA)gnB ,iB+jB (τB)

× h(mA, lA; iA, jA)h(mB , lB ; iB , jB)

(
iA + jA

iA

)(
iB + jB

iB

)
×

∫ 1

0

xa+iA+iB−1(1− x)b+jA+jB−1dx

=

mA∑
iA=0

lA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iA + iB , b+ jA + jB)

B(a, b)
h∗(τA;mA, lA; iA, jA)h

∗(τB ;mB , lB ; iB , jB)

with
h∗(τ ;m, l; i, j) =

(
i+ j

i

)
h(m, l, i, j)gm+l,i+j(τ)

2.2 Only considering branch specific mutations
If we ignore derived variants that are older than the split, the only sample
configurations that are possible are those with at least one of mA mB being
0. Thus we only need to derive the probability for P (S = {m, l}) given that
the mutation occurs on one of the lineages in the genealogy more recently than τ .
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For this purpose define µ to be the mutation rate per generation and locus,
to be the expected time in generations with k lineages in theµ to be the muta-
tion rate per generation and locus, νk,i to be the time in generations spent with
k lineages given that there are i lineages left after τ scaled time units, and νk
to be the expected time in generations with k lineages in the genealogy within
τ units of time. Then

νk =
k∑

i=1

νk,ign,i(τ)

and for l > 0

P (S = {m, l}) =
l+1∑
k=2

h(m, l; 1, k − 1)kµ
k∑

i=1

νk,ign,i(τ)

=µ
l+1∑
k=2

h(m, l; 1, k − 1)kνk = µ
l∑

k=1

h(m, l; 1, k)(k + 1)νk+1

and for l = 0

P (S = {n, 0}) = h(n, 0; 1, 0)µν1,1gn,1(τ)

= µh(n, 0; 1, 0)ν1 = µν1

so that we can write

P (S = {m, l}) = µ

l∑
k=0

h(m, l; 1, k)(k + 1)νk+1

for l ≥ 0.
We have for 0 < mB ≤ nB , mA = 0

P (SB = {mB , lB} ∧ SA = {0, nA}) = µ

lB∑
k=0

h(mB , lB ; 1, k)(k + 1)νBk+1

=

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1

with V B
k = kµνBk .

For 0 < mA ≤ nA, mB = 0

P (SB = {0, nB} ∧ SA = {mA, lA}) =
lA∑
k=0

h(mA, lA; 1, k)V
A
k+1

with V A
k = kµνAk .
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2.3 Full solution
Here we make the key assumption that the probability of both picking a derived
variant in the ancestral population C and having a branch specific mutation in
the genealogy is vanishingly small.

For mA = 0 and 0 < mB ≤ nB

P (SB = {mB , lB} ∧ SA = {0, nA})

=

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1

+

0∑
iA=0

nA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iA + iB , b+ jA + jB)

B(a, b)
h∗(τA;mA, lA; iA, jA)h

∗(τB ;mB , lB ; iB , jB)

=

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1 +

nA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iB , b+ jA + jB)

B(a, b)
h∗(τA;nA, 0; iA, 0)h

∗(τB ;mB , lB ; iB , jB)

=

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1 +

nA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iB , b+ jA + jB)

B(a, b)
gnA,jA(τA)h

∗(τB ;mB , lB ; iB , jB)

=

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1 +

nA∑
jA=1

mB∑
iB=1

lB∑
jB=0

B(a+ iB , b+ jA + jB)

B(a, b)
gnA,jA(τA)h

∗(τB ;mB , lB ; iB , jB)

and for mB = 0 and 0 < mA ≤ nA

P (SB = {0, nB} ∧ SA = {mA, lA})

=

lA∑
k=0

h(mA, lA; 1, k)V
A
k+1 +

mA∑
iA=1

lA∑
jA=0

nB∑
jB=1

B(a+ iA, b+ jA + jB)

B(a, b)
gnB ,jB (τB)h

∗(τA;mA, lA; iA, jA)

If none of the above is true (no sample is monomorphic for the ancestral allele)
and that there is at least 1 ancestral gene copy in the sample, we have instead

P (SB = {mB , lB} ∧ SA = {mA, lA})

=

mA∑
iA=0

lA∑
jA=0

mB∑
iB=0

lB∑
jB=0

B(a+ iA + iB , b+ jA + jB)

B(a, b)
h∗(τA;mA, lA; iA, jA)h

∗(τB ;mB , lB ; iB , jB)

2.4 Estimation
In total, there will be 4 + nA + nB parameters to estimate (a, bτA, τB as well
as V A

1 , · · ·V A
nA

and V B
1 , · · ·V B

nB
) and there are (nA +1)(nB +1) possible sample
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configurations. Of these,

1 monomorphic class: {0, nB}, {0, nA}+ {nB , 0}, {nA, 0}
nB configurations with information about V B

i : {1, nB − 1}, {0, nA} · · · {nB , 0}, {0, nA}
nA configurations with information about V A

i : {0, nB}, {1, nA − 1} · · · {0, nB}, {nA, 0}

In other words, there are (nA + 1)(nB + 1)− 1 configurations to base our esti-
mates on and of these, (nA +1)(nB +1)− 2 are polymorphic for both variants.
Furthermore, (nA+1)(nB+1)−2−nB−nA = nAnB−1 configurations are poly-
morphic in both samples and thus only informative of a, b, τB and τA. Thus,
as long as nAnB − 1 ≥ 4 ⇒ nAnB ≥ 5 we have sufficient power to estimate
a, b, τB and τA. As an example, if only diploid samples are considered, then one
individual from each population (the TT setup) does not suffice but any sample
with at least two individuals from one of the populations will. Also, if a haploid
sample is retrieved from one population, more than two diploid individuals from
the other population is required.
Assuming that nAnB ≥ 5, we should be able to estimate a, b, τA and τB so that
the right side of

lB∑
k=0

h(mB , lB ; 1, k)V
B
k+1

=P (SB = {mB , lB} ∧ SA = {0, nA})

−
nA∑

jA=1

mB∑
iB=1

lB∑
jB=0

B(a+ iB , b+ jA + jB)

B(a, b)
gnA,jA(τA)h

∗(τB ;mB , lB ; iB , jB)

can be considered known when estimating V B
i .
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Appendix C ­ Performances of different TT versions
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Appendix D ­ Results from real data
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