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Abstract
Schrodi, F. 2021. Selfconsistent theory of superconductivity in unconventional 
superconductors. Digital Comprehensive Summaries of Uppsala Dissertations from the 
Faculty of Science and Technology 2067. 126 pp. Uppsala: Acta Universitatis Upsaliensis. 
ISBN 978-91-513-1278-1.

Superconductivity is broadly believed to stem from either electron-phonon interaction (EPI) 
or from purely electronic mechanisms, such as antiferromagnetic spin fluctuations. For many 
materials the discussion about which of these interactions is the dominant "pairing glue" is still 
ongoing. This is particularly the case for unconventional superconductors, such as the high-Tc 

cuprates, where the origin of superconductivity is still not known after 30 years of intense 
research.

This thesis, which is split into two parts, aims at contributing to unveiling the role of these 
Cooper pairing mediators in unconventional superconductors by applying a powerful state-of-
the-art method, self-consistent calculations on the basis of Eliashberg's theory.

In the first part we employ Eliashberg theory under Migdal's approximation for the electron-
phonon interaction, and apply a similar level of approximation for spin fluctuations. For 
monolayer FeSe on SrTiO3, the record holder for Tc in Fe-based superconductors, we show 
that EPI is responsible for the large critical temperature and key spectral features, while 
spin fluctuations induce an unconventional symmetry of the superconducting order parameter. 
For the recently discovered superconductor Twisted Bilayer Graphene we explain the main 
characteristics of the superconducting state by assuming isotropic EPI, and predict various 
spectral features, which are expected to be measurable in tunneling experiments. We further 
discuss superconductivity in high-pressure materials as atomic metallic hydrogen and LaH10, 
introduce a numerical method for making Eliashberg calculations more efficient, and give an 
overview of possible effects due to phonon renormalization.

The second part of the thesis emphasizes the role of EPI in unconventional superconductors. 
By deriving a self-consistent set of Eliashberg equations beyond Migdal's approximation, 
we show that isotropic EPI causes unconventional symmetries of the superconducting gap 
in three representative examples, the Fe-based, cuprate and heavy fermion superconductors. 
Therefore, our results prove that unconventional order parameters are not a sufficient criterion 
to assume purely electronic mechanisms, and establish conventional EPI as potential mediator 
of superconductivity. With the Fe-based compound ThFeAsN we identify a real physical 
system in which such effects might play an important role. We conclude by presenting an 
induced subordinate odd-frequency superconducting state that coexists with its primary even-
frequency counterpart, solely due to vertex corrections beyond Migdal's approximation in a 
cuprate model system.
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1. Introduction

Superconductivity is a macroscopic phenomenon that can occur in certain
types of materials upon sufficient cooling. When the temperature is smaller
than the superconductor’s critical temperature Tc, the material looses its elec-
tric resistance as was first discovered in mercury [1]. Microscopically, pairs of
electrons feel an attractive force via an exchange boson that overcomes their
Coulomb repulsion, leading to the formation of so-called Cooper pairs. In
contrast to single electrons, Cooper pairs behave like bosons which allows for
a collective condensation into a macroscopic ground state. It follows that all
Cooper pairs can be described by a single collective wave function govern-
ing their microscopic behavior in the superconductor. For the condensate as
a whole it is energetically favorable to avoid single-particle scattering, which
explains the absence of resistivity in the superconducting state.

A remarkable property of superconductors, which is often used to rigor-
ously certify the existence of a superconducting state, is the Meissner ef-
fect [2]: Below the critical temperature external magnetic fields are expelled
from the material, making superconductors perfect diamagnets. Once the tem-
perature is increased above Tc, the magnetic field lines can penetrate the ma-
terial, which marks the phase transition to the normal state. Another indicator
for superconductivity in a material is the opening of an energy gap ∆ in the
electronic dispersion. This gap is characteristic for each material with respect
to its magnitude and symmetry in reciprocal space, and it will be a recurrent
property of interest throughout this thesis.

The first successful microscopic theory of superconductivity was introduced
by Bardeen, Cooper and Schrieffer, the so-called BCS theory [3]. By assuming
weak electron-phonon interaction (EPI) it was possible to explain the ground
state of conventional, mostly elemental superconductors. In these systems the
characteristic ratio ∆/kBTc is close to 1.76, and the gap function has plain s-
wave symmetry in reciprocal space. It should further be noted that the BCS
formalism is a static mean-field theory, i.e. it does not take into account the
time delay of the two Cooper pair electrons that occurs upon exchange of a
boson. The dynamical extension of BCS theory, i.e. including time retarda-
tion, was done briefly after, triggered by the milestone work by Migdal on
EPI in metals, where he introduced his famous theorem [4]. Eliashberg ap-
plied these very ideas to the superconducting state, thereby developing what
came to be known as Migdal-Eliashberg theory [5]. It is worth noting that,
from these advances, an approximate closed expression for the superconduct-
ing critical temperature has been derived by McMillan [6], for which different
extensions have been proposed subsequently [7, 8].
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Needless to say, the development of theories for superconductors was driven
by experimental discoveries, and it is worth mentioning the findings that are
relevant for this thesis. In the early days of superconductivity research, most
known examples were elemental and/or weak coupling superconductors. These
materials are well explained by BCS theory and the McMillan equation [9].
There is consensus that EPI is the driving mediator of Cooper pairing in this
class of ‘conventional’ superconductors. As concerns the gap symmetry, these
materials show relatively isotropic s-wave spin-singlet pairing. Over the years
the highest possible values for Tc within this class of materials increased, but
they are nevertheless considered being low temperature superconductors.

About half a century after the discovery of superconductivity the first so-
called heavy-fermion superconductor CeCu2Si2 came into the picture [10].
Even though these rare-earth compounds exhibited very low critical tempera-
tures, they appeared puzzling to theorists due to the inexplicable sign change
of the superconducting order parameter on the Fermi surface (FS). This ‘un-
conventional’ superconductivity could not be understood with the attractive
isotropic EPI in BCS theory, which is why the concept of purely electronic
mechanisms for superconductivity was introduced, with the most famous ex-
ample being antiferromagnetic spin fluctuations [11, 12]. In these theories the
interaction is repulsive and, given sufficiently coherent FS nesting conditions
which leads to a strongly peaked electronic susceptibility, it can produce a sign
change of ∆ on the FS [13, 14].

A few years later the theory of spin fluctuations became extremely pop-
ular upon the discovery of high-Tc cuprate superconductors, exceeding tran-
sition temperatures of 100 K [15]. Many of these compounds showed un-
conventional Cooper pairing and additionally they were found, just like the
heavy-fermion compounds, in close vicinity of magnetism [16]. This led to
the common conception that unconventional superconductivity is mediated by
electronic mechanisms. More recently this believe has been strengthened by
the family of Fe-based compounds, which similarly exhibit high transition
temperatures and unconventional superconducting gap symmetries [17].

In the meantime it was realized that applying high pressure to hydrogen-
rich compounds, so-called (super)hydrides, can drastically increase the criti-
cal temperature. Examples of this family of high temperature superconductors
are the recently discovered LaH10 with Tc ' 250K at 170GPa pressure [18]
and a carbonaceous sulfur hydride, which is the current record holder of high-
est Tc ' 15◦C at approximately 270GPa [19]. Hydrides show conventional
s-wave symmetry of the order parameter and EPI is generally accepted as the
dominant mediator of superconductivity. However, these compounds fall into
the strong coupling regime which requires to go beyond BCS theory to de-
scribe the superconducting state accurately.

The papers summarized in this thesis touch upon many of the above men-
tioned topics. Some of the works were very materials specific, where we tried
to explain superconductivity with EPI, antiferromagnetic spin fluctuations, or
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both of these mediators on the same footing. We explicitly considered the
Fe-based compounds bulk FeSe, monolayer FeSe on a SrTiO3 substrate and
ThFeAsN, the hydrides atomic metallic hydrogen and LaH10, as well as the
heavy-fermion superconductor CeCoIn5. Other studies were performed for
model systems representative for whole families of compounds, e.g. cuprate,
Fe-based and Holstein like systems.

Another dimension of the presented work is that of method development.
Here, to describe the superconducting state of a given system we almost exclu-
sively use Eliashberg theory. We introduce different extensions to this formal-
ism that go beyond standard approximations and methodology. For example,
we put forward an analytic tail scheme to reduce the computational costs of
Matsubara space calculations, developed a sophisticated formalism to consider
spin and charge fluctuations in Eliashberg theory, and studied the effect of
phonon renormalization. Most notably, our extended Eliashberg equations ob-
tained by fully self-consistently including vertex corrections beyond Migdal’s
approximation are unprecedented and provide surprising new insights.

Structure of the thesis
In the following Chapter 2 we go through the details of Migdal-Eliashberg

theory by deriving the self-consistent Eliashberg equations under Migdal’s ap-
proximation. It is shown how to compute spectral properties that can be com-
pared to different kinds of experiment. We continue by applying various ap-
proximations that lead to a simplified version of Eliashberg equations. Further
we review the famous BCS theory, as well as the McMillan equation for Tc.
This chapter provides the theoretical foundation for Part I of the thesis, and
introduces concepts and terminology also relevant for Part II.

In Part I we discuss the projects in which we used the standard Eliashberg
formalism or extensions of it that fall into the same category. The first ma-
terial under consideration is monolayer FeSe on a SrTiO3 substrate, Chapter
3, a high-Tc superconductor in which the pairing mechanism is still under de-
bate. In Section 3.1 we discuss the results of Paper I, where we assumed EPI
as mediator of superconductivity. As an alternative approach we introduce a
new formalism to include spin and charge fluctuations into a full bandwidth
Eliashberg framework in Section 3.2. Following the key results of Paper II, we
benchmark our method successfully with bulk FeSe and afterwards apply it to
the monolayer case. Paper III and Section 3.3 are the natural next step of these
earlier advances, in that we combine EPI with the purely electronic mechanism
into a multichannel framework to study their interplay in monolayer FeSe.

We continue in Chapter 4 by exploring the effects of EPI on the interacting
state of Twisted Bilayer Graphene. The findings of Paper IV are discussed in
Section 4.1, where we focus on the superconducting state in this system. In
Section 4.2 we introduce the phenomenon of replica bands in flat band systems

11



with Twisted Bialyer Graphene as an explicit example, which is the content of
Paper V.

In the next Chapter 5 we summarize additional somewhat isolated projects
that fall under the umbrella of standard Eliashberg theory. In Section 5.1 we
touch upon the topic of high pressure superconductivity by discussing atomic
metallic hydrogen and its superconducting properties (Paper VI). Next, from
Paper VII we discuss our prediction of a new structural phase in the high
temperature superconductor LaH10 in Section 5.2. Afterwards we address the
topic of reducing the computational costs of solving Eliashberg equations, and
of Matsubara space calculations more generally. To do so we introduce the
analytic tail scheme from Paper VIII in Section 5.3. We end this Chapter with
Section 5.4, in which we give an overview of effects that can occur upon self-
consistent inclusion of phonon renormalization in the Eliashberg framework,
which usually is neglected, and show various results from Paper IX.

The following Part II of the thesis contains theoretical and numerical re-
sults for vertex-corrected Eliashberg theory, i.e. a self-consistent version of
the Eliashberg equations that goes beyond Migdal’s so-called adiabatic ap-
proximation.

In Chapter 6 we formally introduce the theory and method, starting by
deriving the nonadiabatic Eliashberg equations and different simplifications
thereof in Section 6.1. Additionally we comment on important computational
aspects needed for obtaining numerical results efficiently. The phase space
exploration of Paper X, which was done with respect to electron-phonon cou-
pling strength, dimensionality of the system and the degree of nonadiabaticity,
is presented in Section 6.2.

Different rather unusual phenomena can occur due to vertex corrections
and we present those in Chapter 7. As we have shown in Paper XI, isotropic
EPI can lead to unconventional symmetries of the superconducting gap in Fe-
based, cuprate and heavy-fermion superconductors. This proves that uncon-
ventional symmetries can be induced solely by the conventional EPI and are
not necessarily a signature of an electronic pairing mechanism. We summa-
rize our model studies in Section 7.1, and argue in Section 7.2 that ThFeAsN
is a likely candidate for this scenario, as was put forward in Paper XII. Unex-
pectedly, vertex corrections can also lead to a coexistence of even- and odd-
frequency superconductivity, see Paper XIII. A slight extension of the theory
and a benchmark result is presented in Section 7.3.

The final Chapter 8 gives a very short summary of all results of this thesis
and their significance for the field. Lastly, we comment on possible future
directions and extensions of the work.
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2. Theoretical background

Everything is complicated if no
one explains it to you.

Fredrik Backman

Here we provide the basic theory needed to understand the remaining chap-
ters and papers of this thesis. We introduce the Migdal-Eliashberg theory in
Section 2.1 and briefly discuss the commonly employed BCS formalism in
Section 2.2.5, while we mainly used the former in our work.

As mentioned in the Introduction, we want to describe superconductivity
on a microscopic level. Concerning the mediator of Cooper pairing, we focus
on a simple model of electron-phonon interactions (EPI), meaning that we as-
sume an interaction gq,ν with momentum q and phonon branch ν . We further
use a one-band electron dispersion ξk for spin-singlet electrons, and phonon
frequencies ωq,ν . The generalization to multiple energy bands is straight-
forward, and the interested reader is referred to our papers. The main focus
lies on EPI as bosonic mediator of superconductivity, but other mechanisms
such as antiferromagnetic spin fluctuations can similarly cause Cooper pair-
ing. Even though we will not go into detail with respect to other bosons, we
comment on it where appropriate.

2.1 Eliashberg theory
We start by giving an overview of the Migdal-Eliashberg formalism as it is
commonly used. The most general equations in this context, that take into
account the full electron bandwidth, are derived in Section 2.1.1. The so-
lutions on the imaginary frequency axis can be analytically continued in a
self-consistent way, which is the topic of Section 2.1.2. We continue by show-
ing different levels of approximation to Eliashberg theory, as they are broadly
used, in Section 2.2.

2.1.1 Derivation under Migdal’s approximation
Electrons moving in a lattice of atoms can be described by a Hamiltonian
H = Hel +Hel−ph +Hph +HC. Here Hel is the non-interacting electronic part,
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Hph is a sum over microscopic harmonic oscillators describing the lattice vi-
brations, Hel−ph describes the interaction between lattice and electrons, and
HC is the electron Coulomb repulsion. Let us denote c†

k,σ and ck,σ as creation
and annihilation operators of electrons with momentum k and spin σ ∈ {↑,↓}.
Further, let ξk be the electronic energy dispersion and V C

q the Coulomb inter-
action. The lattice is described in terms of phonon creation (b†

q,ν ) and anni-
hilation (bq,ν ) operators, with frequencies ωq,ν where ν is a phonon branch
index. By modeling the electron-phonon scattering via gq,ν , q = k−k′, we
can write the full Hamiltonian as

H =∑
k,σ

ξkc†
k,σ ck,σ +∑

k,σ
∑
q,ν

gq,νc†
k−q,σ ck,σ

(
b†

q,ν +bq,ν
)

+∑
q,ν

ωq,ν
(
b†

q,νbq,ν +
1
2
)
+ ∑

k,k′,q
∑

σ ,σ ′
c†

k+q,σ c†
k′+q,σ ′V

C
q ck′,σ ′ck,σ . (2.1)

The spin degree of freedom in Eq. (2.1) can be hidden in so-called Nambu
spinors, Ψ

†
k = (c†

k,↑,c−k,↓) [20], leading to1

H =∑
k

ξkΨ
†
kρ̂3Ψk +∑

k
∑
q,ν

gq,νuq,νΨ
†
k′ ρ̂3Ψk

+∑
q,ν

}ωq,ν
(
b†

q,νbq,ν +
1
2
)
+ ∑

k,k′,q
Ψ

†
k′ ρ̂3Ψ

†
k′V

C
q Ψkρ̂3Ψk. (2.2)

As a next step we write the electron operators (and implicitly the Nambu
spinors) in the Heisenberg picture

ck,σ (τ) = eHτck,σ e−Hτ , (2.3)

with imaginary time τ = it. We can now use the similarity of Eq. (2.3) to
grand canoncial thermal averages, governed by the factor e−βH where β is the
inverse temperature [8]. The imaginary time τ is defined in a range [−β ,β ],
while the generalized 2× 2 matrix Green’s function of the system can be ex-
pressed as

Ĝk(τ) =−

(
〈Tτck,↑(τ)c

†
k,↑(0)〉 〈Tτck,↑(τ)c−k,↓(0)〉

〈Tτc†
−k,↓(τ)c

†
k,↑(0)〉 〈Tτc†

−k,↓(τ)c−k,↓(0)〉

)
=−〈TτΨk(τ)Ψ

†
k(0)〉, (2.4)

1The Nambu spinors span a 2× 2 matrix space in which we can choose the basis as Pauli
matrices:

ρ̂0 =

(
1 0
0 1

)
, ρ̂1 =

(
0 1
1 0

)
, ρ̂2 =

(
0 −i
i 0

)
, ρ̂3 =

(
1 0
0 −1

)
.
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with Tτ the Wick time ordering operator. The periodicity property Ĝk(τ +
β ) =−Ĝk(τ) can be used to define Ĝ also outside [−β ,β ] [8].

The off-diagonal terms in Eq. (2.4) are associated with superconductiv-
ity, while the diagonal entries describe the ‘standard’ quasiparticle spectrum.
From the above-mentioned periodicity of the τ-dependent Green’s function it
is convenient to express Ĝk(τ) in terms of its Fourier components:

Ĝk(τ) = T ∑
m

e−iωmτĜk,m. (2.5)

Here we use the notation fk,m = fk(iωm) for brevity, to write the dependence
on fermionic Matsubara frequencies ωm = πT (2m + 1), and any sum over
index m is to be understood as ∑

∞
m=−∞. By inverting Eq. (2.5) we get

Ĝk,m =
1
2

∫
β

−β

dτeiωmτĜk(τ). (2.6)

In the simplest case of a non-interacting system, where only Hel has to be
considered in Eq. (2.6), it can be shown that Ĝ0

k,m = [iωmρ̂0−ξkρ̂3]
−1, i.e. the

quasiparticle spectrum is only given by the poles due to the electron energies.
When considering the fully interacting system, the electron Green’s func-

tion can be determined by the Dyson equation shown in Fig. 2.1(a), which
translates to Ĝk,m = Ĝ0

k,m + Ĝ0
k,mΣ̂k,mĜk,m. Solving this relation for the in-

verse Green’s function gives

Ĝ−1
k,m = [Ĝ0

k,m]
−1− Σ̂k,m, (2.7)

where Σ̂k,m is the electron self-energy. Within the 2× 2 Nambu formalism
employed here, the most general form of Σ̂k,m may be expressed as

Σ̂k,m = iωm(1−Zk,m)ρ̂0 +χk,mρ̂3 +φk,mρ̂1 +ζk,mρ̂2, (2.8)

where Zk,m is the electron mass renormalization, χk,m acts as a chemical po-
tential, and φk,m is the superconductivity order parameter. Particularly, this
means that φk,m 6= 0 in the superconducting state, and φk,m = 0 for T > Tc.
The role of ζk,m on the other hand depends on the approach we are using, as
will become clear below. Next we insert Eq. (2.8) into Eq. (2.7), which leads
to the electron Green’s function

Ĝk,m =
[
iωmZk,mρ̂0 +(ξk +χk,m)ρ̂3 +φk,mρ̂1 +ζk,mρ̂2

]
Θ
−1
k,m, (2.9a)

Θk,m =
[
iωmZk,m

]2− [ξk +χk,m
]2−φ

2
k,m−ζ

2
k,m. (2.9b)

To proceed we need to dedicate some comments to the phonon and electron
self-energies. Starting with the latter, we note that Eq. (2.8) is only a ma-
trix decomposition of Σ̂k,m, i.e. a definition. However, Migdal has shown that
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(a)

(b)

= Σ̂

Σ̂ = k′

k− k′

Figure 2.1. (a) Dyson equation for the electron Green’s function. Double lines refer to
the fully interacting, single lines to the non-interacting Green’s function. (b) Electron
self-energy under Migdal’s approximation, using the notation k = (k, iωm). The wavy
lines represent the phonon propagator.

the electron self-energy can be calculated as a series of infinitely many Feyn-
man diagrams with expansion parameter λα [4]. Here λ is the FS-averaged
electron-phonon coupling strength (defined below) and α = Ω/εF with Ω the
relevant phonon energy scale and εF the shallowness of the electron disper-
sion (smallest distance between bottom/top of ξk to the Fermi level). Under
Migdal’s approximation it is justified to keep only the first electron-phonon
scattering diagram, compare the ‘rainbow diagram’ in Fig. 2.1(b), which in-
cludes all processes of first order. This is not to be confused with Migdal’s the-
orem, which states that higher-order diagrams, or vertex corrections, and pro-
cesses away from the Fermi level are negligible in 3D systems with α� 1 [4].
While here and in Part I we consider the diagram in Fig. 2.1(b), we show pos-
sible effects due to higher order Feynman diagrams in Part II of the thesis.

As concerns the phonon self-energy Πq,l , we follow the commonly ac-
cepted approximation of Πq,l = 0. This means that the phonon propagator,
which follows a Dyson equation similar to that of the electron Green’s func-
tion, becomes Dq,l,ν = D0

q,l,ν = [iql −ωq,ν ]
−1− [iql +ωq,ν ]

−1, with bosonic
Matsubara frequency ql = 2πT l. Note, that we have explored the effects of
this approximation in Paper IX, see Section 5.4, where we keep a finite phonon
self-energy that results in a backreaction of the electrons onto the phonon spec-
trum and electron-phonon coupling. Finally, we make here the assumption that
the frequency independent and Cooper pair breaking Coulomb interaction is
effectively included in our electron-phonon coupling strength and in the elec-
tron energies.

Under the above mentioned approximations we can now evaluate the Feyn-
man diagram in Fig. 2.1(b) as

Σ̂k,m =−T ∑
k′,m′,ν

|gk−k′,ν |2Dk−k′,m−m′,ν ρ̂3Ĝk′,m′ ρ̂3, (2.10)
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where we used momentum and energy conservation. The electron-phonon
coupling is defined as

Vq,l =−∑
ν

|gq,ν |2Dq,l,ν , (2.11)

leading to the electron self-energy

Σ̂k,m = T ∑
k′,m′

Vk−k′,m−m′ ρ̂3Ĝk′,m′ ρ̂3. (2.12)

The final step is to insert the electron Green’s function of Eq. (2.9) into Eq. (2.12).
We then have, together with Eq. (2.8) two expressions for Σ̂k,m, which we both
multiply by each of ρ̂i, i ∈ {0,1,2,3}, and take the matrix trace. The resulting
self-consistent equations read

Zk,m = 1− T
ωm

∑
k′,m′

Vk−k′,m−m′
ωm′Zk′,m′

Θk′,m′
, (2.13a)

χk,m = T ∑
k′,m′

Vk−k′,m−m′
ξk′+χk′,m′

Θk′,m′
, (2.13b)

φk,m =−T ∑
k′,m′

Vk−k′,m−m′
φk′,m′

Θk′,m′
, (2.13c)

ζk,m =−T ∑
k′,m′

Vk−k′,m−m′
ζk′,m′

Θk′,m′
. (2.13d)

These equations are accompanied by the electron filling

n = 1−2T ∑
k,m

ξk +χk,m

Θk,m
, (2.14)

where ξk is assumed to contain any rigid chemical potential shift. Note that
one may include the Coulomb repulsion explicitly in Eqs. (2.13) by replacing
the EPI by Vq,l −VC

q in the expressions for φk,m and ζk,m. The normal state
functions Zk,m and χk,m on the other hand are commonly assumed to already
include the electron-electron interaction [8]. However, since the Coulomb
term is frequency independent it is rather difficult to implement numerically.
For this reason we assumed an electron-phonon coupling that effectively in-
cludes a Coulomb repulsion part when considering the level of approximation
leading to Eqs. (2.13).

Under Migdal’s approximation the function ζk,m can be interpreted as the
imaginary part of the superconducting gap. Due to the fact that Eqs. (2.13c)
and (2.13d) have equivalent functional forms, we can expect that their self-
consistent solutions will differ only by a proportionality factor. In such a case
it is common practice to break the gauge freedom with respect to the quantum
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mechanical phase factor of the Cooper pairs, which allows us to set ζk,m =
0. In this case the superconducting energy gap can be calculated by ∆k,m =
φk,m/Zk,m. However, for Part II of this thesis it is important to keep in mind
that this choice is motivated by the current level of approximation. As we
show in Section 7.3 and Paper XIII, when vertex corrections to the EPI are
considered ζk,m can describe a spin-triplet pair condensate that coexists with
the one modeled by φk,m.

As mentioned earlier, other bosons than EPI can possibly mediate super-
conductivity. In the prominent example of spin fluctuations the interaction
kernel in Eqs. (2.13a) and (2.13b) may be replaced by a function V (+)

q,l but oth-
erwise the functional form does not change. For the superconductivity order
parameter one uses a different interaction, V (−)

q,l , and acquires a minus sign in
the equivalent of Eq. (2.13c),

φk,m = T ∑
k′,m′

V (−)
k−k′,m−m′

φk′,m′

Θk′,m′
, (2.15)

which stems from the repulsive nature of spin fluctuations interactions. For
explicit examples of kernels due to spin and charge fluctuations we refer to
Sections 3.2 or 7.2. Even though such a formalism is commonly employed,
either on the level of Eliashberg theory or under various approximations, there
is no formal justification of keeping only the lowest order in the electron-boson
scattering diagrams, since no analogue of Migdal’s theorem exists for purely
electronic mechanisms [21].

Before we move on to the calculation of spectral properties, it is worth
commenting briefly on the generalization to multiple electron bands. The most
straightforward case would be to consider band n dependent electron energies
ξk,n but a global coupling to the boson degree of freedom. In such a case
we simply get a band-dependent Green’s function in Eqs. (2.9), and this index
is summed over when inserting into Eq. (2.12). In particular, this means that
Zk,m, χk,m and φk,m are calculated as described above due to the fact that the
electron-phonon coupling and the purely electronic parts in Eqs. (2.13) are
decoupled with respect to the energy band index. If, on the other hand, we
want to include a band-dependency in the coupling via V n,n′ , all functions in
Eq. (2.13) acquire an explicit band dependence on index n, while we have to
sum over index n′. For more details we refer e.g. to the Papers I, II and III.

2.1.2 Spectral properties
So far we considered the description of the superconducting state on the Mat-
subara frequency axis. However, to obtain spectral properties that can directly
be compared to experiment we need to analytically continue the results to real
frequencies. The starting point of this procedure is the electron self-energy in
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Eq. (2.10). For simplicity let us assume from here on a single isotropic optical
phonon branch Ω. Following Ref. [22], we use the spectral representations

Ĝk,m =
∫

dz
Âk(z)

iωm− z
, (2.16a)

Dq,l =
∫

dz
Bq(z)
iql− z

, (2.16b)

for the electron and phonon Green’s functions. With Eqs. (2.16) we write the
self-energy as

Σ̂k,m =−1
2 ∑

k′
|gk−k′ |2

∫∫
dzdz′Bk−k′(z)ρ̂3

Âk′(z′)
iωm− z− z′

ρ̂3

(
tanh

z′

2T
+ coth

z
2T

)
,

(2.17)

where the sum over Matsubara frequencies m′ has been evaluated analytically.
Next we make use of the relation Âk(z) = −π−1Im[Ĝk(z)] for the electron

spectral density, where Ĝk(z) is the retarded Green’s function [22], and carry
out the analytic continuation by letting iωm→ ω + iδ . We then can write the
fraction in Eq. (2.17) as

Âk′(z′)
ω + iδ − z− z′

=− 1
π

Im[Ĝk′(z
′)]

1
ω + iδ − z− z′

=
1

2π
Im
[
Ĝk′(z

′)
( 1

ω + iδ − z− z′
+

1
ω− iδ − z− z′

)]
− 1

2π
Re
[
Ĝk′(z

′)
( 1

ω + iδ − z− z′
− 1

ω− iδ − z− z′
)]
. (2.18)

The last step of Eq. (2.18) can be proven by using ordinary arithmetic. As
an integration path in z′ we choose a closed contour in the upper half plane
where the retarded Green’s function is analytic. There the only poles are given
by z′ = ω − z+ iδ from the fraction in Eq. (2.18), and z′ = iωm for m ≥ 0
from the hyperbolic tangent. Using Cauchy’s residue theorem, we perform
the integration over z′ to get

Σ̂k(ω) =
1
2 ∑

k′
|gk−k′ |2

∫
dzBk−k′(z)ρ̂3

[
Ĝk′(ω− z)

(
tanh

ω− z
2T

+ coth
z

2T

)
−2T ∑

m,ωm>0

( Ĝk′,m

ω− z− iωm
+

Ĝ∗k′,m
ω− z+ iωm

)]
ρ̂3, (2.19)

where ‘∗’ denotes complex conjugations. To arrive at Eq. (2.19) the result has
been simplified by using basic properties of the real and imaginary part of
complex functions. After performing the integration we set δ = 0, which is
allowed due to the fact that ωm is always finite.
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The conjugated electron Green’s function fulfills the property Ĝ∗k,m = Ĝk,−m
[22], which allows us to express Eq. (2.19) as

Σ̂k(ω) =−∑
k′
|gk−k′ |2

∫
dzBk−k′(z)ρ̂3

[
T ∑

m

Ĝk′,m

ω− z− iωm

− 1
2

Ĝk′(ω− z)
(

tanh
ω− z

2T
+ coth

z
2T

)]
ρ̂3. (2.20)

We now make a case distinction between the two terms in the square brackets
of Eq. (2.20). The phonon spectral function can be expressed as Bk−k′(z) =
δ (z−Ω)− δ (z + Ω), which we insert for the first term. Due to the delta
functions we can easily evaluate the integration over z analytically. For the
second term we insert the Eliashberg function α2Fk−k′(z), which is connected
to Bk−k′(z) via

α
2Fk−k′(z) = N0|gk−k′ |2Bk−k′(z). (2.21)

The result reads

Σ̂k(ω) = T ∑
k′

∑
m

Vk−k′(ω− iωm)ρ̂3Ĝk′,mρ̂3

+
∫

dz∑
k′

α2Fk−k′(z)
2N0

ρ̂3Ĝk′(ω− z)ρ̂3
(

tanh
ω− z

2T
+ coth

z
2T

)
, (2.22)

where we used a similar definition for the electron-phonon coupling as before,
Vk−k′(ω− iωm) = 2|gk−k′ |2Ω/(Ω2 +(ω− iωm)

2).
From here we follow the derivation of Section 2.1.1, using Eq. (2.22) and

the real-frequency analogue of Eq. (2.8) to arrive at self-consistent Eliashberg
equations by selecting the different functions via Tr[ρ̂iΣ̂k(ω)]. The result reads

Zk(ω) =1− T
ω

∑
k′,m

Vk−k′(ω−ωm)
iωmZk′,m

Θk′,m
−
∫

∞

−∞

dz
2ω

∑
k′

α2Fk−k′(z)
N0

×
(

tanh
ω− z

2T
+ coth

z
2T

) [ω− z]Zk′(ω− z)
Θk′(ω− z)

, (2.23a)

χk(ω) =T ∑
k′,m

Vk−k′(ω−ωm)
ξk′+χk′,m

Θk′,m
+
∫

∞

−∞

dz
2 ∑

k′

α2Fk−k′(z)
N0

×
(

tanh
ω− z

2T
+ coth

z
2T

)
ξk′+χk′(ω− z)

Θk′(ω− z)
, (2.23b)

φk(ω) =−T ∑
k′,m

Vk−k′(ω−ωm)
φk′,m

Θk′,m
−
∫

∞

−∞

dz
2 ∑

k′

α2Fk−k′(z)
N0

×
(

tanh
ω− z

2T
+ coth

z
2T

)
φk′(ω− z)
Θk′(ω− z)

. (2.23c)
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It is important to note that the Matsubara frequency dependent terms in Eqs. (2.23)
are assumed to be known, as they are calculated from the solutions to Eqs. (2.13).
The self-consistency condition is to be understood here only in terms of func-
tions Zk(ω), χk(ω) and φk(ω).

In deriving Eqs. (2.23) we have set the parameter of the analytic contin-
uation δ = 0. However, it should be noted that a finite δ is often needed
to ensure numerical stability when solving the above equations in an itera-
tive loop. The numerical implementation in our work was done by using Fast
Fourier Transforms (FFTs) to speed up the iterative cycle. To be explicit, in the
self-consistent equations (real and Matsubara frequency dependent) it is com-
putationally expensive to evaluate sums of the form ∑k′,m′ gk−k′,m−m′ fk′,m′ . In
momentum space this expression equals a convolution due to the periodicity
of the BZ and can therefore be evaluated by FFTs. On the frequency axis this
convolution is mathematically not exact but a good approximation, provided
that sufficiently large grids are used. We can therefore write

∑
k′,m′

gk−k′,m−m′ fk′,m′ 'F−1{F(gk−k′,m−m′
)
?F

(
fk′,m′

)
}, (2.24)

which significantly reduces the numerical workload. For additional computa-
tional details of the here-employed Eliashberg theory, we refer to Paper VIII.

The main purpose of the analytic continuation introduced here is that we
want to compare our model with experimentally accessible quantities. Besides
basic properties of the superconducting state, such as the critical temperature
or the gap edge ∆k(0), we can use the spectral function to compare our theory
to Angular Resolved Photoemission Spectroscopy and Tunneling spectra:

Ak(ω) =− 1
π

Im
[
Ĝk(ω + iδ )

]
11, (2.25a)

dI
dV

∝ A(ω) = ∑
k

Ak(ω). (2.25b)

Here Ak(ω) describes the momentum and energy resolved quasiparticle spec-
trum, and dI/dV is the differential conductance that can directly be measured
in experiment. As a side note, these are only a few examples of measurement
quantities; since we know the electron Green’s function it is possible to derive
equations for all thermodynamic properties of the system.

2.2 Simplified approaches
We now want to look into various approaches to describe the superconducting
state of a given system in a more approximate way. We start by deriving
anisotropic FS restricted equations, which are then simplified to the isotropic
case. Afterwards we show how the linearized gap equation can be derived at
temperatures close to Tc. Finally, we discuss the McMillan equation for the
critical temperature and the famous BCS formalism.
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2.2.1 Fermi surface restricted Eliashberg theory
Let us consider again the electron self-energy in Eq. (2.12). We assume now
that only processes close to the Fermi level play a significant role to accurately
describe the superconducting state. If we assume that the product under the
momentum sum in Eq. (2.12) is separable we can use

∑
k′

Ĝk′,m′(ξk′) =
∫

∞

−∞

dε ∑
k′

δ (ξk′− ε)Ĝk′,m′(ε), (2.26)

where we imposed infinite electron bandwidth. Now we can make explicit use
of the FS restriction of electron degrees of freedom by setting ε = 0 in the
delta function of Eq. (2.26). The self-energy can then be written as

Σ̂k,m = T ∑
k′,m′

δ (ξk′)

N0
N0Vk−k′,m−m′ ρ̂3

∫
∞

−∞

dεĜk′,m′(ε)ρ̂3

= T ∑
k′,m′

δ (ξk′)

N0
λk−k′,m−m′ ρ̂3ĝk′,m′ ρ̂3, (2.27)

employing the definition λk−k′,m−m′ = N0Vk−k′,m−m′ of the electron-phonon
coupling.

By using the explicit form of the electron Green’s function, Eqs. (2.9), we
can split the reduced Green’s function into prefactors of the Pauli matrices.
With a change of variables ε→ ε +χk,m it becomes apparent that the prefactor
of ρ̂3 vanishes because the integrand is an odd function. On the other hand,
for ρ̂0 and ρ̂1 the integrals can be evaluated via the residue theorem, leading
to

ĝk,m =−π
[
iωmZk,mρ̂0 +φk,mρ̂1

]
θ
−1
k,m, (2.28a)

θk,m =
√

ω2
mZ2

k,m +φ 2
k,m. (2.28b)

The next step is to insert Eqs. (2.28) into Eq. (2.27), set the result equal to
Eq. (2.8) and perform the Nambu traces as before. We then find two self-
consistent equations

Zk,m = 1+
πT
ωm

∑
k′,m′

δ (ξk′)

N0
λk−k′,m−m′

ωm′√
ω2

m′+∆2
k′,m′

, (2.29a)

∆k,m =
πT
Zk,m

∑
k′,m′

δ (ξk′)

N0

[
λk−k′,m−m′−µ

?(ωc)
] ∆k′,m′√

ω2
m′+∆2

k′,m′
, (2.29b)

and now solve explicitly for the superconducting gap ∆k,m = φk,m/Zk,m instead
of the order parameter φk,m.

In Eq. (2.29b) we have explicitly added the Anderson-Morel pseudopoten-
tial µ?, which is the momentum averaged and renormalized Coulomb repul-
sion [8]. This quantity is commonly treated as free parameter and enters the
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Eliashberg equations with a frequency cutoff ωc, i.e. µ? is considered finite
in the interval [−ωc,ωc] and zero otherwise. As it was described in Section
2.1.1, it is possible to use Eqs. (2.29) also for spin fluctuation mediated super-
conductivity when an additional minus sign in front of the coupling is inserted
in the gap equation.

2.2.2 Isotropic Eliashberg theory
When the electron-phonon coupling can be considered isotropic throughout
the BZ, λk−k′,m−m′ = λm−m′ , the mass renormalization and gap function simi-
larly become momentum independent. This is due to the relation ∑k δ (ξk) =
N0, leading to

Zm = 1+
πT
ωm

∑
m′

λm−m′
ωm′√

ω2
m′+∆2

m′

, (2.30a)

∆m =
πT
Zm

∑
m′

[
λm−m′−µ

?(ωc)
] ∆m′√

ω2
m′+∆2

m′

. (2.30b)

These equations form the next level of simplification of the full, anisotropic
Eliashberg equations.

2.2.3 Linearized Eliashberg theory
Considering Eqs. (2.30), it can be useful to assume the limit T → Tc which
results in a vanishing superconducting gap. It is therefore justified to set ∆2

m =
0 leading to the mass renormalization

Zm = 1+
πTc

ωm
∑
m′

λm−m′sign[ωm′ ]. (2.31)

It is important to note that Eq. (2.31) is a closed expression, i.e. Zm is no longer
a function of the superconducting gap and can hence be evaluated individually.
The Matsubara frequency sum can be carried out analytically, and in the limit
Tc�Ω one can show that Zm ' 1+λ arctan(ωm/Ω)/(ωm/Ω) [23], with λ =
λm−m′=0. Here Ω is the relevant phonon energy scale. For frequencies close
to the Fermi level one can therefore write Zm ' 1+λ .

However the mass renormalization is approximated in the above, the self-
consistency condition for the interacting state reduces to the single gap equa-
tion

∆mZm = πTc ∑
m′

[
λm−m′−µ

?(ωc)
] ∆m′

|ωm′ |
, (2.32)

which can be recast as an eigenvalue problem, greatly reducing the numer-
ical complexity. As a side remark, even though Eq. (2.32) is isotropic, an
anisotropic analogue can be derived by following the same steps as above.
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2.2.4 McMillan equation for Tc

So far we have derived different kinds of self-consistent equations for the su-
perconducting gap and normal state properties. In each of theses cases Tc
is determined indirectly via the superconductivity order parameter. In prac-
tice this means that the equations have to be solved at different temperatures,
and Tc is defined as the largest temperature that leads to a finite gap. As first
pointed out by McMillan, under some additional approximations it is possi-
ble to find a closed formula for the critical temperature, that works reasonably
well for weak-coupling elemental superconductors [6].

Starting with the mass renormalization in Eq. (2.31), we apply a square-
well approximation to the electron-phonon coupling, λl = λΘ(ωD−|ql|), i.e.
we assume a constant interaction λ in [−ωD,ωD] and neglect contributions
outside this interval. Here ωD describes the Debye frequency [8]. For the
mass renormalization

Zm = 1+λ
πTc

ωm
∑
m′

Θ(ωD−|qm−m′ |)sign[ωm′ ] (2.33)

it follows that the summation over Matsubara frequency index m′ is restricted
to a finite region. The corresponding lower and upper bound of this sum
are determined from ql = ±ωD, with l = m−m′. It follows that m′ must
lie in [m+ωD/2πTc,m−ωD/2πTc], and since ωD > 0 we choose to write
the sum as ∑

m+ωD/2πTc
m′=m−ωD/2πTc

. We can now separately consider the intervals
m′ ∈ [m−ωD/2πTc,−1] and m′ ∈ [0,m+ωD/2πTc], where the sign function
in Eq. (2.33) gives (−1) and (+1), respectively. It is straightforward to write
the approximate mass renormalization as

Zm = 1+λ
πTc

ωm

[
(−1)

(
−m+

ωD

2πTc

)
+(+1)

(
m+

ωD

2πTc
+1
)]

= 1+λ . (2.34)

Next we insert Eq. (2.34) into Eq. (2.32) and apply the square-well assump-
tion λm−m′ = λΘ(ωD−|ωm|)Θ(ωD−|ωm′ |). Further we adjust the frequency
cutoff ωc entering the Coulomb pseudopotential to coincide with ωD, which
yields

∆m = πTc
λ −µ?

1+λ
∑
m′
(λ −µ

?)Θ(ωD−|ωm|)Θ(ωD−|ωm′ |)
∆m′

|ωm′ |
. (2.35)

When neglecting any impurities in the system [8] the superconducting gap can
be expressed as ∆m =∆Θ(ωD−|ωm|), allowing us to cancel the gap magnitude
∆ on both sides of Eq. (2.35). For the low energy spectrum we therefore get

1+λ

λ −µ?
= ∑

m′
Θ(ωD−|ωm′ |)

1
|2m′+1|

. (2.36)
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The Matsubara sum in Eq. (2.36) can be evaluated analytically, which yields
digamma functions that take the approximate form

1+λ

λ −µ?
' log

( ωD

2πTc

)
− log

(e−γ

4
)
, (2.37)

with γ the Euler-Mascheroni constant [8, 24]. Finally, when solving for the
critical temperature we find the McMillan equation

Tc =
2eγ

π
ωD exp

(
− 1+λ

λ −µ?

)
. (2.38)

Even though the original result by McMillan differed slightly from Eq. (2.38),
it is similar in essence: With the electron-phonon coupling strength, the Coulomb
repulsion and a measure for the phonon energy scale it is possible to ex-
plain experimentally observed values for the critical temperature in a certain
regime of ωD, λ and µ?. Various authors have attempted to reduce the com-
plexity of the superconducting state to a semi-empirical single expression for
Tc [6, 25–27], e.g. by including additional parameters of the system. While
it is possible to explain the critical temperature of BCS-like superconductors
with moderate coupling strengths, it is ultimately unlikely that the measure-
ment results for all superconductors can be fit into a closed expression with
only few system parameters [8].

2.2.5 BCS theory
Historically the first microscopic theory of the superconducting state was de-
veloped by Bardeen, Cooper and Schrieffer [3]. Even though we hardly used
this BCS theory for the papers of this thesis, it is worthwhile discussing it
briefly here. We will not go into great detail about the rigorous derivation of
the BCS gap equation, but rather explain the connection to Eliashberg theory.
The more interested reader is referred to Refs. [28–30].

Let us go back to Eqs. (2.30) where we assumed isotropic electron-phonon
coupling. For the mass renormalization we use the same procedure as in Sec-
tion 2.2.4, i.e. we apply the square-well model to the linearized expression
and find Zm = 1+λ . For the superconducting gap in Eq. (2.30b) we assume
λm−m′ = λΘ(ωc−|ωm|)Θ(ωc−|ωm′ |), so we use the same frequency cutoff as
for the Coulomb pseudopotential, with ωc in close vicinity to the Fermi level.
With ∆m = ∆Θ(ωc−|ωc|) we find

∆
1+λ

λ −µ?
= πT ∑

m′,|ωm′ |<ωc

∆√
ω2

m′+∆2
. (2.39)

Taking into account that the fraction on the left side of Eq. (2.39) gives an
effective electron-phonon coupling, (λ −µ?)/(1+λ ) = N0V , we identify the
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above expression as finite temperature and isotropic BCS gap equation [24].
From here it is possible to recover the McMillan equation for Tc when using
the approximation ∆2 ' 0.

However, it is standard to use an anisotropic and frequency independent gap
equation within BCS theory, reading

∆k = ∑
k′

Vk,k′
∆k′

2Ek′
tanh

(Ek′

2T

)
, (2.40)

with quasiparticle energy Ek =
√

ξ 2
k +∆2

k [31]. As apparent from Eq. (2.40),
the BCS formalism is static and therefore any time and frequency dependence
is neglected (in its original form). This means retardation, i.e. the time delay
between the two electrons forming a Cooper pair and the exchange boson is
not taken into account, which is in contrast to Eliashberg theory. However,
the simplicity of Eq. (2.40) is certainly appealing when it comes to numerical
costs: While Eliashberg equations are commonly solved in an iterative loop,
which can quickly become very demanding computationally, the BCS equa-
tion can be cast as an eigenvalue problem.

When considering spin fluctuations as Cooper pair mediator, Eq. (2.40) is
also broadly used, with the only modification being an additional minus sign
on the right hand side [32, 33]. It needs to be mentioned, however, that BCS
theory was developed under the assumption of weak electron-phonon cou-
pling. Due to the absence of an analogue to Migdal’s theorem for purely elec-
tronic mechanisms [21], it is not clear how reliable results from this level of
approximation are for a bosonic mechanism different from EPI.

Finally it is worth noting that ∆(T = 0)/kBTc in BCS theory is predicted to
be 1.76 [24]. This ratio is readily accessible in both theory and experiment,
and therefore is an important tool to characterize the coupling strength in a
superconductor. For systems with relatively weak electron-phonon coupling,
also known as BCS superconductors, ∆(T = 0)/kBTc does not deviate signifi-
cantly from this universal result, leading to an accurate description of elemen-
tal superconductors and relatively simple compounds. On the other hand, if
the ratio of superconducting gap edge to critical temperature is significantly
larger than 1.76 (2 or higher), the here-described BCS formalism often over-
estimates Tc and is generally not well suited to describe the superconducting
state.
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Part I:
Applications of Eliashberg theory





3. Monolayer FeSe on SrTiO3

At the end of the day, we can
endure much more than we think
we can.

Frida Kahlo

In the current Chapter we summarize Papers I, II and III, which fall under
the umbrella of studying superconductivity in a single layer of FeSe deposited
on a SrTiO3 substrate (FeSe/STO).

For providing a broader overview it is useful to first introduce bulk FeSe,
which is a pristine and non-magnetic superconductor with Tc ∼ 8K [34]. At
high temperatures the system is found to be orthorombic, and it undergoes a
phase transition to a tetragonal phase at 90K [35]. At T ∼ Tc FeSe shows
nematicity, which is potentially linked to superconductivity [36], but we will
not address this aspect here in detail. It is commonly believed that spin fluc-
tuations (SFs) are mediating the Cooper pair condensate in FeSe [37], which
is motivated from experimental observation since, for example, neutron spec-
troscopy measurements revealed the existence of strong magnetic fluctuations
in a wide range of temperatures [38]. From a theoretical perspective a purely
electronic mechanism is also reasonable, since the unconventional s±-wave
superconducting gap symmetry can be argued to originate from Fermi surface
(FS) nesting properties, which in turn are intimately linked to SF theories [39].

It is further noteworthy that FeSe is close to a BCS-BEC crossover [40,41],
which means that the ratio ∆/εF approaches unity. Here, ∆ is the BCS su-
perconducting gap and εF the minimum distance between electron band ex-
tremum and Fermi level. This phenomenon has been associated to the tem-
perature evolution of the chemical potential [42,43], which was measured e.g.
in Ref. [44]. As concerns the electronic structure, we use a tight-binding de-
scription introduced in Ref. [45], which includes all five Fe-d orbitals. With
this model we obtain the prototypical FS of Fe-based superconductors [37],
which consists of hole bands at the Γ, and electron bands at the M point of the
folded Brillouin zone (BZ), compare Fig. 3.1(a).

In the monolayer case the critical temperature is drastically increased, Tc ∼
50−100K [46–48], which has created a tremendous research interest. In this
system the hole bands at Γ move below the Fermi level, leaving only the elec-
tron pockets as a heavily reduced FS area [49], see Fig. 3.1(b). This altered FS
topology implies a sensitivity to electron doping, and it has in fact been shown
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that Tc can be altered by a change in the number of charge carriers [50, 51].
The removal of hole bands at the FS has created a challenge for theorists be-
cause the ‘standard’ nesting argument in favor of the SFs mechanism is no
longer applicable. For this reason extended theories have been proposed, such
as the incipient band scenario [52], which we discuss in more detail below.
Another example is orbital selective SFs, which were primarily introduced to
explain the momentum space anisotropy of the superconducting gap on each
FS pocket [53].

Despite the theoretical and experimental indications for purely electronic
mechanisms, electron-phonon interaction (EPI) similarly plays an important
role in this system. Angle Resolved Photo Emission Spectroscopy (ARPES)
in FeSe/STO revealed the existence of a replica band around the M point of
the BZ [54,55], which can directly be associated with EPI, that involve small-
momentum (small-q) scattering. To be explicit, this means that electron bands,
which cross the Fermi level around M, are replicated below at a certain dis-
tance in energy. It has been shown that a small-q electron-phonon coupling
can indeed produce such replica bands, and additionally explain many charac-
teristics of the superconducting state [56–58].

Another important aspect worth mentioning here is the momentum depen-
dence of the superconducting gap in FeSe/STO. As of the day of writing,
no consensus has been reached on the BZ symmetry of the order parameter
[37, 59]. Even though there is broad agreement on the absence of nodes in the
BZ, some experiments suggest a sign-preserving s-wave symmetry [47,54,60],
while others are more accurately interpreted by assuming a sign change of the
gap function [61–63].

Before moving on to the results, it is worth commenting further on the
electron dispersions used in the following subsections. As mentioned before,
we use a 2D tight-binding model for bulk FeSe that was introduced in Ref.
[45]. There are two possible ways to consider the electron energies: Either the

kx/a

k y
/

a

M, Γ′

Γ, Γ′

X , M′

X ′

kx/a

k y
/

a

M, Γ′

Γ, Γ′

X , M′

X ′

(a) (b)

Figure 3.1. Fermi surface of tetragonal (a) bulk FeSe and (b) FeSe/STO. Black solid
lines represent the unfolded 1-Fe unit cell, cyan dashed lines the folded 2-Fe unit cell.
The Figure was partially taken from Paper II.
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real space unit cell contains two Fe atoms, which corresponds to a so-called
folded BZ, or only a single Fe atom is considered. In the latter case the unit cell
volume in real space is reduced, hence we obtain a larger volume in reciprocal
space, the so-called unfolded BZ. In Fig. 3.1(a) the FS is shown in the unfolded
BZ (black), while the folded BZ is sketched by cyan dashed lines, and we
explicitly write the high-symmetry points in both cases. A similar distinction
can be made for FeSe/STO, where the electron energies are taken from Ref.
[64]. Here, the tight-binding parameters of bulk FeSe have been adjusted so
as to account for the lattice distortion of the FeSe monolayer arising at the
interface to the substrate. In Fig. 3.1(b) we show the FS of FeSe/STO in the
unfolded BZ as black solid lines, and indicate the folded BZ again in dashed
cyan.

In the following we mainly discuss the superconducting state in FeSe/STO.
We first consider small-q EPI as the responsible mechanism in Section 3.1,
summarizing Paper I. In Section 3.2 we show the advances of Paper II, where
a new way of embedding the SFs mechanism in a full-bandwidth Eliashberg
theory is introduced. We benchmark this method with bulk FeSe and then
apply it to the monolayer case. Finally, we combine SFs and EPI in Section
3.3, and study the interplay of both mechanisms, which is the content of Paper
III.

3.1 Electron-phonon interactions
In Paper I we studied the effect of EPI on the superconducting state in FeSe/STO,
which was motivated from the work carried out in Ref. [58]. For this purpose
we chose band independent electron-phonon coupling elements gn,n′

q = gq, and
modeled the interaction via the small-q functional form gq = g0 exp(−a|q|/0.3)
[54]. Here, g0 = 728meV is the electron-phonon scattering strength and a
describes the lattice constant of bulk FeSe. Further, we assumed an optical
phonon mode at Ω = 81meV [54, 65], which couples to the electronic de-
grees of freedom via gq. Under these assumptions, the electron-phonon cou-
pling is given by V (eph)

q,l = 2g2
qΩ/(Ω2 +q2

l ), compare Section 2.1.1. The elec-
tron dispersion is considered in the folded BZ, corresponding to the two-Fe
unit cell. For extracting properties of the interacting state we solved the self-
consistent Eliashberg Eqs. (2.13) at different temperatures. We then performed
an analytic continuation from Matsubara space to the real-frequency axis via
Eqs. (2.23). From the results we obtained spectral properties, comparable to
outcomes of ARPES and Scanning Tunneling Spectroscopy (STS), compare
Eqs. (2.25).

As mentioned above, certain superconducting properties in FeSe/STO are
strongly doping dependent. Changes in the number of charge carriers are re-
flected in the electron filling, which is calculated via Eq. (2.14) in the interact-
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ing state. For completeness, we print the expression here again:

n = 1− 2T
L ∑

k,n,m

ξk,n−µ +χk,n,m

Θk,n,m
. (3.1)

From Eq. (3.1) we can derive a self-consistent expression for the chemical
potential, reading

µ =

[
1

2T ∑
k,n

(
tanh

ξk,n−µ(I)

2T
− tanh

ξk,n−µ

2T

)
+ ∑

k,n,|m|≤M

(
ξk,n +χk,n,m

Θk,n,m

+
ξk,n

ω2
m +[ξk,n−µ]2

)]
×

[
∑

k,n,|m|≤M

( 1
Θk,n,m

+
1

ω2
m +[ξk,n−µ]2

)]−1

,

(3.2)

which is coupled to, and solved on equal footing with Eqs. (2.13). Above, µ(I)

is an initial chemical potential shift, and M marks the boundaries of our Mat-
subara frequency grid, m ∈ [−M ,M − 1]. The word ‘initial’ refers to a low
temperature (T = 10K), at which we choose µ(I), such that both the bottom
of the electron band and the replica band at the M point appear at the cor-
rect energy in the ARPES spectrum. The advantage of coupling Eq. (3.2) to
the Eliashberg equations is that the electron filling is now kept constant self-
consistently for increasing temperatures, hence we can ensure that no flowing
charges are introduced into the system as T is changed. As a side remark, the
hyperbolic functions in Eq. (3.2) appear due to a non-interacting state approx-
imation for the frequency tails in Matsubara space, compare Section 5.3.

With the above described formalism we find a superconducting Tc ' 60K
and a maximum gap size ∆ = max∆kF ,m=0 ' 11meV, in excellent agreement
with experiment [54]. The symmetry of the order parameter is s-wave, i.e.
no sign changes of the gap function are detected on the FS. At T = 10K we
resolve the main and replica band peaks in the ARPES spectrum close to the
M point at realistic [54,66] energies−50meV and−160meV, respectively. In
Fig. 3.2(a) we show the computed temperature evolution of the ARPES spec-
trum in an interval [10,300]K. The position of the main peak, representing
the bottom of the electron band, is emphasized by the red solid line, while the
replica band position is marked in dashed orange. From our results we were
also able to discern a second replication of the main band, shown as yellow
dotted-dashed curve in Fig. 3.2(a). This second order peak is harder to detect
experimentally, but has been confirmed very recently [67]. The advantage
of resolving this signal is that the difference in energy between the first and
second order replica band must equal precisely the dominant phonon energy
scale, which in our case is Ω= 81meV. Our results further show that the effect
of T on all three peak positions should be negligible in the studied temperature
range, while thermal broadening effects are expected to produce a peak (green
dotted line) slightly above zero energy.
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The just observed temperature insensitivity holds equally for the renormal-
ized FS

(ξk,n−µ +χk,m=0)/Zk,m=0 = 0, (3.3)

which we plot in Fig. 3.2(b) for T = 10K (orange) and T = 300K (purple). No
significant change can be detected in this comparison, a result that has been
confirmed in Ref. [68].
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Figure 3.2. Self-consistently calculated results for FeSe/STO. (a) Frequency depen-
dent spectral function at the M point of the Brillouin zone, shown for different tem-
peratures. (b) Renormalized Fermi surface at 10K (orange) and 300K (purple). (c)
Temperature evolution of chemical potentials µ (blue) and µ(I) (purple). The lower
panel is a zoom into the low-T region of µ . (d) Spectral function at a specific Fermi
surface point, shown for different temperatures. The result has been symmetrized
with respect to zero energy. (e) Similar to (d), but non-symmetrized. Figure taken
from Paper I.
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From the fact that we keep the electron filling constant self-consistently
with changing temperature, we directly obtain the function µ(T ), which is
shown as blue curve in Fig. 3.2(c). In the upper panel, where a relatively large
temperature interval is considered, we observe a steady increase in µ above
Tc. As a comparison we solved the single self-consistent equation for µ(I), i.e.
the analogue of Eq. (3.2) in the non-interacting state, at each T , and show the
outcome as purple line. This temperature dependence corresponds only to the
effect of thermal broadening and shows a trend opposite to that of µ . This
means that EPI is responsible for counteracting a thermal broadening shift of
∼ −2.3meV, and producing an observable change in µ of +5.8meV. Inter-
estingly, when zooming into the region T ≤ Tc, see lower panel of Fig. 3.2(c),
we observe a hump followed by a kink at the critical temperature. This behav-
ior can be understood by the ratio ∆/εF ' 0.2−0.3, placing the system on the
BCS side of, and in close vicinity to a BCS-BEC crossover. Even though the
chemical potential shows the characteristic features for this regime [42], we
were not able to discern a non-BCS shape of Bogoliubov quasiparticle bands.
The chemical potential evolution as predicted here has not yet been measured,
but should in principle be accessible experimentally.

Next, we turn to the calculation of energy distribution curves (EDCs), as
they are found by ARPES measurements. Since the regime ω > 0eV is diffi-
cult to access in experiment, the broadly accepted procedure is to symmetrize
EDCs with respect to zero energy and plot the result at specific FS momenta
[47, 54]. Since, from a theoretical perspective, we have full access to the en-
tire frequency range, we wanted to put the validity of this procedure to test. In
Fig. 3.1(e) we show the temperature evolution of an EDC at one specific kF.
We observe two energy bands close to the Fermi level, where the left one is
isolated and the right one opens up the superconducting gap below Tc, leading
to two coherence peaks of unequal height. Since the left main band is below
the Fermi level at this kF, it is not as strongly associated with coherence of the
Bogoliubov quasiparticles, and therefore no signal occurs at ω > 0eV.

Let us now consider the same data that would be accessible experimentally,
i.e. only the range ω < 0eV. To get the full spectrum we symmetrize the
EDCs in Fig. 3.2(d), following the common practice. As a first observation,
coherence peaks are now of equal height and have a symmetric position with
respect to zero energy. Since the latter statement similarly holds for panel (e),
the peak-to-peak measurement of the superconducting gap is found to be valid.
However, we now duplicated the left peak so as to artificially produce the sig-
nal of an additional energy band at positive energies. This feature, which pre-
vails in the entire temperature range, is only an artifact from the symmetriza-
tion method, therefore one always has to be cautious about features appearing
in the inaccessible frequency range of the EDCs.

As a side remark, in Paper I we additionally proposed an explanation of
the superconducting gap anisotropy in FeSe/STO, which we did not discuss in
detail here. Our analysis showed that the BZ sampling in experiment can po-
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tentially have a significant impact on the gap magnitude’s angular distribution.
For more details we refer to the paper.

Above we have seen that a large number of experimentally observed prop-
erties of FeSe/STO can be explained by assuming a small-q EPI. Besides re-
alistic results for Tc and the gap magnitude, the replica band is found at the
correct energies. Furthermore, our predictions concerning the temperature in-
sensitivity of the FS and the second order replica band have been confirmed
after the publication of Paper I [67, 68], which strengthens the confidence in
our approach. However, due to the big controversy about the pairing mecha-
nism in this system we wanted to explore the possibility that SFs might lead to
equally convincing results in the superconducting state of FeSe/STO, and we
discuss our findings in the next section.

3.2 Spin fluctuations
In Paper II we introduced a novel method for including SFs and charge fluctua-
tions (CFs) into a full bandwidth, multiband and anisotropic Eliashberg theory
of FeSe/STO. The derivation of interaction kernels was inspired by Graser et
al. [32], which was the starting point for developing the fully self-consistent
formalism in Matsubara space. In this work we neglected any potential influ-
ence of the small-q EPI, and solely focused on the spin and charge degrees of
freedom. By doing so we wanted to examine the importance of SFs for super-
conductivity in FeSe/STO. Due to the novelty of our approach we applied it
to bulk FeSe, a system in which SFs are commonly believed to mediate super-
conductivity, as benchmark. The electron energies for both systems are from
here on considered in the unfolded BZ, compare Fig. 3.1.

3.2.1 Superconductivity in bulk FeSe
In the following we derive the interaction kernels entering the Eliashberg for-
malism, compare Eq. (2.15), and apply the theory to bulk FeSe. By diagonal-
izing the non-interacting Hamiltonian from Ref. [45] we get electron energies
ξk,n as eigenvalues, and matrix elements ap

k,n as eigenvectors for each mo-
mentum and energy band. From here the system’s bare susceptibility can be
calculated as

Im
[
X0

q (ω)
]p,q

s,t =−π ∑
n,n′,k

as
k,nap∗

k,naq
k+q,n′a

t∗
k+q,n′

×
[
nF(ξk,n)−nF(ξk+q,n′)

]
δ (ξk+q,n′−ξk,n +ω), (3.4a)

Re
[
X0

q (ω)
]p,q

s,t =
1
π

P
∫

∞

−∞

dω ′

ω ′−ω
Im
[
X0

q (ω
′)
]p,q

s,t , (3.4b)
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where nF(·) is the Fermi-Dirac function, p, q, s, t describe orbitals, and P
denotes the principal value. Due to the fact that the susceptibilities in Eq. (3.4)
are rather robust against changes in temperature, we fix T = 5K < Tc and use
X̂0

q (ω) likewise at higher temperatures. Here we use the notation X̂ to refer to
four leg tensors in orbital space, and [X ]p,qs,t to specifically address the orbital
content.

The spin and charge degrees of freedom enter our theory via the intraor-
bital onsite interaction U and the Hund’s rule coupling J. These are used to
calculate the interorbital onsite interaction V ′ = U − 3J/4− J′ and pair hop-
ping energy J′ = J/2 [32, 33, 69]. Within this formalism we write the Stoner
tensors for spin (S) and charge (C) as

[
US]a,a

a,a =U,
[
US]a,a

b,b =
J
2
,
[
US]a,b

a,b =
J
4
+V ′,

[
US]b,a

a,b = J′,[
UC]a,a

a,a =U,
[
UC]a,a

b,b = 2V ′,
[
UC]a,b

a,b =
3J
4
−V ′,

[
UC]b,a

a,b = J′. (3.5)

We use linear response theory for describing the spin and charge interactions.
Within the Random Phase Approximation (RPA) the corresponding suscepti-
bilities can be cast as

X̂S
q (ω) = X̂0

q (ω)
[
1̂−ÛSX̂0

q (ω)
]−1

, (3.6a)

X̂C
q (ω) = X̂0

q (ω)
[
1̂+ÛCX̂0

q (ω)
]−1

, (3.6b)

and carry full momentum, frequency and orbital dependencies.
To determine the possible choices for U and J we use Eq. (3.6) to define

static susceptibilities XS/C,stat
q = 1

2 ∑p,s Re
[
XS/C

q (0)
]p,p

s,s . The Stoner criterion

dictates that, for valid U and J the system satisfies the conditions XS,stat
q > 0

and XC,stat
q > 0 ∀q. Upon increasing values for the two Stoner parameters, an

instability can be detected by either XC,stat
q → 0 (charge ordering) or XS,stat

q → 0
(spin density wave). In Fig. 3.3(a) we show a U−J phase diagram with respect
to the just mentioned conditions. The blue area represents all allowed choices
of U and J, while the green and cyan regions mark divergences of the RPA
susceptibilities due to charge and spin, respectively. The yellow area is forbid-
den because both XC,stat

q and XS,stat
q violate the Stoner criterion. We emphasize

three ratios of U/J as solid purple, red and gray lines in Fig. 3.3(a), which are
examined in Paper II. Here our focus lies on J =U/2 as one example.

We want to include the interaction kernels due to SFs and CFs in an Eliash-
berg formalism. To do so, we distinguish between the kernel used to calculate
the superconductivity order parameter, label (−), and the interaction for the
dispersion renormalization functions, label (+). In real-frequency space we
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compute[
V (+)

q (ω)
]p,q

s,t
=
[3

2
USXS

q (ω)US +
1
2

UCXC
q (ω)UC

]t,q

p,s
, (3.7a)[

V (−)
q (ω)

]p,q

s,t
=
[3

2
USXS

q (ω)US +
1
2

US− 1
2

UCXC
q (ω)UC +

1
2

UC
]t,q

p,s
,

(3.7b)

which are the couplings in orbital representation. The next step is to transform
Eqs. (3.7) into band space, and afterwards apply the Kramers-Kronig relation
to obtain functions in Matsubara space:

V (±)
q,n,n′(ω) = ∑

k
∑

s,t,p,q
at∗

k,nas∗
k,n
[
V (±)

q (ω)
]
ap

k−q,n′a
q
k−q,n′ , (3.8a)

V (±)
q,l,n,n′ =

1
π

P
∫

ωcut

−ωcut

dω

ω− iql
Im
[
V (±)

q,n,n′(ω)
]
. (3.8b)

Note, that we introduce a frequency cutoff ωcut for neglecting the high-frequency
Stoner continuum appearing in the magnon spectrum, as this generally sup-
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X
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(b)

(c)

(d)

Figure 3.3. (a) Phase diagram for finding valid pairs of (U,J). The blue region rep-
resents the allowed phase space, while other regions are forbidden by the Stoner cri-
terion. Three ratios U/J, which we considered in our work, are drawn explicitly as
purple, red and gray lines. (b) Self-consistently calculated maximum superconducting
gap at zero frequency as function of U and energy cutoff ωcut, computed for T = 5K
and J = U/2. (c) Temperature dependence of the superconducting gap for J = U/2,
U = 0.827eV and ωcut as written in the legend. (d) Fermi surface projection of the
gap function, obtained for (U,J) = (0.827eV,U/2) and ωcut = 0.42eV at T = 5K.
Figure taken from Paper II.
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presses superconductivity. At this stage ωcut is a free parameter, which we
keep variable in order to find the largest critical temperatures.

Now we are in a position to solve the self-consistent set of Eliashberg equa-
tions for Zk,n,m, χk,n,m and φk,n,m, see Eq. (2.15), where the reader should be
reminded on the additional minus sign entering the mathematical expression
for φk,n,m compared to the electron-phonon case. With ∆k,n,m = φk,n,m/Zk,n,m
we show in Fig. 3.3(b) the maximum gap value at zero frequency as function
of U and ωcut, calculated at T = 5K. It is directly apparent that only a small
subset of possible choices for the Stoner parameter and frequency cutoff al-
low for superconductivity at the current temperature. As guide for the eye, we
draw the limit of U due to the Stoner criterion as vertical line.

In Fig. 3.3(c) we examine closer the temperature dependence of ∆ for two
cutoff frequencies, at which a superconducting state is possible, according to
panel (b). With interaction strength U = 0.827eV we find the largest Tc = 6K
at ωcut = 0.42eV. This result is in good agreement with the experimental value
of 8K [34]. The self-consistently obtained BZ symmetry of the order param-
eter is shown in Fig. 3.3(d), where we project the zero-frequency component
of the gap function onto the FS (T = 5K, ωcut = 0.42eV). We observe a sign
change between electron and hole pockets, and an additional small asymme-
try, giving rise to a s±+ s-wave gap, compatible with experiment [70]. This
momentum space structure is expected from FS nesting, which gives rises to
a dominant repulsive interaction at q = (0,π) in the equation for the order pa-
rameter. Lastly, our computed maximum gap magnitude of 1.4meV deviates
only slightly from the experimentally observed 1.67meV [70, 71].

From the benchmark results presented above we conclude that the applied
method to include SFs and CFs in an Eliashberg framework is reliable and
leads to realistic results in comparison to experiment. Besides the reasonable
values for the superconducting Tc and maximum gap size, we also find the cor-
rect BZ symmetry of the order parameter. Next, we apply the here introduced
formalism to FeSe/STO.

3.2.2 Spin fluctuations in FeSe/STO
For the monolayer case we use the same approach as described in Section
3.2.1 and employ the electron dispersion shown in Fig. 3.1(b), i.e. the FS now
consists only of electron pockets while the hole bands were shifted down in
energy. The nesting wave vector in the unfolded BZ is given by q = (π,π).
Therefore, it is expected that the most coherent and dominant contributions in
static and dynamic susceptibilities can be found around this exchange wave
vector, which is confirmed by our data. The coupling between electron and
hole bands is less prominent due to the fact that the latter lie substantially
below the Fermi level. This situation describes the incipient band coupling
scenario introduced in Ref. [52], and we will further comment on it later. The
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RPA susceptibilities in Eqs. (3.6) are calculated at T = 5K and we find the
available phase space for U and J from the Stoner criterion, as was done in
connection to Fig. 3.3(a). As it turns out, the shape of the allowed parameter
region is rather similar to the case of bulk FeSe, with the difference that the
scales on both U and J axes are slightly larger. In the following we examine
the choices J =U/10, J =U/6 and J =U/2 closer (J ≤U/2 [53, 72]).

To find the optimal parameters for a large critical temperature we explore
the phase space spanned by U and ωcut in Fig. 3.4(a-c), where each panel
corresponds to a different U/J ratio. The plotted maximum superconducting
gap is obtained by solving the full Eliashberg equations for SFs and CFs for
each parameter set. We observe that an increase in Hund’s rule coupling J
leads to a smaller phase space that allows for superconductivity (at T = 5K),
while the gap magnitudes increase. The inset of panel (a) shows the evolution
of ∆ as U approaches the Stoner instability, for two cutoff frequencies. From
this we learn that the gap magnitude does not arbitrarily increase close to the
instability, even though the maximum coupling values have no upper bound.
We will come back to this aspect later in more detail.

For U = 1.5802eV and J = U/10, we project the zero frequency super-
conducting gap onto the renormalized FS in Fig. 3.4(d) and find a sign change
between the electron pockets, giving rise to a nodeless d-wave symmetry. The
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Figure 3.4. (a), (b), (c) Maximum superconducting gap at T = 5K. (a) J =U/10, the
inset shows the gap as function of U for two cutoff frequencies. (b) J =U/6. (c) J =
U/2. (d) Fermi surface projection of the superconducting gap, calculated at T = 5K,
J = U/10, U = 1.5802eV and ωcut = 0.45eV. (e), (f) Temperature dependence of
the superconducting gap for cutoff frequencies as written in the legends. (e) (U,J) =
(1.5802eV,U/10). (f) (U,J) = (1.16eV,U/2). Figure taken from Paper II.
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same result is found for all the parameter space explored in Paper II, and it
is compatible with some (but not all) experiments [61–63]. However, the
superconducting gap magnitude is clearly too small compared to the well es-
tablished picture in FeSe/STO [73, 74]. A similar conclusion emerges in con-
nection to the superconducting critical temperature, which we determine in
Fig. 3.4(e) and (f) for J = U/10 and J = U/2, respectively, for different fre-
quency cutoffs. The choices for ωcut are motivated from the phase space ex-
ploration in Fig. 3.4(a) and (c), so as to maximize the respective Tc. For param-
eters considered here, the critical temperatures do not exceed 10.6K, which is
too small to account for the record values of Tc in FeSe/STO [48, 54, 75].

As apparent from the above results, directly applying our Eliashberg for-
malism to FeSe/STO with pairing due to SFs and CFs does not lead to the cor-
rect characteristics of the superconducting state. To exclude the possibility that
this is only due to details of our input electron dispersions, we studied different
variations of ξk,n. One possible critique on the tight-binding model employed
here, compare Fig. 3.1(b), is that the FS pockets are too small in comparison
to experiment. Therefore we repeated the entire analysis for a rigidly shifted
energy dispersion, denoted by ξk,n−µ in Paper II. A second potential inaccu-
racy of our tight-binding model is the distance in energy between electron and
hole bands, which does not precisely match experiment [54]. For this reason
we constructed energies ξk,n−δ µ , which is obtained from the original ξk,n by
shifting only the hole bands closer to the Fermi level via a non-rigid shift δ µ .
In this case one needs to be careful to recalculate the matrix elements.

Testing these two dispersions ξk,n− µ and ξk,n− δ µ leads to larger and
smaller regions, respectively, in U-ωcut-space, that allow for superconductiv-
ity at 5K, while the gap magnitude is increased in both cases. For the rigidly
shifted energies we find a maximum Tc ∼ 8.3K, which is a decrease com-
pared to the above reported 10.6K. This can be explained by the fact that
the coupling between electron and hole bands is significantly reduced, as the
hole bands are shifted to energies far below the Fermi level. This aspect is
addressed further below. A slight increase in Tc ∼ 11.4K is observed for the
input ξk,n− δ µ , which is due to an enhancement of incipient band coupling.
However, for both modifications of the electron dispersions the critical tem-
peratures are still incompatible with experiment.

We also wanted to check more explicitly the influence of incipient band
pairing on the critical temperatures, as this was proposed as main mechanism
for driving the high-temperature superconductivity in FeSe/STO [52]. For this
purpose we took the original dispersion ξk,n, calculated the RPA susceptibil-
ities and spin/charge fluctuation kernels, and neglected all hole bands on the
level of Matsubara frequency dependent interactions, see Eq. (3.8). For two
cutoffs ωcut = 0.21eV (blue) and ωcut = 0.45eV (red) we show the resulting
temperature dependence of the maximum superconducting gap in Fig. 3.5 as
solid lines. As a reference we show as dashed lines the results corresponding
to the full dispersions (including the hole bands). For both examples of ωcut
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Figure 3.5. Temperature dependence of the maximum superconducting gap, calcu-
lated for J = U/10 and U = 1.5802eV. Blue and red curves correspond to cutoffs
ωcut = 0.21eV and ωcut = 0.45eV, respectively. Dashed lines are obtained by using
the full electron dispersion, while solid curves represent results for dispersion ξ ′k,n,
where the hole bands are neglected. Figure taken from Paper II.

we find that around 85% of the magnitude of Tc is due to the electron bands
only. Together with the above findings for ξk,n−δ µ we conclude that the role
of incipient band pairing in FeSe/STO is rather minor and cannot account for
the high critical temperature.

Before ending this subsection it is worth discussing the limiting behavior
of the maximum gap size when U →Ucrit, i.e. when we consider the system
close to the Stoner instability. From numerical fits to our data we found that
the effective interaction strength at exchange wave vector q = (π,π) scales
approximately like

V ∼ U2

Ucrit−U
. (3.9)

Considering the mass renormalization and superconducting order parameter
on the FS under various simplifications, such as treating the effective interac-
tion entering the Eliashberg equations as delta-peak, we arrive at approximate
scaling laws for Z and gap function ∆:

ZkF ∼
1
2
+

√
1
4
+

V
π2T

, (3.10a)

∆kF ∼
√

TV
Z2

kF

−π2T 2. (3.10b)

We test the validity of Eqs. (3.10) in Fig. 3.6, where we show our data (solid
red) and the fitting functions (dotted blue) for ZkF and ∆kF in panels (a) and
(b), respectively, at T = 5K, J =U/10 and ωcut = 0.45eV for U close to the
instability.

The proposed scalings match our data to very good degree, increasingly so
as U →Ucrit. We find that the mass renormalization diverges as the system
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(a) (b)

Figure 3.6. Using T = 5K, J =U/10 and ωcut = 0.45eV, we show in (a) and (b) the
maximum values of the mass renormalization and superconducting gap, respectively,
as function of U . Figure taken from Paper II.

develops a spin density wave instability. The same holds true for the supercon-
ductivity order parameter φ (not shown). However, since the gap function is
given as ratio between Z and φ , ∆ stays finite regardless of how closely U ap-
proaches its maximum value. This means that there exists an upper bound for
the gap magnitude, which is approximately given by maxU ∆kF = 3.585meV
for the chosen set of parameters. Such a constraint on the pairing strength can
not be found in BCS theory, where arbitrarily large values of ∆ can be con-
structed (see Paper II), and it puts also an upper limit on the possible influence
of SFs on the Cooper pairing strength in this system.

3.3 Multichannel superconductivity
After the advances of Paper I and II the next logical step was to combine the
two approaches into a multichannel Eliashberg theory of FeSe/STO, i.e. into
a formalism that treats electron-phonon and spin/charge interactions on equal
footing. To achieve this we consider the Eliashberg Eqs. (2.13) which we solve
here with the interaction kernels

K(±)
q,l,n,n′ =V (eph)

q,l,n,n′±V (±)
q,l,n,n′ . (3.11)

In the equations for electron energy renormalizations Zk,n,m and χk,n,m we
use K(+)

q,l,n,n′ , while the superconductivity order parameter depends on K(−)
q,l,n,n′ ,

which is due to the fact that the electronic interactions enter the equation for
φk,n,m in a repulsive way. In Eq. (3.11) V (eph)

q,l,n,n′ is the small-q EPI introduced in
Section 3.1, which scales like the scattering strength g0 and is approximated
as band-independent. On the other hand, V (±)

q,l,n,n′ describes the coupling due to
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SFs and CFs as explained in Section 3.2, where we fix J = U/21 so that the
interaction strength can be controlled solely by U .

We first solve the multichannel Eliashberg equations at T = 5K as function
of g0 and U . The self-consistent results for ∆ = maxk,n∆k,n,m=0 are shown
in Fig. 3.7(a). The inset of this panel contains the BZ dependence of the su-
perconducting gap, giving rise to a nodeless d-wave symmetry, which is the
same as found for all the parameter space except U = 0 (compare Section
3.1). While the gap magnitude is rather insensitive to changes in U , we ob-
serve an increase of ∆ with g0. In the following we choose a reference value
of ∆ ' 12meV, represented by the dashed red line, which is compatible with
experiment [47, 54] and provides us with different (U,g0) pairs for closer ex-
amination.

In Fig. 3.7(b) we show the temperature dependence of ∆ for various choices
of U (see legend) and the corresponding scattering strengths, such that we
move on the red dashed line in panel (a). For a small to moderate influence of
SFs we find a critical temperature slightly above 60K, while Tc is decreased
upon growing U . The observed suppression of superconductivity stems from a
competition between small-q EPI and intra-pocket contributions to the SF ker-
nel peaked around q = (0,0), which enter the equation for φ (or equivalently
∆) with opposite signs.

To check which parameters give the most accurate results in comparison to
experiment, we plot the ratio ∆/kBTc as function of U in Fig. 3.7(c) as open
blue circles, where the values of g0 have been chosen according to the red

1This choice was made for obtaining the largest possible influence due to SFs, according to the
analysis in Paper II.

(a) (b)

(c)

Figure 3.7. (a) Maximum superconducting gap at T = 5K as function of U and g0.
(b) Temperature dependence of ∆ for different values of U as indicated in the legend.
(c) Gap to Tc ratio as function of U . Open circles represent our computed results, the
solid line is a numerical fit. The red area represents values for ∆/kBTc compatible with
experiment [73, 75]. Figure taken from Paper III.
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dashed line of Fig. 3.7(a). The red area marks acceptable results for ∆/kBTc
compared to Refs. [73, 75]. We see that relatively low values of U place our
results into the correct range, while ∆/kBTc grows too large as we approach
the Stoner instability. We can therefore conclude that potential influences of
SFs and CFs in FeSe/STO are limited, which means that the electron-phonon
mechanism is mainly responsible for the high critical temperature and gap
magnitude. According to our results and in agreement to recent measure-
ments [61–63], the most plausible BZ symmetry of the superconducting order
parameter is nodeless d-wave, which has its origin in the repulsive SFs inter-
action, peaked at q = (π,π).

It is noteworthy that, briefly after the publication of Paper III, Rademaker
et al. took on similar calculations for FeSe/STO, treating the electron-phonon
and SFs mechanisms on the same footing [76]. Their approach differed from
ours in that the spin and charge susceptibilities were updated self-consistently,
which is known as Fluctuation Exchange formalism, or FLEX. However, due
to the higher computational costs compromises had to be made for the number
of orbitals kept. In their approach several different gap symmetries are possi-
ble, depending on the parameter choices [76], and the true outcome will have
to be determined in future theoretical and experimental investigations.

To summarize our results of the current Chapter, we described the advances
of Papers I, II and III, in which we applied full-bandwidth Eliashberg theory to
explain the superconducting state of FeSe/STO. When imposing small-q EPI
in Paper I, it is possible to obtain correct values for Tc and the superconducting
s-wave gap magnitude. Further, we calculated the temperature dependence of
ARPES spectra, the global chemical potential and the renormalized FS, all in
good agreement to experiment. The predicted second order replica band has
since been experimentally confirmed [67]. As a side remark, the electron-
phonon mechanism also leads to accurate tunneling spectra [58].

Considering only SFs and CFs as possible mediators of superconductiv-
ity leads to a severe underestimation of the gap magnitude and Tc, compared
to experiment. From the results of Paper II we cannot deduce whether such
bosons might also lead to the observed replica bands. To test this aspect, one
would need to derive a self-consistent analytic continuation procedure similar
to the electron-phonon case. Our calculations lead to a nodeless d-wave gap
symmetry, and we further were able to exclude the incipient band scenario
as a driving force for high-temperature superconductivity in this system. In
Paper III we combined the two earlier approaches in a multichannel Eliash-
berg framework. Our results confirmed the earlier observations, in that the
electron-phonon mechanism is responsible for the large Tc. From our analysis
we learn that SFs suppress superconductivity in this system and generally play
a subdominant role. However, the d-wave symmetry of the order parameter
is a signature of such interactions. Looking ahead to Part II of this thesis, it
deserves to be mentioned that vertex-corrected Eliashberg theory of electron-
phonon interaction can similarly lead to unconventional gap symmetries.
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4. Twisted bilayer graphene

If we know exactly where we’re
going, exactly how to get there,
and exactly what we’ll see along
the way, we won’t learn anything.

M. Scott Peck

In the current Chapter we summarize Papers IV and V, in which we studied
the interacting state of Twisted Bilayer Graphene (TBG). In this system two
single layers of graphene are rotated with respect to each other by an angle
Θ, which produces a Moiré pattern in real space, shown in Fig. 4.1(a). To
capture the symmetry of this system requires to consider large unit cells (in
comparison to the system without any twist), leading to a so-called mini-BZ
in reciprocal space, which we assume from here on. At a certain ‘magic an-
gle’, Θ ∼ 1.1◦, there are two flat bands emerging in the electronic spectrum
close to the Fermi level, giving rise to van Hove singularities and a heavily in-
creased magnitude of the electronic Density of States (DOS) [77,78]. In 2018
the group of Jarillo-Herrero discovered that TBG becomes superconducting
at the magic angle, with a transition temperature of Tc ' 1.7K [79]. Super-
conductivity in this system is strongly dependent on the electron filling, and
by changing the charge carrier density TBG can be turned into a Mott insula-
tor [80]. These findings have triggered an enormous research interest in TBG,
leading to many extensive studies thereafter [81–85].

In our work we discussed the role of electron-phonon interaction (EPI) in
flat band systems, and in particular in TBG, using full-bandwidth multiband
Eliashberg theory. The superconducting state of this system is the main subject
of Paper IV, which we summarize in Section 4.1. Afterwards we present in
Section 4.2 a cascade of replica bands generically occurring when the phonon
energy scale is much greater than that of the electrons, such as it is the case
for TBG. These are the findings of Paper V.

From here on we use a ten band tight-binding model for the electron ener-
gies, which was introduced in Ref. [87] and qualitatively agrees with charac-
teristics of the continuum model [77,88,89] and ab initio calculations [90,91].
The energy dispersions along high-symmetry lines of the Brillouin zone (BZ)
are shown in Fig. 4.1(b). Panel (c) of the same figure is an enlarged view of the
two flat bands close to the Fermi level. As clearly seen from Fig. 4.1(d), the
respective DOS peaks at chemical potentials µe and µh, which are indicated
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Figure 4.1. (a) Schematic of two monolayers of graphene with a relative twist Θ,
taken from Ref. [86]. (b) Ten band electron dispersion reconstructed from Ref. [87]
with Θ = 1.05◦. (c) Magnification of the two flat bands in panel (b) close to the Fermi
level. (d) Density of states of the two flat bands. (b),(c),(d) taken from Paper IV.

as dashed horizontal lines. By comparison to panel (c) we learn that the DOS
reaches its maximum values where the two bands are also locally flat (between
−K and −M, M and K, Γ and M).

We assume here an interlayer phonon mode of Ω = 11meV [92, 93] that
couples isotropically to the electron degrees of freedom, gq = g0. It is note-
worthy that the two flat bands extend over an energy interval of approximately
7meV, and therefore Ω is the dominant energy scale of the system. In both
Sections we solved the full bandwidth Eliashberg equations self-consistently
in Matsubara space and analtyically continued the results to real frequencies,
see Eqs. (2.13) and (2.23). If not further specified we used these outcomes for
computing the optical spectra comparable to Angular Resolved Photoemission
Spectroscopy (ARPES) and Scanning Tunneling Spectroscopy (STS).

4.1 Superconductivity from electron-phonon interaction
In the project that led to Paper IV we studied the effect of isotropic EPI in
the superconducting state of TBG, using the ten band tight-binding model
shown in Fig. 4.1. As mentioned above, flat band systems are unusual su-
perconductors in that the phonon energy scale dominates over the electronic
degrees of freedom, i.e. Ω is larger than the electron bandwidth. Such prereq-
uisites requires to go beyond standard approximations of BCS theory, where
only a narrow window around the Fermi level is taken into account. Even
though some authors have suggested the importance of EPI in TBG before our
work [86, 92, 94], a solution to full-bandwidth Eliashberg equations had not
been attempted.

Superconductivity in TBG was originally discovered only for negative val-
ues of the electron density [79], but later studies found a finite Tc for both hole
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and electron doping [81, 95], see Fig. 4.2(a). For this reason we performed a
phase space exploration as function of temperature and over a wide range of
electron fillings, using an isotropic electron-phonon scattering strength g0 =
1.5meV. As for ξn(k) we kept only the two bands close to the Fermi level,
but carefully checked that our conclusions do not change when more states are
considered. Our results for the gap edge ∆(0) ' maxk∆(k,ωm=0), which we
obtained by solving the self-consistent Eqs. (2.13) for each parameter set, are
shown in Fig. 4.2(b). There are two domes emerging, with maximum values
of ∆(0) at n(h) and n(e), corresponding to the chemical potentials mentioned
earlier in connection to Fig. 4.1(d). The electron filling n(0) is obtained when
the chemical potential is chosen as µ = 0eV.

There are several important aspects that we learn from Fig. 4.2(b). First,
the two domes are not symmetric which stems from the particle-hole asym-
metry of the tight-binding model, compare panels (c) and (d) in Fig. 4.1, and
coincides with experimental observations. Second, we find superconductivity
almost throughout the entire range of electron densities considered here, which
is in contrast to Fig. 4.2(a). However, this result is easily explained by the fact
that our Eliashberg formalism does not include strongly correlated physics,
such as to account for the Mott insulating states. Third, the maximum values
for Tc ∼ 1K have the correct order of magnitude when compared to experi-
ment [79, 81]. More importantly even, the critical temperature is maximized
at chemical potentials µ(e) and µ(h), which correspond to the aforementioned
locally constant energies of the upper and lower flat bands, respectively, at
which the DOS peaks.

The full-bandwidth Eliashberg formalism employed in Paper IV allows us
to examine the distribution of the superconducting gap along the energy axis.
To do so we map the self-consistent solutions for Z(ω), χ(ω) and φ(ω) to
Z[ξ̃n(k)], χ[ξ̃n(k)] and φ [ξ̃n(k)], respectively. In Fig. 4.2(c) we show the pro-
jection of the superconducting gap (as usual, ∆ = φ/Z) for electron filling
n = n(e) onto the renormalized band structure, which is given by

ξ̃n(k) =
ξn(k)−µ +χ[ξ̃n(k)]

Z[ξ̃n(k)]
. (4.1)

Remarkably, the largest magnitude of ∆ is found farthest away from the Fermi
level, both below and above zero energy. Additionally, the pairing amplitude
is positive throughout the entire electron bandwidth, which is different from
the more common situation of dominating electron over phonon energy scales
[96].

Before moving to the results of Paper V, it is worth mentioning another con-
sequence of including the entire bandwidth in our theory. As is well known,
superconductivity leads to a Meissner effect that is characterized by a finite
superfluid weight Ds [97]. BCS theory for flat band systems predicts, how-
ever, a vanishing superfluid density in the superconducting state. A solution
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Figure 4.2. (a) Electrical resistance as function of charge carrier density in TBG,
shown for various temperatures as written in the legend. Graph taken from Ref. [81].
(b) Self-consistently calculated temperature and electron filling dependent maximum
superconducting gap. (c) Projection of the superconducting gap function onto the
renormalized electron band structure. (b),(c) were taken from Paper IV.

to this problem has been proposed in Ref. [98], where additional geometrical
contributions lead to a finite Ds. The results of our self-consistent calcula-
tions allow us to offer an alternative solution to this problem: Indeed, when
confining the electron energies to a narrow window around the Fermi level,
we find very small values for the superfluid density. However, as this energy
window increases up to the electron bandwidth, Ds clearly becomes non-zero,
therefore naturally leading to a conventional Meissner effect. In other words,
due to our interpretation the vanishing superfluid density in flat band systems
is only an artifact of BCS theory, and can be resolved by including a larger
energy range in the formalism.

To conclude, in Paper IV we studied the superconducting state of TBG
using full-bandwidth Eliashberg theory for an optical phonon mode that is
isotropically coupled to the electron energies. In agreement to experiment
we find two asymmetric superconducting domes as function of the electron
density, leading to realistic values for Tc. We further predicted various STS
features, which should be experimentally accessible. Finally, we showed that
full bandwidth Eliashberg calculations lead to prominent Cooper pairing away
from the Fermi level and naturally give rise to a finite superfluid density, hence
ensuring a robust Meissner effect.
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4.2 Replica bands
In Paper V we discussed the formation of replica bands due to EPI in flat
bands systems, and in particular in TBG. To introduce this effect we use a
nearest neighbor tight-binding description ξ (k) =−2t[cos(kx)+ cos(ky)]−µ

as model system for the electron energies. With hopping energy t = 0.425meV
and chemical potential µ =−1meV we obtain an electron bandwidth of W =
3.4meV. In accordance to TBG discussed in the previous Section 4.1, we
choose an optical phonon frequency of Ω = 11meV, which is therefore the
dominant energy scale, Ω>W . With these parameters and an isotropic electron-
phonon coupling strength g0 = 2meV, we solved the Eliashberg equations in
Matsubara space at T > Tc, analytically continued the results to the real fre-
quency axis and calculated the spectral function via Eq. (2.25a) with a smear-
ing of δ = 0.01meV.

The frequency and momentum dependent outcome A(k,ω) is shown in
Fig. 4.3(a). The main energy band creates the signal close to zero frequency,
while all the remaining features are naturally occurring from our self-consistent
calculations. A closer inspection reveals that these features are replications of
the original band and approximately occur at multiples of the phonon fre-
quency. By summing the spectral function over the momentum degree of free-
dom we find the differential conductance shown as solid blue line in Fig. 4.3(b).
Here we neglect the frequency range |ω| ≤W/2 for better visibility of the
quasiparticle features. From this result it is apparent that the replica bands
generate clear signals not only in the ARPES, but also the STS spectrum.

To better understand the origin of the observed additional quasiparticle
bands, we can rewrite the spectral function as

An(k,ω) =
1
π

Im
{

1
Z(ω)

1

ω + iδ − ξ̃n(k,ω)

}
, (4.2)

where we inserted the explicit form of the electron Green’s function into Eq.
(2.25a), defined ξ̃n(k,ω) = (ξn(k)+ χ(ω))/Z(ω), and took into account that

(a) (b)

Figure 4.3. (a) Frequency dependent spectral function for our flat-band model disper-
sion, obtained at T > Tc, plotted along high-symmetry lines of the BZ. (b) Tunneling
spectrum corresponding to panel (a), calculated from different levels of approximation
as written in the legend. Figure taken from Paper V.
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φ(ω) = 0 due to T > Tc. To make further progress it is useful to divide the
frequency axis into ranges |ω| ≤W/2 and |ω|>W/2, which are treated sep-
arately in the following. It is well known that within the electron bandwidth,
|ω| ≤W/2, the ARPES spectrum can be reconstructed via a collection of co-
herent excitations, characterized by

A(1)
n (k, |ω| ≤W/2)' 1

Z′(ω)
δ (ω− ξ̃

′
n(k,ω)). (4.3)

The result of Eq. (4.3) is the quasiparticle band at the Fermi level in Fig. 4.3(a),
and is not shown in panel (b) of the same figure (gray area).

For frequencies outside the electron bandwidth we can express the spectral
function as

A(2)
n (k, |ω|>W/2) =

1
π

ωZ′′(ω)−χ ′′(ω)

|ωZ(ω)− [ξn(k)+χ(ω)]|2
, (4.4)

where we use the notation f ′ = Re( f ) and f ′′ = Im( f ) for any function f . To
show that Eq. (4.4) indeed reproduces our full results, we show the momentum
average of A(2)

n (k,ω) as red dotted curve in Fig. 4.3(b), which falls precisely
on top of the blue line. It turns out that the essential prerequisite for creating
the replica bands is the mass renormalization function. This can be seen by
writing the spectral function at |ω|>W/2 as

A(2)
n (k, |ω|>W/2)' 1

πω

Z′′(ω)

|Z(ω)|2
, (4.5)

which is found from Eq. (4.4) by neglecting the electron dispersion and the
chemical potential. As can be seen from the solid yellow line in Fig. 4.3(b),
Eq. (4.5) leads to accurate peak positions in the differential conductance, while
the height of each signal is slightly deviating from the full result. Therefore we
can safely conclude that the mass renormalization function is responsible for
mediating the replica bands in our toy model system, while the correct spectral
weights are found upon inclusion of the chemical potential renormalization.

Next, we test the formation of replica bands in a more realistic system,
namely TBG. As seen from Fig. 4.1 and the discussion of Section 4.1, TBG
shares several characteristics with our model system, because the phonon fre-
quency (Ω = 11meV) exceeds the electron bandwidth of the two flat bands
(W = 7meV). Further, there is a large energy gap of more than 20meV
between the two flat bands and the neighboring occupied and unoccupied
states, which opens the possibility of detecting replica bands that are not su-
perimposed on the rest of the energy dispersions. To test this hypothesis we
set g0 = 1.6meV and perform similar calculations as above, at temperature
T = 1.6K > Tc.

To observe whether replica bands can form in TBG we first consider the
results for the differential conductance in Fig. 4.4(a), which were obtained by
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considering only the two flat bands. The three different colors correspond to
electron fillings as described in connection to Fig. 4.1(d). The gray dashed
lines indicate multiples of the optical phonon frequency Ω, and we do indeed
find the expected cascade of replica bands at positive and negative frequencies.
The gray shaded area corresponds to the bandwidth of the flat bands, and we
show the results for this frequency range in panel (b). We see that chemical
potential shifts on the energy scale of the current electron energies do not affect
the position pΩ (p ∈ Z\{0}) of the replica band signals, which is due to the
fact that Ω >W .

(a)

(b)

(c)

(d)

Figure 4.4. (a) Differential conductance in TBG for three different electron fillings
(vertically shifted), calculated at T = 1.6K. (b) Magnified view of dI/dV on the
energy scale of the two flat bands. (c),(d) same as (a),(b), but calculated from the four
band electron dispersion. Figure taken from Paper V.

Having witnessed that replica bands can exist in TBG, we wanted to check
if the inclusion of other energy bands would distort the signals. To do so we
considered two additional bands, one occupied and one unoccupied, that are
closest to the two flat bands. This dispersion has a bandwidth of W = 127meV,
hence W > Ω. However, the phonon frequency still dominates over the energy
scale of the flat bands. Our results for dI/dV are shown in Fig. 4.2(c) where
we chose again the three characteristic values for the electron filling. A zoom
of the small frequency region is drawn in panel (d). The non-flat bands are
located at approximately ±20meV, and their signals are superimposed with
the replica peaks. Nevertheless, at both positive and negative energies we
can resolve the replica bands at p =±1,±2,±3 and therefore can confidently
predict their detection in tunneling experiments.

We carefully checked that the replica bands are robust with respect to the
superconducting state. Further, we performed a variation in the phonon fre-
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quency for the model system, and found that the distance between neighbor-
ing peaks is adjusted accordingly, which rigorously proves that Ω dictates the
replica band positions. When sufficiently decreasing the phonon frequency,
the replica bands disappear as soon as the electron bandwidth becomes the
dominant energy scale. Finally, we want to mention that flat band systems
(and superconductors) are not compliant to the common understanding of the
interacting state in various ways. For example, the mass renormalization be-
comes negative over extended energy intervals, which is a behavior that pre-
viously has only been reported to exist in the strong coupling limit [99]. The
neglect of vertex corrections here may seem unjustified because the phonon
energy scale is dominant. However, we explicitly calculated an estimate for
the magnitude of second-order electron-phonon scattering contributions, and
found that these are indeed negligible.

In summary, Paper V shows that in flat band systems, such as TBG, replica
bands form at multiples of the phonon frequency and should be observable in
tunneling and ARPES measurements. The detection of these signals is poten-
tially challenging because they represent non-coherent excitations, leading to
smaller spectral weight and therefore lower intensity in experiment. We ana-
lyzed in detail how the replica bands are created and showed that the signals
are robust against temperature. When additional non-flat bands are included
in the calculation we find a superposition with replica bands, therefore a suf-
ficient energy gap is advantageous to isolate the signals. Even though we
considered TBG here as an example, our results are generically applicable to
all flat band systems.
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5. Additional examples

I don’t know where I’m going, but
I’m on my way

Carl Sandburg

Here we present additional examples and important aspects in connection to
the Eliashberg formalism. In Sections 5.1 and 5.2 we touch upon the topic of
high-pressure superconductivity in hydrides, specifically atomic metallic hy-
drogen (Paper VI) and LaH10 (Paper VII). After this we summarize Paper VIII
in Section 5.3, introducing an analytic tail scheme (AT-scheme) that reduces
the large computational load of Eliashberg theory calculations by significantly
decreasing the required number of Matsubara frequencies. We end the current
Chapter by discussing phonon renormalization in Eliashberg theory in Sec-
tion 5.4. Therein, summarizing Paper IX, we examine possible effects that
can occur when the first Feynman diagram for the phonon self-energy is self-
consistently included in the calculations.

5.1 Atomic hydrogen
Hydrogen rich compounds currently are the record holders for the highest su-
perconducting transition temperatures. The most severe drawback in this fam-
ily of superconductors is the need of applying extraordinarily high pressures
to induce the Cooper pair formation, which so far hinders the broad technolog-
ical usability. Prominent examples of the hydrides are LaH10 (Tc = 250K at
170GPa) [18, 100, 101], YH6 (Tc = 220K at 166−237GPa) [102, 103] and a
recently discovered carbanaceous sulfur hydride (Tc = 287K at 267GPa) [19].
Further, it is widely accepted in the scientific community that electron-phonon
interactions are the main mechanism at play in hydrides for mediating these
high transition temperatures. In Paper VI we focused on the most basic mem-
ber of the hydrides, namely atomic hydrogen under large pressures. Wigner
and Huntington proposed that sufficient pressure on atomic hydrogen leads
to a metallic phase [104] and there has been some experimental support of
this hypothesis, for pressures from 250 to 495GPa [105–107]. The possibil-
ity of high-temperature superconductivity in atomic metallic hydrogen was
first mentioned by Ashcroft [108], and has since been studied on the level of
McMillan and Allen-Dynes equations [109, 110], and within isotropic Eliash-
berg theory [111]. Here we study the I41/amd phase of atomic hydrogen at
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400GPa pressure using anisotropic Eliashberg theory with ab initio input. We
examine the anisotropy of the superconducting state and the phonon mode
specific contributions to the critical temperature.

In Paper VI the electron-phonon coupling elements λq,ν (ν : phonon branch),
electron energies ξk,n and phonon frequencies ωq,ν were obtained from Den-
sity Functional Theory calculations. We use these functions as direct input to
our anisotropic Eliashberg formalism. The dynamical electron-phonon cou-
plings, needed for solving the self-consistent Eqs. (2.29) for the mass renor-
malization Zk,m and gap function ∆k,m, are computed via

λq,l = ∑
ν

λq,ν
ω2

q,ν

ω2
q,ν +q2

l
. (5.1)

Since the Coulomb pseudopotential is a priori not known, we solve the self-
consistent equations for a wide range of µ? and T .

The results for the maximum superconducting gap ∆ = maxk∆k,m=0 are
shown in Fig. 5.1(a). The transition temperatures are indicated as red solid
line, and we added the corresponding Tc values found from the Allen-Dynes
equation [8] in dashed black. We observe that room-temperature supercon-
ductivity in metallic hydrogen is possible for µ? . 0.14, which is not very
restrictive with respect to the pair-breaking Coulomb pseudopotential (usually
µ? ∼ 0.1). Further we learn that the modified McMillan equation underesti-
mates Tc by a substantial amount, which we associated with the fact that this
equation was originally constructed for weak-coupling superconductors, while
here λ = 2.32.

Another important aspect for the above-mentioned underestimation of Tc is
momentum space anisotropy, which is included in our formalism but not in
the modified McMillan equation. To disentangle the effects of anisotropy and
strong coupling superconductivity, we additionally solved the isotropic Eliash-
berg equations for the same inputs as above. The results for all three levels of
approximation are given in Table 5.1. From this we learn that neglecting the
momentum space anisotropy reduces Tc by approximately 5%, while an addi-
tional (and severe) decrease of 20% is found for the semi-empirical McMillan
formalism.

Table 5.1. Transition temperatures of atomic metallic hydrogen at 400 GPa, calcu-
lated by using the modified McMillan equation, isotropic and anisotropic Eliashberg
theory. Table taken from Paper VI.

Tc(µ
? = 0.1) Tc(µ

? = 0.2)

Modified McMillan 228K 183K
Isotropic Eliashberg 306K 250K

Anisotropic Eliashberg 321K 260K
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(a) (b)

Figure 5.1. (a) Self-consistently calculated maximum superconducting gap as function
of temperature and Coulomb pseudopotential. (b) Phonon mode specific contributions
to the Eliashberg function. The inset shows how the global coupling strength λ de-
pends on each irreducible representation. The Figure was reconstructed from Paper
VI.

The theory employed in Paper VI allowed us to study in detail how different
phonon modes influence the superconducting properties of the system. More
specifically, there are four irreducible phonon mode representations in metallic
atomic hydrogen, namely B1g (one mode), Eg (two modes), A2u (one mode)
and Eu (two modes). In Fig. 5.1(b) we show the mode resolved contributions
to the Eliashberg function, which is given by

α
2F(ω) =

1
2πN0

∑
q,ν

δ (ω−ωq,ν)
γq,ν

ωq,ν
. (5.2)

In Eq. (5.2), γq,ν describes the quasiparticle lifetimes, which are obtained from
our ab initio calculations. By choosing the branch indices of the lifetimes and
frequencies in Eq. (5.2) according to the specific irreducible representation we
are interested in, α2F(ω) can similarly be associated to the respective phonon
modes. From Fig. 5.1(b) it is directly apparent that all modes occupy only
confined frequency regions that partially overlap.

Using these results for the Eliashberg function allows us to estimate phonon
mode dependent electron-phonon couplings by using the relation

λ = 2
∫

∞

0

α2F(ω)

ω
dω. (5.3)

The results are shown as inset in Fig. 5.1(b). The largest contribution to the
global λ has its origin in the B1g mode, while the smallest part stems from A2u
branches. However, it turns out that it is in fact the Eu representation (i.e. not
B1g) that has the largest impact on the superconducting transition temperature.
We performed an additional set of Eliashberg calculations, where we selec-
tively left out one particular irreducible representation at a time, and report
the resulting Tc’s in Table 5.2. For both values of µ? considered, by far the
largest decrease in Tc is found when neglecting the Eu modes. In contrast, the
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Table 5.2. Reduction in the transition temperatures of atomic metallic hydrogen at
400 GPa due to specific irreducible representations.

Tc(µ
? = 0.1) Tc(µ

? = 0.2)

Full calculation 321K 260K
without B1g 283K 213K
without Eg 240K 180K
without A2u 264K 210K
without Eu 192K 154K

smallest changes in critical temperature are observed for B1g, which explicitly
proves that a large coupling strength alone does not guarantee a severe impact
on the superconducting properties.

The above insights into the importance of the different phonon modes are
further backed up by additional calculations that we performed at a pressure
of 600GPa. Compared to the case of 400GPa we obtain slightly larger crit-
ical temperatures, even though the global coupling strength is decreased to
λ = 2.09. This counterintuitive observation stems from a growing contribu-
tion due to the Eu representation, and is therefore compatible with the above
interpretation.

In this Section we discussed results from Paper VI, where we studied metal-
lic atomic hydrogen at 400 and 600GPa pressure, using anisotropic Eliash-
berg theory with ab initio input. For reasonable values of the Coulomb pseu-
dopotential we find room temperature superconductivity with rather small
anisotropy of the superconducting gap function. By examining the influence
of specific phonon modes on properties of the superconducting state we found
that the most significant contributions stem from the Eu irreducible represen-
tation, despite the fact that the respective coupling is subdominant.

5.2 A new trigonal phase in LaH10
As mentioned in the previous Section 5.1, LaH10 shows one of the highest
critical temperatures observed so far, reaching up to Tc = 250K in the pres-
sure regime 137− 218GPa [18, 100, 112]. From crystal structure searches
it was initially thought that LaH10 has a face-centered cubic lattice structure
Fm3̄m above 210GPa, and that this phase becomes dynamically unstable at
low pressures [100]. However, later studies revealed that the cubic structure
is stabilized in the range 137− 218GPa upon inclusion of quantum correc-
tions, and that this structural phase most likely corresponds to the measured
samples exhibiting such high Tc [113]. When increasing the pressure above
400GPa, a structural phase transition to a hexagonal P63/mmc symmetry was
predicted [114]. This high-pressure regime, however, has not yet been ex-
plored extensively.
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In Paper VII, by performing more extensive cyrstal structure searches, we
identify a new trigonal structural phase R3̄m, which we find as ground state
for pressures between approximately 250GPa and 425GPa. In our work we
considered mainly the interval 300−500GPa, as the low-pressure region has
already been studied in great detail. By using one to four formula units of
LaH10 in the unit cell, we identified several of the already known structures,
most importantly the cubic Fm3̄m, hexagonal P63/mmc and the new trigonal
R3̄m phase. This new structure differs from the already known trigonal con-
figuration in that it consists of three, instead of one formula unit of LaH10 in
the unit cell [100, 113].

The newly discovered structural phase is characterized by each lanthanum
atom being surrounded by cages consisting of 32 hydrogen atoms. These are
linked to six neighboring cages via 8 hydrogen atom cuboids, while each 8-H
hexagonal face is shared by neighboring 32-H atom cages. It further deserves
mentioning that we find an unusually small cell angle of α ∼ 24.56◦, com-
pared to the earlier predicted trigonal structure with α ∼ 60◦. In comparison
to the low pressure cubic phase, the hydrogen cages consist of quadrilater-
als and hexagons, instead of squares and regular hexagons. We find this new
trigonal phase to be stable up to pressures of 425GPa, where a phase tran-
sition to the earlier predicted hexagonal phase occurs. This observation can
be made from Fig. 5.2(a), where we show the enthalpy difference of the new
trigonal (red), hexagonal (blue) and cubic phase (black), all with respect to the
cubic structure. As directly apparent, at the low end of the considered pres-
sure spectrum the cubic and trigonal structures are nearly indistinguishable.
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Figure 5.2. (a) Enthalpy difference of each structural phase of LaH10 as compared to
the cubic Fm3̄m structure. (b) Self-consistently calculated maximum superconduct-
ing gap as function of temperature and Coulomb pseudopotential for the new trigo-
nal phase at 350GPa. (c) Temperature dependence of the superconducting gap for
three values of µ?, see legend. The thickness of each curve represents the degree of
anisotropy in the order parameter. Figure reconstructed from Paper VII.
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The aforementioned transition from trigonal to hexagonal is found at 425GPa,
where the latter starts showing a bigger enthalpy difference.

We describe the superconducting phase of trigonal LaH10 at 350GPa by
solving Eqs. (2.29) for various temperatures and values of the Coulomb pseu-
dopotential. Here, the electron energies, electron-phonon couplings and phonon
frequencies are taken from ab initio calculations. The self-consistent results
for the maximum superconducting gap as function of T and µ? are shown in
Fig. 5.2(b). We observe the usual behavior of decreasing ∆ with increasing
µ? and T . For three realistic values of the pseudopotential, we show ∆(T ) in
Fig. 5.2(c), where the gap anisotropy is represented by the thickness of each
line. As each curve is very thin, we conclude that trigonal LaH10 exhibits
a very isotropic superconducting state, in accordance to most hydrogen-rich
high-temperature superconductors.

Table 5.3. Critical temperature, maximum gap amplitude and ratio ∆/kBTc in trigonal
LaH10 for three representative values of µ?.

µ? Tc (K) ∆(T = 0)(meV) ∆/kBTc

0 248.7 46.9 2.19
0.1 175.5 31.6 2.09
0.2 122.0 21.1 2.01

In Table 5.3 we show the numeric values for critical temperature Tc, zero-
temperature gap magnitude and the ratio ∆/kBTc, each for µ? ∈ {0,0.1,0.2}.
As expected, for each value of the Coulomb pseudopotential ∆/kBTc is signif-
icantly larger that the BCS results of 1.76, indicating strong-coupling super-
conductivity. Further we report a significant reduction of Tc when compared
to the face-centered cubic phase, where a global coupling strength of λ = 2.2
leads to Tc ' 250K [100]. In our newly discovered trigonal phase the coupling
strength is reduced to λ = 1.6, which results in a smaller critical temperature
of approximately 175K at µ? = 0.1.

To summarize, in this Section and in Paper VII we presented a new trigonal
phase of LaH10 that represents the most likely prevailing structure at pressures
250−425GPa. At lower pressures we find the well-established face-centered
cubic phase with Tc = 250K, while the new trigonal compound shows a re-
duced critical temperature of about 175K. At 425GPa we find a phase transi-
tion to a hexagonal structure, that was predicted earlier. Therefore our findings
provide a better understanding of the high-pressure regime in LaH10 and can
be experimentally probed by studying details of the superconducting state.

5.3 Reducing the computational costs
There is no doubt that the numerical solution of coupled Eliashberg equations
is generally a difficult task. This stems from the fact that potentially large mo-
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mentum and frequency grids are involved, and additionally one needs to use a
self-consistency loop with a possibly high number of iterations. To complicate
the challenge further, Matsubara frequencies are proportional to temperature,
which means that the required number of frequencies in a fixed energy inter-
val increases as T decreases. In practical applications it is often not enough to
solve the coupled equations only for a single set of parameters, as one might
be interested in the evolution of certain quantities with e.g. doping or tempera-
ture. For these reasons it is always of great interest to come up with simplified
or more efficient solutions for these numerical challenges.

In Paper VIII we introduced an AT-scheme to significantly reduce the com-
putational costs of solving Eliashberg equations. The motivation for this work
came from Paper I, where we had to apply a non-interacting state approxima-
tion for high-frequency tails of functions in Matsubara space, so as to make
the chemical potential shift in Eq. (3.2) numerically stable. Here we apply a
similar idea to the entire Eliashberg formalism to reduce the number of Mat-
subara frequencies needed for well converged results. The method discussed
below is applicable to calculations involving summations over infinitely many
Matsubara frequencies, where the functional form of the interaction is either
known or can be accurately determined by numerical fitting. For introducing
the concept, we focus here on the anisotropic full bandwidth formalism, see
Eqs. (2.13).

To introduce our approach, consider a function Fm = ∑m′ gm−m′ fm′ with
fm depending on fermion Matsubara frequencies ωm. The generally accepted
procedure for evaluating this sum over all integers m′ is to set a hard nu-
merical cutoff ±M , and neglect all contributions to Fm from frequencies
|m′|> M [8,24]. However, here we assume that the functional form of gm−m′

is known, and that fm = f (0)m is a good approximation for |m|> M , with f (0)m
also known. Below this will be referred to as the non-interacting state approxi-
mation. In this case we can write Fm =∑|m′|≤M gm−m′ fm+∑|m′|>M gm−m′ f

(0)
m .

The second sum can be recast by the simple observation that ∑|m′|>M (·) =
∑m(·)−∑|m′|≤M (·). It follows that Fm ' F(A )

m = F(I)
m +F(N)

m −F(NM )
m , where

we use labels (I) for the interacting state, (N) for non-interacting state, and
(NM ) for non-interacting state inside the numerically accessible boundaries.
Here, F(A )

m is our approximation to Fm that accounts for the infinite tails in
Matusbara space. We note that, in the case of Eliashberg equations, F(N)

m and
F(NM )

m can be precomputed, i.e. they do not have to be updated in the self-
consistent cycle. The summation in F(N)

m runs over all integers, and can be
evaluated analytically.

More specifically for Eliashberg theory, compare Eqs. (2.13), the non-interacting
state approximation for functions Zk,m, χk,m and φk,m reads

∃M >> 1 ∈ N : Zk,|m|>M = 1, χk,|m|>M = φk,|m|>M = 0 ∀k. (5.4)
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On the basis of Eq. (5.4) the mass renormalization and chemical potential shift
within our AT-scheme are calculated from the above-mentioned three terms,
while φ

(A )
k,m = φ

(I)
k,m remains unchanged. Likewise we apply the non-interacting

state approximation to the Matsubara dependent part of our analytic continu-
ation procedure, which leads to real-frequency dependent functions f (A )

k,ω in
contrast to the usual fk,ω ( f = Z, χ , φ ). To evaluate the efficiency of our
method we start from a very large number of Matsubara frequencies (12000),
at which we calculate reference results fref and f (A )

ref , i.e. for the conventional
approach and our AT-scheme. We then gradually decrease the number of Mat-
subara frequencies and compare the results at each step to the reference func-
tions, using the error measures

εA = log10(
∫
|A−Aref|dω), (5.5a)

ε f = log10(〈| fref− fk,ω |〉k,ω), f = Z,χ,φ , (5.5b)

where A is the spectral function, and likewise for each f (A ).
Here we discuss results obtained at T = 10K for FeSe/STO (see Chapter

3), with the parameters used in Ref. [58] and Paper I. Using a hard cutoff
for the tails in Matsubara space in this system requires approximately 1500
frequencies for reliable results, so using 12000 frequencies for our reference
functions leads to extremely well converged outcomes. In Fig. 5.3(a) we show
the ARPES spectrum of FeSe/STO at the M point of the BZ in cyan, where
both curves (vertically shifted) have been calculated with the standard proce-
dure of neglecting the tails in Matsubara space. The dashed red (dotted purple)
results are obtained by calculating the spectral function with (without) the AT-
scheme for 100 frequencies. The deviation from the reference graph is small
in both cases, but larger without AT corrections. A more rigorous error esti-
mate is shown in the inset, where we plot the logarithmic errors εA and ε

(A )
A ,

compare Eq. (5.5a). As directly apparent, we spare about a factor of five in the
number of Matsubara frequencies required to reach a given precision when the
AT-scheme is used. Equivalently, for a given cutoff M we find ε

(A )
A about two

orders of magnitude smaller than εA.
In Fig. 5.3(b) we show logarithmic errors of each individual function Z, χ

and φ after the analytic continuation procedure. As a reminder, we use the AT-
scheme in the self-consistent Matsubara space calculation and for those terms
of the analytic continuation that depend on Matsubara frequencies. From this
graph we learn that the errors ε

(A )
f are significantly smaller than their respec-

tive counterparts ε f . Here the AT-scheme allows us to spare approximately a
factor of eight in the number of frequencies.

To conclude, in Paper VIII we introduced a method to reduce the required
number of Matsubara frequencies in anisotropic Eliashberg equations by ap-
proximately 80%. We additionally tested the same idea on isotropic Eliash-
berg theory, where such savings are even up to 90%. Further it is important to
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Figure 5.3. (a) Spectral function of FeSe/STO at the M point (cyan). Red dashed
and purple dotted curves are found with and without AT-scheme. The inset shows the
logarithmic errors in both cases as function of cutoff M . (b) Logarithmic errors for φ ,
χ and Z as function of cutoff M . Purple and red curves show our results without and
with AT corrections, respectively. The red dashed lines are deviations of AT-scheme
results from non-AT-scheme reference functions. Figure taken from Paper VIII.

note that the here introduced AT-scheme is compatible with using Fast Fourier
transforms to evaluate momentum and frequency sums (which were used in
all calculations of Paper VIII). There are cases where the functional form of
the interaction is not known, for example in Fluctuation Exchange calcula-
tions where the kernel is iteratively updated. Even though our method would
in principle be applicable by fitting the interaction to a known functional form,
such as a Lorentzian, other approaches to include the tails in Matsubara space
might be more suitable [115–117].

5.4 Phonon renormalization
In this last Section of the current Chapter we discuss the effects of phonon
renormalization on the superconducting state in Holstein-like model systems.
We have seen in Chapter 2 how the Eliashberg equations are theoretically
derived, but in this derivation we neglected for simplicity the backreaction
of electrons onto the phonon spectrum, as it is common practice. Equiva-
lently, this means that we omitted all Feynman diagrams for the phonon self-
energy Πq,l , and hence set Πq,l = 0. In Paper IX we provided an overview
of possible effects that can occur when we go beyond such an assumption,
i.e. when both first order Feynman diagrams of Fig. 5.4 are taken into account
self-consistently.

Before our work such investigation has not been done in a systematic way,
but rather with the primary goal of testing the validity of Eliashberg the-
ory [17, 118, 119]. In these works results from the Eliashberg formalism
are benchmarked against other approaches, such as Quantum Monte Carlo
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(QMC) [120, 121] or Dynamical Mean-Field theories [122]. From these stud-
ies the generally accepted picture has emerged that there exists a maximally
allowed electron-phonon coupling strength for any given system, which marks
the border of applicability of Eliashberg theory. However, it is noteworthy
that the benchmark methods often have their disadvantages and inaccuracies
as well, such as e.g. small lattice sizes in QMC. Additionally, the Eliashberg
calculations were often not performed in the superconducting state but rather
extrapolated from the normal state [120,122]. It needs to be stressed that here
we are only interested in the results from the Migdal-Eliashberg formalism
and leave the comparison to other theories for future works.

By far the most commonly studied system in this context is the 2D Holstein
model [123–125]. To make comparison to other works easier we followed a
similar path in Paper IX, describing the electron energies within a next-nearest
neighbor tight-binding model as

ξk =−2t(1)[cos(kx)+ cos(ky)]−4t(2) cos(kx)cos(ky)−µ, (5.6)

where t(1) is the nearest, and t(2) the next-nearest neighbor hopping energy. In
most of what follows, we will focus primarily on this two dimensional system.
The Eliashberg formalism employed here differs from Eqs. (2.13) only in one
key aspect, i.e. that we now consider a finite phonon self-energy. This means
that the electron-phonon coupling Vq,l = −|gq|2Dq,l is iteratively updated on
the same footing as Zk,m, χk,m and φk,m. To do so we calculate the phonon
propagator via a Dyson equation,

D−1
q,l =

[
D(0)

q,l
]−1−Πq,l, (5.7)

with bare Green’s function D(0)
q,l =−2Ω0/(Ω

2
0 +q2

l ), and evaluate the phonon
self-energy via Fig. 5.4(b) as

Πq,l = T |gq|2 ∑
k,m

Tr
[
ρ̂3Ĝk,mρ̂3Ĝk+q,m+l

]
. (5.8)

(a) (b)

Figure 5.4. Feynman diagrams for the electron (a) and phonon (b) self-energy. Figure
taken from Paper IX.
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The zero-frequency renormalized coupling strength and phonon frequencies
can be calculated by

λq =−N0|gq|2Dq,l=0, (5.9a)

Ωq =
√

Ω2
0 +2Ω0Πq,l=0, (5.9b)

from which we can define a measure for the global electron-phonon coupling
strength as λ = 〈〈λk−k′〉k∈FS〉k′∈FS.

In Fig. 5.5 we show our results for the 2D system, where we used the
hopping energies t(1) = W/8 and t(2) = t(1)/4 for the electron dispersion,
with electron bandwidth W = 1.5eV, and three different chemical potentials
µ = 62.5meV [orange, (1)], −437.5meV [green, (2)] and −887.5meV [pur-
ple, (3)]. The energies and FSs are shown in panels (a) and (b). For solving the
Eliashberg equations we choose isotropic scattering matrix elements gq = g0,
and vary the initial coupling strength λ0 for different bare phonon frequen-
cies Ω0. Due to the fact that we systematically change λ0 (and not g0), the
three ξk differ to good approximation only in nesting properties and the size
of their FS, since changes in the density of states N0 are compensated for by
the relation λ0 = 2N0g2

0/Ω0.
To get a general idea of the possible effects that can occur due to including

phonon renormalization into our Eliashberg framework, we show results for
the coupling strength λ (i-iii), minimum phonon frequency (iv-vi) and super-
conducting gap ∆ = maxk∆k,m=0 (vii-ix), each as function of input coupling
λ0, in Fig. 5.5(c) with color codes as in panel (a).

(a)

(1)

(2)

(3)

(1)
(2)

(3)

(b) 2D

(a)

(b)

(c)
i ii iii

iv v vi

vii viii ix

Figure 5.5. (a) Electron dispersion along high-symmetry lines for three different
chemical potential shifts. (b) Fermi surface corresponding to panel (a). (c) Equiv-
alent color codes as in panels (a) and (b). The first, second and third rows show
the renormalized coupling strength, minimum phonon frequency and superconduct-
ing gap magnitude, respectively. Figure taken from Paper IX.
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The first important thing to notice is the divergence of λ at a certain cou-
pling strength λ ?

0 , which coincides with a decrease in the minimal phonon
frequency (phonon softening). This effect corresponds to a lattice instability
where our formalism is no longer applicable, and is in agreement to previous
works [119,120,122]. When the renormalized coupling strength is sufficiently
large but not yet divergent, we find the onset of superconductivity in panels
(vii-ix) and a growing ∆ as λ increases further. Each panel in Fig. 5.5(c) con-
tains results for different frequencies Ω0. By comparison we learn that λ and
λ ?

0 are rather insensitive to changes in Ω0, while the onset of superconductivity
occurs at smaller input couplings for larger input frequencies.

When comparing the results for our three electron dispersions we see that a
decrease in FS size leads to less pronounced phonon softening at similar val-
ues of λ0. Equivalently, λ ?

0 increases as we go from energies (1) to (3). The
reason for this behavior are the nesting conditions in each of the ξk. From
Fig. 5.5(b) it is apparent that FS segments of dispersion (1) can be connected
more coherently than is the case for (2), and even more so in comparison to the
most shallow energy band (3). A rigorous confirmation of this explanation is
found from the momentum dependent phonon frequencies, where we find the
softest frequencies at the approximate nesting wave vector. Overall this is not
surprising since the phonon self-energy can be expressed as Πq,l = −g2

qX (0)
q,l ,

with X (0)
q,l the charge susceptibility. Due to the fact that X (0)

q,l peaks at the FS
nesting wave vector, which is a well documented behavior from purely elec-
tronic theories of superconductivity, the same properties apply to the phonon
self-energy. From Eq. (5.9b) it then becomes clear that better nesting leads to
smaller phonon frequencies.

Next we want to address the scaling of the renormalized coupling strength
as function of λ0. From Eq. (5.9a) and the aforementioned relation Πq,l =

(a) (b) (c) (d)

Figure 5.6. (a) Renormalized coupling strength for T = 20K and Ω0 = 100meV as
function of input coupling λ0 for the 2D systems, with color code corresponding to
Fig. 5.5(a). (b) Estimate for the maximally allowed input couplings at T = 20K for
2D (solid) and 3D (dashed) systems as function of bare phonon frequency. (c) and (d)
show the largest critical temperatures found in 2D and 3D, respectively, as function of
renormalized phonon frequency. Figure taken from Paper IX.
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−g2
qX (0)

q,l we can write λ = 〈〈λ0/(1− λ0Xq,l=0/N0)〉k∈FS〉k′∈FS. Due to this
dependence we choose the approximate functional form as

λ ∼ aλ

λ0

1−bλ λ0
, (5.10)

with aλ and bλ free parameters, with which we fit our data points in Fig. 5.6(a).
As is directly apparent, Eq. (5.10) captures our self-consistent results very
accurately for all three electron dispersions. We know that λ diverges as
λ0 → λ ?

0 , i.e. when the system develops a charge density wave instability.
Therefore we can determine the approximate value of λ ?

0 by setting the de-
nominator of Eq. (5.10) to zero, which gives λ ?

0 ' b−1
λ

.
In Paper IX we also examined 3D systems, which we will not go into detail

here but only mention some of the results. The corresponding electron ener-
gies are similar to the 2D case, i.e. using a next-nearest neighbor tight-binding
description with the same bandwidth W = 1.5eV we define three different ξk
by altering the chemical potential: a very shallow band (purple), one with
large electron filling resembling a Fermi gas (orange), and one intermediate
case (green). The results for the critical coupling strength λ ?

0 for 2D (solid)
and 3D (dashed) systems are shown in Fig. 5.6(b).

We find a relatively mild dependence of λ ?
0 on the bare phonon frequency,

for all systems considered. As mentioned before, in 2D the rather coherent
nesting conditions in dispersion (1) lead to comparatively small values for the
critical coupling strength. As the nesting becomes less coherent, energies (2)
and (3), λ ?

0 grows. This observation confirms our interpretation of the renor-
malized coupling strength in terms of the charge susceptibility, see above. Our
findings for 3D (dashed curves) suggest that λ ?

0 is rather robust with respect
to changes in the electron dispersion, and we therefore conclude that nest-
ing becomes less important in 3D. Results plotted in orange and green follow
similar trends as in 2D, i.e. more coherent nesting leads to smaller λ ?

0 . An
exception is the very shallow band (purple), which is due to the special role
of the q = (0,0,0) exchange wave vector. As the absolute value of q becomes
small the angular dependence loses its significance and nesting becomes co-
herent again, an effect that is well pronounced in 3D but less so in 2D. For this
reason we find the smallest values of λ ?

0 in 3D for the shallow energy band.
For both, 2D and 3D systems we calculated the maximally possible values

of Tc with respect to λ0→ λ ?
0 for various input frequencies Ω0. In Fig. 5.6(c)

and (d) we show the respective outcomes against the renormalized frequency
Ω = 〈Ωq〉q∈BZ as open circles and crosses, respectively, for the three different
ξk using the same color code as before. To model the observed functional de-

pendence of the critical temperature on Ω, we started by T max
c ∝

√
Ω2

0−Ω2,
which was proposed in Ref. [126]. We found that our data in 2D, Fig. 5.6(c),
can be fitted accurately in this way but less so our results for 3D systems. In-
stead, the most precise match to our outcomes, which are the solid and dashed
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lines in Fig. 5.6(c) and (d), respectively, is obtained via

kBTc ∝λ (Ω)
√

Ω2
0−Ω2 ∼ λ0

Ω2
0

Ω2

√
Ω2

0−Ω2. (5.11)

This scaling law for the maximum value of Tc within Eliashberg theory can
be interpreted in a straight forward way. First, it is not surprising that the
critical temperature scales like the coupling strength, which in turn depends
heavily on the details of phonon softening, as we discussed above. Secondly,
we find that phonon softening is advantageous for Tc in its own right as seen
from the square root in Eq. (5.11). However, this is only a very approximate
explanation of our results, as one has to bear in mind that also details of the
electron dispersion and the initial coupling strength influence Ω.

Summarizing, in Paper IX we have investigated the effects of phonon renor-
malization in 2D and 3D Holstein-like systems, using full bandwidth Eliash-
berg theory, as function of bare electron-phonon coupling strength, initial
phonon frequency, nesting conditions and size of the FS. Our results on phonon
softening, renormalized coupling strength and superconductivity give a broad
overview on the topic. Finally, we have proposed a new scaling law for Tc that
is valid for Eliashberg theory of two and three dimensional systems.
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Part II:
Vertex-corrected Eliashberg theory





6. Formalism and exploration

Without deviation from the norm,
progress is not possible.

Frank Zappa

Up to this point we focused on what can be called ‘standard’ Eliashberg the-
ory, i.e. the theoretical description of superconductors motivated from Migdal’s
approximation. For electron-phonon mediated Cooper pairing we are allowed
to neglect vertex corrections to the scattering process, provided that the ratio
α of phonon to electron energy scales is significantly smaller than unity [4].
As a side remark, no such theoretical justification of neglecting vertex cor-
rections exists for the case of spin fluctuations [21], but the validity of using
only the first electron-boson scattering Feynman diagram in this case is rarely
questioned.

As it turns out, many high-temperature superconductors, including the fam-
ilies of Cu- and Fe-based materials, do not qualify for a neglect of vertex
corrections, as in these systems α ∼ O(0.1)−O(1). This is mainly due the
common ingredient of very shallow energy bands close to the Fermi surface,
combined with comparatively large boson frequencies [15,127–129]. For this
reason we wanted to systematically explore possible effects due to the men-
tioned vertex corrections to the electron-phonon scattering process. In Section
6.1 we derive an extended set of Eliashberg equations, which served as basis
for Paper X, summarized in Section 6.2. The theoretical and numerical results
presented here are built upon further in discussions in Chapter 7.

6.1 Extended Eliashberg theory
6.1.1 First and second order Feynman diagrams
We use here a similar recipe as in Section 2.1, where we derive the ‘standard’
Eliashberg equations. Consider a single optical phonon mode Ω, which is
coupled to the electrons via gq. The systems Hamiltonian is then given by

H = ∑
k

ξkΨ
†
kρ̂3Ψk +Ω∑

q

(
b†

qbq +
1
2

)
+∑

k,q
gquqΨ

†
k−qρ̂3Ψk. (6.1)

For simplicity we drop the band index in the electron dispersion ξk and return
to this aspect in the end of the current section. As before, b†

q (c†
k,σ ) and bq
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(ck,σ ) are the phonon (electron) creation and annihilation operators, respec-
tively. The Nambu spinor is defined as Ψ

†
k = (c†

k,↑,c−k,↓), and uq = b†
q +b−q

is the ion displacement.
The electron Green’s function Ĝk obeys the Dyson equation

Ĝk = Ĝ(0)
k + Ĝ(0)

k Σ̂kĜk, (6.2)

where we introduce the four-momentum notation k = (k,m). The ansatz for
the electron self-energy Σ̂k reads

Σ̂k = iωk(1−Zk)ρ̂0 +χkρ̂3 +φkρ̂1. (6.3)

Similar to earlier Chapters, Zk is the electron mass renormalization, χk a chem-
ical potential shift and φk the superconductivity order parameter. By using
Eqs. (6.2) and (6.3), together with the non-interacting electron Green’s func-
tion [Ĝ(0)

k ]−1 = iωkρ̂0−ξkρ̂3, we obtain

Ĝk =
iωkZk

Θk
ρ̂0 +

ξk +χk

Θk
ρ̂3 +

φk

Θk
ρ̂1, (6.4)

with Θk = [iωkZk]
2− [ξk +χk]

2−φ 2
k .

The mathematical expressions in the remainder of this section are rather
lengthy, which is why the shorthand notation

γ
(Z)
k =

ωkZk

Θk
, γ

(χ)
k =

ξk +χk

Θk
, γ

(φ)
k =

φk

Θk
(6.5)

comes in handy. With these definitions we can write Eq. (6.4) as

Ĝk = iγ(Z)k ρ̂0 + γ
(χ)
k ρ̂3 + γ

(φ)
k ρ̂1. (6.6)

Up to this point the derivation shown here is essentially equivalent to the cal-
culations in Section 2.1. However, it is instructive to have the necessary equa-
tions available in the current section, as they are required for the following
steps below.

For deriving self-consistent equations we first need to evaluate the electron
self-energy by considering the Feynman diagram series for electron-phonon
scattering. As first shown by Migdal, Σ̂ can be written as infinite series of
diagrams, where the expansion parameter scales like α = Ω/εF [4]. In a large
number of superconductors one finds α & O(0.1), i.e. corrections to the first
order diagram cannot be expected to be negligible. For this reason we include
here the first and second order contributions, which are depicted in Fig. 6.1.
The straight lines represent the electron Green’s functions Ĝk, the wavy lines
show phonon propagators Dq, and each vertex (black spheres) is associated
with a factor gqρ̂3 or g∗qρ̂3, depending on whether a given vertex opens or
closes a loop. Let us write the two contributions to the electron self-energy as
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Σ̂ = +
k1

k− k1

k1

k− k1

k2

k1− k2

k2− k1 + k

Figure 6.1. First (left) and second (right) order Feynman diagrams for electron-phonon
scattering, constituting the building blocks for the electron self-energy.

Σ̂k = Σ̂
(1)
k + Σ̂

(2)
k . From Section 2.1 we already know the functional form of

the first order contributions, namely

Σ̂
(1)
k = T ∑

k1

|gk−k1 |
2Dk−k1 ρ̂3Ĝk1 ρ̂3. (6.7)

It is worthwhile evaluating Σ̂
(2)
k step by step, see the diagram on the right in

Fig. 6.1. Going from left to right, the first vertex opens a loop by producing a
factor gk−k1 ρ̂3. The associated electron and phonon propagators are Ĝk1 and
Dk−k1 . Note, that k1 is an internal index, while k−k1 is dictated by momentum
and energy conservation. The following vertex, gk1−k2 ρ̂3, opens a loop of Ĝk2
and Dk1−k2 , analogously to the previous case. Hereafter, the first loop closes,
producing g∗k−k1

ρ̂3. The index k3 of the third electron Green’s function can
be determined by realizing that, together with the second phonon propagator
index, k3 +(k1− k2) must equal k, therefore k3 = k2− k1 + k. This is again a
consequence of momentum and energy conservation. Finally, the last vertex
contributes a factor g∗k1−k2

ρ̂3, so that all together we have

Σ̂
(2)
k = T 2

∑
k1

∑
k2

Dk−k1Dk1−k2 |gk−k1 |
2|gk1−k2 |

2
ρ̂3Ĝk1 ρ̂3Ĝk2 ρ̂3Ĝk2−k1+kρ̂3,

(6.8)

where we have to sum over the two independent internal indices k1 and k2.
By expressing the product of electron-phonon scattering elements with the
phonon propagator as coupling Vq = |gq|2Dq, we get

Σ̂k = T ∑
k1

Vk−k1 ρ̂3Ĝk1 ρ̂3 +T 2
∑

k1,k2

Vk−k1Vk1−k2 ρ̂3Ĝk1 ρ̂3Ĝk2 ρ̂3Ĝk2−k1+kρ̂3.

(6.9)

The above self-energy can be used in the single-band picture or for multiple
electron bands, provided that the electron-phonon coupling can be considered
band-independent. In this case we simply need to sum over the energy band
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index in the definition1 of each γ
(.)
k , compare Eq. (6.5). On the other hand,

using explicitly electron band dependent interactions is beyond the scope of
the current work. From here on we employ the bare phonon propagator, i.e.
Dq,l = D(0)

q,l . Further, we assume that the electron-phonon scattering gq = g0 is
momentum-independent. With the Eliashberg function α2F(ω) =N0g2

0δ (ω−
Ω) we can express the electron-phonon coupling as

Vq,l = Dq,l|gq|2 = D(0)
l g2

0 =
∫

∞

0

dω

N0
α

2F(ω)
2ω

q2
l +ω2 ≡Vl. (6.10)

It is important to note that the interaction in Eq. (6.10) can never lead to an
anisotropic superconducting gap when used in BCS or ‘standard’ Eliashberg
theory. As we see in later Sections, this statement no longer holds for vertex-
corrected Eliashberg theory. In the following we derive the self-consistent
Eliashberg equations from Eq. (6.9) and show various possible simplifications.

6.1.2 Levels of approximation
Here we explore different levels of sophistication at which the vertex-corrected
Eliashberg equations can be tackled. For each approximation shown below,
the recipe for deriving the final self-consistent equations is equivalent: With
the electron self-energy given by Eq. (6.3), and whatever approximation we
derive from Eq. (6.9) we have the tools to extract each function individually.
To do so we need to multiply Σ̂ by a Pauli matrix of our choosing (ρ̂0 for
Z, ρ̂3 for χ , ρ̂1 for φ ) and trace the result. For an overview of the different
approximations introduced below, we show characteristic scattering processes
due to the second order Feynman diagram in Fig. 6.2, where the Fermi surface
is sketched as blue circle, and black solid lines correspond to virtual processes
between scattering events.

General case
The most straight-forward approach to the self-energy in Eq. (6.9) is to not
introduce any approximations whatsoever. In this case the electron degrees of
freedom are not confined in any way, and contributions throughout the whole
electron bandwidth are taken into account. An example for a possible scatter-
ing process due to the second order Feynman diagram is shown on the left side
of Fig. 6.2. Here, the positions of all electronic states are unrestricted, hence
no further assumptions on the smallness of α < 1 are required.

1For a multiband electron dispersion ξk,n, with n the energy band index, we get Θk,n =

[iωkZk]
2− [ξk,n + χk]

2−φ 2
k , leading to the definitions γ

(Z)
k = ∑n ωkZk/Θk,n, γ

(χ)
k = ∑n(ξk,n +

χk)/Θk,n and γ
(φ)
k = ∑n φk/Θk,n.
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General scattering Natural FS
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Forced FS
scattering

k

k1 k2

k2− k1 + k
k

k1

k2

k2− k1 + k
k

k1

k2

k2− k1 + k

Figure 6.2. Different levels of approximation for the second order electron-phonon
scattering processes.

Directly using Eq. (6.9) for the electron self-energy yields the vertex-corrected
Eliashberg equations

Zk = 1− T
ωk

∑
k1

Vk−k1

(
γ
(Z)
k1

+T ∑
k2

Vk1−k2
~γT

k2
P(Z)

k1
~γk2−k1+k

)
, (6.11a)

χk = T ∑
k1

Vk−k1

(
γ
(χ)
k1

+T ∑
k2

Vk1−k2
~γT

k2
P(χ)

k1
~γk2−k1+k

)
, (6.11b)

φk =−T ∑
k1

Vk−k1

(
γ
(φ)
k1

+T ∑
k2

Vk1−k2
~γT

k2
P(φ)

k1
~γk2−k1+k

)
, (6.11c)

where we define the three-component pseudovectors ~γT
k = (γ

(Z)
k ,γ

(χ)
k ,γ

(φ)
k ).

Further, the matrices in Eqs. (6.11) are given by

P(Z)
k =

−γ
(Z)
k γ

(χ)
k γ

(φ)
k

γ
(χ)
k γ

(Z)
k 0

−γ
(φ)
k 0 γ

(Z)
k

 , P(χ)
k =

−γ
(χ)
k −γ

(Z)
k 0

−γ
(Z)
k γ

(χ)
k −γ

(φ)
k

0 −γ
(φ)
k −γ

(χ)
k

 ,

P(φ)
k =

−γ
(φ)
k 0 −γ

(Z)
k

0 γ
(φ)
k γ

(χ)
k

γ
(Z)
k γ

(χ)
k −γ

(φ)
k

 . (6.12)

Natural Fermi surface scattering
Let us now assume that α is significantly smaller than unity. In such a case we
can assume that contributions away from the Fermi level contribute to small
degree to the overall electron self-energy. It is therefore justified to confine k1
and k2 to the Fermi surface, compare center of Fig. 6.2. Note, that there is no
direct justification for confining also k2− k1 + k to the Fermi surface, which
is why this state can occur anywhere throughout the electronic bandwidth. In
Section 2.1 we already encountered how to derive Fermi-surface based equa-
tions, but it is worthwhile to repeat the basic steps here.

73



The momentum sum over any function f (ξk,k) can be written as

∑
k

f (ξk,k) =
∫

∞

−∞

dεN(ε) f (ε,k), (6.13)

where we assume infinite bandwidth of the electron dispersion. Since the
electron density of states is given by N(ε) = ∑k δ (ξk− ε), we can write

∑
k

f (ξk,k) = ∑
k

δ (ξk)
∫

∞

−∞

dε f (ε,k). (6.14)

In the last step we have used the assumption that only processes at the Fermi
surface significantly contribute to the evaluation of the momentum sum, there-
fore we set ε = 0 inside the delta function.

Using the definition λq = N0Vq, with N0 the density of states at the Fermi
level, we are now in the position to rewrite the electron self-energy from
Eq. (6.9) as

Σ̂k =T ∑
k1

δ (ξk1)

N0
λk−k1 ρ̂3ĝk1 ρ̂3

+T 2
∑

k1,k2

δ (ξk1)

N0

δ (ξk2)

N0
λk−k1λk1−k2 ρ̂3ĝk1 ρ̂3ĝk2 ρ̂3Ĝk2−k1+kρ̂3. (6.15)

The modified Green’s functions in Eq. (6.15) are given by

ĝk =
∫

∞

−∞

dεĜk(ε) =−π
iωkZkρ̂0 +φkρ̂1√

ω2
k Z2

k +φ 2
k

. (6.16)

Note, that the prefactor of ρ̂3 identically cancels because it is an odd function
with respect to the integration variable. For the current case of ‘natural Fermi
surface scattering’ we omit to derive the corresponding Eliashberg equations.
The reason is that no advantage is apparent when such equations are solved nu-
merically: Even though the assumption of Fermi surface scattering has been
made, i.e. the approach is more restrictive than the general case, the computa-
tional costs are identical since electrons with index k2− k1 + k are still to be
kept within the full electron bandwidth.

Forced Fermi surface scattering
To improve on the computational costs needed for evaluating the second or-
der electron-phonon scattering contributions, we now demand that the third
electronic state k2−k1 +k be also on the Fermi surface. This situation is indi-
cated on the right side of Fig. 6.2. Mathematically, we can accomplish such a
situation by artificially introducing a delta function:

f (ξk,k) =
∫

∞

−∞

dεδ (ξk− ε) f (ε,k)' δ (ξk)
∫

∞

−∞

dε f (ε,k). (6.17)
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In the second step of Eq. (6.17) we use that ξk should be close to the Fermi
level, which allows us to set ε = 0 inside the delta function. Using the above
property in Eq. (6.15) yields

Σ̂k = T ∑
k1

δ (ξk1)

N0
λk−k1 ρ̂3ĝk1 ρ̂3

+T 2
∑

k1,k2

δ (ξk1)

N0

δ (ξk2)

N0
δ (ξk2−k1+k)λk−k1λk1−k2 ρ̂3ĝk1 ρ̂3ĝk2 ρ̂3ĝk2−k1+kρ̂3.

(6.18)

Next, we use ∆k = φk/Zk to rewrite the Green’s function of Eq. (6.16) as

ĝk =−π
(
iγ(ω)

k ρ̂0 + γ
(∆)
k ρ̂1

)
, (6.19)

with the definitions γ
(ω)
k = ωk/

√
ω2

k +∆2
k and γ

(∆)
k = ∆k/

√
ω2

k +∆2
k . Note,

that the chemical potential χ has vanished in the current level of approxima-
tion. Therefore we are left with two self-consistent and anisotropic Eliashberg
equations for the mass renormalization and gap function, reading

Zk = 1+
πT
ωk

∑
k1

δ (ξk1)

N0
λk−k1γ

(ω)
k1
− π3T 2

ωk
∑

k1,k2

δ (ξk1)

N0

δ (ξk2)

N0
δ (ξk2−k1+k)λk−k1

×λk1−k2

[(
γ
(∆)
k1

γ
(∆)
k2

+ γ
(ω)
k1

γ
(ω)
k2

)
γ
(ω)
k2−k1+k +

(
γ
(ω)
k1

γ
(∆)
k2
− γ

(∆)
k1

γ
(ω)
k2

)
γ
(∆)
k2−k1+k

]
,

(6.20a)

∆k =
πT
Zk

∑
k1

δ (ξk1)

N0
λk−k1γ

(∆)
k1
− π3T 2

Zk
∑

k1,k2

δ (ξk1)

N0

δ (ξk2)

N0
δ (ξk2−k1+k)λk−k1

×λk1−k2

[(
γ
(∆)
k1

γ
(ω)
k2
− γ

(ω)
k1

γ
(∆)
k2

)
γ
(ω)
k2−k1+k +

(
γ
(ω)
k1

γ
(ω)
k2

+ γ
(∆)
k1

γ
(∆)
k2

)
γ
(∆)
k2−k1+k

]
.

(6.20b)

In the above set of equations potentially important contributions are ne-
glected, because the Green’s function Ĝk2−k1+k has been restricted to the Fermi
surface without much of justification. However, the formalism is nevertheless
appealing as the computational effort is significantly reduced in comparison
to Eqs. (6.11). Additionally, it is possible to directly solve Eqs. (6.20) with
input from ab initio theory, which is useful to estimate the effect of vertex
corrections in more realistic systems.

Isotropic case
As mentioned above, we assume here that the electron-phonon interaction is
isotropic, λk−k1 ≡ λm−m1 . The discussions in the following Sections clearly
show that this assumption alone does in general not lead to an isotropic mass
renormalization or gap function. Therefore we additionally set ĝk ≡ ĝm, which
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could be appropriate if we know a priori that the momentum anisotropy in the
Green’s function is small. The electron self-energy then takes the form

Σ̂m = T ∑
m1

λm−m1 ρ̂3ĝm1 ρ̂3

+PT 2
∑

m1,m2

λm−m1λm1−m2 ρ̂3ĝm1 ρ̂3ĝm2 ρ̂3ĝm2−m1+mρ̂3, (6.21)

where the constant factor P is defined as

P = ∑
k1,k2

δ (ξk1)

N0

δ (ξk2)

N0
δ (ξk2−k1+k). (6.22)

The resulting Eliashberg equations have a similar form as Eqs. (6.20), but now
all quantities except P are treated only on the Matsubara frequency axis:

Z(iso)
m =1+

πT
ωm

∑
m1

λm−m1γ
(ω)
m1 −P

π3T 2

ωm
∑

m1,m2

λm−m1λm1−m2

[(
γ
(∆)
m1 γ

(∆)
m2

+ γ
(ω)
m1 γ

(ω)
m2

)
γ
(ω)
m2−m1+m +

(
γ
(ω)
m1 γ

(∆)
m2 − γ

(∆)
m1 γ

(ω)
m2

)
γ
(∆)
m2−m1+m

]
, (6.23a)

∆
(iso)
m =

πT
Zm

∑
m1

λm−m1γ
(∆)
m1 −P

π3T 2

Zm
∑

m1,m2

λm−m1λm1−m2

[(
γ
(∆)
m1 γ

(ω)
m2

− γ
(ω)
m1 γ

(∆)
m2

)
γ
(ω)
m2−m1+m +

(
γ
(ω)
m1 γ

(ω)
m2 + γ

(∆)
m1 γ

(∆)
m2

)
γ
(∆)
m2−m1+m

]
. (6.23b)

We have added the label (iso) in Eqs. (6.23) for later reference.

6.1.3 Numerical solution
Before moving to the summary of Paper X the interested reader is provided in
the current subsection with supplementary information on how to numerically
implement vertex-corrected Eliashberg equations, as this is a rather difficult
task. If the computational aspects are of no direct interest, the reader might
continue with Section 6.2.

In the current section we choose to write the four-momentum dependencies
explicitly, as they are of primary importance, fk = fk,m for fermionic and gq =
gq,l for bosonic functions. For all quantities under consideration we assume
momentum inversion symmetry, i.e.

fk,m = f−k,m , gq,l = g−q,l. (6.24)

Further, we denote the symmetry along the Matsubara frequency axis as

fk,m = (−1) f fk,−m−1 , gq,l = (−1)ggq,−l, (6.25)

with the notation

(−1) f =

{
+1 , if f even in frequency
−1 , if f odd in frequency

. (6.26)
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In Eq. (6.25) it is important to recognize the difference of inverting fermionic
and bosonic frequency grids.

Each of the vertex-corrected Eliashberg equations takes the generic form

fk,m = f (1)k,m + f (2)k,m, (6.27)

where f (1)k,m and f (2)k,m describe the first and second order electron-phonon scat-
tering contributions, respectively. In a general way we can write

f (1)k,m = c ∑
k1,m1

αk−k1,m−m1βk1,m1 , (6.28)

which can be implemented as

f (1)k,m = cF−1{F(αk−k1,m−m1

)
?F

(
βk1,m1

)
}, (6.29)

numerically speaking, compare also Section 2.1. Here, F (F−1) denotes the
forward (backward) Fourier transform in momentum and frequency space.

The second term, which is much more difficult to calculate numerically, can
be expressed as

f (2)k,m = c ∑
k1,m1

∑
k2,m2

αk−k1,m−m1αk1−k2,m1−m2βk1,m1

×δk2,m2εk2−k1+k,m2−m1+m, (6.30)

where function α enters twice, resembling the bosonic electron-phonon inter-
action. A direct implementation of Eq. (6.30) would be very inefficient and of
little use for practical applications. For this reason we aim at using Fourier
transforms to speed up the computation, which requires some work to ensure
that each function subject to Fourier transformation is centered around the ori-
gin of the Matsubara frequency axis.

To start with, we make the reasonable assumption that f and f (2) share the
same frequency symmetry, so that we can write

f (2)k,m =
1
2
(

f (2)k,m +(−1) f f (2)k,−m−1

)
. (6.31)

Inserting Eq. (6.30) into Eq. (6.31) gives

f (2)k,m = (−1)α c
2 ∑

k1,m1

∑
k2,m2

αk1−k2,m1−m2βk1,m1δk2,m2

{
αk1−k,m1−m

× εk2−k1+k,m2−m1+m +(−1) f
αk1−k,m+m1+1εk2−k1+k,m2−m1−m−1

}
, (6.32)

where we used momentum inversion and frequency symmetry of α . Next, we
define the zero-centered frequency symmetric (in m) function

Λk1−k,|m|,m1 =
1
2
(
αk1−k,m1−m +αk1−k,m+m1+1

)
, (6.33)
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which allows us to express

αk1−k,m+m1+1 = 2Λk1−k,|m|,m1−αk1−k,m1−m. (6.34)

By inserting Eq. (6.34) into Eq. (6.32) we find

f (2)k,m =(−1)α c
2 ∑

k1,m1

∑
k2,m2

αk1−k2,m1−m2βk1,m1δk2,m2

×
{

αk1−k,m1−m
[
εk2−k1+k,m2−m1+m− (−1) f

εk2−k1+k,m2−m1−m−1
]

+2(−1) f
Λk1−k,|m|,m1εk2−k1+k,m2−m1−m−1

}
. (6.35)

Considering the numerical implementation, let as perform a loop over mo-
menta k and frequencies m. Then, for each pair (k,m) we can carry out explicit
index shifts, so as to define

α̃k1,m1 =αk1−k,m1−m, (6.36a)

Λ̃k1,m1 =Λk1−k,|m|,m1 , (6.36b)

ε̃
(−)
k2−k1,m2−m1

=εk2−k1+k,m2−m1+m− (−1) f
εk2−k1+k,m2−m1−m−1. (6.36c)

Further, we split Eq. (6.35) according to the two summands in the curly brack-
ets, i.e. f (2)k,m = f (2,a)k,m + f (2,b)k,m . For the first term we use Eqs. (6.35) and (6.36),
so that for each (k,m) we get

f (2,a)k,m =
c
2 ∑

k1,m1

∑
k2,m2

β̃k1,m1δk2,m2τ
(−)
k2−k1,m2−m1

. (6.37)

Equation (6.37) is derived by using symmetries of α and the straight-forward
definitions

β̃k1,m1 = βk1,m1α̃k1,m1 , (6.38a)

τ
(−)
k2−k1,m2−m1

= αk2−k1,m2−m1 ε̃
(−)
k2−k1,m2−m1

. (6.38b)

The functional form of f (2,a) can now be cast efficiently as

f (2,a)k,m =
c
2 ∑

k2,m2

δk2,m2F
−1{F(β̃k1,m1

)
?F

(
τ
(−)
k2−k1,m2−m1

)}
k2,m2

. (6.39)

Considering the remaining expression f (2,b), we use again the symmetry
argument along the Matsubara axis, i.e. f (2,b)k,m = 1

2

(
f (2,b)k,m +(−1) f f (2,b)k,−m−1

)
, so

as to obtain zero-centered inputs for the Fourier transforms. We get

f (2,b)k,m = (−1)α(−1) f c
2 ∑

k1,m1

∑
k2,m2

αk1−k2,m1−m2βk1,m1δk2,m2 ε̃
(+)
k2−k1,m2−m1

Λ̃k1,m1 ,

(6.40)
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with the definition

ε̃
(+)
k2−k1,m2−m1

=εk2−k1+k,m2−m1−m−1 +(−1) f
εk2−k1+k,m2−m1+m. (6.41)

Finally, we group the indices according to

τ
(+)
k2−k1,m2−m1

=αk2−k1,m2−m1 ε̃
(+)
k2−k1,m2−m1

, (6.42a)

ηk1,m1 =βk1,m1Λ̃k1,m1 , (6.42b)

leaving us with the simpler-looking term

f (2,b)k,m = (−1) f c
2 ∑

k1,m1

∑
k2,m2

ηk1,m1δk2,m2τ
(+)
k2−k1,m2−m1

, (6.43)

which can be written as Fourier convolution in indices (k1,m1):

f (2,b)k,m = (−1) f c
2 ∑

k2,m2

δk2,m2F
−1{F(ηk1,m1

)
?F

(
τ
(+)
k2−k1,m2−m1

)}
k2,m2

.

(6.44)

The recipe provided above is rather lengthy and cumbersome to implement
numerically. However, doing so decreases the computational costs for N
sampling points in four-momentum space from O(N 3) to O(N 2 logN ). At
first glance, this might not look like a tremendous improvement, but none of
the Papers X, XI, XIII would have been possible without the Fourier convolu-
tion techniques introduced here.

6.2 Phase space exploration
In Paper X we explored the possible effects of vertex corrections in Eliashberg
theory as function of the nonadiabaticity parameter α , coupling strength λ

and dimensionality of the system. To do so, we chose several different levels
of approximations to the Eliashberg equations and solved each of them self-
consistently for a given set of parameters. Comparing the results gave us a
better understanding under which circumstances each respective approxima-
tion is applicable, in comparison to the outcomes from the vertex-corrected
Eliashberg theory. Additionally, this procedure provided us with key insights
on the sign and magnitude of the said vertex corrections to the superconduct-
ing gap and other quantities.

Not many studies have been carried out on the current subject matter, ex-
cept for the original work by Migdal [4], a series of papers by Pietronero et
al. [128, 130–134] and few other works [129, 135–137]. In contrast to our
study, these authors discussed the possible influence of vertex corrections to
the electron-phonon problem under various, partially rather drastic approxi-
mations, such as simplified or neglected momentum dependencies, extrapola-
tion of normal state properties to the superconducting state, or Fermi surface
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averaged quantities. In our work we solved Eqs. (6.11) without any approxi-
mations, keeping the full momentum and frequency dependencies. Therefore,
we were able to compare our results to prior literature only in few limiting
cases, see discussion below.

The different theories used in Paper X can be described as follows:
• Complete, nonadiabatic theory, solving Eqs. (6.11) for Zk,m, χk,m and

φk,m (∆k,m = φk,m/Zk,m).
• Isotropic, Fermi surface restricted approximation to the nonadiabatic

equations, solving Eqs. (6.23) for Z(iso)
m and ∆

(iso)
m .

• Adiabatic theory, solving Eqs. (6.11) without the vertex correction part
for the quantities

Z(ad)
k = 1− T

ωk
∑
k1

Vk−k1γ
(Z)
k1

, (6.45a)

χ
(ad)
k = T ∑

k1

Vk−k1γ
(χ)
k1

, (6.45b)

φ
(ad)
k =−T ∑

k1

Vk−k1γ
(φ)
k1

, (6.45c)

(∆(ad)
k = φ

(ad)
k /Z(ad)

k ).
• Fermi surface restricted, adiabatic theory, solving Eqs. (6.20) without the

vertex correction part for

Z(Fs)
k = 1+

πT
ωk

∑
k1

δ (ξk1)

N0
λk−k1γ

(ω)
k1

, (6.46a)

∆
(Fs)
k =

πT
Zk

∑
k1

δ (ξk1)

N0
λk−k1γ

(∆)
k1

. (6.46b)

The electron energies are chosen here as single band, next-nearest neighbor
tight-binding model

ξk =−t(1) ∑
i=x,y,z

ci cos(ki)− t(2) ∑
i=x,y,z

∏
j=x,y,z; j 6=i

c j cos(k j)−µ, (6.47)

which can be used for 1D, 2D and 3D systems. Above, cx = 1 and ci 6=x ∈{0,1}
control the dimensionality. We focus on the 2D and 3D cases here, choosing
the hopping energies as t(2) = t(1)/2 and t(1) =W/2∑i=x,y,z ci, with electronic
bandwidth W = |max

k
(ξk)−min

k
(ξk)|= 1.5eV. The phonon frequency is fixed

at Ω = 50meV and for now we consider a temperature of T = 20K. By vary-
ing the electron-phonon coupling strength λ , which is used in the Fermi sur-
face averaged theories listed above, we make a connection to the full electron
bandwidth equations by identifying the scattering strength as

g2
0 =

λΩ

2N0
. (6.48)
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The electron density of states at the Fermi level can directly be calculated
from the electron energies, N0 = ∑k δ (ξk). In the following we choose three
different values for the degree of nonadiabaticity, namely α ∈ {0.05,0.1,1},
for both 2D and 3D systems. The smaller the value of α is chosen, the larger
the electron filling. For example, in 3D, α = 0.05 resembles the situation of
an ideal Fermi gas to good degree, while α = 1 corresponds to a very shallow
energy band. The results for the maximum superconducting gap as function of
coupling strength are shown in Fig. 6.3, where different colors/symbols corre-
spond to the above listed levels of approximation, as indicated in the legends.
As a side note, all superconducting gap symmetries obtained in Paper X are
exclusively s-wave.

(a) (b) (c)

(d) (e) (f)

3D 3D 3D

2D 2D 2D

Figure 6.3. Maximum zero-frequency superconducting gap as function of electron-
phonon coupling strength λ , calculated for Ω = 50meV and T = 20K. The degree
of nonadiabaticity α is written in each panel. Different colors correspond to levels of
approximation as indicated in the legends. Graphs (a-c) and (d-f) show results for 3D
and 2D systems, respectively. Figures taken from Paper X.
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The first important thing to notice is the confirmation of Migdal’s theorem
in Fig. 6.3(a). All curves fall essentially on top of each other, meaning that the
adiabatic Fermi surface restricted theory provides an accurate description of
the superconducting state in a 3D system with α � 1, which is Migdal’s the-
orem [4]. This result was expected and can therefore be seen as a benchmark
for our numerical implementation. As we increase α to 0.1 and 1 in panels (b)
and (c), the deviation between results from Fermi surface restricted theories,
∆(Fs) and ∆(iso), to our reference curve ∆ grows significantly larger, both with
increasing α and λ . Further, we learn that ∆(ad) seems to always be a good
approximation to ∆ regardless of coupling strength. In the 3D case the vertex
corrections, if significant, increase the size of the superconducting gap, which
might likely reflect in an increase of transition temperature.

Turning to the 2D systems, we find in Fig. 6.3(d) that a small value of α

leads to an overestimation of all approximative theories ∆(iso), ∆(ad) and ∆(Fs),
in comparison to the red curve for ∆. This means that the vertex correction
adds negatively to the superconductivity order parameter, a behavior that has
not been encountered for 3D systems. The situation changes upon increase of
α to 0.1 and 1, see Fig. 6.3(e) and (f): Here the second order electron-phonon
scattering processes add positively to the gap magnitude, leading to a larger ∆

compared to the other three approaches. The adiabatic full bandwidth results
∆(ad) stay closest to the reference curves, but increasingly deviate with growing
λ . It is further notable that ∆(Fs) is a better approximation to ∆ than ∆(iso),
while both also become worse estimates for larger coupling strengths. In fact,
all of Fig. 6.3 points towards highly inaccurate results ∆(iso) from isotropic,
Fermi surface averaged Eliashberg theory, which leads us to the conclusion
that this level of approximation is not well suited for most situations, except
in the strongly adiabatic limit in 3D when vertex corrections are insignificant.

A closer examination of the intermediate regime in Fig. 6.3(e) reveals that
the vertex corrections are partially positive or negative, depending on the in-
teraction strength. This points towards a smooth transition between the two
situations encountered in panels (d) and (f). Further, it is noteworthy that
the (quasi) 2D case is the most interesting in terms of current advances in
high-temperature superconductivity. It is for this reason that we examine
this particular parameter range, relevant for Cu- and Fe-based superconduc-
tors [127, 138], in more detail below.

Next, consider the 2D system with electron-phonon coupling strength λ =
1.5. We calculate the maximum superconducting gap as function of tempera-
ture and show the outcomes in Fig. 6.4. The colors orange, green and purple
correspond to levels of nonadiabaticity α = 0.05, α = 0.1 and α = 1, respec-
tively. The superconducting gaps ∆ and ∆(ad) are drawn as dashed and solid
lines, while results from adiabatic, Fermi surface averaged Eliashberg theory
are shown as dash-dotted blue curve. Note that, due to the isotropic nature of
the electron-phonon interaction, ∆(Fs) does not depend on α . Our results for
∆(ad) show that the gap magnitude decreases slightly with growing α , while
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Figure 6.4. Maximum superconducting gap as function of temperature for λ = 1.5,
calculated for 2D systems within different levels of approximation, see legend. Figure
taken from Paper X.

the changes remain very small (Tc ∼ 100K). Approximately the same result
(slightly smaller gap magnitude) is obtained from ∆(Fs). The difference stems
from Cooper pairing away from the Fermi level, which is included in the full
bandwidth, but not in the Fermi surface averaged formalism.

When we compare these curves with results from vertex-corrected Eliash-
berg theory the conclusions are heavily α-dependent. For the most adiabatic
situation, α = 0.05, the vertex corrections reduce the maximally possible gap
size and the superconducting Tc (∼ 75K). This precisely matches the obser-
vations in connection to Fig. 6.3(d). At intermediate electron filling we find
a slight, but noticeable increase in Tc and ∆, because the magnitude of vertex
corrections is rather small and positive, compare Fig. 6.3(e) at λ = 1.5. Fi-
nally, as expected from Fig. 6.3(f), we find a significantly larger critical tem-
perature (Tc ∼ 135K) and gap magnitude for α = 1, i.e. for the most shallow
electron band.

To quantify the aspect of positive and negative contributions due to vertex
corrections, we employ the effective electron-phonon coupling constant of the
system, which is commonly calculated as

λ
(ad/Fs)
Z = 〈Z(ad/Fs)

k,m=0 〉kF |T>T (ad/Fs)
c

−1. (6.49)
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A first estimate for this coupling in vertex-corrected Eliashberg theory can
simply be given by

λZ = 〈Zk,m=0〉kF |T>Tc,T>T (ad)
c ,T>T (Fs)

c
−1 = λ

(1)
Z +λ

(2)
Z , (6.50)

where λ
(1)
Z and λ

(2)
Z are associated with the first and second order Feynman

diagrams. Note, that Eq. (6.50) is only an approximation to observe the un-
derlying trends. A more rigorous expression for the effective electron-phonon
coupling strength is given in Section 7.1. In Table 6.1 we list our results for
the couplings calculated for the same parameters used in Fig. 6.4. We skip the
results for the adiabatic Fermi surface averaged theory, since λ

(Fs)
Z ≡ λ due to

the fact that we consider an isotropic interaction.

Table 6.1. Effective electron-phonon coupling strength for different degrees of nonadi-
abaticity. The first row is obtained from Eq. (6.49), the remaining rows are determined
from Eq. (6.50). Table taken from Paper X.

α = 0.05 α = 0.1 α = 1

λ
(ad)
Z 1.4016 1.5971 1.4723

λ
(1)
Z 1.4015 1.5972 1.4671

λ
(2)
Z −0.5496 −0.0462 0.4060

λZ 0.8519 1.5510 1.8731

First, we observe that λ
(ad)
Z ' λ

(1)
Z for all values of α considered here. This

is due to the fact that both quantities represent the first order electron-phonon
scattering processes, and hence the contributions are expected to be similar.
For α = 1 the overall coupling is significantly enhanced by the vertex correc-
tions, which results in the strong increase of Tc in Fig. 6.4. For the interme-
diate case of α = 0.1 we find λ

(2)
Z to be a small and negative number. This

coincides with observations in Fig. 6.4 insofar as the second order Feynman
diagram does not lead to a very large change in ∆ or Tc. The most adiabatic
system α = 0.05 shows significant reduction in the effective coupling strength,
which causes the above mentioned drop in Tc, when compared to the purely
adiabatic results.

To summarize, in Paper X we confirmed Migdal’s theorem and explored
a substantial part of phase space spanned by our parameters. Our findings
indicate that adiabatic Eliashberg theory for 3D systems is often a good ap-
proximation, leading to the correct trends and orders of magnitude regarding
the superconducting gap. In 2D the situation is more involved, as vertex cor-
rections can have positive or negative sign, and therefore enhance or reduce Tc.
This picture is in accordance with prior estimates [131,139]. Many (quasi) 2D
superconductors, such as Cu- or Fe-based materials, lie in a parameter regime
where vertex corrections are expected to play an important role. In the follow-
ing Chapter 7 we will explore those systems in more detail.
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7. Exotic superconducting states

Simpler explanations are, other
things being equal, generally
better than more complex ones.

William of Ockham

Here we use the extended Eliashberg theory introduced in Chapter 6 to ex-
plore different exotic phenomena in superconductors, which can only be ob-
served due to the inclusion of vertex corrections to the electron-phonon inter-
action. The word ‘exotic’ is used here in comparison to the general conception
of superconducting states that can originate from isotropic electron-phonon
coupling. As we show in the summary of Paper XI in Section 7.1, such an
interaction can in fact produce unconventional, i.e. sign-changing symmetries
of the superconducting gap in the families of Cu-based, Fe-based and heavy
fermion superconductors. We continue by presenting Paper XII, where the
Fe-based system ThFeAsN is shown to be a likely candidate exhibiting an
unconventional Brillouin zone symmetry of the superconductivity order pa-
rameter due to vertex corrections. In Section 7.3 we discuss the topic of odd-
frequency superconductivity. As we show in Paper XIII, vertex corrections to
the electron-phonon problem generically allow for the coexistence of two su-
perconducting order parameters, where one is always even, and the other one
is odd in frequency space. Even though the experimental verification of this
finding might prove challenging, we benchmark our approach successfully in
a generic cuprate superconductor.

7.1 Unconventional superconducting gap
Among all results discussed in Section 6.2, the most important one for the
discussion about unconventional superconducting states are the effective cou-
pling strengths due to the second order Feynman diagram. We have seen that
the effective electron-phonon coupling can be written as λZ = λ

(1)
Z + λ

(2)
Z ,

where λ
(1)
Z is generally positive. Under suitable circumstances, such as for 2D

systems, λ
(2)
Z can contribute destructively, i.e. have the effect of reducing the

overall coupling strength. These (partial) interaction strengths were averaged
quantities over the Fermi surface, but consider now each of these λ ’s as mo-
mentum dependent. It is generally not hard to imagine that the resulting total
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coupling might have sign changes in momentum space, which might lead to
non-trivial effects such as symmetry changes in the superconductivity order
parameter.

One additional reason to expect unconventional gap symmetries to emerge
under the correct conditions is the work carried out by Hague in Refs. [140,
141]. By using the Dynamical Cluster Approximation for solving vertex-
corrected equations for the electron Green’s function and self-energy, he was
able to show that within this model approach an isotropic electron-phonon in-
teraction in Cu-based superconductors can lead to the experimentally observed
d-wave symmetry of the superconducting gap. We therefore wanted to exam-
ine this aspect closer, asking two central questions: (i) Can vertex-corrected
Eliashberg theory under suitable conditions produce sign-changing symme-
tries of the superconductivity order parameter? (ii) If so, how generic is this
phenomenon and what are the systems it applies to? In the current Section we
walk through the answers to both questions step by step.

7.1.1 System properties and self-consistent solutions
In Paper XI we consider three different systems, each representative for a
prominent family of superconductors, namely a Cu-based, Fe-based and heavy
fermion superconductor. All of these fall into the category of unconventional
superconductors, meaning that their respective superconductivity order param-
eter changes sign in momentum space [39]. In each case we choose charac-
teristic values for the Einstein phonon frequency Ω, the systems temperature
T < Tc and the electron-phonon scattering strength. Further, we use materials
specific tight-binding models for the electron energies, see below.

Starting with the Cu-based material, we use a one-band next-nearest neigh-
bor tight-binding model for the electron dispersion, reading

ξk = tcx+y + t ′cxy−µ. (7.1)

Above we introduced functions cax+ay = cos(a · kx) + cos(a · ky) and caxy =
cos(a · kx)cos(a · ky), a ∈ N, for brevity. The hopping energies are chosen as
t =−0.25eV and t ′ = 0.1eV, so that, together with a chemical potential shift
µ = −0.07eV, we get the prototypical Fermi surface as shown in Fig. 7.1(a).
Even though the modeling of electron energies as in Eq. (7.1) is rather sim-
ple, the result is representative for many cuprate superconductors, such as
Bi2Sr2CaCu2O8 [142] or La2−xSrxCuO4 [143].

For the Fe-based systems we use two energy bands to correctly capture the
electron pockets around the M point of the Brillouin zone, and the hole pockets
at Γ. The bands

ξ
(1)
k = tcx+y−

[
K− t ′cxy

]
−µ,

ξ
(2)
k = tcx+y +

[
K− t ′cxy

]
−µ, (7.2)
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Cu-based Fe-based Heavy fermion(a) (b) (c)

0 π−π 0 π−π 0 π−πkx kx kx
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Figure 7.1. Panels (a), (b) and (c) show the Fermi surface of our tight-binding model
for exemplary cuprate, Fe-based and heavy fermion superconductor, respectively. The
nesting wave vector for (a) and (b) is Q' (π,π), while for (c) Q' (π/2,π/2).

with parameters K = 1/3eV, t = 1/6eV, t ′= 1/12eV and µ = 0eV, render the
Fermi surface in Fig. 7.1(b), which is typical for a broad variety of supercon-
ductors, e.g. FeSe [37], BaFe2As2 [144], LaFeAsO [145] or LiFeAs [146].

The third system under consideration is a heavy fermion superconductor,
where we choose to focus on the well-known example of CeCoIn5. In the
following, when referring to the ‘heavy fermion’ system we mean this specific
material. The corresponding Fermi surface shown in Fig. 7.1(c) is created
from a two band tight-binding model

ξ
(1,2)
k =

εc
k + ε

f
k

2
±

√√√√(εc
k + ε

f
k

2

)2

+ s2
k, (7.3)

ε
c
k =−2tc1cx+y−4tc2cxy−2tc3c2x+2y−µc,

ε
f

k =−2t f1cx+y−4t f2cxy−2t f3c2x+2y−4t f5c2xy−2t f7c3x+3y + ε f ,

sk =s0 + s1 sin2(kx)sin2(ky),

which we took from Ref. [147]. The list of hopping energies and other pa-
rameters is given by tc1 = −50meV, tc2 = −13.36meV, tc3 = −16.73meV,
µc =−151.51meV, t f1 =−0.85meV, t f2 =−0.35meV, t f3 =−0.8meV, t f5 =
0.1meV, t f7 = 0.09meV, ε f = 0.5meV, s0 = 3meV and s1 = 7meV.

The arrows in each panel of Fig. 7.1 indicate the respective nesting prop-
erties with the exchange vectors Q ' (π,π) for (a), (b) and Q ' (π/2,π/2)
for (c). Nesting is commonly associated with enhanced tendencies towards
antiferromagnetic spin fluctuations [148, 149], which are broadly believed to
mediate the superconductivity in these systems. This picture first has been
studied for the heavy fermion systems [11, 13, 150], and later also for the
Cu-based high-temperature superconductors [151–153]. With the discovery
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of Fe-based compounds the concept of spin fluctuations has gained further
momentum [32, 33, 154, 155], such that this mechanism is now commonly
believed to be responsible for unconventional superconductivity [39]. As we
show below, this picture is far from being complete because the Fermi sur-
face nesting turns out to play a crucial role also for electron-phonon mediated
Cooper pairing.

In our formalism we choose the phonon frequency Ω for each system in
accordance to available literature [156–160]. Further, we fix the temperature
at a value T < Tc, since we are primarily interested in the superconducting
state. The only remaining free parameter of our theory is the electron-phonon
scattering strength g0. As done in Section 6.2, we employ again an isotropic
electron-phonon interaction between a single optical phonon mode and the
electronic system. The input coupling strength to our theory can be determined
from λ = 2g2

0N0/Ω, and the nonadiabaticity ratio is calculated as α = Ω/εF ,
with εF the ‘minimal shallowness’ of ξk (also in the case of two bands). We
summarize the parameters for each model system in Table 7.1.

Table 7.1. Parameters entering the vertex-corrected Eliashberg calculations for each
system considered. The first four rows are chosen freely but in accordance to litera-
ture, while λ and α are calculated from those choices.

Cu-based Fe-based Heavy fermion

Ω(meV) 50 [156] 17 [157] 5 [160]
T (K)< Tc 30 15 2

ξk Eq. (7.1) Eq. (7.2) Eq. (7.3)
g0 (meV) 148 130 4

λ 2.00 2.85 1.06
α 0.16 0.22 0.14

∆k,m=0 (meV) ∆k,m=0 (meV) ∆k,m=0 (µeV)

Cu-based Fe-based Heavy fermion(a) (b) (c)

Figure 7.2. Self-consistently calculated zero-frequency superconducting gap. Panels
(a), (b) and (c) are results obtained for the Cu-based, Fe-based and heavy fermion
superconductor. Figure taken from Paper XI.
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We can clearly see from the last line of Table 7.1 that the condition α � 1
is not met in any of these systems. For this reason we expect vertex correc-
tions to play an important role. Using the above listed parameters we numer-
ically solved the vertex-corrected Eliashberg Eqs. (6.11); the resulting zero-
frequency superconducting gaps are shown in Fig. 7.2. As directly apparent,
the realistic inputs for the Cu-based system lead to the experimentally ob-
served [161] dx2−y2-wave symmetry of ∆k,0, where the sign change is dictated
by the nesting wave vector Q = (π,π). In our model for the Fe-based com-
pound we find the prototypical s±-wave symmetry [162], where ∆k,0 shows
opposite signs between electron and hole bands. Finally, our representative
example for the heavy fermion family shows also a (higher-harmonic) dx2−y2-
wave superconducting gap, compatible with the established picture [163].

It is striking that, not only do the symmetries obtained from an isotropic
electron-phonon coupling match the experimental situation, also the magni-
tude of the superconducting gap has the correct range in all three cases. As
an example, we find a maximum gap of 800 µeV at T = 2K when projecting
∆k,m=0 onto the Fermi surface in the case of CeCoIn5. Fasano et al. measured
a similar value of 620 µeV in CeCoIn5 at the same temperature [163]. The
outcomes for our models of Cu-based and Fe-based superconductors are in
equally realistic regimes. To further stress the agreement of our calculations
with experiment we show the temperature evolution of the maximum super-
conducting gap ∆0 = max ∆kF,m=0 for the cuprate compound in Fig. 7.3. The

Tc ' 52K

Figure 7.3. Temperature dependence of the superconducting gap function for our
model cuprate system, obtained from self-consistent solutions of the vertex-corrected
Eliashberg equations. Figure taken from Paper XI.

transition temperature Tc ' 52K has the correct order of magnitude for the
materials under consideration. Further it should be noted that ∆0 and Tc can be
fine tuned by slightly varying Ω and g0. Our main goal here, however, is not
to fully explain all details of the superconducting state in these materials, but
rather raise the awareness that electron-phonon interactions might likely play
a more important role than is generally believed.
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Since, for the Cu-based compound we have calculated the full tempera-
ture dependence, we can get an estimate of the effective electron-phonon cou-
pling strength in the system. Recall the relatively large input coupling λ = 2
from Table 7.1, which, however, is merely an input parameter not reflecting
the actual coupling strength. The self-consistent solutions of the interacting
state above Tc allow us to calculate an estimate of this quantity by evaluating
〈Zk,m=0〉kF |T>Tc . Without vertex corrections this expression is equal to 1+λZ ,
see earlier Chapters. Now, the second order Feynman diagram introduces an
additional contribution, which we can calculate by setting φ = 0 in Eq. (6.11a),
since T > Tc, approximating χ ' 0, evaluating all momentum sums as energy
integrals and performing the Matsubara frequency sums analytically. The re-
sult reads

〈Zk,m=0〉kF |T>Tc = 1+λZ−λ
2
Z

π2ΩN0

4
3sinh(Ω/T )−Ω/T

cosh(Ω/T )−1
, (7.4)

which is a second order polynomial in λZ . For the Cu-based system at T =
70K we find λZ = 0.34 and λZ = 0.85 as solutions, which in both cases is a
significant reduction in comparison to the input coupling λ = 2. Experimen-
tally it has been shown that an upper bound for the coupling strength is given
by approximately unity [156], which compares well to our estimates.

Now that the three model systems have been introduced, together with some
particular aspects of each respective superconducting state, we want to analyze
the solutions to Eliashberg theory in greater detail in Section 7.1.2, so as to
answer the question about the origin of unconventional Cooper pairing in these
materials.

7.1.2 Deeper analysis of the superconducting state
So far we laid out the answer to question (i), namely that it is indeed possible to
obtain unconventional superconducting states from isotropic electron-phonon
interaction in several classes of superconductors. We now want to examine
closer why this happens, and in particular what the cause of a sign-changing
gap function is.

We start the analysis by writing the electron self-energy of Eq. (6.9) in a
slightly modified way,

Σ̂k =T ∑
k1

Vk−k1 ρ̂3Ĝk1 ρ̂3

(
1+T ∑

k2

Vk1−k2Ĝk2 ρ̂3Ĝk2−k1+kρ̂3

)
=T ∑

k1

Vk−k1 ρ̂3Ĝk1 ρ̂3

(
1+g2

0Γ̂k,k1

)
, (7.5)

where we implicitly defined the electron-phonon vertex

Γ̂k,k1 =
T
g2

0
∑
k2

Vk1−k2Ĝk2 ρ̂3Ĝk2−k1+kρ̂3 . (7.6)
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Written as in Eq. (7.5) it becomes apparent that we can easily recover the self-
energy of ‘standard’ Eliashberg theory by setting Γ̂k,k1 to zero. Moving for-
ward, we can explicitly perform the matrix multiplications in Nambu space in
the definition of the vertex, leading to

Γ̂k,k1 =
T
g2

0
∑
k2

Vk1−k2

(
− γ

(Z)
k2

γ
(Z)
k2−k1+kρ̂0 + iγ(χ)k2

γ
(Z)
k2−k1+kρ̂3 + iγ(φ)k2

γ
(Z)
k2−k1+kρ̂1

+iγ(Z)k2
γ
(χ)
k2−k1+kρ̂3 + γ

(χ)
k2

γ
(χ)
k2−k1+kρ̂0− iγ(φ)k2

γ
(χ)
k2−k1+kρ̂2

−γ
(Z)
k2

γ
(φ)
k2−k1+kρ̂1− iγ(χ)k2

γ
(φ)
k2−k1+kρ̂2− γ

(φ)
k2

γ
(φ)
k2−k1+kρ̂0

)
,

(7.7)

where we inserted the electron Green’s function of Eq. (6.6) twice into Eq. (7.6).
From the properties of the Pauli basis it follows that all prefactors of ρ̂0, which
are underlined in Eq. (7.7) for clarity, enter each function Z, χ and φ 1. It is
therefore useful to estimate the influence of the second order Feynman dia-
gram by the (scalar) function

Γk,k1 =−
T
g2

0
∑
k2

Vk1−k2

(
γ
(Z)
k2

γ
(Z)
k2−k1+k− γ

(χ)
k2

γ
(χ)
k2−k1+k + γ

(φ)
k2

γ
(φ)
k2−k1+k

)
. (7.8)

We assume isotropic electron-phonon interaction, therefore the coupling
has only Matsubara frequency dependence, Vk1−k2 ≡ Vm1−m2 . In this case, by
defining q = k− k1, we only have to deal with a single momentum index
in the vertex estimate. For simplicity, we further set m = m1 and write the
momentum and frequency dependencies explicitly:

Γq,m =− T
g2

0
∑

k2,m2

Vm−m2

(
γ
(Z)
k2,m2

γ
(Z)
k2+q,m2

− γ
(χ)
k2,m2

γ
(χ)
k2+q,m2

+ γ
(φ)
k2,m2

γ
(φ)
k2+q,m2

)
.

(7.9)

There are cases in which it is advantageous to get an estimate of Γq,m with-
out having to self-consistently solve the vertex-corrected Eliashberg equa-
tions. An often reasonable estimate can be found by considering the non-
interacting state, in which Z = 1, χ = 0 and φ = 0. With the shorthand nota-
tion2 γ

(ω)
k,m = ωm/[(iωm)

2−ξ 2
k ] and γ

(ξ )
k,m = ξk/[(iωm)

2−ξ 2
k ] we find

Γ
(0)
q,m =− T

g2
0

∑
k2,m2

Vm−m2

(
γ
(ω)
k2,m2

γ
(ω)
k2+q,m2

− γ
(ξ )
k2,m2

γ
(ξ )
k2+q,m2

)
(7.10)

1Recall, that we project out a function in channel i by calculating Tr(Σ̂ρ̂i) ∼ Tr(ρ̂3Ĝρ̂3(1+
Γ̂)ρ̂i). Those terms of Γ̂ proportional to ρ̂0 leave the projection matrix ρ̂i invariant, and therefore
enter the result regardless of the choice i.
2In the case of multiple electron energy bands, ξk,n, we define γ

(ω)
k,m = ∑n ωm/[(iωm)

2− ξ 2
k,n],

γ
(ξ )
k,m = ∑n ξk,n/[(iωm)

2−ξ 2
k,n].
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as approximation to the vertex estimate. The Matsubara frequency sum in
Eq. (7.10) can be performed analytically but we omit to write the result here
explicitly as it is rather lengthy and does not contribute much to the narrative.

The functional form of the vertex bears a striking similarity to the electron
susceptibility that we encountered in earlier Chapters. In the fully interacting
state, the susceptibility can be calculated as

Xq,l = T ∑
k,m

Tr
[
ρ̂3Ĝk,mρ̂3Ĝk+q,m+l

]
=−2T ∑

k,m

(
γ
(Z)
k,mγ

(Z)
k+q,m+l− γ

(χ)
k,mγ

(χ)
k+q,m+l + γ

(φ)
k,mγ

(φ)
k+q,m+l

)
, (7.11)

which resembles Eq. (7.9) up to a prefactor and the electron-phonon coupling.
In the non-interacting state we find

X(0)
q,l =−2T ∑

k,m

(
γ
(ω)
k,m γ

(ω)
k+q,m+l− γ

(ξ )
k,mγ

(ξ )
k+q,m+l

)
, (7.12)

which is the close cousin of Eq. (7.10). What we learn here is that the vertex
correction to the electron-phonon problem should behave approximately as
the susceptibility of the system, which means that Fermi surface nesting is
the most likely candidate for mediating a sign change in the renormalized
interaction, and therefore in the superconducting order parameter.

Let us now consider again the three systems discussed in Section 7.1.1.
For each case we show the outcome of Eqs. (7.9) and (7.10) for m = 0 by
plotting the vertex functions in the first two rows of Fig. 7.4. Since we con-
sider isotropic electron-phonon couplings, these functions (1 + g2

0Γq,0) and
(1+ g2

0Γ
(0)
q,0) contain the full momentum dependence of the renormalized in-

teraction. We observe in panels (a-c) that this interaction is attractive in most
parts of the Brillouin zone, while having a negative sign close to the respec-
tive nesting wave vector Q. It is therefore straight-forward to conclude that the
sign change of the order parameter, see Fig. 7.2, is caused by the momentum
dependence of the renormalized vertex function. Further, for the Cu-based and
Fe-based systems the similarity between results from the interacting and non-
interacting state are striking, compare panels (a-b) with (d-e) in Fig. 7.4. For
our example of heavy fermion superconductors, however, there are significant
differences in that no sign change of the vertex function is found in the non-
interacting state, see Fig 7.4(c) and (f). This means that in some (but not all)
cases it might not be necessary to self-consistently solve the vertex-corrected
Eliashberg equations for getting an accurate estimate of the renormalized ver-
tex function.

When comparing the first and second with the third and fourth row in
Fig. 7.4, we immediately realize how similar the Brillouin zone structures of
susceptibilities and vertex functions are. Even though the former does not
change sign as function of q, the shape matches that of the vertex function. Re-
sults in the interacting state, panels (a-c) and (g-i), compare equally accurate
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for each system as those obtained for the non-interacting systems, panels (d-f)
and (j-l). This clearly points towards the utter importance of coherent nesting
conditions for determining the Brillouin zone structure of the vertex function,
as this is the well-known dominant factor entering the susceptibilities [13].
We therefore have substantial reason to conclude that nesting conditions are

XXX

X X X
___

_ _ _

Cu-based Fe-based Heavy fermion(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.4. Zero-frequency (bare) vertex functions and (bare) susceptibilities, see
label in each panel. The first, second and third columns correspond to results for
the Cu-based, Fe-based and heavy fermion superconductor, respectively. Parts of the
figure are taken from Paper XI.
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the driving force for both spin fluctuations and electron-phonon mediated pair-
ing in the families of unconventional superconductors considered here.

It is important to stress what these results precisely mean. Using only
isotropic electron-phonon interaction in a vertex-corrected Eliashberg frame-
work leads automatically to the experimentally observed, unconventional sym-
metries of the superconducting gap function. This confirms earlier results ob-
tained by Hague for the Cu-based compounds [140], and even generalizes the
picture to a much broader set of superconductors, which is the answer to ques-
tion (i) posed in the beginning of the current Section. Concerning question
(ii), we found that the unconventional superconducting gap symmetry appears
as consequence of coherent Fermi surface nesting, and therefore is expected
to be at least as generic as the concept of spin fluctuations. We do not claim
to fully have solved the theoretical challenges concerning unconventional su-
perconductivity, nor does the concept of spin fluctuations become irrelevant.
However, the findings introduce a paradigm shift, in that electron-phonon and
spin fluctuations interactions do not necessarily support different symmetries
of the superconductivity order parameter, as is generally believed, but rather
are possibly cooperating to boost Tc in high temperature superconductors. As
an explicit example, we explore in Section 7.2 a real system in which the here
presented effects are likely of importance to explain the superconducting state.

7.2 The case of ThFeAsN
Here we want to look into a real physical system, considered in Paper XII,
where vertex corrections to the electron-phonon problem might play a cru-
cial role for explaining superconductivity. ThFeAsN is a recently discov-
ered, undoped superconductor with critical temperature T exp

c = 30K [164].
We wanted to see if superconductivity in this material can be understood by
adiabatic, Fermi surface averaged Eliashberg theory for electron-phonon and
spin/charge interactions, which takes results from ab initio calculations for the
electron energies ξk,n and electron-phonon couplings λq,ν as input. Here, n
is an energy band index and ν denotes the phonon branch. For calculating
the electronic dispersion one needs to use the experimental lattice parameters
to get the distance between Fe and As planes correctly [165, 166], a com-
mon challenge in Fe-based superconductors that potentially can lead to wrong
Fermi surface topologies [167,168]. The Fermi surface of ThFeAsN is proto-
typical for the family of Fe-based superconductors, consisting of electron-like
pockets at the Brillouin zone edges, and hole-like bands at the center, while be-
ing effectively two dimensional. As will become clear in the discussion below,
the adiabatic theory cannot explain the high critical temperature in ThFeAsN,
and we have good reason to believe that Tc will be enhanced upon the inclusion
of vertex corrections to the electron-phonon interaction.
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We calculate the dynamic electron-phonon couplings by using the ab initio
inputs λq,ν and phonon frequencies ωq,ν as

λ
(ep)
q,l = ∑

ν

λq,ν
ω2

q,ν

ω2
q,ν +q2

l
. (7.13)

The band-resolved electronic bare susceptibility is obtained via

Xn,n′
q,l = ∑

k
δ (ξk,n)δ (ξk+q,n′)

nF(ξk,n)−nF(ξk+q,n′)

ξk+q,n′−ξk,n + iql
, (7.14)

with nF(·) the Fermi-Dirac function. There are three hole bands and two elec-
tron bands crossing the Fermi level, which we group as sets h and e, respec-
tively. We can then define susceptibilities that couple those two subsets of
bands in different combinations:

X (e−e)
q,l = ∑

n∈e,n′∈e
Xn,n′

q,l , (7.15a)

X (h−h)
q,l = ∑

n∈h,n′∈h
Xn,n′

q,l , (7.15b)

X (e−h)
q,l = ∑

n∈e,n′∈h
Xn,n′

q,l + ∑
n∈h,n′∈e

Xn,n′
q,l , (7.15c)

X (0)
q,l = X (e−e)

q,l +X (h−h)
q,l +X (e−h)

q,l = ∑
n,n′

Xn,n′
q,l . (7.15d)

To be explicit, X (e−h)
q,l includes only the couplings between electron bands with

hole bands, but neither electron, nor hole bands among each other. When using
the index r ∈ {e− e,h−h,e−h,0}, we can define the spin and charge fluctu-
ations kernels within the Random Phase Approximation (RPA) as function of
the Stoner interaction U ,

λ
(sf,r)
q,l =

3
2

N(0)U2
X (r)

q,l

1−UX (r)
q,l

, (7.16a)

λ
(cf,r)
q,l =

1
2

N(0)U2
X (r)

q,l

1+UX (r)
q,l

, (7.16b)

valid for spin-singlet electrons. In Eqs. (7.16), N(0) denotes the Fermi sur-
face density of states. The Stoner criterion dictates that the system develops a
magnetic instability when 1−UX (r)

q,l → 0, therefore U’s upper bound is given

by U (r)
max = [maxq,l X (r)

q,l ]
−1. It is convenient to define the Stoner parameter in

relation to this upper bound, i.e. U = p
100U (r)

max, where p ∈ (0,100).
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The momentum structure of each of the above couplings is crucially impor-
tant when in comes to the superconducting state. For this reason we examine
the outcomes of Eqs. (7.13) and (7.16) in Fig. 7.5 closer. The results have
been calculated by considering the system as two dimensional. Panels (a) and
(b), representing the coupling of electron with electron bands, and hole with
hole bands, respectively, show clearly dominant contributions around the Bril-
louin zone center, which are expected to suppress superconductivity [169].
The situation is different in Fig. 7.5(c), where we plot the spin fluctuations
interaction due to a coupling only between electron and hole bands. In this
scenario the result is strongly peaked at large wave vectors, which is the ingre-
dient needed to induce a sign change of the superconducting gap on the Fermi
surface. Combining all the contributions to the spin fluctuations interaction
leads to Fig. 7.5(d), where the dominant feature stems from λ

(sf,e−h)
q,l , but a

noticeable hump around the Brillouin zone center remains.
The electron-phonon interaction, as it is shown in Fig. 7.5(e), is peaked at

small and large momenta, a feature that is generally not expected to support
the unconventional s±-wave symmetry. For this particular state one would
need a strongly peaked interaction at small-q [170]. To put these speculations
to the test, we solved the Fermi surface restricted Eliashberg equations [171]

Z(r)
k,m = 1+

πT
ωm

∑
k′,m′

δ (ξk′)

N(0)
λ
(+,r)
k−k′,m−m′

ωm′√
ω2

m′+(∆
(r)
k′,m′)

2
, (7.17a)

∆
(r)
k,m =

πT

Z(r)
k,m

∑
k′,m′

δ (ξk′)

N(0)
λ
(−,r)
k−k′,m−m′

∆
(r)
k′,m′√

ω2
m′+(∆

(r)
k′,m′)

2
, (7.17b)

with the couplings λ
(±,r)
q,l = ±λ

(sf,r)
q,l (+λ

(cf,r)
q,l )(+λ

(ep)
q,l ), where we tested all

possibilities of combining spin, charge and electron-phonon couplings.
As an example, we show the self-consistent solution of the superconduct-

ing gap for r = e− h, T = 2K, p = 99 and m = 0 in Fig. 7.5(f). We observe
that ∆ changes sign between the electron and hole bands, as is typically the
case in Fe-based superconductors [37, 162], and compatible with experiment
in ThFeAsN [172]. However, the critical temperature for this particular pa-
rameter setting is only about 5K, which is considerably smaller than T exp

c .
Naively, one would expect that we can achieve drastically higher values for Tc
by increasing U , since this has the effect of larger coupling strengths. How-
ever, as was also shown in Paper II and Section 3.2, the critical temperature
cannot arbitrarily be enhanced by choosing U close to Umax.

As mentioned before, we tested all possible interaction kernels λ
(±,r)
q,l , i.e.

each combination of electron-phonon and spin/charge interactions. Here also
all options concerning the coupling of hole and electron bands have been ex-
plored. The maximally allowed critical temperature as obtained in our Eliash-
berg formalism was Tc ∼ 7.5K, which is significantly deviating from the ex-
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(a) (b) (c)

(d) (e) (f)

Figure 7.5. (a-d) Zero-frequency spin fluctuations interactions according to
Eqs. (7.16), obtained for U = 110meV and T = 5K. (e) Zero-frequency component of
the electron-phonon interaction. (f) Self-consistently calculated superconducting gap
function at m = 0, p = 99 and T = 2K. Figure taken from Paper XII.

perimental result. Our analysis showed that this is due to phase frustration
effects, which means that the electron-phonon interaction and λ

(sf/cf,r)
q,l for

r ∈ {e−e,h−h} support a non-sign changing symmetry of the superconduct-
ing gap, while the dominant λ

(sf,e−h)
q,l promotes the correct s±-wave symmetry.

This self-restraint behavior is not unusual for Fe-based superconductors [169],
and further work is required to overcome this issue. This is the point where
we realized that vertex corrections to the electron-phonon interaction could be
of utter importance in ThFeAsN.

The first thing to notice is that the adiabatic ratio, with characteristic phonon
energy scale ωlog ' 17meV and minimal band shallowness εF ' 52meV,
is not substantially smaller than unity, α = ωlog/εF ∼ 0.33. This is a di-
rect indicator that vertex corrections are likely important. To get an estimate
of the renormaliazed vertex function we consider the non-interacting system
and assume that the phonon spectrum can be approximated by a single op-
tical phonon with frequency ωlog. The vertex Γ

(0)
q,m can then be evaluated

via Eq. (7.10). By following the approach of Ref. [173] for estimating the
electron-phonon coupling strength via

λ =
1.04+µ? log(ΘD/1.45Tc)

(1−0.62µ?) log(ΘD/1.45Tc)−1.04
, (7.18)
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we obtain a value of λ = 1.6, directly resembling the coupling strength in
the actual physical system. In Eq. (7.18), we use Tc = T exp

c = 30K [164], a
standard value for the Coulomb pseudopotential µ? = 0.136, and the Debye
temperature ΘD = 332K [174]. With these parameters we calculate the scat-
tering strength as g0 =

√
λωlog/2N(0).

In Fig. 7.6 we show the result for the renormalized vertex function, calcu-
lated at T = 10K. Now, in contrast to the non-renormalized interaction, the
large wave vector couplings have a negative sign, while (1+g2

0Γ(0)) is positive
in most parts of the Brillouin zone. This particular shape resembles our model
calculations for Fe-based superconductors in Section 7.1, and therefore it is
a clear indication that the electron-phonon interaction supports an s±-wave
symmetry of the superconducting gap when vertex corrections are taken into
account. As a natural consequence, we expect that the frustration effects dis-
cussed earlier are minimized, while the critical temperature is boosted due to
a cooperative effect from electron-phonon and spin fluctuations interactions.

Figure 7.6. Estimate for the renormalized electron-phonon vertex function in
ThFeAsN, calculated at T = 10K and shown for qz = 0, m= 0. The Figure is reprinted
from Paper XII.

In summary, we have shown in Paper XII that the superconducting state in
ThFeAsN cannot be explained by a Fermi surface restricted Eliashberg theory.
At the current stage it is unclear whether our conclusions in this regard would
change if we included the orbital dependence of the electron energy bands.
However, we identified the system as a likely candidate for electron-phonon
mediated, unconventional superconductivity, cooperating with the spin/charge
fluctuations mechanism so as to produce the prototypical s±-wave symmetry
of the superconducting gap function and a high Tc.
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7.3 Odd-frequency superconductivity
We now want to address another ‘exotic’ phenomenon that occurs due to ver-
tex corrections to electron-phonon interaction, which is that of odd-frequency
superconductivity. Until here we discussed even-parity Cooper pairs made of
spin-singlet electrons, which are even functions under exchange of relative
time. This means that the superconducting gap describing the condensate of
such Cooper pairs is even in Matsubara and real frequency space. However,
superconductivity is also possible for spin-triplet, odd-frequency electrons,
still assuming even parity in real/momentum space [175]. The first proposal of
such a state was introduced by Berezinskii [176] for superfluid 3He. The con-
cept of odd-frequency superconductivity is generally connected to either spin
degrees of freedom [175] or strong electron-phonon interactions [177, 178]
and it is often needed to tune the system or include many degrees of freedom
for making the odd-frequency state stable against the even-frequency counter-
part [179–182]. Odd-frequency superconductivity is therefore often discussed
in terms of Cooper pair correlations [175]. Our focus here is different, as we
are looking for a macroscopic odd-frequency phase with finite order parame-
ter.

Here we summarize the results from Paper XIII, in which we show that, un-
der the assumption of even parity, a moderate isotropic electron-phonon inter-
action within vertex-corrected Eliashberg theory leads to a coexistence of the
‘standard’ spin-singlet, even-frequency gap and a spin-triplet, odd-frequency
state. After introducing an extended version of Eliashberg equations in Section
7.3.1, we benchmark our theoretical findings in Section 7.3.2, using a standard
cuprate model similar to that of Section 7.1.

7.3.1 Further theoretical extension
The reason why we considered odd-frequency pairing in the first place was a
simple observation: Recall that the very definition of the electron self-energy
in Eq. (6.3) has no contribution in the Pauli matrix channel ρ̂2. On the other
hand we know that we can express Σ̂ = Σ̂(1)+ Σ̂(2) according to the two Feyn-
man diagrams we include in our theory. It is well known that the first order
term leads to Tr[ρ̂2Σ̂(1)] = 0, which represents the gauge freedom of the sys-
tem. However, when taking into account the contributions of second order in
the electron-phonon coupling, we find

1
2

Tr[ρ̂2Σ̂
(2)
k ] = T 2

∑
k1,k2

Vk−k1Vk1−k2

[
−
(
γ
(χ)
k1

γ
(φ)
k2

+ γ
(φ)
k1

γ
(χ)
k2

)
γ
(Z)
k2−k1+k

+
(
γ
(Z)
k1

γ
(φ)
k2
− γ

(φ)
k1

γ
(Z)
k2

)
γ
(χ)
k2−k1+k +

(
γ
(Z)
k1

γ
(χ)
k2

+ γ
(χ)
k1

γ
(Z)
k2

)
γ
(φ)
k2−k1+k

]
, (7.19)

which does not vanish in general. Due to the combination of Pauli matrices
and electron Green’s functions in Eq. (6.9) the above terms are induced in the
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ρ̂2 channel. We therefore define the order parameter ζ ind
k = 1

2 Tr[ρ̂2Σ̂
(2)
k ], with

label ‘ind’ for induced. Note, that each summand in Eq. (7.19) has one factor
γ(φ), which is why ζ ind

k = 0 in the normal state, and we can associate this
function with superconductivity.

It is worthwhile examining the frequency symmetry of ζ ind
k . To do so we

focus for the moment only on the Matsubara frequency axis. Each term inside
the large brackets of Eq. (7.19) is a product of γ(Z), γ(χ) and γ(φ), containing
each factor exactly once. Let us therefore perform the analysis with a repre-
sentative example

βm = ∑
m1,m2

Vm−m1Vm1−m2γ
(Z)
m1 γ

(χ)
m2 γ

(φ)
m2−m1+m. (7.20)

The above function βm has fermionic Matsubara frequency dependence, there-
fore we can invert the index by considering β−m−1. Insertion into Eq. (7.20)
leads to factors V−m−m1−1 and γ

(φ)
m2−m1−m−1. Next, we change the summation

variable to m̃1 = −m1− 1, which is possible due to the fact that we need to
sum over all integers:

β−m−1 = ∑
m̃1,m2

V−m+m̃1V−m̃1−m2−1γ
(Z)
−m̃1−1γ

(χ)
m2 γ

(φ)
m2+m̃1−m. (7.21)

Equivalently, we treat the second summation index as m̃2 =−m2−1, leading
to

β−m−1 = ∑
m̃1,m̃2

V−m+m̃1V−m̃1+m̃2γ
(Z)
−m̃1−1γ

(χ)
−m̃2−1γ

(φ)
−m̃2+m̃1−m−1. (7.22)

We know that the electron-phonon coupling has even bosonic symmetry, Vl =

V−l , while the remaining functions obey γ
(Z)
−m−1 = −γ

(Z)
m , γ

(χ)
−m−1 = γ

(χ)
m and

γ
(φ)
−m−1 = γ

(φ)
m , compare Eq. (6.5). Using these relations in Eq. (7.22) gives

β−m−1 =− ∑
m̃1,m̃2

Vm−m̃1Vm̃1−m̃2γ
(Z)
m̃1

γ
(χ)
m̃2

γ
(φ)
m̃2−m̃1+m =−βm. (7.23)

We have therefore proven that each term in Eq. (7.19) is odd along the Mat-
subara frequency axis, which makes also ζ ind

k an odd function. In the case of
even parity and within the single band picture adopted here, this means that the
induced order parameter describes spin-triplet electrons [175], which coexist
with even-frequency spin-singlet Cooper pairs represented by φ .

So far we have characterized the induced order parameter, but it further
needs to be shown that the renormalized interaction can indeed support such
a state, i.e. that both even- and odd-frequency superconducting gaps can be
finite simultaneously. To achieve this, we need to extend the vertex-corrected
Eliashberg theory used until here, so as to include a self-consistent equation for
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the newly discovered order parameter. The first step is to include the symmetry
channel ρ̂2 in the definition of the electron self-energy,

Σ̂k = iωk(1−Zk)ρ̂0 +χkρ̂3 +φkρ̂1 +ζkρ̂2, (7.24)

leading to the Green’s function

Ĝk = iγ(Z)k ρ̂0 + γ
(χ)
k ρ̂3 + γ

(φ)
k ρ̂1 + γ

(ζ )
k ρ̂2, (7.25)

Θk = [iωkZk]
2− [ξk +χk]

2−φ
2
k −ζ

2
k , (7.26)

with the definition γ
(ζ )
k = ζk/Θk. Here we dropped the label ‘ind’ to stress

that we are now dealing with the self-consistent version of the odd-frequency
function. The standard recipe of deriving the Eliashberg equations, compare
Sections 2.1 and 6.1, yields

Zk = 1− T
ωk

∑
k1

Vk−k1

(
γ
(Z)
k1

+T ∑
k2

Vk1−k2
~γT

k2
Q(Z)

k1
~γk2−k1+k

)
, (7.27a)

χk = T ∑
k1

Vk−k1

(
γ
(χ)
k1

+T ∑
k2

Vk1−k2
~γT

k2
Q(χ)

k1
~γk2−k1+k

)
, (7.27b)

φk =−T ∑
k1

Vk−k1

(
γ
(φ)
k1

+T ∑
k2

Vk1−k2
~γT

k2
Q(φ)

k1
~γk2−k1+k

)
, (7.27c)

ζk =−T ∑
k1

Vk−k1

(
γ
(ζ )
k1

+T ∑
k2

Vk1−k2
~γT

k2
Q(ζ )

k1
~γk2−k1+k

)
, (7.27d)

where we now use four-component vectors ~γT
k = (γ

(Z)
k ,γ

(χ)
k ,γ

(φ)
k ,γ

(ζ )
k ). The

4×4 pseudo matrices are defined as

Q(Z)
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(7.28)

As a crosscheck, in the case of ζk≡ 0 we get γ
(ζ )
k = 0. Taking the upper left 3×

3 submatrices of each Q(·)
k leaves us with each respective P(·)

k from Section 6.1,
compare Eq. (6.12), and we therefore recover the earlier used set of Eliashberg
equations. In the following Section 7.3.2 we test the just introduced formalism
in a common model for Cu-based superconductors, and show that ζk is a robust
and finite order parameter for odd-frequency superconductivity.
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7.3.2 Odd-frequency state in a cuprate superconductor
We use a similar next-nearest neighbor tight-binding description as in Section
7.1.1, namely

ξk =−t(1)
[

cos(kx)+ cos(ky)
]
− t(2) cos(kx)cos(ky)−µ, (7.29)

where we now choose the hopping energies as t(1)= 0.25eV and t(2)=−0.1eV.
The choice of chemical potential µ = −0.09eV renders the standard Fermi
surface for Cu-based superconductors, compare Fig. 7.8. With an optical phonon
mode at Ω = 50meV and an electron-phonon scattering strength of g0 =
150meV, we solve the three vertex-corrected Eliashberg Eqs. (6.11) at T =
60K. Note, that in this calculation we do not include the odd-frequency order
parameter self-consistently. The results for Zk, χk and φk are used to calculate
the induced state via Eq. (7.19). In agreement to our analysis in Section 7.3.1,
we find ζ ind

k to be odd along the Matsubara frequency axis. The outcomes for
index m =−1 are shown in Fig. 7.7.

The mass renormalization function Z in Fig. 7.7(a) shows a rather strongly
developed anisotropy throughout the Brillouin zone, with maximum values
around 1.7 and a minimum slightly smaller than unity. The Fermi surface in
the interacting state is defined by the condition

(ξk +χk,m=0)/Zk,m=0 = 0, (7.30)

from which we get a Fermi surface projected value of ∼ 1.0003 for the mass
renormalization. This result is strikingly close to unity, usually indicating a
weak-coupling situation. The chemical potential renormalization χ has an

(e)

(a) (b)

(c) (d)

Figure 7.7. (a-c) Self-consistent zero-frequency results of Eqs. (6.11). (d) Induced
order parameter ζ ind at m = −1, calculated from Eq. (7.19). The Figure was taken
from Paper XIII.
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overall d-wave symmetry, which is shifted along the energy axis. This par-
ticular phenomenon is known as nematicity, which breaks the tetragonal C4
symmetry to C2. It needs to be stressed here that all inputs to the Eliashberg
calculations are C4 invariant, hence the symmetry breaking happens sponta-
neously in the self-consistent solution. For the current system parameters, χ

is the only nematic function, but this can potentially change with the doping
level, see Paper XI.

The even-frequency superconducting order parameter φ , shown in Fig. 7.7(c),
has d-wave symmetry, similar to results in Section 7.1, with a maximum gap
size of around 6meV. We calculate the induced odd-frequency function ζ ind

from Eq. (7.19), i.e. not self-consistently at the moment. As directly apparent,
the m = −1 component of ζ ind has the same symmetry as φ , see Fig. 7.7(d).
However, since we are dealing with an odd function in Matsubara space, the
symmetry of the m = 0 component of ζ ind differs to that of the m = 0 compo-
nent of φ by a phase factor of −1. Further we note that the odd-frequency or-
der parameter is approximately one order of magnitude smaller than its even-
frequency counterpart, hence the latter is dominant. As we show in Paper
XIII, but won’t discuss in detail here, ζ ind is non-vanishing due to a mixing of
momentum space representations in Eq. (7.19).

Next, we want to compare results of one-shot and self-consistent calcula-
tions. To do so we solved the four coupled Eqs. (7.27) for the same set of
input parameters as above, leading to the odd-frequency order parameter ζk.
In Fig. 7.8(a) and (b) we plot the Fermi surface projection of ζ ind and ζ , re-
spectively, for Matsubara frequency index m = −1. No significant difference
is detectable between the two solutions, and this similarly holds true for the
entire frequency range and changing temperatures. The remaining functions
Z, χ and φ are qualitatively not affected by a self-consistent inclusion of ζk.
Therefore we are led to the conclusion that at least in some systems there is
no need of solving the extended version of the vertex-corrected Eliashberg
equations, but a single-shot calculation of the induced odd-frequency order
parameter is sufficient. This is an advantage computationally speaking, as it is
more costly to solve Eqs. (7.27) than Eqs. (6.11) due to an increased number of
iterations and numerical steps in each cycle. Whether the similarity between
ζk and ζ ind

k is inherently generic needs further investigation.
As a commonly examined characteristic of a superconductor we use the T -

dependence of the gap function ∆k = φk/Zk. The blue circles in Fig. 7.8(c)
represent our numerical results for ∆ = max∆k,m=−1, obtained from the fully
self-consistent formalism in Eq. (7.27). We fit the functional dependence via

∆(T ) = Re
√

a−b ·T c, (7.31)

where a, b and c are fitting parameters. It is clear from the solid blue line
that the functional form of Eq. (7.31) matches our data points very accurately.
It is useful to define the analogue of ∆ for the induced odd-frequency state,
which we name ηk = ζk/Zk. Following the temperature evolution of η =
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(a) (b)

(c)

Figure 7.8. (a), (b) Frequency component m =−1 of the odd-frequency order param-
eter, projected on the Fermi surface. ζ ind is obtained from a ‘one-shot’ calculation,
ζ is the self-consistent solution. (c) Even-frequency (blue) and odd-frequency (red)
superconducting gaps as functions of temperature. Figure taken from Paper XIII.

maxηk,m=−1 leads to the red open circles in Fig. 7.8(c), where we multiplied
our results by a factor 10. Here, the fitting function (red solid line) is given by

η(T ) = T Re
√

a−b ·T c, (7.32)

where a, b and c are again parameters of the fit. What we observe is that,
indeed, η is one order of magnitude smaller than the dominant gap function
∆ [178, 181]. Further, the odd-frequency order parameter vanishes for small
temperatures and has its maximum value at around 70K. This shape is consis-
tent with prior works on odd-frequency states [183,184]. Finally, it is obvious
from Fig. 7.8(c) that both odd- and even-frequency functions share the same
Tc, which can be understood from the fact that η (or equivalently ζ ) is describ-
ing an induced state enabled by the even-frequency pair condensate. Further it
is noteworthy that the here-obtained odd-frequency d-wave spin-triplet phase
is distinct from the phase originally proposed by Berezinskii [176].

The work presented in Paper XIII unambiguously shows that vertex correc-
tions to the electron-phonon interaction induce an odd-frequency supercon-
ducting state, coexisting with its even-frequency counterpart. We successfully
benchmarked our theoretical advances with a commonly employed model for
Cu-based superconductors. In a broader context, it might be possible to have
the roles of even- and odd-frequency order parameters interchanged. This is to
be expected whenever φ is used to describe odd-parity Cooper pairs; in such
a case we would get a dominant spin-singlet odd-frequency state, coexisting
with an induced spin-triplet even-frequency order parameter.
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8. Conclusions and outlook

Wer wartet mit Besonnenheit, der
wird belohnt zur rechten Zeit.
(The one who waits with
prudence will be rewarded at the
right time.)

Till Lindemann

In this thesis we covered many different topics within the field of supercon-
ductivity. On various levels of approximation for the theoretical description of
the electron-boson interacting state we discussed some of the most important
families of superconductors, model systems and real materials.

For FeSe/STO we successively developed a material specific theory of su-
perconductivity that takes into account electron-phonon interaction (EPI) and
spin fluctuations on equal footing, while considering the full electronic en-
ergy bandwidth. Besides being able to explain the observed Tc, gap magnitude
on the Fermi surface (FS) and electron band replica, we discussed the gap
anisotropy and symmetrization techniques in ARPES measurements. Further
we predicted a temperature independence of the FS and a second order replica
band, which both were confirmed later. Our findings suggest that small-q EPI
is the cause for most characteristics of the superconducting state, as well as
spectral features, while spin fluctuations stabilize a nodeless d-wave symme-
try of the order parameter, and otherwise are destructive for superconductivity
in this material. There are still various open questions for this system, that
one could address in future projects. For example, it would be important to
rigorously resolve the issue of the superconducting gap anisotropy [73]. Even
though orbital selective superconductivity has been proposed as mechanism
for this phenomenon [53], it is an open question how to include such a treat-
ment in our formalism, and what the effects would be. Further, it is possibly
important to include the back reaction of the electrons onto the magnon spec-
trum, as has recently been claimed [76]. Incorporating this aspect into our
multichannel Eliashberg theory is not a conceptual problem, but rather cur-
rently not practical due to the tremendous computational costs.

In TBG we were able to explain the main characteristics of the supercon-
ducting state by using isotropic EPI within a multiband Eliashberg theory.
Further, we predicted various tunneling features and electron replica bands,
where the latter are expected to occur more generally for all flat band systems
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with dominant phonon energy scale. However, it is still not clear how to reli-
ably describe the full range of phenomena occurring at different doping levels,
such as the correlated insulating states [79–81]. It is currently not known how
to include such states on equal footing with superconductivity, hence consid-
erable theoretical advances are needed in this direction. Additionally, it would
be interesting to study TBG within a multichannel theory of superconductiv-
ity, since claims about the importance of purely electronic mechanisms have
been made [185, 186].

As concerns the hydrides, we made predictions of close to room tempera-
ture superconductivity in metallic atomic hydrogen and predicted a new struc-
tural phase of LaH10. For both materials the experimental picture is still
elusive at the time of writing, and only future measurements will determine
whether our predictions prove correct. The difficulty in atomic hydrogen is
that its postulated metallic phase has yet to be rigorously shown to exist. If
successful, examining the details of the superconducting state adds another
layer of difficulty. As for LaH10, the pressure regime for which we found a
new trigonal phase (250−425GPa) has not yet been explored experimentally,
but we are optimistic that the required measurements will be carried out in the
near future, given the rapid improvement of measurement techniques in the
field and the importance attributed to this material.

We introduced a scheme to increase the efficiency of Matsubara space cal-
culations by using EPI, i.e. for a known functional form of the interaction
kernel. This can be considered a mere tool for theoretical calculations, and
hence does not directly offer future research opportunities on the same topic.
It should be noted that a generalization to other kinds of interactions, for which
the precise mathematical form cannot be determined, is straight forward by
fitting the kernel to a standard shape such as a Lorentzian. We continued by
providing a comprehensive overview of effects due to phonon renormalization.
Here it would be interesting to extend our formalism to real frequencies, which
can be done by extending our frequently used analytic continuation scheme.
Such an approach would lead to more ways to compare our theoretical calcu-
lations with experiment, since we would gain access to all spectral features of
the system.

The second part of the thesis aims at contributing to the discussion on the
superconductivity mediators in materials with unconventional gap symmetry.
To this end we developed an extended Eliashberg formalism where all sec-
ond order electron-phonon scattering processes are fully taken into account
without further approximations, which has not been attempted before. Our
calculations show that an optical phonon mode and isotropic electron-phonon
coupling in this extended theory lead to unconventional gap symmetries as
they have been experimentally found in Fe-based, cuprate and heavy fermion
superconductors. Since such phonon modes unambiguously exist in the real
materials, our results indicate that EPI plays a more important role in uncon-
ventional superconductors than previously thought. With ThFeAsN we stud-
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ied an explicit example where such second order EPI might be indispensable
to explain the superconducting state, in an attempt to connect our formalism
to ab initio calculations. Lastly, we showed that Eliashberg theory beyond
Migdal’s approximation leads to coexisting even- and odd-frequency super-
conducting states in a cuprate model system, where the odd-frequency order
parameter is induced.

From these findings and the associated theory developments in the thesis
there are many possible future research directions. One open question is how
to efficiently connect the vertex-corrected Eliashberg theory with ab initio in-
put in a self-consistent way without neglecting potentially important contri-
butions. To a different end, what happens if we include vertex corrections
in a multichannel theory of superconductivity? Such a treatment would sup-
posedly lead to a cooperative behavior of spin fluctuations and EPI, but de-
serves explicit calculations. On a related note, it is still an open challenge
to include higher order corrections for the spin fluctuations mechanism into
a self-consistent theory. Since there is no analogue of Migdal’s theorem for
purely electronic mechanisms, vertex corrections might prove particularly im-
portant. Ultimately, it would also be highly advantageous to search for spectral
signatures as manifestation of non-negligible vertex corrections in unconven-
tional superconductors. To achieve this, real-frequency dependent results are
required which could be calculated by an extended version of our analytic
continuation scheme. As concerns our findings of odd-frequency supercon-
ductivity, the next step would be to develop ideas for proving its existence
experimentally. This is not a straight forward task because the even-frequency
order parameter is dominant by an order of magnitude and both Tc’s are equiv-
alent. Nevertheless, there should exist a way of distinguishing even- and odd-
frequency Cooper pairing and, if successful, this would be a direct signature
of effects due to vertex-corrected EPI.
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Popular science summary

Superconductivity is a macroscopic quantum phenomenon that occurs in cer-
tain types of materials upon sufficient cooling. Below a material specific crit-
ical temperature the superconductor’s electrical resistance disappears and ex-
ternal magnetic fields are expelled from its interior. The discovery of this
effect dates back more than a century ago, and it took almost 50 years un-
til the first successful microscopic theory of superconductivity was proposed.
Today a vast amount of superconducting materials are known, the most promi-
nent families being elemental/conventional, copper-based, iron-based, heavy-
fermion and high-pressure superconductors. One of the main goals of experi-
mental and theoretical research in this field is to find a compound with critical
temperature close to room temperature at ambient pressure, as such a material
would offer enormous potential in technological applications.

The key for explaining superconductivity is the formation of so-called Cooper
pairs, which are two electrons of opposite momentum and spin that feel an
attraction between each other strong enough to overcome the Coulomb repul-
sion. These Cooper pairs do not behave like single electrons anymore in that
their entirety in a material can mathematically be described by only one quan-
tum mechanical wave function, which makes superconductivity a macroscopic
quantum effect. Collectively, it is energetically favorable for single electrons
to avoid scattering on the atoms of the parent material, which explains the loss
of electrical resistance. Due to the fact that the superconducting state hosts an
energetic advantage to Cooper pair formation, single electrons require addi-
tional energy to be excited and retrieve their individual character. This energy
difference is called a superconducting gap, and is an important quantity for
characterizing superconductors.

There are different possible mechanisms that can lead to Cooper pairing,
and in this thesis we focus on electron-phonon interaction, which corresponds
to lattice vibrations coupling via Coulomb forces with the electrons, and on
spin fluctuations, for which the electrons themselves provide the coupling
mechanism. There is general consensus that phonons are the dominant driv-
ing force for conventional and hydrogen based, high-pressure superconduc-
tivity, while the roles of electron-phonon coupling and spin fluctuations in
unconventional superconductors (most of the cuprates, iron-based and heavy-
fermion systems) are still actively debated. One key argument used in fa-
vor of spin fluctuation theories is the symmetry of the superconducting gap
function, which changes sign in momentum space for many unconventional
superconductors, a behavior that cannot be reproduced via the commonly em-
ployed standard theories of electron-phonon interactions. Due to this reason it
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is rather widely believed that spin fluctuations mediate Cooper pairing in these
systems, so much so that sometimes unconventional and spin-fluctuations-
mediated superconductivity are used interchangeably.

The first successful description of Cooper pairing is BCS theory, named
after its inventors Bardeen, Cooper and Schrieffer. First published in 1957,
BCS theory accounted for most of the superconducting systems known at the
time, which were mainly of the elemental/conventional type. Only few years
later Migdal published a milestone work on electron-phonon interaction in
metals, which was generalized to the superconducting state by Eliashberg.
The most important difference between Migdal-Eliashberg and BCS theory is
that the former explicitly considers retardation time, which is the time delay
it takes two electrons to form a Cooper pair via lattice vibrations, while the
latter is a static description. In fact, it is possible to derive the BCS equations
from Eliashberg theory under various approximations. It is worth noting that
both theories rely on the so-called Migdal approximation, which states that it
is sufficient to consider only first order electron-phonon scattering, provided
that the ratio between phonon and electron energy scales is small. While this
assumption leads to excellent agreement between experiment and outcomes
from Eliashberg theory in conventional and high temperature, hydrogen based
superconductors, it is less justified and less successful for unconventional sys-
tems.

This thesis is my humble contribution to the discussion on the role of spin
fluctuations and electron-phonon interactions in mainly unconventional su-
perconductors. The work is divided into two parts, according to the level
of approximation used in the theory employed. In Part I all calculations are
performed under the assumption that only first-order scattering events, either
for electron-phonon interaction (Migdal’s approximation) or spin fluctuations,
play an important role for the superconducting state. The first system that I
present here is a single layer of FeSe on a SrTiO3 substrate, which currently
has the highest critical temperature of all iron-based superconductors. I first
consider both mediators of superconductivity separately, and then in a com-
bined way. The results show that electron-phonon interactions are likely re-
sponsible for the experimentally observed spectral features and the high crit-
ical temperature, while spin fluctuations can lead to an unconventional gap
symmetry and otherwise play a subdominant role.

I continue by presenting two projects on Twisted Bilayer Graphene, in
which superconductivity has recently been discovered. This system is engi-
neered by putting two sheets of graphene together at a relative twist angle of
1.1◦, and has generated enormous research interest due to a rich variety of
physical effects and easy experimental tunability. In this material I studied
electron-phonon interactions within Eliashberg theory, above and below the
superconducting critical temperature. These calculations explained various
characteristics of the superconducting state, for which the gap symmetry is
found as conventional, and lead to predictions of different experimentally ob-
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servable spectral properties. After the discussion on Twisted Bilayer Graphene
I move on to summarize various additional projects. Besides elaborating on
electron-phonon mediated superconductivity at high pressures in the predicted
metallic phase of atomic hydrogen and in a new trigonal structural phase of
LaH10, I introduce a method for making Eliashberg calculations computation-
ally more efficient, and give an overview of effects, which can occur when the
influence of electrons onto the lattice vibrations is taken into account.

In Part II of the thesis I consider electron-phonon interactions in uncon-
ventional superconductors. By taking into account all first and second or-
der processes of electron-phonon scattering I derive a novel set of Eliashberg
equations that go beyond Migdal’s approximation. It turns out that the ad-
ditional contributions can lead to changes in critical temperature, supercon-
ducting gap magnitude and effective coupling strength. Most importantly, for
representative examples of iron-based, cuprates and heavy fermion supercon-
ductors, unconventional symmetries of the superconducting gap are obtained,
which goes against the above described common notion that only spin fluctu-
ations can produce such results. These findings thus point to the pivotal role
of phonons for unconventional superconductors. With ThFeAsN I identify a
likely candidate for such effects to occur in a real material.

The last project in this thesis concerns odd-frequency superconductivity.
The superconducting gap in Eliashberg theory generally depends on the time
difference between two electrons forming a Cooper pair, which can also be
cast as a frequency dependence. In all known superconductors the energy
gap is even under exchange of these relative times, i.e. it is invariant under
inverting frequencies. However, it similarly is a theoretical possibility to have
an odd-frequency dependence, which means that the gap function changes sign
upon inversion of relative times, provided that the involved electrons have
a more complicated spin dependence. Surprisingly, such a superconducting
state is found here when solving the Eliashberg equations beyond Migdal’s
approximation, which I prove for a cuprate model system, in which primary
even- and subordinate odd-frequency Cooper pairs coexist.
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Populärvetenskaplig sammanfattning

Supraledning är ett makroskopiskt kvantfenomen som förekommer i vissa
typer av material vid tillräcklig kylning. Under en materialspecifik kritisk
temperatur försvinner supraledarens elektriska motstånd och yttre magnetfält
trängs ut från dess inre. Upptäckten av denna effekt skedde för mer än ett sekel
sedan, och det tog nästan 50 år innan den första framgångsrika mikroskopiska
teorin om supraledning föreslogs. Idag är en stor mängd supraledande ma-
terial känd. De mest framträdande familjerna är elementära/konventionella,
kuprater, järnbaserade, tung-fermion och högtryckssupraledare. Ett av hu-
vudmålen för experimentell och teoretisk forskning inom detta område är
att hitta ett material med en kritisk temperatur nära rumstemperatur vid om-
givningstryck, eftersom ett sådant material skulle erbjuda enorm potential för
tekniska tillämpningar.

Nyckeln för att förklara supraledning är bildandet av så kallade Cooper-
par, som är två elektroner med motsatta momentum och spinn som känner
en attraktion mellan varandra som är tillräcklig stark för att övervinna Cou-
lombavstötningen. Dessa Cooperpar beter sig inte längre som enstaka elek-
troner då deras helhet i ett material matematiskt kan beskrivas med endast en
kvantmekanisk vågfunktion, vilket gör supraledningen till en makroskopisk
kvanteffekt. Sammantaget är det energimässigt gynnsamt för enstaka elek-
troner att undvika spridning på atomerna i värdmaterialet, vilket förklarar för-
lusten av elektriskt motstånd. På grund av det faktum att det supraledande
tillståndet levererar en energimässig fördel för Cooperparbildning, behöver
enstaka elektroner ytterligare energi för att exciteras och återta sin individu-
ella karaktär. Denna energiskillnad kallas för ett supraledande gap, som är en
viktig kvantitet för att karakterisera supraledare.

Det finns olika möjliga mekanismer som kan leda till Cooperparning. I
denna avhandling fokuserar vi på elektron-fonon-interaktion, vilket motsvarar
gittervibrationernas koppling via Coulombkrafter med elektronerna, och på
spinnfluktuationer, för vilka elektronerna själva tillhandahåller kopplingsme-
kanism. Det råder en allmän enighet om att fononer är den dominerande
drivkraften för konventionell och vätebaserad högtryckssupraledning, medan
elektron-fonon-kopplingen och spinnfluktuationer i okonventionella supraledare
(de flesta kuprater, järnbaserade och tung-fermionsystem) fortfarande diskuteras
aktivt. Ett nyckelargument som ofta används till stöd för teorier om spinnfluk-
tuationer är symmetrin i supraledande gapfunktion, som ändrar tecken i mo-
mentum för många okonventionella supraledare, ett beteende som inte kan re-
produceras med de vanliga standardteorierna om elektron-fonon-interaktioner.
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Av denna anledning är det ganska allmänt trott att spinnfluktuationer förmed-
lar Cooperparning i dessa system, i en sådan utsträckning att okonventionell
och spinnfluktuationsförmedlad supraledning ibland används synonymt.

Den första framgångsrika beskrivningen av Cooperparning är BCS-teorin,
uppkallad efter uppfinnarna Bardeen, Cooper och Schrieffer. Först publicerad
1957 stod BCS-teorin för de flesta av de supraledande systemen som var
kända vid den tiden, som huvudsakligen var av elementär/konventionell typ.
Bara några år senare publicerade Migdal ett milstolpesarbete om elektron-
fonon-interaktion i metaller, som generaliserades till supraledande tillstånd
av Eliashberg. Den viktigaste skillnaden mellan Migdal-Eliashberg-teorin och
BCS-teorin är att den förra uttryckligen inkluderar retardationstiden, vilken
är den tidsfördröjning det tar för två elektroner att bilda ett Cooperpar med
hjälp av gittervibrationer, medan den senare är en statisk beskrivning utan tids-
beroende. Det är faktiskt möjligt att härleda BCS-ekvationerna från Eliashberg-
teorin under olika approximationer. Det är värt att notera att båda teorierna
bygger på den så kallade Migdal-approximationen, som innebär att det räcker
att ta hänsyn till elektron-fonon-spridning av första ordningen, förutsatt att
förhållandet mellan fonon- och elektronenergivågor är litet. Även om detta
antagande leder till en utmärkt överensstämmelse mellan experiment och re-
sultat från Eliashberg-teorin i konventionella och högtemperaturvätebaserade
supraledare, är Migdal-approximationen mindre motiverat och mindre fram-
gångsrikt för okonventionella system.

Denna avhandling är mitt anspråkslösa bidrag till diskussionen om spinn-
fluktuationer och elektron-fonon-interaktioner i huvudsakligen okonventionella
supraledare. Arbetet är uppdelat i två delar, beroende på den approximations-
nivå som används i teorin. I del I utförs alla beräkningar under antagandet
att endast första ordningens spridningshändelser, antingen för elektron-fonon-
interaktioner (Migdal-approximation) eller spinnfluktuationer, spelar en vik-
tig roll för det supraledande tillståndet. Det första systemet som jag presen-
terar här består av ett enskilt lager FeSe på ett SrTiO3substrat, som för när-
varande har den högsta kritiska temperaturen för alla järnbaserade supraledare.
Jag eftersinnar först båda medlarna för supraledning separat, och kombinerar
sedan dem. Resultaten visar att elektron-fonon-interaktioner sannolikt står för
de experimentellt observerade spektralfunktionerna och den höga kritiska tem-
peraturen, medan spinnfluktuationer kan orsaka en okonventionell gapsym-
metri och annars spela en underordnad roll.

Därefter följer en presentation av två projekt om Twisted Bilayer Graphene,
där supraledning nyligen har upptäckts. Detta system är konstruerat genom
att man har lagt ihop två ark grafen i en relativ vridningsvinkel på ∼ 1,1◦.
Detta har genererat ett enormt forskningsintresse på grund av en mängd olika
fysikaliska effekter och enkel experimentell avstämning. I detta material stu-
derade jag elektron-fonon interaktioner inom Eliashberg-teorin, över och un-
der den supraledande kritiska temperaturen. Dessa beräkningar förklarade
olika egenskaper hos det supraledande tillståndet, där gapsymmetrin är kon-
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ventionell, och leder till förutsägelser av olika experimentellt observerbara
spektralegenskaper. Efter diskussionen om Twisted Bilayer Graphene fort-
sätter jag med att sammanfatta några olika projekt. Förutom att utveckla
elektron-fononförmedlad supraledning vid högt tryck i den förutspådda met-
alliska fasen av atomärt väte och i en ny trigonal strukturell fas av LaH10,
introducerar jag en metod för att effektivisera Eliashbergberäkningarna och ge
en överblick över effekter som kan uppstå när elektronernas påverkan på git-
tervibrationerna beaktas.

I del II av avhandlingen behandlar jag elektron-fonon-interaktioner i okon-
ventionella supraledare. Genom att ta hänsyn till alla första och andra ord-
ningens processer för elektron-fononspridning härleder jag en ny uppsättning
Eliashberg-ekvationer bortom Migdal-approximation. Det visar sig att andra
ordningens bidrag kan leda till förändringar i kritiska temperaturer, supraledande
gapstorlekar och effektiv kopplingsstyrka. Viktigast av allt, för representa-
tiva exempel på järnbaserade, kuprater och tunga fermionsupraledare, erhålls
okonventionella symmetrier av supraledande gap, vilket strider mot ovan be-
skrivna allmänna uppfattning om att endast spinnfluktuationer kan ge sådana
resultat. Detta resultat pekar alltså på fononens avgörande roll för dessa okon-
ventionella supraledare. Med ThFeAsN identifierar jag en sannolik kandidat
där sådana effekter skulle kunna inträffa i ett verkligt material.

Det sista projektet i denna avhandling handlar om udda-frekvenssupraledning.
Det supraledande gapet i Eliashberg-teorin beror i allmänhet på tidsskillnaden
mellan de två elektronerna som bildar ett Cooperpar, vilket också kan beskri-
vas som ett frekvensberoende. I alla kända supraledare är energigapet jämn
under utbyte av dessa relativa tider, det vill säga att det är invariant vid in-
verterande frekvenser. Emellertid är det på samma sätt en teoretisk möj-
lighet att ha ett udda frekvensberoende, vilket innebär att gapfunktionen än-
drar tecken vid inversion av relativa tider, förutsatt att de involverade elek-
tronerna har ett mer komplicerat spinnberoende. Överraskande nog finns ett
sådant supraledande tillstånd här när man löser Eliashberg-ekvationerna bor-
tom Migdal-approximationen, vilket jag bevisar för ett modellsystem av cup-
rater, där primära jämna och underordnade udda-frekvens Cooperpar samex-
isterar.
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Populärwissenschaftliche Zusammenfassung

Supraleitung ist ein makroskopisches Quantenphänomen, das in bestimmten
Materialien bei ausreichender Kühlung auftritt. Unterhalb einer materialspe-
zifischen kritischen Temperatur verliert der Supraleiter jeglichen elektrischen
Widerstand und äußere Magnetfelder werden aus seinem Inneren ausgestoßen.
Die Entdeckung dieses Effekts liegt mehr als ein Jahrhundert zurück und es
dauerte fast 50 Jahre, bis die erste erfolgreiche mikroskopische Theorie der
Supraleitung aufgestellt wurde. Heutzutage ist eine große Anzahl supralei-
tender Materialien bekannt, wobei elementare/ konventionelle, kupferbasierte,
eisenbasierte, schwere Fermion- und Hochdruck-Supraleiter zu den Bekan-
ntesten zählen. Eines der Hauptziele experimenteller und theoretischer For-
schung auf diesem Gebiet ist es, ein Material mit einer kritischen Temperatur
nahe Raumtemperatur bei Umgebungsdruck zu finden, da ein solches Material
enormes Potenzial für technologische Anwendungen bieten würde.

Der Schlüssel zum Verständnis von Supraleitung ist die Bildung sogenan-
nter Cooper Paare. Hierbei handelt es sich um zwei Elektronen mit entge-
gengesetztem Impuls und Spin, die sich stark genug anziehen um die Coulomb
Abstoßung zu überwinden. Diese Cooper Paare verhalten sich nicht wie iso-
lierte Elektronen, da deren Gesamtheit in einem Material mathematisch durch
nur eine einzelne quantenmechanische Wellenfunktion beschrieben werden
kann, was Supraleitung zu einem makroskopischen Quanteneffekt macht. Für
einzelne Elektronen ist es energetisch von Vorteil, Streuung an den Atomen
des Materials zu vermeiden, was den Verlust des elektrischen Widerstands
erklärt. Aufgrund der Tatsache, dass der supraleitende Zustand einen energe-
tischen Vorteil für die Cooper-Paarbildung bietet, benötigen einzelne Elek-
tronen zusätzliche Energie, um angeregt zu werden und ihren individuellen
Charakter wiederzuerlangen. Diese Energiedifferenz wird als supraleitende
Lücke bezeichnet und wird oft zur Charakterisierung von Supraleitern benutzt.

Es gibt verschiedene Mechanismen, die Cooper Paare erzeugen können,
und in dieser Arbeit konzentriere ich mich auf Elektron-Phonon-Wechsel-
wirkung, die der Kopplung zwischen Gitterschwingungen und Elektronen über
Coulomb Kräfte entspricht, und Spinfluktuationen, für die die Elektronen selbst
den Kopplungsmechanismus liefern. Es besteht allgemeiner Konsens, dass
Phononen für konventionelle und Hochdruck-Supraleitung verantwortlich sind,
während die Rolle der Elektron-Phonon-Kopplung und der Spinfluktuationen
in unkonventionellen Supraleitern, welche die meisten der kupferbasierten,
eisenbasierten und schweren Fermionsysteme darstellen, immer noch aktiv
diskutiert wird. Ein wichtiges Argument zu Gunsten der Spinfluktuations-
theorien ist die Symmetrie der supraleitenden Lückenfunktion, die bei vielen
unkonventionellen Supraleitern ein alternierendes Vorzeichen im Impulsraum
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aufweist, ein Verhalten, welches mit gängigen Theorien der Elektron-Phonon-
Wechselwirkung nicht reproduziert werden kann. Aus diesem Grund wird all-
gemein angenommen, dass Spinfluktuationen die Cooper Paare in diesen Sys-
temen erzeugen, so dass die Begriffe unkonventionelle und Spinfluktuationen-
erzeugte Supraleitung teilweise austauschbar verwendet werden.

Die erste erfolgreiche Beschreibung von Cooper Paaren ist die BCS-Theorie,
benannt nach ihren Verfassern Bardeen, Cooper und Schrieffer. Diese Theorie,
erstmals veröffentlicht 1957, lieferte eine Erklärung für die meisten damals
bekannten supraleitenden Systeme, welche hauptsächlich vom elementaren/
konventionellen Typ waren. Nur wenige Jahre später veröffentlichte Migdal
seine revolutionäre Arbeit zur Elektron-Phonon-Wechselwirkung in Metallen,
die von Eliashberg für den supraleitenden Zustand verallgemeinert wurde.
Der wichtigste Unterschied zwischen der Migdal-Eliashberg- und der BCS-
Theorie besteht darin, dass erstere explizit die Verzögerungszeit berücksichtigt,
also die Zeit, die zwei Elektronen benötigen, um ein Cooper Paar mittels
Gitterschwingungen zu bilden, während letztere eine statische Beschreibung
ohne Zeitabhängigkeit ist. Tatsächlich ist es möglich, die BCS-Gleichungen
unter verschiedenen Annahmen aus der Eliashberg-Theorie abzuleiten. Es ist
erwähnenswert, dass beide Theorien auf der sogenannten Migdal-Näherung
beruhen, die besagt, dass es ausreicht, nur Ereignisse erster Ordnung bei der
Elektron-Phonon-Streuung zu berücksichtigen, vorausgesetzt, das Verhältnis
zwischen Phononen- und Elektronenenergieskalen ist klein. Während diese
Annahme zu einer hervorragenden Übereinstimmung zwischen Experiment
und Ergebnissen der Eliashberg-Theorie in konventionellen und Hochdruck-
Supraleitern führt, ist sie für unkonventionelle Systeme weniger gerechtfertigt
und weniger erfolgreich.

Diese Arbeit stellt meinen bescheidenen Beitrag zur Diskussion bezüglich
der Rolle von Spinfluktuationen und Elektron-Phonon-Wechselwirkungen in
hauptsächlich unkonventionellen Supraleitern dar. Die Arbeit gliedert sich in
zwei Teile, je nach Näherungsgrad der verwendeten Theorie. In Teil I werden
alle Rechnungen unter der Annahme durchgeführt, dass nur Streuereignisse
erster Ordnung, entweder für die Elektron-Phonon-Wechselwirkung (Migdals
Näherung) oder Spinfluktuationen, eine wichtige Rolle für den supraleitenden
Zustand spielen. Das erste System, das ich hier vorstelle, ist eine einzelne
Schicht aus FeSe auf einem SrTiO3 Substrat, welches derzeit die höchste
kritische Temperatur aller eisenbasierter Supraleiter aufweist. Ich betrachte
beide Mediatoren der Supraleitung zunächst getrennt und anschließend kom-
biniert. Die Ergebnisse zeigen, dass Elektron-Phonon-Wechselwirkungen sehr
wahrscheinlich für die experimentell beobachteten spektralen Eigenschaften
und die hohe kritische Temperatur des Systems verantwortlich sind, während
Spinfluktuationen zu einer unkonventionellen Lückensymmetrie führen und
darüber hinaus eine untergeordnete Rolle spielen.

Ich fahre damit fort, dass ich zwei Projekte zu Twisted Bilayer Graphene
vorstelle, das kürzlich als Supraleiter identifiziert wurde. Dieses System wird
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konstruiert, indem zwei Graphenschichten in einem relativen Drehungswinkel
von∼ 1.1◦ zusammengefügt werden. Aufgrund einer großen Vielfalt an physi-
kalischen Effekten und einer einfachen experimentellen Abstimmbarkeit hat
dieses ein enormes Forschungsinteresse geweckt. In diesem Material habe ich
Elektron-Phonon-Wechselwirkungen innerhalb der Eliashberg-Theorie über
und unterhalb der kritischen Temperatur untersucht. Meine Berechnungen
erklären verschiedene Eigenschaften des supraleitenden Zustands, für den sich
die Lückensymmetrie als konventionell herausstellt und führen zu Vorher-
sagen verschiedener experimentell beobachtbarer spektraler Eigenschaften. Im
Anschluss hierauf fasse ich verschiedene Einzelprojekte zusammen. Neben
der Erörterung der Elektron-Phonon-basierten Supraleitung bei hohen Drücken
in der postulierten metallischen Phase von atomarem Wasserstoff und in einer
neuen trigonalen Strukturphase von LaH10 stelle ich eine Methode vor, um
Eliashberg-Rechnungen numerisch effizienter umzusetzen und gebe eine Über-
sicht über Effekte, die auftreten können, wenn der Einfluss von Elektronen auf
die Gitterschwingungen berücksichtigt wird.

Im Teil II dieser Arbeit betrachte ich Elektron-Phonon-Wechselwirkungen
in unkonventionellen Supraleitern. Unter Berücksichtigung aller Prozesse ers-
ter und zweiter Ordnung der Elektron-Phonon-Streuung leite ich ein System
von Eliashberg-Gleichungen her, das über die Migdalsche Näherung hinaus-
geht. Es stellt sich heraus, dass die zusätzlichen Beiträge zu Veränderungen
der kritischen Temperatur, Größe der Lückenfunktion und der effektiven Kop-
plungsstärke führen können. Am wichtigsten ist jedoch, dass für repräsenta-
tive Beispiele von eisenbasierten, kupferbasierten und schweren Fermionen-
Supraleitern unkonventionelle Symmetrien der supraleitenden Lücke aus den
Gleichungen hervorgehen, was der oben beschriebenen allgemeinen Vorstel-
lung widerspricht, dass nur Spinfluktuationen solche Ergebnisse erzeugen kön-
nen. Mit ThFeAsN identifiziere ich einen wahrscheinlichen Kandidaten für
das Auftreten solcher Effekte in einem realen Material.

Im letzten Abschnitt dieser Dissertation beschäftige ich mich mit ungerader
Supraleitung. Die supraleitende Lücke hängt im Allgemeinen von der Zeitdif-
ferenz zwischen zwei Elektronen ab, die ein Cooper Paar bilden, was auch als
Frequenzabhängigkeit angegeben werden kann. In den meisten Supraleitern
ist die Energielücke gerade unter Austausch dieser relativen Zeiten, das heißt,
sie ist invariant gegenüber invertierten Frequenzen. Theoretisch besteht je-
doch die Möglichkeit, eine ungerade Frequenzabhängigkeit vorzufinden, was
bedeutet, dass die Lückenfunktion bei Umkehrung der relativen Zeiten das
Vorzeichen ändert, vorausgesetzt, die beteiligten Elektronen haben eine kom-
pliziertere Spinabhängigkeit. Überraschenderweise finde ich solch einen supra-
leitenden Zustand ausgehend von dem neuen System von Eliashberg Glei-
chungen, wie ich für ein Modellsystem kupferbasierter Materialien beweise,
in dem Cooper Paare mit gerader und ungerader Frequenzabhängigkeit ko-
existieren.
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Rev. B, vol. 97, p. 014503, Jan 2018.
[172] N. Barbero, S. Holenstein, T. Shang, Z. Shermadini, F. Lochner, I. Eremin,

C. Wang, G.-H. Cao, R. Khasanov, H.-R. Ott, J. Mesot, and T. Shiroka, Phys.
Rev. B, vol. 97, p. 140506, Apr 2018.

[173] D. Adroja, A. Bhattacharyya, P. K. Biswas, M. Smidman, A. D. Hillier,
H. Mao, H. Luo, G.-H. Cao, Z. Wang, and C. Wang, Phys. Rev. B, vol. 96,
p. 144502, Oct 2017.

[174] M. A. Albedah, F. Nejadsattari, Z. M. Stadnik, Z.-C. Wang, C. Wang, and
G.-H. Cao, J. Alloys and Compnds., vol. 695, pp. 1128 – 1136, 2017.

[175] J. Linder and A. V. Balatsky, Rev. Mod. Phys., vol. 91, p. 045005, Dec 2019.

125



[176] V. L. Berezinskii Pis’ma v Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki,
vol. 20, no. 9, pp. 628–631, Nov 1974.

[177] H. Kusunose, Y. Fuseya, and K. Miyake, Journal of the Physical Society of
Japan, vol. 80, no. 4, p. 044711, 2011.

[178] A. Aperis, E. V. Morooka, and P. M. Oppeneer, Annals of Physics, vol. 417,
p. 168095, 2020. Eliashberg theory at 60: Strong-coupling superconductivity
and beyond.

[179] D. Kuzmanovski and A. M. Black-Schaffer, Phys. Rev. B, vol. 96, p. 174509,
Nov 2017.

[180] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B, vol. 88, p. 104514, Sep
2013.

[181] A. Aperis, P. Maldonado, and P. M. Oppeneer, Phys. Rev. B, vol. 92,
p. 054516, Aug 2015.

[182] C. Triola, J. Cayao, and A. M. Black-Schaffer, Annalen der Physik, vol. 532,
no. 2, p. 1900298, 2020.

[183] A. Balatsky and E. Abrahams, Phys. Rev. B, vol. 45, pp. 13125–13128, Jun
1992.

[184] Y. Fuseya, H. Kohno, and K. Miyake, Journal of the Physical Society of Japan,
vol. 72, no. 11, pp. 2914–2923, 2003.

[185] G. Sharma, M. Trushin, O. P. Sushkov, G. Vignale, and S. Adam, Phys. Rev.
Research, vol. 2, p. 022040, May 2020.

[186] A. Fischer, L. Klebl, C. Honerkamp, and D. M. Kennes, Phys. Rev. B, vol. 103,
p. L041103, Jan 2021.

126





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2067

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-451373

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021


	Abstract
	List of papers
	1 Introduction
	2 Theoretical background
	2.1 Eliashberg theory
	2.1.1 Derivation under Migdal's approximation
	2.1.2 Spectral properties

	2.2 Simplified approaches
	2.2.1 Fermi surface restricted Eliashberg theory
	2.2.2 Isotropic Eliashberg theory
	2.2.3 Linearized Eliashberg theory
	2.2.4 McMillan equation for Tc
	2.2.5 BCS theory


	Part I: Applications of Eliashberg theory
	5 Additional examples
	5.1 Atomic hydrogen
	5.2 A new trigonal phase in LaH10
	5.3 Reducing the computational costs
	5.4 Phonon renormalization

	4 Twisted bilayer graphene
	4.1 Superconductivity from electron-phonon interaction
	4.2 Replica bands

	3 Monolayer FeSe on SrTiO3
	3.1 Electron-phonon interactions
	3.2 Spin fluctuations
	3.2.1 Superconductivity in bulk FeSe
	3.2.2 Spin fluctuations in FeSe/STO

	3.3 Multichannel superconductivity

	Part II: Vertex-corrected Eliashberg theory
	6 Formalism and exploration
	6.1 Extended Eliashberg theory
	6.1.1 First and second order Feynman diagrams
	6.1.2 Levels of approximation
	6.1.3 Numerical solution

	6.2 Phase space exploration

	7 Exotic superconducting states
	7.1 Unconventional superconducting gap
	7.1.1 System properties and self-consistent solutions
	7.1.2 Deeper analysis of the superconducting state

	7.2 The case of ThFeAsN
	7.3 Odd-frequency superconductivity
	7.3.1 Further theoretical extension
	7.3.2 Odd-frequency state in a cuprate superconductor


	8 Conclusions and outlook
	Populärwissenschaftliche Zusammenfassung
	Populärvetenskaplig sammanfattning
	Popular science summary
	Acknowledgments
	References



