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ABSTRACT: We present a general method of constructing in situ pseodopotentials
from first-principles, all-electron, and full-potential electronic structure calculations
of a solid. The method is applied to bcc Na, at low-temperature equilibrium volume.
The essential steps of the method involve (i) calculating an all-electron Kohn−Sham
eigenstate, (ii) replacing the oscillating part of the wave function (inside the muffin-
tin spheres) of this state, with a smooth function, (iii) representing the smooth wave
function in a Fourier series, and (iv) inverting the Kohn−Sham equation, to extract
the pseudopotential that produces the state generated in steps i−iii. It is shown that
an in situ pseudopotential can reproduce an all-electron full-potential eigenvalue up
to the sixth significant digit. A comparison of the all-electron theory, in situ
pseudopotential theory, and the standard nonlocal pseudopotential theory
demonstrates good agreement, e.g., in the energy dispersion of the 3s band state
of bcc Na.

1. INTRODUCTION

The electronic structure of solids within the density functional
theory (DFT) has been solved by a variety of methods, such as
the linear combination of atomic orbitals (LCAO),1 the
Korringa−Kohn−Rostoker (KKR) Green function method,2,3

the all-electron linear muffin-tin orbitals (LMTO) and the
linear augmented plane waves (LAPW),4−6 and the pseudo-
potential method.7−11 One key difference between the all-
electron and the pseudopotential methods is in their
treatments of core electrons. Whereas in all-electron methods
the core electrons are explicitly included in the calculations,
pseudopotential methods replace the potentials from the core
states in the one-electron Schrödinger (or Kohn−Sham)
equation with an effective smooth potential, known as the
pseudopotential. This allows the pseudopotential methods to
replace the valence states with smooth pseudowave functions,
which have fewer nodes than the all-electron wave functions
but the same eigenenergies.
This approach has its roots in the ideas of Fermi and

Hellman more than 80 years ago,12,13 with the rigorous
formulation of the theory for a solid taking place 20 years after
that.14−17 A practical method of predicting energy band
structures for semiconductors was only achieved upon the
development of the empirical pseudopotential method
(EPM),8,9 in which the pseudopotential is fitted to
experimental band structures, establishing the validity of the
energy band concept for solids in general. Nonetheless,
empirical pseudopotentials are not always transferable between

systems of different chemical environments since their
suitability for a particular system depends on the similarity of
that environment to the experimental environment to which
the empirical pseudopotential was fitted.9,11 Consequently, the
use of pseudopotentials constructed from first-principles, i.e.,
ab initio pseudopotentials, has become widespread in modern-
day electronic structure research. Ab initio pseudopotentials
can be norm-conserving18,19 or ultrasoft.20,21 In the projector
augmented wave (PAW) approach,22,23 pseudopotential
operators are also used, but information regarding the nodal
structure of the all-electron wave functions in the core region is
retained. Several excellent papers and reviews have already
discussed many necessary details of the ab initio pseudopo-
tential approach.10,24,25 Here, we will only reiterate some of the
pertinent points.
The first step in constructing an ab initio pseudopotential

usually involves solving the Kohn−Sham equations for a free
isolated atom to obtain its all-electron eigenvalues and wave
functions. In the second step, one constructs a smooth
pseudowave function, which has a radial component that is
identical with the radial component of the all-electron wave
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function outside a chosen cutoff radius, rc, but is smooth and
nodeless inside this radius. Finally, one asks if there exists a
potential (i.e., a pseudopotential) that when used together with
the kinetic-energy operator to construct the Kohn−Sham
Hamiltonian, produces this pseudowave function as its
eigenstate upon diagonalization, while retaining the same all-
electron energy eigenvalue of the free atom. This is achieved by
inverting the Schrödinger equation. The pseudopotential
approach takes advantage of the fact that the core electrons
do not play an important role in the formation of chemical
bonds between atoms.13 If all chemical bond formations,
electron hopping, and effects leading to band-energy dispersion
in a solid take place outside rc, one can replace the all-electron
potential around each atom position of a solid with a lattice of
pseudopotentials. Clearly, this can be extended to molecular
and cluster entities.
In a recent study,26 ab initio pseudopotential electronic

structure results were found to be in good agreement with
those computed using all-electron theory. Indeed, the
comparison in ref 26 was made for 71 elements, and the
agreement of the all-electron and pseudopotential results, for
materials with very different types of chemical bonding,
supports the use of the computationally more efficient
pseudopotential method. An example of comparison of the
energy dispersion calculated using the all-electron and the
standard nonlocal pseudopotential methods is shown in Figure
1. The figure illustrates the energy bands of bcc Na at the

experimental unit-cell volume V0
27 (corresponding to the

lattice constant = 4.225 Å). It is clear from the figure that
pseudopotential and all-electron electronic structure theories
can produce very similar band dispersion when the
pseudopotential is properly constructed.
For a pseudopotential to have general applicability, it is

important that it is transferable28,29 to different chemical

environments, e.g., works for a molecule or a material that
forms covalent or ionic bonds, under ambient or high pressure
or even for a crystal surface. The transferability of a
pseudopotential characterizes the accuracy with which the
pseudopotential reproduces the effect of the all-electron
potential in different chemical environments. One way to
test for the transferability of a pseudopotential to a different
chemical environment is by comparing the calculated Kohn−
Sham energy eigenvalues with the self-consistent all-electron
results.28 This raises the question of whether we can apply the
normal protocols for generating pseudopotentials, but instead
of using the atomic state as reference electronic configuration,
we use an environment that more closely resembles the one
where the pseudopotential is supposed to be used, be it in a
solid or molecular state. We will refer to the standard
pseudopotential derived from the free isolated atom as an
atomic pseudopotential. In this work, we also use the solid
state as a reference configuration, and we refer to such
pseudopotentials as in situ pseudopotentals. We will demon-
strate as a proof-of-concept in this paper that these
pseudopotentials can reproduce all-electron results to very
high accuracy.
The advantage of an in situ pseudopotental is that it is

tailored to the specific chemical environment of the material
(e.g., under high compression), and as a result, it can in general
be used as an expedient, accurate, and computationally
inexpensive tool to analyze electronic structures of complex
systems, e.g., as discussed in ref 30. Therefore, the concern
whether or not a pseudopotential is transferable or not may be
eliminated, as we only need a recipe of how to generate it for a
specific material. Even though the plane wave basis set used in
pseudopotential theory is much larger than that of any all
electron method, it offers the following advantages: (1) the
rapidity of computation for each matrix element, (2) the ease
of calculating Hellman−Feynman forces to obtain geometry
optimization and to be able to compute the phonon spectra,
(3) the simplicity of computing matrix elements of any
perturbation to the Hamiltonian, including oscillator strength
matrix elements, or many-body self-energy matrix elements,
(4) the use of fast Fourier transform to speed up the
calculation, and (5) its natural connection to self-energy
methods, such as the GW approximation, for improved
calculations of the energy band gap. In addition, the use of
the solid-state environment to generate in situ pseudopotentials
is motivated by the fact that the scattering properties of a
pseudopotential constructed for an isolated atom might be
different from those of the same atom placed in a material.
This is particularly of concern when the environment in the
solid is drastically different from that of an atom, e.g., when
neighboring atoms in an ionic bonded material cause large
charge transfer effects that affect the multiple scattering
properties. Similarly, it can be troublesome to use an atomic
generated pseudopotential evaluated at ambient conditions for
a solid state calculation of the electronic structure of a material
under extreme compression.
In this paper, we outline the critical steps to generate in situ

pseudopotentials, and as example, we calculate for bcc Na the
band dispersion using an in situ pseudopotential generated
from an all-electron reference state obtained from the full-
potential linear muffin-tin orbitals method (RSPt software6).
This result is then compared with the band structure obtained
from two different atomic (i.e., generated from an atomic
reference state), scalar-relativistic and norm-conserving,

Figure 1. Comparison of the DFT energy dispersion for bcc Na
within the local density approximation (LDA) using the experimental
equilibrium unit-cell volume, calculated using the full-potential all-
electron electronic structure method with RSPt (gray) and the
pseudopotential method with Quantum Espresso. Two atomic
pseudopotentials are used, with (red solid line) and without (blue
dashed line) the semicore 2s state. The energy levels are plotted
relative to the Fermi level (EF). In the inset a magnified section of the
band dispersion around the N-point is shown, in order to highlight
the magnitude of the differences between the methods. These
calculations use the same convergence parameters as in Figure 2.
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pseudopotentials using the Quantum Espresso software.31 The
main difference is that the first atomic pseudopotential (i)
contains only the valence 3s state of Na (i.e., valence-only)
while the second (ii) contains not only the valence 3s state but
also the 2s and 2p semicore states. The former32

pseudopotential is a Troullier−Martins33 pseudopotential
generated using FHI98PP34 and includes nonlinear core
correction.35 It has only one Kleinman−Bylander−Vander-
bilt20,25 projector per angular channel. The latter pseudopo-
tential is an optimized norm-conserving Vanderbilt pseudopo-
tential (ONCVPSP)36 obtained from the PSEUDODOJO
project.37 It does not use nonlinear core correction and has
two projectors per angular channel. All pseudopotential
calculations with Quantum Espresso use a kinetic-energy
cutoff of 100 Ry for the plane wave basis expansion, a k-grid of
24 × 24 × 24 points and LDA38 for the self-consistent DFT
calculation.

2. METHOD
Simply described, the method to generate in situ pseudopo-
tentials can be divided into three distinct steps: (1) Calculate
the eigenstates of the Kohn−Sham equations of the solid using
an all-electron method. (2) Construct the pseudowave
function by modifying the corresponding valence state to
remove any nodes in the core region while exactly preserving
the wave function in the interstitial region. (3) Generate a
pseudopotential that gives rise to this pseudowave function.
We begin by describing step 3 in Section 2.1 before moving on
to the more technical details of step 2 in Section 2.2.
2.1. The Inverse Pseudopotential Problem. For the

purpose of this section, we first assume that the pseudowave
function Ψ̃kn and its energy eigenvalue ϵk̃n for each k point in
the Brillouin zone and band n are already known. Next, we
consider the eigenvalue equation

Hpp n n nk k kΨ̃ = ϵ̃ Ψ̃ (1)

where k is crystal momentum restricted to the first Brillouin
zone, n a band index for the given k, and

H V r( )pp pp
2=−∇ + (2)

V ei

G
G

G r2 ∑=−∇ + ·

(3)

er( )n
n i

k
G

G
k G k r( )∑Ψ̃ = ̃ + ·

(4)

Here, G runs over the reciprocal lattice vectors, and VG and
n

G
k̃ are, respectively, the plane wave expansion coefficients for

the pseudopotential Vpp and pseudowave function Ψ̃kn. The
Ψ̃kn is known as the pseudowave function as it is the solution
of a Hamiltonian involving a pseudopotential. In eqs 2 and 3
we have used Rydberg atomic units (au). If we multiply eq 1

by e−i(G′+k)·r and integrate over r, we obtain the expression

VG k( ) n n
n

n
G
k

G
G G G

k
k G

k2 ∑+ ̃ + ̃ = ϵ̃ ̃
′

′ − ′
(5)

In practice, the sum over G′ in the plane-wave expansion of
the pseudopotential and pseudowave function is truncated for
a finite number (N) of coefficients. Therefore, for a given
eigenstate eq 5 corresponds to N linear equations with N

unknowns, which in matrix form can be written as (note that k
and n are state labels and not matrix indices)

M v un nk k= (6)

where

Vv G G[ ] = (7)

u G k( ( ) )n
n

nk
G k G

k2[ ] = ϵ̃ − + ̃ (8)

M n nk
G G G G

k
,[ ] = ̃′ − ′ (9)

The matrix Mkn is a blocked Toeplitz matrix. The linear
system of equations in eq 6 can therefore be solved by a
blocked Levinson algorithm, which formally produce the
pseudopotential

v M u( )n nk k1= − (10)

While this pseudopotential is only constructed to exactly
reproduce the eigenvalue ϵk̃n for a particular k, we will see in
Section 3 that the procedure gives a pseudopotential that gives
satisfactory results for eigenvalues throughout the Brillouin
zone, i.e., also for eigenvalues calculated at k′ ≠ k.

2.2. Choice of Wave Function and Practical Imple-
mentation. While the method described in Section 2.1 is
straightforward, the difficulty lies in generating an appropriate
wave function Ψ̃kn to use as input. In principle, one can
calculate it by first solving an all-electron electronic structure
problem, thereby obtaining the true energy eigenvalue and
wave function. Hence, by finding a solution to

H r r( ) ( )AE n n nk k kΨ = ϵ Ψ (11)

where HAE is the all-electron Hamiltonian, one could in
principle solve eqs 7−10, by setting Ψ̃kn equal to the true all-
electron wave function Ψkn and by identifying ϵk̃n with ϵkn. In
this way, one is guaranteed that the pseudopotential that
comes out of eq 10 gives the same eigenvalue and wave
function as the all-electron Hamiltonian. A pseudopotential
generated at one particular k point, e.g., the Γ-point, can then
be used in eqs 1−3, to calculate eigenvalues and eigenstates
throughout the Brillouin zone. One can also envision using this
pseudopotential for other similar conditions, e.g., a crystal at
compressed volumes compared to the condition where the
pseudopotential is originally calculated from. In this approach,
the valence states generated by an all-electron calculation are
expected to have nodes in the core region, which will require a
very large number of the basis vectors to converge the
calculation if the plane-wave basis set is used (eq 4). A solution
to this problem is to replace the fast oscillating part of Ψkn, that
is primarily close to an atomic nucleus, with a smooth
pseudowave function, Ψ̃kn that is nodeless while still keeping
ϵk̃n = ϵkn. This is the usual way of pseudopotential theory,
albeit we propose here to do it using its native solid state as the
reference electronic configuration and not the free atom.
The description that follows aims at describing how a

smooth, node-less pseudowave function can be evaluated from
an all-electron wave function that is obtained from a full-
potential linear muffin-tin orbital method, as implemented in
the RSPt package.6 We start with the general approach of
writing the all-electron wave function as a linear combination
of known basis functions, namely, the linear muffin-tin orbitals
(LMTOs):
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r r( ) ( )n
n

k
k k∑ ϕΨ =

Λ
Λ Λ

(12)

Here ϕΛ
k are the LMTOs introduced by Andersen,4 where the

Λ index groups many indices, such as the tail energy of the
basis function, angular momenta, and the type of atomic
species. We emphasize that kn are state labels, not indices. The
LMTOs are defined with respect to two regions: the muffin-tin
and the interstitial regions. In the latter, the LMTO basis
function is either a Hankel or a Neumann function, depending
on choice of kinetic energy of this basis function. For practical
reasons, in the RSPt package,6 the wave function in the
interstitial region is calculated as an exact Fourier series. This is
done by extending a Hankel or Neumann function from the
interstitial region into the muffin-tin sphere with an analytic
smooth function, for fast converged Fourier series expansion.
This means that the interstitial basis function is defined over all
space, and matrix elements of, e.g., the Hamiltonian or the
Bloch wave function overlap are truncated inside the muffin-
tins using a step function.
Following ref 6, we define a pseudo basis function ϕ̃Λ

k as the
Fourier-transformed Hankel or Neumann function that in the
interstitial region is identical with the all-electron LMTO basis
function:

Ar( ) eik

G
G

k G k r( )∑ϕ ̃ = ̃
Λ Λ

+ ·

(13)

where ÃΛG
k are the Fourier coefficients of this basis function.

This function can now be used for the expression of the
Fourier series in eqs 1−4 that should be defined over all space,
i.e., including the muffin-tin region. We start by expressing the
interstitial all-electron wave function in eq 11 in terms of the
Fourier series, see eq 13. This can be done by replacing ϕΛ

kn in
eq 12 with ϕ̃Λ

kn. By construction, this replacement does not
influence the wave function in the interstitial region. However,
it drastically modifies the wave function in the muffin-tin
region since the part of the muffin-tin orbital that is defined in
the muffin-tin sphere, where in general the radial component
has many nodes, is replaced by a smooth function. For this
reason, we distinguish the true wave function given by eq 12
from a pseudowave function

r r( ) ( )n
n

k
k k∑ ϕΨ̃ = ̃

Λ
Λ Λ

(14)

Notice that the expansion coefficients in eqs 12 and 14 and
nk

Λ should be the same. Writing out explicitly the form of ϕ̃Λ
kn,

we can express the pseudowave function as

r( ) en
n i

k
k

G
G

k G k r( )∑ ∑Ψ̃ = ̃
Λ

Λ Λ
+ ·

(15)

Using this equation, the coefficients ̃ of eq 4 will be given
by

n nk k
G

k∑̃ = ̃
Λ

Λ Λ
(16)

The form given by the latter equation should be used in the
pseudowave function given in eq 4 to calculate the
corresponding pseudopotential by following eqs 6−10. A
practical way to evaluate a pseudopotential with this method is
to first perform a normal all-electron calculation to obtain nk

Λ
coefficients (and the eigenvalue ϵkn). In this process, the
Fourier coefficients of the pseudobasis function are kept (from

eqs 13 and 16), which enables an evaluation of eq 4. The so-
obtained pseudowave function and eigenvalue are used in eqs
6−10, to obtain the required pseudopotential.
Although the description above seems straightforward, we

note that these modifications are done in the full-potential
method of ref 6, independent of whether a pseudopotential is
to be extracted or not. They are in line with the aims of the
pseudopotential approach, but they are strictly speaking related
to the computational benefits associated with having fewer
coefficients in the Fourier expansion. To be useful for a
pseudopotential approach, we also need to ensure that low-
lying “ghost states” do not appear. To understand the “ghost
states” problem, consider applying eq 10 immediately to the
unmodified valence state. By construction, the resulting
pseudopotential gives rise to a Hamiltonian that contains this
eigenstate. However, the full Hilbert space also contains
smoother states, and these tend to have lower energy. This is
not surprising since states with lower energy do exist in the
original problem, namely the core states. The purpose of the
pseudopotential approach is to generate an effective Hamil-
tonian for which the valence states are the low energy states,
and it is therefore essential to remove radial nodes in the wave
function. While the procedure outlined above does reduce the
number of radial nodes, it is not constructed to guarantee an
absence of nodes. It also does not guarantee norm
conservation. In this work, we are focused on constructing
norm-conserving pseudopotentials even though this constraint
of norm-conservation can be relaxed in future works similar to
that in the ultrasoft-pseudopotential method20,21 or the PAW
method.22,23 This of course comes at the expense of a more
complex mathematical representation compared to the simple
representation of norm-conserving pseudopotential meth-
od33,39).
For these reasons we modified the pseudowave function

further to make it nodeless and ensure norm conservation. It is
the aggregate of these modifications to the pseudowave
function that are compensated for through the pseudopoten-
tial. Only by modifying the wave function in the core region is
it possible to preserve the chemical properties that emerge
from the pseudopotential. That is, chemical bonding is mainly
determined by the wave function overlap in the interstitial
region between atoms. The expression we arrived at for the
nodeless and normalized pseudowave function is

r c r r N c f rr( , , ) ( ) ( , , ) (1 ( )) ( , , )n nk kθ φ θ φ θ φΨ̂ = Ψ̃ + −
(17)

where f(r,θ,ϕ) is a smooth function with the same angular
dependence as Ψ̃kn(r,θ,φ) and c(r) smoothly interpolates
between Ψ̃kn(r,θ,φ) in the interstitial region and f(r,θ,φ) in the
muffin-tin region. For convenience, we have also factored out a
constant N from f(r,θ,φ) that will be used to ensure that the
pseudowave function is normalized. Note that eq 17 is general,
in the sense that it can be applied to an all-electron valence
state, although for technical reasons we applied it to the
pseudowave function obtained from eq 16, Ψ̃kn.
In this paper, we provide a proof-of-principle demonstration

of the method for the energy dispersion of the Na 3s band, and
in future work, we hope to generalize the method to compute
the electronic structure of any material. Adapted for this state
we choose
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c r

r R

r R

x x

( )

0 ,

1 ,

3 2 otherwise.x r R R R

0

1

2 3
/0 1 0

l

m
oooooo

n
oooooo

=

| | <

| | >

− | = − − (18)

The node-free and normalized pseudowave function is then
defined with a suitable choice of f(r,θ,ϕ) in eq 17. We will
return to appropriate choices of this function below. First we
remark that, in eq 18, R0 and R1 are chosen so as to obtain a
smooth interpolation without nodes. In general, R0 should be
larger than the radius of the outermost radial node, and we
have R0 < R1 < RMT, where RMT is the muffin-tin radius.
Returning now to the choice of f(r,θ,ϕ), we have in the
numerical examples presented below focused on the valence
state of Na, which is dominated by the 3s state. This function
has no angular component, and it is sufficient to use f(r,θ,ϕ) =
f(r). We have made two choices for f(r): a constant value of 1
and a polynomial of degree 15. In the latter choice, we
determined the expansion coefficients through a least-square fit
of a pseudowave function obtained from a Quantum Espresso
calculation using the valence-only pseudopotential (this is

shown as a green line in Figure 2a). Below we will compare the
results for both choices of f(r).
The constant N in eq 17 is determined by requiring that Ψ̂kn

is normalized to 1,

c c N c f c f

N c c f

(1 ) (1 )

2 Re( (1 ) )

1.

n n n n

n

k k k k

k

2⟨Ψ̂ |Ψ̂ ⟩ = ⟨ Ψ̃ | Ψ̃ ⟩ + ⟨ − | − ⟩

+ ⟨ Ψ̃ | − ⟩

= (19)

This is solved by

N
B
C

A B C
B

(1 ) 2

= − ±
− +

(20)

where

A c cn nk k=⟨ Ψ̃ | Ψ̃ ⟩ (21)

B c f c f(1 ) (1 )=⟨ − | − ⟩ (22)

C c c fRe( (1 ) )nk= ⟨ Ψ̃ | − ⟩ (23)

Figure 2. (a and c) Calculated radial component of the pseudowave function Ψ̃kn(r,θ,φ) (blue, for definition see text), calculated radial part of the
modified pseudowave function Ψ̂kn(r,θ,φ) (orange, for definition see text), and radial pseudowave function calculated with Quantum Espresso
using a valence-only atomic pseudopotential (green). (b and d) Calculated energy dispersion of the valence band states of bcc Na along the Γ − H
high symmetry direction of the first Brillouin zone. Three types of methods are used to calculate the energy bands: the all-electron full potential
method (orange), the in situ pseudopotential method as described of this paper (blue), and the standard pseudopotential method using a valence-
only atomic pseudopotential (green). Panels a and b show results for the choice of f(r) being a polynomial of degree 15 that is least-squares fitted to
the radial pseudowave function calculated with Quantum Espresso using a valence-only pseudopotential (using R0 = 0.75RMT and R1 = 0.9RMT).
Panels c and d show results for a choice of f(r) = 1 (using R0 = 0.55RMT, and R1 = 0.75RMT. The muffin-tin radius RMT = 3.285 au is denoted using
dashed lines in panels a and c). In all these calculations, a 11 × 11 × 11 mesh is used for the Fourier expansion of the pseudopotential.
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3. RESULTS

In Figure 2, we compare the radial components of Ψ̂kn(r,θ,φ)
and Ψ̃kn(r,θ,φ) for the lowest eigenvalue of bcc Na obtained at
the Γ point. Note that we show in the figure results of
pseudowave function and band dispersion for two choices of
f(r) in eq 17: a constant and a 15-degree polynomial. Included
for reference is also a pseudowave function obtained from a
Quantum Espresso calculation (from which one choice of f(r)
was obtained). In this calculation, we set the muffin-tin radius
RMT = 3.285 au, which is approximately 95% of the touching
radius between two nearest Na atoms, and used R0 = 0.55RMT
and R1 = 0.75RMT for the constant f(r) choice, and R0 =
0.75RMT and R1 = 0.9RMT for the polynomial choice. The all-
electron calculation that is used to evaluate the pseudowave
function uses the local density approximation (LDA).40,41 As
LMTO basis vectors, we used three 3s orbitals, three 3p
orbitals and two 3d-orbitals in the muffin-tin spheres. In the
interstitial region, the tails have kinetic energies of 0.3 Ry (for
3s-, 3p-, and 3d-orbitals), −2.3 Ry (for 3s-, 3p-, and 3d-
orbitals) and −1.5 Ry (for 3s- and 3p-orbitals). The number of
reciprocal lattice vectors used to expand the wave function
were 11 × 11 × 11 (corresponding to an energy cutoff of ∼18
Ry). This value of the cutoff energy is much smaller than the
one used for standard pseudopotential calculations and still
produces results in good agreement with those of different
standard pseudopotentials. As in Figure 1, the experimental27

lattice parameter of 4.225 Å was used.
It is clear from parts a and c of Figure 2 that Ψ̂kn(r,θ,φ) and

Ψ̃kn(r,θ,φ) are identical in the interstitial region. These wave
functions also coincide with the full all-electron wave function

in the interstitial region (data not shown). From a detailed
inspection of the radial components of Ψ̂kn(r,θ,φ) and
Ψ̃kn(r,θ,φ), we note that the latter has a single node as
opposed to the two nodes expected from a 3s state. The single
node of the otherwise rather soft behavior of Ψ̃kn(r,θ,φ) has to
do with how the full-potential method of ref 6 represents the
basis functions in the interstitial, in particular as a Fourier
series (see eqs 6.38−6.42 of ref 6). In order to obtain a
pseudopotential that is as smooth as possible from eqs 6−10,
we have made use of Ψ̂kn(r,θ,φ) (in a Fourier representation)
instead of Ψ̃kn(r,θ,φ), since the former pseudowave function is
by construction node-less inside the muffin-tin sphere (see
Figure 2a). This choice leads to a much smoother pseudowave
function that may be expressed with a minimum number of
Fourier components. For this reason we have used the Fourier
representation of Ψ̂kn(r,θ,φ) in all the steps outlined in eqs
1−10, discussed in Section 2.
In parts a and c of Figure 2 (a and c), we note that

depending on the choice of f(r), the behavior of Ψ̂kn(r,θ,φ)
inside the muffin-tin region is different. For the choice of a 15-
degree polynomial for f(r), Ψ̂kn(r,θ,φ) is by construction
similar to the function obtained from a calculation based on
Quantum Espresso (see Figure 2a). Although the behavior in
the core region is explicitly constructed, a good match is not
guaranteed from the outset. The freedom provided through the
normalization constant N and the fact that the two regions
(interstitial and muffin-tin) are stitched together with the help
of the interpolation function c(r) rather than being matched at
the muffin-tin boundary means that the two functions are
allowed to differ. The near-perfect match in spite of this is a
reassurance of the soundness of the interpolation procedure.

Figure 3. Calculated energy dispersion of the valence band states of bcc Na, along the Γ − H high symmetry direction of the first Brillouin zone. It
is similar to the plot in panel b of Figure 2, except that the Fourier expansion of the pseudopotential is truncated to a smaller N × N × N mesh as
specified in the inset of each panel. As in panel b of Figure 2, three types of methods are used to calculate the energy bands: the all-electron full
potential method (orange), the in situ pseudopotential method as described of this paper (blue), and the standard pseudopotential method using a
valence-only atomic pseudopotential (green). Here, f(r) is the 15-degree polynomial least-squares fitted to the radial pseudowave function
calculated with Quantum Espresso using a valence-only pseudopotential (setting R0 = 0.75RMT and R1 = 0.9RMT).
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After having calculated a pseudopotential, using eqs 1−10 in
combination with Ψ̂kn(r,θ,φ), we calculate eigenvalues and
eigenvectors from eq 5. This represents therefore the solution
to a local pseudopotential, and the calculation was done using
1331 plane-wave components in the expansion of the wave
function. In parts b and d of Figure 2, we show the resulting
energy dispersion along the high-symmetry line, Γ − H, of the
first Brillouin zone, for two different in situ pseudopotentials,
one from a choice of f(r) as a constant and one from a choice
of f(r) being a 15-degree polynomial. The two different in situ
pseudopotential results are compared to the energy dispersion
of an all-electron full-potential electronic structure method
(see Figure 2, parts b and d) . We first note that the whole
methodology described above is designed to yield the same
eigenvalue and wave function in the interstitial region at the Γ
point. Hence, it is gratifying that, for the Γ point, the
eigenvalues from the in situ pseudopotential method and the
all-electron full-potential method differ only in the sixth
significant digit, irrespective of the choice of f(r) in eq 18.
Furthermore, the energy dispersion is seen to agree very well
between in situ pseudopotential theory and all-electron theory
throughout the Brillouin zone. When comparing the two in situ
pseudopotentials (evaluated from constant and polynomial
choice of f(r)), we note that the agreement in band dispersion
between all-electron theory and any in situ pseudopotential
theory is surprisingly good. This holds true even when we set
f(r) = 1. The latter has a pseudowave function that in the core
region differs significantly from a traditional behavior (e.g., as
seen from the results obtained from the Quantum Espresso
calculation). The poorer choice of f(r) = 1 nevertheless results
in an in situ pseudopotential that reproduces all-electron results
throughout most of the Brillouin zone, demonstrating the
robustness of our approach. The largest difference for the
eigenvalues is observed at the zone boundary, which is not
unexpected, considering that these states have crystal
momentum farthest away from that state where the in situ
pseudopotential was calculated (the Γ point).
As a final point, we also investigate the effect of truncating

the Fourier coefficients of the in situ pseudopotential to gauge
its smoothness. In Figure 3, we show results of energy bands of
bcc Na, when the in situ pseudopotential, being calculated from
eq 10, has its higher Fourier components truncated. In practice
this means keeping from the original in situ pseudopotential
only components from a N × N × N mesh (that is smaller than
the original mesh of 11 × 11 × 11). It is interesting to note
from Figure 3 that good agreement between full-potential, all-
electron theory and in situ pseudopotential theory can be
achieved for all considered Fourier meshes except the very
smallest one (3 × 3 × 3). This indicates that equal accuracy to
all-electron theory can be achieved from an in situ
pseudopotential theory that is represented by only 125 (5 ×
5 × 5) plane waves.

4. DISCUSSION AND CONCLUSION
In this paper, we have demonstrated a proof-of-concept of how
it is possible to calculate a pseudopotential from an all-
electron, electronic structure method. For reference, in parts c
and d of Figure 2, we also consider for a much cruder choice of
core function, using f(r) = 1, R0 = 0.55RMT, and R1 = 0.75RMT.
The agreement of the eigenvalues is in fact surprisingly good
also in this case, even though the pseudowave function differs
significantly from that of the Quantum Espresso in the core
region. Technically, this amounts to solving the inverse Kohn−

Sham equation for one or a few eigenvalues and eigenstates,
which have been obtained from the all-electron theory. The
method proposed here relies on replacing the rapidly
oscillating part of an eigenstate close to the nucleus (in the
muffin-tin sphere) with a smoother and much softer form,
which allows for fast convergence in the expansion of the
Fourier series. In principle, this method is not restricted to
using the solid state as the reference electronic configuration
and can be readily extended to molecular species or crystal
surfaces. It also does not require the use of LMTOs as basis
functions and is, for example, also suitable for the LAPW or
LCAO basis set. It is also not mandatory to use the zone center
to evaluate the in situ pseudopotential, other points of the
Brillouin zone can be used as well, and it is possible to take
averages of in situ pseudopotentials from several points, to get a
final in situ pseudopotential to use for further studies.
In this work, we limit our discussion to the construction of

the local components of the pseudopotentials. Its extension to
the nonlocal components19,20,25 is natural and necessary in
order to resolve higher lying energy bands, an effort which
represents ongoing work. Even without the nonlocal
components, the proposed in situ pseudopotential method
reproduces energy dispersion of the 3s-like band state of bcc
Na, with good accuracy throughout the Brillouin zone. The
largest discrepancy between the in situ pseudopotential
outlined here and results from an all-electron method is at
the Brillouin zone boundary. This is expected since these zone-
boundary states have an admixture of angular momentum
characters that can only be properly described with the
inclusion of the nonlocal components in the in situ
pseudopotential. Furthermore, the crystal momentum of
these states is the farthest away from the k point at which
the in situ pseudopotential was calculated.
It is well-known that the transferability of an atomic

pseudopotential can be systematically improved, by reducing
rc at the cost of greater computational cost.19 With the
construction of the pseudopotential in situ, using the native
state as the reference, this requirement of transferability can
potentially be relaxed if an in situ pseudopotential is used. This
may even allow for a larger pseudopotential radii cutoff for the
same convergence, thereby reducing the number of Fourier
components needed in the series expansion and a reduced
computational cost. This method also automatically takes into
account the nonlinear35 nature of the exchange and correlation
interaction between the core and valence charge densities,
which is important when a valence-only pseudopotential is
used for an alkali metal like Na35 that only has one electron in
the valence shell. In a typical calculation using atomic
pseudopotentials, these interactions are first assumed to be
linear before adding the nonlinear core contributions as a
perturbative correction. Another benefit of generating the
pseudopotential in the native solid-state environment is that
basis-set convergence is already controlled at the level of the
all-electron calculation. For example, if the LMTO basis set is
used for the all-electron calculation (as in our case),
convergence parameters will include the number of Fourier-
components to match LMTOs as well as core-leakage that will
indicate if certain semicore states have to be treated as valence
states. Computational cost versus accuracy can then be
optimized.
The methodology suggested here can also be extended to

include spin-polarized calculations. One must then keep track
of spin-indices of the all-electron generated eigenvalues and

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c04791
J. Phys. Chem. C 2021, 125, 15103−15111

15109

pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c04791?rel=cite-as&ref=PDF&jav=VoR


eigenvectors in the analysis presented in Section 2. Following
the steps in the Method section that describe the
pseudopotential generation, one could then obtain in situ
pseudopotentials for spin-up states and spin-down states
separately. After unscreening of these pseudopotentials
(removing contributions from exchange and correlation of
the electron gas, as well as the Hartree potential) one would
obtain spin-dependent pseudopotentials that are able to
accurately reproduce magnetic moments and spin-dependent
information on all-electron theory. Spin−orbit effects may also
be incorporated in the proposed in situ pseudopotentials, since
the method outlined can be used for any spin−orbit calculated
eigenstate. We also speculate that the in situ pseudopotential
can be generalized, such that effects from a self-energy Σk (e.g.,
obtained from the GW approximation or the dynamical mean
field theory) are incorporated in the pseudopotential. This
could be achieved by associating ϵk̃n with ϵk̃n + ReΣk in eq 1.
The steps outlined above represent an investigation that is
underway. Finally, we note that a library of in situ
pseudopotential-generating recipes can also be provided to
supplement the library of pseudopotentials.
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