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Abstract 

Acute lymphoblastic leukemia (ALL) is one of the most prevalent childhood cancers and 

even if survival rates have improved over the last decades problems relating to relapse and 

drug resistance persist. One way to gain better understanding of the mechanisms underlying 

these challenges is with high throughput drug screens where individual cells from patient 

samples are sequenced before and after drug exposure. To be able to process many biological 

samples, cells and treatments in parallel a cell-hashing approach will be employed to mark 

individual cells exposed to different conditions. Cell-hashing is the addition of treatment-

specific barcodes that allow pooling of treatments into one sequencing library, which brings 

down the cost and increases throughput. Before moving on to patient samples a few pilot 

studies were performed to ensure that the cell protocols and the cell-hashing barcodes work 

as intended. A so called “barnyard” experiment was used to validate the integrity of the 

barcodes. Human and horse cells were barcoded, mixed at a 1:1 ratio and sequenced by 

single-cell RNA-seq using the protocol from 10x Genomics. The cells were then evaluated to 

see if they could be correctly identified by their barcode and by the species. The single-cell 

assay for transposase active chromatin from 10x genomics was tested on two cell lines and a 

novel library preparation method for single-cell whole genome bisulfite sequencing was 

tested on a cell line and liver cells from a patient sample. In addition to testing the methods, 

analysis pipelines were built for the different data types that will be used in the data analysis 

of future drug screen experiments. While there were several technical problems with the cell-

hashing barcodes, the different single-cell methods tested were successful. The development 

of the analysis pipelines and the knowledge gained from the barcoding experiment will be 

useful as the project moves forward.   

 

 

  



  



Taggade celler för storskaliga läkemedelsscreens  

Populärvetenksaplig sammanfattning 

Alva Annett 

 Akut lymfatisk leukemi (ALL) är en form av blodcancer som ofta drabbar barn. Under de 

senaste decennierna har prognosen för dessa patienter blivit allt bättre men många råkar 

fortfarande ut för återfall och resistens mot den behandling de ges. För att undersöka de 

mekanismer som leder till återfall och resistens kommer blodceller från patienter med ALL 

testas mot ett stort antal läkemedel och andra substanser i en så kallad storskalig läkemedels 

screen. För att ta reda på vad som händer i cellerna när de utsätts för olika substanser 

sekvenserar man deras genetiska innehåll innan och efter behandling. Detta ger information 

om vilka genetiska varianter och mönster som leder till att celler överlever eller inte. Dessa 

varianter och mönster kan sedan användas för att dels öka förståelsen för hur ALL fungerar 

och dels för att individualisera behandling för framtida patienter. För att på ett tids- och 

kostnadseffektivt sätt kunna utföra läkemedels screens för ett stort antal patienter, krävs det 

att de celler som behandlats med olika läkemedel kan samlas ihop och processeras 

tillsammans. Detta kan åstadkommas genom att märka in cellerna med unika ”taggar” som 

visar vilken behandling de fått. Dessa taggar är DNA sekvenser som läses av tillsammans 

med cellens övriga genetiska innehåll. Detta gör att både cellens genetiska profil och den 

behandling cellen genomgått kan identifieras. På detta sätt kan man alltså processeras celler 

som genomgått olika behandlingar tillsammans. 

För att kontrollera att taggarna fungerar på korrekt sätt har vi genomfört en pilot studie. 

Taggarn utvärderades med hjälp av ett så kallat ladugårds experiment där celler från två olika 

arter blandas. Vi använde celler från häst och celler från människa som märkts in med varsin 

tagg. Dessa celler sekvenserades sedan och baserat på det gener som identifierades 

klassificerades de som antingen häst- eller människoceller. Cellerna klassificerades också 

utifrån vilken tagg de innehöll och dessa två klassificeringar jämfördes sedan för att avgöra 

om taggarna har fungerat. På grund av flera tekniska problem med experimentet 

överlappande de två klassificeringarna för väldigt få celler. För det första verkar det som att 

häst cellerna dött och gått sönder i något steg. Detta betyder att genetiskt material från häst 

spridits och blandats med människo cellerna. På grund av detta var det svårt att avgöra vilka 

celler som kom från vilken art. För det andra verkar det som att den tagg som använts för 

människo cellerna inte absorberats på korrekt sätt. På grund av detta var det inte möjligt att 

avgöra vilken tagg många av cellerna hade märkts med. Resultaten från den första 

pilotstudien var inte tillräckliga för att avgöra om taggarna fungerar på korrekt sätt. Trots 

detta har resultaten varit användbara för att planera de nästkommande stegen i projektet. Den 

data som genererats har även använts för att testa och utveckla de metoder för  dataanalys 

som kommer att användas i projektet framöver. 
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Abbreviations  

ALL  acute lymphoblastic leukemia  

ATAC  assay for transposase-accessible chromatin 

CB  cell barcode  

DNA   deoxyribonucleic acid 

GEMs  gel beads in emulsion  

GSEA  gene set enrichment analysis  

HPC  high performance computing 

IQR  interquartile range  

LMO   lipid-modified oligonucleotide  

NGS  next generation sequencing 

QC  quality control  

RNA   ribonucleic acid 

SC    single-cell 

SNN  shared nearest neighbor  

SPLAT  splinted ligation adapter tagging  

SVD  singular value decomposition 

TF-IDF  term frequency inverse document frequency  

TSS   transcription start site  

t-SNE  t-distributed stochastic neighbor embedding 

UMAP  uniform manifold approximation and projection  

UMI  unique molecular identifier  

WGBS  whole genome bisulfite sequencing  
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Introduction 

Applications And Opportunities for Analysis of Single Leukemia Cells  

Acute lymphoblastic leukemia (ALL) originates in the bone marrow from proliferative 

leukocytes stuck at an early stage of maturation (Malard & Mohty 2020). The malignant cells 

are derived from either the B-cell lineage or more rarely the T-cell lineage. ALL is currently 

one of the most prevalent childhood cancers. Even though overall survival rates have greatly 

improved in the last decades the problem of resistance, adverse drug reactions and relapse 

leading to reduced survival rate persists (Iacobucci & Mullighan 2017). There are several 

ALL subtypes characterized by different chromosomal rearrangements and secondary 

mutations such as copy number variations and single nucleotide polymorphisms. In addition 

to this, ALL is characterized by heterogeneity in gene expression and epigenetic markers. 

The subtypes are closely linked to prognosis and a better understanding of these subtypes is 

vital for future diagnosis and treatment of ALL (Liu et al. 2016, Iacobucci & Mullighan 

2017). 

Understanding the underlying molecular mechanisms of drug sensitivity, resistance and 

relapse is an important key in improving survival rates and quality of life for ALL patients. 

One way this can be achieved is through high throughput drug screens where cells obtained 

from patients are exposed to a wide range of concentrations and combinations of drugs (Pauli 

et al. 2017). High throughput drug screens have several applications. Firstly, they can be used 

to discover new treatments by testing many substances, combinations, and concentrations at 

the same time. The development in sequencing methods makes this feasible in terms of time 

and money. Secondly, they can be used in a clinical setting to identify which drugs different 

subgroups of cells are sensitive to. It has been shown that the response to ex vivo treatment 

correlates well with patient outcome (Pauli et al. 2017). This information could be used to 

guide treatment at an early stage of the disease by screening patient samples. Thirdly, 

investigating how cancer cells from a range of patients react to different treatments will give 

us an overall better understanding of the disease.  

Single-cell sequencing is a method where the ribonucleic acid (RNA) or deoxyribonucleic 

acid (DNA) form individual cells are tagged with cell specific barcodes. The RNA or DNA is 

then processed in the same way as bulk sequencing but each read can be traced back to the 

original cell (Shapiro et al. 2013). Single-cell sequencing has greatly increased the resolution 

at which a cell population can be understood. Rare cell types that would be masked in bulk 

sequencing can be identified and the heterogeneity between cells investigated. In cancer 

research this has the potential to improve our understanding of why certain cell populations 

survive treatment and subsequently lead to relapse and may allow for a more detailed 

investigation of clonal evolution and how specific subgroups of cells respond to different 

drugs (Hwang et al. 2018). Single-cell sequencing can be used in combination with high 

throughput drug screens to give us an even better understanding of the surviving cells within 

a sample. In the future this will hopefully help us individualize treatment for patients and 

reduce the risk of relapse and drug resistance. 
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To avoid having to prepare one sequencing library per treatment and biological sample in a 

high throughput drug screen, a method called cell-hashing can be employed. Cell-hashing is 

the addition of condition-specific barcodes that are introduced prior to single-cell isolation in 

a microfluidics device where the cell-specific barcodes are added. This gives an extra layer of 

information which enables pooling of many cells and conditions at an early stage of library 

preparation. This greatly reduces the cost of library preparation and saves time and reagents. 

Batch effects due to differences in handling individual treatments and samples can also be 

reduced by early pooling of treatments. There have been several cell-hashing methods 

proposed such as CITE-seq, which uses antibody tagged oligonucleotides or demuxlet, which 

uses the natural genetic variation between samples to identify which cells the reads come 

from (Stoeckius et al. 2017, Kang et al. 2018). However, most of these methods still face 

substantial challenges with throughput and cost. The cell-hashing method used in this project 

is built on the MULTI-seq protocol (McGinnis et al. 2019). The MULTI-seq method uses 

lipid-modified oligonucleotides (LMOs) hybridized with DNA barcodes, which have been 

introduced as an affordable alternative for cell-hashing. The LMOs are introduced into the 

cell membrane of living cells and the cell-hashing barcodes are subsequently linked to the 

cell specific barcodes during reverse transcription. Before sequencing, size exclusion is used 

to separate the cDNA and the cell-hashing barcodes during the library preparation step. At 

this stage both the cDNA and the cell-hashing barcodes are linked to the cell barcodes. The 

two libraries are sequenced using next generation sequencing (NGS) and can then be used to 

identify both individual cells and their treatment (McGinnis et al. 2019). A schematic 

overview of the reads from the two libraries can be seen in Figure 1.  

cell barcode cDNA 

     

cell barcode cell-hashing barcode  

Figure 1. Overview of two different types of libraries constructed when using MULTI-seq barcodes. 
Cell barcodes will be linked both to cDNA and to the MULTI-seq cell-hashing barcodes. The 
information can be used to assign cell barcodes to the sample or treatment of origin.  

Droplet Based Technologies for Single-cell Library Preparation 

10x Genomics provides a microfluidics platform for single-cell RNA sequencing and single-

cell assay for transposase-accessible chromatin (scATAC-seq). RNA sequencing is used to 

measure at what level each gene is expressed and ATAC sequencing is used to measure 

which genes are accessible to the transposase and therefore could be transcribed. For scRNA-

seq a diluted solution of cells is loaded on the platform together with enzymes, gel beads and 

partitioning oil to create droplets or GEMs (gel beads in emulsion) containing single-cells 

and the chemicals needed for transcription of cDNA. When the GEMs have been created the 

GEMs are dissolved releasing primers. Any cells present in the droplet will be lysed and the 

production of cDNA from RNA starts. The primers contain a cell barcode and unique 

molecular identifier (UMI) which makes it possible to track each read both to cell and 
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transcript of origin. The GEMs are then broken, and the cDNA purified and amplified to 

create a library that can be sequenced (Zheng et al. 2017). The scATAC-seq protocol is 

similar, except that the nuclei are isolated and exposed to transposase in bulk. Exposed 

chromatin is cut and tagged for further processing. The purified nuclei are then loaded on the 

microfluidics device in the same way as described above to yield a DNA library for 

sequencing (Satpathy et al. 2019).  

Single-cell Whole Genome Bisulfite Sequencing  

Methylated cytosines are an important epigenetic marker involved in cellular processes such 

as gene regulation. The methylation patterns of cells can be investigated by whole genome 

bisulfite sequencing (WGBS) where unmethylated cytosines converted into uracils. When the 

genome is subsequently sequenced the methylation state of cytosines can be identified at a 

single base resolution. In recent years, the interest in single-cell epigenomics has grown. 

Moving from bulk sequencing to single-cell allows for identification of rare cell types and a 

better understanding of the heterogeneity of methylation patterns within a cell population 

such as a tumor (Wen & Tang 2018). Many of the methods available for scWGBS are both 

low throughput, low coverage, and high cost, which limits the widespread use. To overcome 

some of these problems a new method for scWGBS library preparation based on the 

previously published method Splinted Ligation Adapter Tagging (SPLAT) (Raine et al. 2017) 

has been developed. Single-cell SPLAT is based on using splinted ligation to barcode 

individual cells in a 384-well plate format, which are subsequently pooled, and a single 

library is prepared in bulk (Raine et al, in preparation). This approach is a promising 

alternative to achieve high coverage scWGBS data at a low cost.  

As single-cell technologies have increased in accessibility, so has the need for analysis 

methods specifically designed for single-cell WGBS. Single-cell WGBS often results in a 

very sparse data which require computational methods that can deal with both missing data 

and sequencing errors (P. E. de Souza et al. 2020). A number of non-probabilistic methods 

for clustering of scWGBS data have been proposed such as using Euclidean distance, 

hierarchical clustering and genome wide pairwise dissimilarity (PDclust) (Smallwood et al. 

2014, Angermueller et al. 2016, Hui et al. 2018). These methods are however not able to both 

deal with missing data and cluster the cells at the same time. In their article from 2020 de 

Souza et al. propose a probabilistic framework for clustering of single-cell whole genome 

bisulfite sequencing data called Epiclomal. Epiclomal uses mixed hierarchical Bernoulli 

distributions trained by a variational Bayesian algorithm to infer both the true hidden state for 

each CpG site and cluster assignments for each cell (P. E. de Souza et al. 2020).  

Workflow managements systems 

Workflow management systems are used to automate analysis workflows and ensure 

reproducibility. They function by running a specified set of tasks in a certain order without 

human interference. There are several systems available for scientific computing such as 

Nextflow and Snakemake, with different pros and cons (Köster & Rahmann 2012, Di 
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Tommaso et al. 2017). The main differences between the systems are which language they 

are written in, how the user interacts with the system (command line or graphical interface), 

how readable the code is and how flexible they are (Mölder et al. 2021).  

Snakemake has some advantages compared to other systems. It is run through the command 

line and is easily integrated with job scheduling systems such as SLURM on high 

performance computing (HPC) clusters. It is written in Python which is one of the most used 

programing languages for bioinformatics and the code is highly readable for someone not 

familiar with either Python or Snakemake. It is flexible and any code that can be run in the 

command line can be run by Snakemake. The Snakemake script also functions as a regular 

Python script which means that any Python code can be easily executed. Snakemake allows 

the user to specify the required software versions or environments. The pipeline is defined as 

a set of rules with input files and output files and the rules are linked together by Snakemake 

based on the names of the output files. The pipeline can be generalized with variables and 

wildcards and a ‘yaml’ type configuration file where input parameters can be easily changed. 

This means that a pipeline can be reused for the same type of analysis by just changing 

parameters and sample names in the configuration file (Köster & Rahmann 2012). 

Purpose of Thesis  

The main goals of the thesis project were to test software and set up analysis pipelines for 

various single cell data types including scRNA-seq, scATAC-seq and scWGBS. The 

pipelines were developed using Snakemake and will be used in future single cell drug screen 

studies of ALL patients. In addition to this the novel protocol for cell hashing called MULTI-

seq was tested and evaluated. This protocol will also be used in future drug screens. 

Materials and Methods 

scRNA-seq and MULTI-seq Barcodes  

To validate that the MULTI-seq barcodes work as intended a pilot study was performed using 

the REH cell line, which is a commercially available cell line derived from a B-cell ALL 

patient (Rosenfeld et al. 1977) and primary horse cells. A “barnyard” experiment was 

conducted with a 1:1 mix of horse cells and human cells from the REH cell line. The REH 

cells and the horse cells were tagged with MULTI-seq barcodes. If the REH cells and the 

horse cells can be identified both by the barcode and by which genome the reads map to the 

barcodes work. The barnyard experiment can also be used to evaluate the multiplet rate. If 

both human and horse genes are expressed in a cell that would indicate that the droplet 

contained more than one cell.  

Ampules of 1-5 million cells were thawed, washed, and subsequently marked with different 

barcodes (Table1) according to the protocol outlined by McGinnis et al.  The resulting 

barcoded cells were mixed in a 1:1 ratio and a scRNA-seq library was made using the 10x 

Genomics platform for single-cell RNA sequencing (v3) according to the manufacturer’s 
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specifications. Two libraries were created, first the gene expression library containing the 3’ 

sequences from the expressed genes, and second a MULTI-seq library containing the sample 

barcodes. The two sequencing libraries were quality controlled on an Agilent TapeStation, 

pooled in a 95/5 ratio for GEX/Barcode libraries, loaded on an Illumina NovaSeq6000 

sequencer and sequenced on a SP flowcell according to the following sequencing recipe: 

Read 1: 28bp, I7 index: 8bp, I5 index: 0 bp, Read 2: 98bp at the SNP&SEQ Technology 

Platform, National Genomics Infrastructure at SciLifeLab.  

The sequencing resulted in two FASTQ files, one contacting the GEX reads and one 

containing the MULTI-seq barcode reads. The two files were pre-processed with the 

Cellranger software from 10x Genomics (v 5.0.1). The barcode sequences can be seen in 

Table1. A custom reference package was built using genomes and annotation files from 

Ensembl for GRCh38 and EquCab3. The function Cellranger mkgtf was used to filter the gtf 

files for protein coding transcripts of interest. The function Cellranger mkref was then used to 

create a joint indexed reference genome for human and horse. Cellranger count was run for 

the two libraries to perform trimming, alignment to the reference genome, filtering based on 

quality metrics, cell calling and identification of the MULTI-seq barcodes. Cellranger outputs 

count matrices for the gene expression library and the barcode library and classifies cells as 

doublets or singlets based on the proportion of reads mapped to either genome. The 10th 

percentile of barcodes where either UMI count for horse or human transcripts exceeds the 

other is used as the threshold for classifying the cell as that cell type.  

Table1. The MULTI-seq barcode names and sequences which were used for the REH sample and 
horse cells.  

Cell Type Barcode Name   Barcode Sequence 

REH Barcode 1 GGAGAAGA 

Horse  Barcode 2  CCAACCGG 

 

Two different methods were tested for demultiplexing the cell type from the barcode library. 

Firstly, the R package Seurat (v4.0) and secondly the R package deMULTIplex (Satija et al. 

2015, McGinnis et al. 2019). The results were similar for the two methods and the barcode 

assignment from Seurat was used in the downstream analysis. Demultiplexing with Seurat 

was done in two steps. The barcode library was first normalised by centred log-ratio 

transformation and then the Seurat function HTOdemux was used to assign cells to the 

MULTI-seq barcodes by inferring the negative binomial distribution for each barcode. If 

there is not enough of either barcode the cell is classified as negative. The cells were filtered 

based on the quality control (QC) parameters defined in Table2. The gene expression count 

matrix was then log normalised and used to identify variable features. The data was scaled, 

and the 2000 most variable features were used to run PCA. The 10 first dimensions from the 

PCA were visualised using uniform manifold approximation and projection  (UMAP).  The 
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cells were clustered by constructing a shared nearest neighbour graph and inferring cluster 

identity from the graph by optimizing the modularity function. Differential gene expression 

analysis was then performed using Wilcoxon Rank Sum test to identify the top marker genes 

for each cluster. 

Table2. The QC parameters used to filter the cells with Seurat.  

QC Parameters  REH   Horse 

% MT features < 6 %  < 6 %  

Number of RNA features  > 700 & < 6000 > 700 & < 6000 

 

A Snakemake pipeline was built to achieve automation of each step for future analysis of 

samples (https://github.com/Molmed/multiseq-ds). The pipeline first runs the Cellranger steps 

mkgtf and mkref to create a reference genome used as input for Cellranger count. This step 

can be removed if a reference genome already exists. The next step is to create a library csv 

file containing the path to the gene expression library and the barcode library. The file also 

contains sample names and the type of library. For a MULTI-seq barcode library the library 

type is set to “Custom”. The reference genome, the library csv and a csv file describing the 

custom barcodes are then used as input for Cellranger count. The output from Cellranger 

count is then used to demultiplex the cell type or treatment from the MULTI-seq barcodes. 

This step is done by the R package Seurat but an additional script with code for using the R 

package deMULTIplex is also provided. The summary rule will concatenate summary 

statistics for all the samples processed in one file. The pipeline comes with a configuration 

file which makes it easy to reuse the pipeline since it is only necessary to edit the 

configuration file. An overview of the pipeline can be seen in Figure 2.  
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scATAC-seq  

To test out the scATAC protocol two different cell lines were used, REH and GM12878 

which is a genome in the bottle cell line derived from B-lymphocytes (Zook et al. 2016). 

Nuclei were extracted from the REH and GM12878 cells and the nuclei were used to 

generate scATAC-seq libraries according to 10x Genomics protocol. The two resulting 

libraries were quality controlled on an Agilent TapeStation and subsequently sequenced on an 

Illumina NovaSeq flowcell at the SNP&SEQ Technology Platform, National Genomics 

Infrastructure at SciLifeLab.  

Cellranger atac count (v1.2.0) from 10x genomics was used to process the raw FASTQ files. 

Cellranger atac count performs read filtering and alignment to the reference genome 

(GRCh38), identify transposase cut sites, peak calling, cell calling, and calculation of 

sequencing QC metrics.  The samples were integrated in two different ways. Firstly, using 

Cellranger atac aggr and secondly using Seurat. The two methods were evaluated, and since 

Cellranger subsamples the reads to correct differences in sequencing depth, it was decided to 

move forward using Seurat for integration of samples. Seurat was used to create a peak set 

with common coordinates for the samples which was then used to quantify the peaks. Seurat 

was then used to further process the samples by calculating the QC parameters, including 

TSS enrichment score, nucleosome signal, blacklist ratio and the number of reads in 

identified peaks. The predicted gene activity was also calculated using the combined counts 

Figure 2. Overview of the Snakemake pipeline developed to process and demultiplex scRNA data. 
The pipeline uses Cellranger to process the raw FASTQ files and Seuart for demultiplexing.  
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assigned to gene bodies and promoter regions. The gene activity matrix was log normalized 

and used in downstream analysis.  

The data was filtered using the parameters specified in Table3. The remaining cells were then 

normalized across both cells and peaks using term frequency inverse document frequency 

(TF-IDF). Variable features were identified and singular value decomposition (SVD) was 

performed using these variable features to reduce the dimensionality of the data. A shared 

nearest neighbor (SNN) graph was constructed using the 15 first dimensions from the SVD 

and clusters identified based on the graph. UMAP was used for visualization of the clusters. 

Seurat was also used to identify markers for each cluster. Based on the predicted gene 

activity, gene set enrichment analysis (GSEA) and pathway enrichment analysis was then 

performed for the inhouse GM12878 sample using the R package ClusterProfiler (v3.18.1).  

An additional publicly available GM12878 scATAC-seq dataset was downloaded from 10x 

Genomics. This second data set was preprocessed with Cellranger atac count in the same way 

as the two samples above. The two GM12878 samples were then integrated using a common 

peak set extracted by Seurat. The downstream processing and filtering were done in the same 

way as previously mentioned. The filtering parameters can be seen in Table3.  

Table3. Parameter values used to filter the scATAC-seq data. 

 

A Snakemake pipeline was developed that can run multiple samples in parallel. The pipeline 

starts by running Cellranger atac count which produces a count matrix with peaks as one 

dimension and cells as the other. The count matrix is then used to calculate QC parameters 

such as TSS enrichment score, blacklist ratio and nucleosome signal. The preprocessing step 

will return a Seurat object. If multiple samples are processed, they can be merged using 

Seurat. The samples can either be merged on a common peak set or on their individual peak 

sets. These two steps can be easily turned on or off in the configuration file. The summary 

rule will concatenate sequencing statistics from Cellranger atac count if multiple samples are 

processed. As with the gene expression pipeline this pipeline comes with a configuration file 

QC Parameters  REH  GM12878  GM12878.10x 

TSS Enrichment > 2  > 2  > 2  

Blacklist Ratio  < 0.05 < 0.05 < 0.05 

Nucleosome Signal  < 4 < 4 < 4 

% Reads in Peaks  > 15 > 15 > 15 

Total Reads in Peaks > 3000 & < 20000 > 3000 & < 20000 > 3000 & < 20000 
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which makes it easy to edit and reuse. As there was no scATAC-seq data with MULTI-seq 

barcodes available yet the demultiplexing of this data type has not been tested and included in 

the pipeline. The steps will however be similar the scRNA-seq pipeline and can easily be 

added when this data becomes available. An overview of the pipeline without the 

demultiplexing step included can be seen in Figure 3 (https://github.com/Molmed/multiseq-

ds/).  

 

scWGBS  

Cells from a human leukemia K562 cell line (Lozzio & Lozzio 1975) and liver cells from a 

patient sample were processed and sequenced using the scSPLAT protocol (Raine et al, in 

preparation). In total 240 K562 cells and 309 liver cells were sequenced on an Illumina 

NovaSeq 6000 S4 flowcell to a depth of 2-60 M raw read pairs per cell. A custom pipeline 

using the software Bismark (v0.22.1) was used to process the raw FASTQ files. Bismark 

performs alignment to the reference genome (GRCh38) with the Bowtie aligner (Langmead 

& Salzberg 2012) and performs methylation calling (Krueger & Andrews 2011). Bismark can 

be run for single-cell data and will in that case output individual methylation call files for 

each cell.  

A modified version of the Epiclomal preprocessing pipeline was then run to identify non-

redundant regions. The pipeline takes individual methylation call files for each cell and a set 

of specified regions of interest. Non-redundant regions are identified by first filtering the 

regions with less then 5% coverage in 10% of cells and then inferring the interquartile range 

(IQR) and keeping the most variable regions. The output files from the preprocessing pipeline 

were used as input for Epiclomals clustering pipeline. In the first step of the pipeline four 

Figure 3. Overview of the Snakemake pipeline developed to process and demultiplex 
scATAC data. The pipeline uses Cellranger to process the raw FASTQ files and Seurat for 
downstream analysis.  

https://github.com/Molmed/multiseq-ds/
https://github.com/Molmed/multiseq-ds/
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different non-probabilistic methods of clustering are used to initialise clusters assignments for 

the probabilistic part of the pipeline. These methods include EuclidianClust and DensityCut 

which both use the mean methylation levels across the retained regions and HammingClust 

and PerasonClust which both use the methylation levels at individual CpG sites across the 

retained regions. The four methods are evaluated, and the optimal number of clusters are then 

used in combination with random values to initialise the probabilistic clustering. Epiclomal 

uses mixed hierarchical Bernoulli distributions trained by a variational Bayesian algorithm to 

infer the true hidden state for each CpG site and cluster assignments for each cell. Epiclomal 

was run in two different ways, EpiclomalBasic and EpiclomalRegion. EpiclomalBasic 

assumes that the true hidden methylation states of CpG sites share the same distribution 

across all regions while EpiclomalRegion allows for variations in distribution (P. E. de Souza 

et al. 2020). An overview of the pipelines for preprocessing and clustering is outlined Figure 

5.  

Three different types of regions were used for clustering. Firstly, the coordinates for CpG 

islands for GRCh38 were downloaded from the UCSC Genome Browser 

(https://genome.ucsc.edu/ ) and used to cluster both cell types. To further investigate the 

heterogeneity observed in the patient liver cells, the coordinates for gene bodies and the 

coordinates for 1000 base pairs upstream and downstream from the transcription start sites 

(TSS) for GRCh38 was downloaded from UCSC Genome Browser. The liver cells were then 

clustered based on both these regions. The mean methylation levels in each region were used 

to visualise the cells with UMAP. The plots were evaluated to check for batch effects and the 

cluster assignments were compared for the different input regions.  
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Results 

scRNA-seq and MULTI-seq Barcodes  

A barnyard experiment was conducted with a 1:1 mix of REH cells and primary horse cells to 

validate that the MULTI-seq barcodes worked. The two cell types were tagged with MULTI-

seq barcodes prior to mixing. Two sequencing libraries were obtained, one GEX library and 

one MULTI-seq barcode library. The fraction of bases with a Phred score of 30 or more 

(Q30) in UMIs, the cell barcodes and the RNA reads were all over 90%. For the MULTI-seq 

barcodes the fraction was only 57% (Table4). To verify that MULTI-seq barcodes were 

present in the barcode library a manual search for the barcode sequences was done. 

Approximately 20% of the reads contained an exact match to barcode 2 and approximately 

2% of reads contained an exact match to barcode 1. Almost 100% of the cell barcodes 

identified in the gene expression library were also present in the MULTI-seq barcode library.  

 

Figure 4. To the left the modified Epiclomal pipeline for preprocessing single-cell methylation 
call files can be seen. To the right the pipeline for performing clustering with EpiclomalBasic 
and EpiclomalRegion can be seen.   
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Table4. Sequencing and mapping statistics for the GEX and MUTI-seq libraries. Fraction of Q30 
bases is split by UMI, cell barcode (CB) and read (RNA or MULTI-seq barcode).  

 Gene Expression  MULTI-seq Barcodes  

% Bases > Q30 (UMI / CB / read) 97.9 / 96.6 / 93.8 97.2 / 97.1 / 57.2  

N Reads  564,124,824 31,996,386 

% Reads with Valid CB   97.8 99.1  

% Valid UMI 100.0 100.0  

% Mapped to EquCab3 13.2 - 

% Mapped to GRCh38 79.2 -  

Median UMI Counts / Cell EquCab3 1,517  - 

Median UMI Counts / Cell GRCh38 9,416 - 

 

The 10x Genomic’s software Cellranger was used to map and annotate the reads and cells. In 

total 12,186 cell-barcodes associated with at least one cell could be identified. Out of these, 

109 cells were classified as horse, 4770 were classified as human, and the remaining 7307 

were classified as multiplets. A multiplet is a cell barcode with reads from more than one cell. 

Cellranger classifies multiplets as cell barcodes with significant amounts of reads mapped to 

both genomes. Out of the total number of reads 79.2% mapped confidently to the human 

genome and 13.2% mapped confidently to the horse genome, which is different than the 

expected 50:50 ratio. The MULTI-seq library was then used to demultiplex the cell type and 

classify the cells based on the barcode. The demultiplexing was performed with the Seurat 

function HTOdemux which uses the negative binomial distribution of each barcode to assign 

cells to the correct barcode. 7958 cells were classified as multiplets, 232 as having MULTI-

seq barcode 1, 198 as having MULTI-seq barcode 2 and 3798 as negative. A negative cell 

does not have enough of either barcode to make a classification. The classifications from 

Cellranger and Seurat were compared to validate that the cells could be identified both by the 

gene expression and the barcodes. The number of cells in each class can be seen in Table5.  
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Table5. Number of cells classified as human or horse by the reads in the gene expression library and 
by the MULTI-seq barcodes.  

 GRCh38/Barcode 1 EquCab3/Barcode 2 Multiplet Negative  

GEX 4770 198 7307 - 

MULTI-seq 232 109 7958 3798 

 

In Figure 6 the number of features detected for each cell, the total number of RNA counts and 

the percentage of mitochondrial genes out of the total number of features can be observed. 

The cells were filtered based on these QC parameters as stated in Table2. After filtering, 

3026 cells out of 12186 remained and were used in the downstream analysis. As can be seen 

in Figure 6 many of the cells had quite a high fraction of mitochondrial features which is an 

indication of dying and/or lysed cells and were thus removed. The multiplets have a much 

higher number of identified features and RNA counts which indicates that they are indeed 

multiples. 

 

 

A visualization of the cells and the classifications from Cellranger and Seurat can be seen in 

Figure 7. Most cells are classified as either multiplets or negative based on the barcodes and 

as multiplets based on the gene expression. To further investigate the identity of the cells, 

Seurat was used to cluster the cells and perform differential gene expression analysis. The 

average gene expression of the top 100 marker genes for each cluster was calculated. The 

Figure 5. The total number of genes detected, the total amount of RNA and the percent of reads 
mapping to mitochondrial genes for each cell split by Cell ranger classification.  



14 

 

results of the clustering and the average gene expression per cluster can be seen in Figure 7. 

The markers for cluster 2 are exclusively horse genes. Cluster 3 show low expression levels 

for the horse genes and high expression levels for the human genes. For cluster 1 and 0 the 

expression levels are high for human genes, but they also have higher expression levels for 

the horse genes than cluster 3. NoTableis also that cluster 0 show very high expression levels 

for human mitochondrial genes which might indicate that these are dying cells.  

 

Figure 6. (TL) The cells classified as human or horse based on which genome the reads mapped to. 
Multiplets have a significant amount of reads from both genomes. (TR) The cluster assignments by 
Seurat. (BL) The classification of cells based on which barcode they contained. Barcode 1 was used 
for the REH cells and barcode 2 was used for the horse cells. Multiplets have significant amounts of 
both barcodes and negative cells do not have either barcode. (BL) A heatmap of the top 100 marker 
genes for each cluster. Genes shown in yellow are human genes, genes shown in green are horse 
genes and genes shown in red are mitochondrial genes.  

scATAC-seq  

Two different cell lines (REH and GM12878) were sequenced using the 10x scATAC-seq 

protocol to test if the method worked as intended. An additional data set with scATAC-seq 

data from a GM12878 sample was downloaded from 10x Genomics and processed in the 

same way as the inhouse samples. For all three samples the sequencing quality and depth was 

good. The fraction of Q30 bases was over 90% for all three samples. The number of cells 

detected in each sample and the number of cells that remained after filtering can be observed 

in Table6. The GM12878 samples were merged on a common peak set and clustered and 

visualised with Seurat (Figure 8).  
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Table6. Sequencing statistics for the three ATAC-seq samples. 

 REH GM12878 (inhouse) GM12878 (10x) 

N Cells  3561 4584 4776 

N Reads  186,331,842 221,056,783 339,414,585 

% Bases > Q30 (R1/R2/BC) 94.4 / 94.1 / 89.0 94.7 / 94.5 / 89.3 95.0 / 94.3 / 90.5 

% Valid CB  98.3 98.3 98.2 

Passed Filters 2176 (61%) 3078 (67%) 3862 (81%) 

To investigate if the heterogeneity in the inhouse GM12878 sample could be linked to the 

cell cycle state of cells Seurat’s built-in annotation of cell cycle genes was used. Seurat scores 

each cell based on the expression levels of the genes linked to each cell cycle state and 

assigns the cells a state. A chi2 test was performed and it  determined that the distribution of 

cell cycle states was different across clusters with a p-value of less than 2.6e-16. There is 

some enrichment for cells in phase G1 for cluster 5 and some enrichment for phase G2M and 

S in cluster 2 and 3. The result of the cell phase classification can be seen in Figure 9. 

Differential gene activity analysis between the clusters was also performed on the predicted 

gene activity. The top differentially active genes were used to perform GSEA and pathway 

enrichment analysis. An example of the GSEA results can be seen in Figure 9. The top 10 

enriched terms and the fold change for the genes contributing to each term for cluster 5 is 

shown. Cluster 5 has lower expression levels for many genes linked to cellular ion 

homeostasis than the three four clusters.  

 Figure 7. To the left the REH and GM12878 samples can be seen visualised with UMAP and 
colored by cluster. To the right the cells are colored by sample. The REH and GM12878 samples 
were prepared inhouse and the GM12878.10x data was downloaded from 10x Genomics.  
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scWGBS  

340 cells from the K562 cell line and 310 liver cells from a patient sample were prepared 

using the scSPLAT library preparation method (Raine et al, in preparation). The libraries 

were sequenced and the methylation status of individual CpG sites was called using Bismark 

(Krueger & Andrews 2011). In total, 503 cells (273 patient liver cells and 230 K562 cells) 

passed sequencing quality control and were used for downstream analysis with the Epiclomal 

clustering pipeline (P. E. de Souza et al. 2020). Epiclomal removes cells with no information 

available for the regions of interest and all cells passed this filtering step. Clustering was first 

performed using the methylation levels of individual CpG sites in the CpG Islands for both 

cell types. In addition to this the liver cells were clustered using gene bodies and TSS as the 

input regions of interest.  

One cluster was identified by Epiclomal within the K262 cells. The K562 cells were prepared 

in 8 pools with scSPLAT protocol and sequenced in 2 batches. In addition to this, a third 

batch which was prepared with a different library preparation method called snmC-seq2 (Luo 

et al. 2018) and sequenced. As shown in Figure 9, batches 1 and 2 separate along the second 

dimension, however the cells prepared with the snmC-seq2 approach do not seem to cluster 

together and are distributed between the two scSPLAT batches. The preparation pools do not 

seem to cluster within each batch (Figure 9).   

 

Figure 8. To the left the result of the GSEA for the top differentially active genes for cluster 5 
can be seen. The top 10 terms and the fold change is shown. To the left the distribution of cell 
cycle phase for each cluster within the inhouse GM12878 sample is plotted. The cluster 
correspond to the assignment in Figure 7. 
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Two clusters with distinct methylation profiles could be identified among the liver cells. The 

difference in methylation levels can be observed in Figure 10. The liver cells were prepared 

using the scSPLAT protocol in 9 different pools and sequenced in three different batches. 

The distribution of the pools and batches within the two clusters can be seen in Figure 10. No 

batch effects were observed for either the pool or the sequencing batch. To further investigate 

the heterogeneity observed in the liver cells clustering was performed using gene bodies and 

1000 bp upstream and downstream from the TSS as the input regions of interest. Both gene 

bodies and the transcription start sites resulted in close to identical cluster assignments to the 

CpG Islands. No batch effects could be observed when clustering based on either TSS or 

gene bodies.  

 

 

Figure 9. In the top left the UMAP visualization of the K562 cells colored by cluster 
can be seen. The same data can be seen as a heatmap at the top right. In the bottom left 
the cells are colored by pool and to the right by batch. The snmC-se2 cells can be seen 
in red in the bottom left Figure.   
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Discussion  

Herein, we tested three methods for sequencing of single-cells and established the 

bioinformatics pipelines for high throughput analysis of single-cells in a translational 

research environment. The bioinformatics pipelines have been established and well-

documented, enabling robust and high throughput analysis of single-cells for future studies. 

However, further optimization in the wet-lab is required, which is discussed in detail below. 

Analysis of scRNA-seq Data and MULTI-seq Barcodes 

The purpose of the scRNA experiment was to test and verify that the MULTI-seq approach 

(McGinnis et al. 2019) for barcoding cells in the 10x Genomics Protocol worked as intended. 

Our approach was based on a “barnyard” experiment where cells from two different species, 

in our case human and horse, are barcoded, mixed at a 1:1 ratio and prepared in one 

sequencing library. The expected result is two clearly defined clusters based on the genome 

that the reads map to and based on the sample barcode the cell was tagged with prior to 

library preparation. Unfortunately, the results revealed at least four technical issues with the 

experiment, which are summarized below.  

Figure 10. The UMAP visualization and heatmap for the liver cells colored by Epiclomal cluster 
can be seen in the top row. In the bottom left Figure the cells are colored by pool and in the bottom 
right they are colored by batch.  
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i. As can illustrated in Figure 6, more than half of the cells were classified as 

“multiples”, meaning that RNA from both cell types was observed in the same gel 

bead. Furthermore, very few horse cells were observed based on gene expression 

reads mapping to the horse genome EquCab3. It is unclear why such a low fraction of 

reads mapped to EquCab3. Both the horse cells and human cells were checked for 

viability before they were entered into the 10x Genomics microfluidics device, and 

during this QC step, both cell types appeared to have high viability >80%. Previous 

single-cell experiments using the same type of horse cells have been successful when 

mapping the reads to EquCab3, which speaks against reference bias. Over 95% of the 

total number of reads were mapped to either genome but only 13% were mapped to 

horse. This suggests that a large amount of horse RNA was lost before the 

amplification step. Over 90 percent of the bases in the RNA reads have a sequencing 

quality score of 30 or more, which suggests that the problem is not with poor quality 

of the sequences, rather that something has happened to the cells during the 10x 

Genomics protocol.  

 

ii. Based on the mean gene expression levels for each cluster (Figure 6) we determined 

that the 118 cells in cluster 2 are correctly classified as horse cells by Cellranger. The 

51 cells in Cluster 3 can be assumed to be human cells based on the annotation from 

Cellranger and the mean gene expression values. Clusters 0 and 1 are probably a 

combination of true multiplets and cells mixed with RNA from, presumptively, dying 

or lysed cells. The high expression levels for mitochondrial genes in cluster 0 

corroborates this theory. High levels of mitochondrial RNA are a known indicator of 

cell death and lysis in single-cell experiments (Luecken & Theis 2019). It is therefore 

possible that a large fraction of both the human and horse cells lysed and mixed 

leading to the large number of multiplets and mix of human and horse RNA.  

 

iii. The cells should have been clearly defined based on their unique MULTI-seq 

barcodes. Approximately 50% of the 109 horse cells could be identified correctly by 

the MULTIseq-barcode and the rest were negative, meaning they did not carry a 

barcode sequence. Of the cells that were most likely human, most did not carry a 

MULTI-seq barcode. In cluster 0 and 1 (Figure 6) most of the cells were either 

classified as barcode-negative or contained both barcodes. This also indicates that 

there are many lysed cells since both barcodes are found together in many of the cells.   

 

iv. As previously mentioned, there is also an imbalance between the fraction of reads 

containing barcode 1 (horse) and barcode 2 (human), which deviates from the 

expected 1:1 distribution. The sequencing quality of the MULTI-seq barcode reads is 

lower (57% > Q30) than the quality of the RNA reads (94% > Q30). An exact match 

to barcode 2 was found in approximately 20% of the reads while barcode 1 was 

present in only 2% of the reads. If many horse cells lysed and released barcode 2, it 

may have masked the presence of barcode 1 in the human cells or caused the software 

to call the cell as a multiplet since there was very little of barcode 1 to begin with in 
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the human cells. The fact that there is significantly less of barcode 1 could suggest 

that this barcode was not absorbed correctly by the human cells or that it for some 

reason had degraded at a higher rate than barcode 2.  

These results indicate that we have two major issues, and the most probable scenario seems to 

be that 1) the horse cells have lysed and much of the horse RNA was washed away and 2) the 

barcode used for the human cells was not absorbed correctly and therefore also lost . In 

addition to this there are high expression levels of human mitochondrial genes which suggest 

that the human cells were also dying and possibly lysing. This would explain the high 

multiplet rate both based on gene expression and barcodes. Since there were problems both 

with the cells and the barcodes it is hard to evaluate how well the barcodes have worked.  

A second barnyard experiment will be performed and based on the problems observed with 

this experiment some changes could be suggested. Firstly, it could be beneficial to use a 

species with a more extensively mapped transcriptome such as mouse. Since the human cells 

come from REH cell line it could also be useful to use a cell line for the second species as 

well. These two changes could potentially result in less difference in fraction of reads 

mapped to each genome and thus ensure that the cells get assigned the correct cell type by 

Cellranger. To ensure that the correct cell type can be assigned, even though there is some 

bleeding of barcodes between cells or degradation of the barcode sequence, two barcodes 

could be used per cell type. This would mean that even if one of the barcodes does not work 

as intended the second barcode can be used to demultiplex the cell type. Using two barcodes 

for the second barnyard experiment would allow us to compare the difference in fraction of 

correctly assigned cells using one or two barcodes and could thus aid in assessing if more 

than one barcode per treatment could be beneficial in the future.  

Despite the technical problems with the MULTI-seq barcoding, we did develop an analysis 

pipeline with Snakemake that takes raw FASTQ files as input and outputs a demultiplexed 

Seurat object that can be used for downstream analysis (https://github.com/Molmed/multiseq-

ds/). The pipeline can run multiple samples in parallel on a HPC cluster and will aggregate 

sequencing statistics for all samples. Since the pipeline comes with a configuration file it is 

easy to use and modify for different projects without changing the actual pipeline. The 

Snakemake pipeline will facilitate fast processing of future samples and ensure 

reproducibility. 

Analysis of scATAC-seq Data  

The scATAC experiments were performed to evaluate the protocol and to develop an analysis 

pipeline for this type of data. Two different cell lines were sequenced using 10x genomics 

protocol for scATAC-sequencing. As can be seen in Figure 7 the REH cell line is very 

homogenous while the GM12878 sample show some heterogeneity. To investigate if this 

could be a technical artifact or real biological variation, the predicted gene activity for each 

gene was used to perform differential gene activity analysis, gene set and pathway 

enrichment analysis and to investigate the cell cycle phase for each gene. There were some 
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statistically significant differences in number of cells in the different cell phases between 

clusters which suggests that this could be a contributing factor to the observed heterogeneity 

observed in the GM12878 sample. The differential gene activity analysis and subsequent 

GSEA and pathway enrichment show that each cluster did have a set of significant marker 

genes enriched for certain terms. In Figure 8 the GSEA results for cluster 5 are shown as an 

example. Many of the terms are related to ion homeostasis which has been shown to play a 

part in regulation of the cell cycle which further strengthens the conclusion that this is 

biological variation possibly related to the cell cycle (Marakhova et al. 2019).  

A second publicly available GM12878 scATAC-seq dataset was also downloaded from the 

10x Genomics website and processed using our in-house pipeline. The two GM12878 

samples were integrated using a common peak set and the cells visualised using UMAP. 

Heterogeneity could be observed in both samples. The samples did however mostly cluster 

separately and integrating them on a common peak set did not correct for this batch effect. 

There are several reasons that could contribute to the strong batch effects, such as the version 

of the 10x genomics kits used, differences in sample preparation, and in sequencing method. 

ScATAC data are generally not as consistent as gene expression data and is often analysed as 

a complement to gene expression data rather than on its own. Since heterogeneity could be 

observed in both GM12878 samples and the results from the GSEA and the cell cycle phase 

analysis it may be assumed that it is not a technical artifact but true biological variation. 

However, additional scATAC-seq samples should be run to evaluate the degree of technical 

variation and how much it will affect future studies where the samples will have to be 

processed in batches.  

The scRNA-seq data the REH and GM12878 scATAC data was used to develop an analysis 

pipeline that can be used for future samples. The pipeline is built in Snakemake and comes 

with a configuration file which makes the pipeline general and easy to edit 

(https://github.com/Molmed/multiseq-ds/). Demultiplexing has not been tested yet but will 

work similarly to the scRNA data and because of this it will be easy to include this step in the 

pipeline as soon as the data becomes available. The pipeline will facilitate easy analysis of 

future samples within the project and ensure reproducibility. 

Clustering of scWGBS Data with Epiclomal 

A novel library preparation method for scWGBS called scSPLAT was tested on K562 and 

liver cells from a patient sample. The methylation call files were then used as input to the 

Epiclomal clustering pipeline. Epiclomal is a probabilistic framework for clustering of 

scWGBS data that takes methylation call files for individual cells and a specified set of 

regions of interest as input. The K562 and patient liver cells were first clustered based on the 

methylation levels in the CpG islands. The liver cells were also clustered based on gene 

bodies and transcription start sites.  

Among the K562 cells only one cluster could be identified while liver cells split in two 

clusters with distinct methylation profiles. This is expected since the liver cells come from a 
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tissue sample consisting of multiple cell types while the K562 cells are expected to be 

homogenous. The two clusters identified in the liver cells most likely represent two different 

cell types. To investigate if other cell types could be identified among the liver cells, 

additional input regions where used for Epiclomal. The CpG sites found in gene bodies and 

transcription start sites were used to cluster the cells. Both these Epiclomal runs identified 

two clusters and the cluster assignments were close to identical regardless of the input region. 

This further strengthens the conclusion that these two clusters are different cell types found in 

liver tissue. There are more than two cell types found in the liver. In scRNA-seq studies up to 

20 distinct cell types have been identified and different types of hepatocytes are most 

dominant. Based on this one of the larger clusters are most likely hepatocytes and the smaller 

cluster could be endothelial cells (MacParland et al. 2018, Aizarani et al. 2019). Since the 

total number of cells is relatively small it is hard to tell if these rarer cell types are not present 

or if their methylation profile is not distinct enough from the more dominant cell types to be 

distinguished by Epiclomal. To further investigate the identity of the cell types the genes 

around the differentially methylated CpG islands would need to be explored.   

As can be seen in Figure 9 no batch effect can be seen in the liver cells. For the K562 cells 

there is some clustering of the cells based on batch (Figure 10). The cells prepared with a 

separate protocol does however seem to be spread out amongst batch 2. This suggests that the 

effect of library preparation method is small. Since there is no true heterogeneity amongst the 

K562 cells the sequencing batch might be the most significant difference between the cells 

and Epiclomal is able to pick up on this variation. When using Epiclomal on cells with real 

biological variation the batch becomes less important and does not show up in the clustering. 

Conclusions and Future Perspectives 

The main goals of the project were to test out the MULTI-seq barcodes and single-cell 

protocols that will be used in future high throughput drug screens on pediatric ALL patient 

samples. The aim was also to develop analysis pipelines with Snakemake for the different 

data types. The MULTI-seq barcodes were tested with a barnyard experiment with a mix of 

human and horse cells. There were several technical issues with this experiment and based on 

the results it was not possible to properly evaluate the barcoding. A second barnyard 

experiment will be performed before the project moves on to the next phase and the lessons 

learnt from this initial test will be taken into consideration. Even though the barcodes did not 

work as intended, a robust analysis pipeline has been set up for analysis and demultiplexing 

of scRNA-seq data. In addition to this the scATAC-seq protocol was tested on two cell lines 

(REH and GM12878) and an analysis pipeline was developed. A demultiplexing step can 

easily be added to this pipeline in the same way as for the scRNA-seq data. Finally, clustering 

of scWGBS data was explored with the Epiclomal framework to evaluate a novel library 

preparation method called scSPLAT. The hope is to be able to use this method in the context 

of high throughput drug screens in the future. All the methods tested, and the analysis 

pipelines developed within this project will hopefully aid in future drug screen experiments.  
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