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Topology of SmB6 determined by dynamical mean field theory
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Whether SmB6 is a topological insulator remains hotly debated. Our density functional theory plus dynamical
mean field theory calculations are in excellent agreement with a large range of experiments, from the 4 f 5.5

intermediate valency to x-ray and photoemission spectra. We show that SmB6 is a strongly correlated topological
insulator, albeit not a Kondo insulator, using a symmetry analysis of the “pole extended” Hamiltonian, which
fully captures the effect of the self-energy arising from the strong electron-electron correlation within the Sm 4 f
orbitals. The topological surface states are analyzed, addressing conflicting interpretations of photoemission data.
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I. INTRODUCTION

The discovery of topology in the electronic band struc-
ture has added a whole new dimension to solid state physics
[1,2]. One of the most striking manifestations of a nontrivial
topology is the emergence of robust metallic surface states
in topological insulators. Such topological behavior has been
established for the semiconductors mercury telluride [3] and
bismuth selenide [4,5], but the situation remains unclear for
most other materials. For semiconductors, theory [6] is often
ahead of experiment. That is, there are quite reliable predic-
tions based on density functional theory (DFT) [7,8] but no
clear-cut experimental validation. Much more difficult, partic-
ularly for theory, are strongly correlated insulators for which
the one-electron band picture breaks down.

The archetype of such strongly correlated insulators is
SmB6, which was proposed by Dzero et al. [9] to be a topo-
logical Kondo insulator based on a (Kondo renormalized)
noninteracting band structure and the topological Z2 invariant
as per Ref. [10]. However, the strong correlations and inter-
mediate valency of SmB6 give rise to an intricate multiplet
structure [11] with no clear adiabatic connection to a noninter-
acting system. Predictions based on a Kondo renormalization
or the “topological Hamiltonian” [12] of the system, con-
structed from the self-energy at zero frequency, may hence
break down [13]. In this article we will therefore, instead of
the topological Hamiltonian, focus on the less studied “pole
extended” (PE) Hamiltonian [14], which fully captures the
physical spectral function, and hence is a rigorous starting
point for the topological classification [15].

On the experimental side, there is clear evidence of ro-
bust metallic surface states, such as a surface-dependent
plateau in the low-temperature resistance [16,17] and an-
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gular resolved photoemission spectroscopy (ARPES) data
[18–22], including the spin texture of SmB6 [23]. However,
the states’ topological origin has been questioned [21,24].
Indeed, whether the low-energy electronic properties even
originate from the surface or the bulk remains hotly debated.
De Haas–van Alphen oscillations have been interpreted as
stemming from both the bulk [25] and the surface [26,27].
The same holds for the main ARPES features: Ref. [28] vs
Refs. [11,27]. The low-temperature linear specific heat has
been shown to be predominantly a bulk effect [29], and the
same holds for the optical conductivity within the band gap
[30]. On the other hand, it is was argued [31] that these effects
are not intrinsic but stem from 154Gd impurities which elude
a mass purification against 154Sm.

This controversy clearly calls for a better theoretical un-
derstanding. Because of the strong electronic correlations and
well-localized 4 f orbitals, DFT + dynamical mean field the-
ory (DMFT) [32–34] is the method of choice. There have
been earlier DFT+DMFT [35–37], DFT+impurity [38,39],
and DFT+Gutzwiller [40] calculations which however did not
capture the bulk band gap, the flatness of the f bands, and the
intermediate valence of SmB6 all at the same time [11], due
to various additional approximations. Indeed, the combination
of these properties poses a hard theoretical challenge that re-
quires an accurate many-body treatment of the Sm 4 f orbitals.

In this article, we present charge self-consistent
DFT+DMFT calculations for SmB6. Our results provide an
all-encompassing picture of the bulk and surface properties
of SmB6, in excellent agreement with many experimental
observations. Analyzing the symmetry properties of the
corresponding PE Hamiltonian [14,15] we show that SmB6 is
a strongly correlated topological insulator.

II. DFT+DMFT METHOD

All calculations have been performed using the relativis-
tic spin polarized toolkit (RSPt) [41–44], which is based
on linearized muffin tin orbitals. This method allows the
correlated Sm 4 f orbitals to be readily identified and pro-
jected upon in the DMFT calculation [42]. The full Coulomb
interaction, spin-orbit interaction, and local Hamiltonian for
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FIG. 1. Upper panel: Bulk k-integrated DFT+DMFT spectrum
of SmB6 at 100 K compared to experimental photoemission data
[11]. Sm 4 f 6 → 4 f 5 transitions with the J and L quantum numbers
of the final (4 f 5) state are indicated. Lower panel: The trace of the
local self-energy (real part) shows distinct clusters of poles (with
the shape [ω − E ]−1), but not within the bulk band gap around
ω = EF = 0.

the Sm 4 f orbitals are included in the DMFT impurity prob-
lem, which is solved using the exact diagonalization (ED)
approach [43,45,46]. The bulk calculations were performed
at T = 25 K, 50 K, 75 K, and 100 K and iterated un-
til charge self-consistency [47]. The charge self-consistent
DFT+DMFT slab calculations were due to the large compu-
tational cost at low temperatures only performed at 100 K. For
additional details, such as the final bath state parameters and
the double counting procedure [48,49], see Appendix A.

III. RESULTS

A. Bulk

The hybridization between the strongly localized Sm 4 f
orbitals and the surrounding orbitals is too weak to form
a coherently screened (Kondo) ground state at temperatures
down to 25 K. Instead we find an intermediate valence state
with a thermal mixture of both Sm 4 f 6 and 4 f 5 configura-
tions, and an average 4 f occupation of n f ≈ 5.5, in good
agreement with experiment [50]. The 4 f 6 contribution is pre-
dominately of �1 character and the 4 f 5 of �8 in agreement
with nonresonant inelastic x-ray (NIXS) data [51]. The al-
most temperature-independent 4 f occupation is the result of
a feedback between the thermal occupation and the chemical
potential of the system. The chemical potential gradually re-
duces the energy difference between the �1 many-body state
and the four �8 many-body states in the thermal ground state
as the temperature is lowered, which keeps the 4 f occupation
almost constant. This makes the results, up to a small shift
in the Fermi energy, almost temperature independent in the
range from 25 K to 100 K. A detailed characterization of the
thermal ground state is given in Appendix B 1.

The k-integrated spectral function (DOS) reflects the in-
termediate valence and displays distinct 4 f 6 → 4 f 5 and
4 f 5 → 4 f 4 multiplet transitions, as shown in Fig. 1 and
Appendix B 2, respectively. The first peak below the Fermi
energy (EF ) at −11 meV is to a 6H5/2 �8 final state, as
shown in Appendix B 1. Upon closer inspection, we notice
that the low-energy �8 peak has a small shoulder around
−19 meV, and that there is a small peak at −28 meV (�7);
both are too small to be well resolved in the experiment.

FIG. 2. Left: Bulk DFT+DMFT band structure of SmB6 along
the indicated high-symmetry path through the Brillouin zone. Right:
Experimental ARPES data [11] along �-X . The hybridization be-
tween the dispersive Sm 5d + B 2p band and the flat Sm 4 f bands
gives rise to a 9 meV bulk band gap around the X point.

The next peak around −170 meV corresponds to J = 7/2
final states (6H7/2). The experimental on-resonance spectrum
(h̄ν = 140 eV) displays an additional broad J = 9/2 derived
shoulder around −300 meV. This feature is hardly discernible
in theory or at off-resonance conditions (h̄ν = 70 eV) since
the direct transitions from the J = 0 4 f 6 configuration to the
J = 9/2 4 f 5 configurations, i.e., without an intermediate core
excitation, are largely forbidden.

The sharp multiplet peaks in the spectrum are generated
from a many-body self-energy with a large number of distinct
poles, as seen in Fig. 1 (lower panel), in contrast to the linear
self-energy of the Kondo renormalization scenario. However,
there is no pole within the narrow bulk band gap, as one would
have for a Mott insulator. The bulk band gap is instead a hy-
bridization gap, caused by the small hybridization between the
Sm 4 f orbitals and the dispersive B 2p and Sm 5d orbitals. We
will come back to the poles of the self-energy when discussing
the topological properties.

Let us now turn to the momentum-resolved spectral func-
tion in Fig. 2 (left). The Sm multiplet transitions discussed
above result in almost flat f bands each carrying a small
fraction of the total weight. The very weak dispersion splits
the �8-derived bands slightly, which gives rise to the shoulder
at −19 meV seen in the DOS. The Sm 5d orbitals on the
other hand hybridize strongly with the B 2p orbitals and
form a parabolic band centered at the X point. When this
dispersive band approaches the flat f bands close to the EF

the hybridization results in a small band gap of about 9 meV
(16 meV peak-to-peak), close to the experimental value of
∼10–20 meV [11,52]. The spectral function agrees well with
the bulk-sensitive ARPES experiments of Denlinger et al. [11]
reproduced in Fig. 2 (right).

Altogether, we find that the local DFT+DMFT self-energy
gives an accurate description of the experimentally estab-
lished bulk properties of SmB6. Hence we can now turn to
its topological properties with confidence.

B. Proof of nontrivial topology

The topological Z2 invariant of Kane and Fu
[10] can be determined, for an inversion-symmetric
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noninteracting system, from the parity Pki;m of the (pairs of
Kramers degenerate) bands m below EF at the time-reversal
invariant moment (TRIM) momenta ki. If

∏
im Pki;m = −1,

the system has a nontrivial topology. However, this procedure
cannot be directly applied to an interacting system, as the
one-particle self-energy can split, smear out, and reduce the
weights of the bands, and even make them fade away and
reappear at shifted energies. Several suggestions of how to
generalize the Z2 invariant to the interacting case have been
made [12,15], but as common in the fast-moving field of
topological materials, the theory still needs to be developed
in full.

The self-energy consists in general of a set of poles located
on the real frequency axis [53], clearly shown in Fig. 1 (bot-
tom). The local self-energy can hence be written as

�mn(ω) = �mn(∞) +
∑

l

V †
ml [ω − El ]

−1Vln. (1)

Here, El and V †
mlVln are the pole position and weight, respec-

tively, and m, n are the local spin-orbital indices. This pole
structure of the self-energy is from a mathematical point of
view identical to that of an additional fictitious hybridization
function where the physical orbitals m hybridize via Vlm with
a large number of local auxiliary orbitals with energy El , one
auxiliary orbital per pole. That is, we can make an exact map-
ping, akin to a purification of a mixed state, of the interacting
bulk system with the self-energy �mn to a noninteracting “pole
extended” (PE) Hamiltonian with additional orbitals l [14].
As in the case of a purification, we recover the physical band
structure by simply projecting the PE band structure onto
the physical orbitals. As this PE Hamiltonian is effectively
noninteracting, the topological invariant Z2 of Ref. [10] can
be straightforwardly applied [15]. If this Z2 is nontrivial, the
PE Hamiltonian has topological surface states, which manifest
themselves in the physical system through the projection onto
the physical orbitals.

In the following, we show that SmB6 is a topological insu-
lator by proving that

(1) its PE Hamiltonian is topologically nontrivial, and
(2) the resulting topological surface states have a finite

physical weight. The arguments are grounded in a symmetry-
based analysis of the PE Hamiltonian which makes the
topological classification very robust against potential impre-
cisions in our DFT+DMFT calculation.

As for (1), the construction of the PE Hamiltonian requires
the full pole structure of the self-energy, which can be difficult
to obtain. Nevertheless, we can still assess its topological
properties from some general considerations:

(i) As shown in Fig. 1, the self-energy has no pole at the
Fermi energy.

(ii) The DMFT self-energy is k-independent in its local
basis, which means that the PE bands must have a finite
physical weight to be dispersive.

From (i) and (ii) it follows that since there is a finite band
gap in the known physical spectral function, the PE Hamilto-
nian is insulating as well. Note that a purely auxiliary band,
which is not visible in the physical spectral function, cannot
cross the band gap as this requires a finite dispersion. A third

physically motivated condition, given the large bandwidth of
the Sm 5d and B 2p derived dispersive band, is

(iii) Only the correlated Sm 4 f states carry a DMFT self-
energy; the Sm 5d and B 2p orbitals have � = 0.

This point is of practical importance, as it will allow us to
evaluate the Z2 invariant of the PE Hamiltonian by the stan-
dard approach of counting eigenstates (bands) with a given
parity at the TRIM points. The reason is that the auxiliary
orbitals given by a local self-energy inherit the irreducible
representation of the local correlated orbitals they derive from
[54]. In our case, the auxiliary orbitals have the same odd
parity [55] as the Sm 4 f orbitals. The orbitals of opposite
(even) parity will therefore form noninteracting bands at the
TRIM points. It is therefore enough to count these (Kramers
pairs of) noninteracting bands with even parity at the TRIM
points to evaluate the Z2 invariant. These are 6, 6, 5, and 4 at
�, R, X , and M, respectively [56]. The physical reason for
the odd number at the X point is that the dispersive band
of Sm 5d and B 2p character, which is the only band with
even parity in the vicinity of the Fermi energy, is below EF

at X while above EF at the other TRIM points. This implies
that

∏
im Pki;m = −1; i.e., the PE Hamiltonian is topologically

nontrivial.
This nontrivial topology is very robust against potential

imprecisions in our DFT+DMFT calculation: They would
need to shift an even-parity orbital to the other side of EF

at an odd number of TRIM points, which would require the
band with Sm 5d and B 2p character to shift by several eV,
while maintaining the mixed valency. Furthermore, this shift
must originate from the DFT potential and hence the electron
density as � = 0 for this noninteracting even-parity orbital.

As for (2): The nontrivial topology of the PE Hamiltonian
in the bulk implies robust metallic surface states in the ex-
tended Hilbert space spanned by both the physical orbitals
and the auxiliary orbitals. The remaining question is whether
the topological surface states may have a completely auxiliary
character, or whether they must carry a finite physical weight
as they cross the bulk band gap. The DMFT self-energy, which
provides a good description of SmB6, varies from layer-to-
layer perpendicular to the surface, but it still fulfills (ii). The
PE bands must therefore have a finite physical weight to be
dispersive, which is necessary to cross the bulk band gap.
Hence a nontrivial topology in the bulk implies robust metallic
surface states with finite weight if the self-energy is local.

C. Surface states

To address the conflicting interpretations of the experimen-
tal photoemission data [11,20,21], we performed additional
DFT+DMFT slab calculations. The [001] SmB6 supercell,
shown to the right in Fig. 3, was used with two different
terminations to represent the different surface patches of
cleaved samples [11,21]. The first considered supercell has a
terminating B6 layer (depicted without bonds) and the outer-
most Sm atom is Sm3+, while the second supercell lacks the
B6 layer and is instead terminated by Sm2+ surface atoms.
The B6 termination has trivial surface bands associated with
a B6 dangling bond [24] that disappears when the surface
reconstructs [11,21,24]. To effectively mimic this partial sur-
face reconstruction in our computationally expensive DMFT

075131-3



P. THUNSTRÖM AND K. HELD PHYSICAL REVIEW B 104, 075131 (2021)

FIG. 3. DFT+DMFT spectrum resolved for kx and ky of a pe-
riodic SmB6 supercell with (top left) and without (bottom left) B6

surface termination. The former is depicted on the right. Both ter-
minations show topological surface states that cross the bulk band
gap. The B6 termination has additional trivial parabolic surface bands
centered at the � point associated with the B6 dangling bond.

calculations, we simply apply an additional 0.5 eV potential to
the 2p orbitals of the outermost B atom in the final step. This
potential shifts the trivial surface band, but does not directly
affect the topological surface states which live, as we will see,
in the subsurface layer.

The resulting DFT+DMFT spectra are presented in Fig. 3
(left). We recover the flat Sm 4 f bands of the bulk at −14 meV
and +40 meV as well as the mJ = ±1/2, J = 5/2 band di-
rectly above EF at the X point. On top of these bulk states
surface bands emerge within the bulk band gap. These metal-
lic surface bands are mainly associated with the subsurface
Sm layer, as the Sm 4 f states of the outermost Sm layer
are shifted away from EF due to their pure Sm2+ or Sm3+

characters. In Appendix C we further confirm the topolog-
ical protection of the surface bands by applying artificial
potentials to the subsurface atoms. The topological surface
states simply shift deeper into the material when an additional
(time-reversal symmetric) perturbing potential is applied to
the (sub)surface layer. When the topological protection is
lifted by an out-of-plane magnetic field, which breaks the
time-reversal symmetry, the surface bands can hybridize with
each other and form a band gap, as shown in Appendix C.

Figure 4 shows cuts of the spectral function at EF and
−5 meV below. The surface states form large and interme-
diate sized pockets around both the X and � points for the
B6 and Sm termination, respectively. The X pockets show
a strong spin polarization in agreement with spin-resolved
ARPES experiments [20]. Reference [21] reports both the
large X and � pockets for the B6-terminated surface, although
they interpret the large � pocket as an umklapp state. The
trivial “Rashba split” surface states, which are reported close
to the � point directly after cleaving [21], seem instead to
correspond to the shifted B6 derived trivial surface bands.
Reference [11] obtains intermediate sized X pockets and picks
up holelike Sm 4 f dispersion around the H points for an
aged mainly B-terminated surface, as reproduced in Fig. 4,
but as in Refs. [18,20] the � pocket is seemingly missing.
However, on closer inspection of the data, in particular in the

FIG. 4. Surface states resolved for kx and ky at EF (top) and
−5 meV below EF (bottom). Left: B6 termination. Middle: Sm termi-
nation. Right: Experiment [11]. The B6 termination shows the total
and Sm 4 f subsurface (ss) contribution. The Sm termination shows
the Sm 4 f (ss) contribution and its spin projection 〈�S〉 mapped on
the color wheel. The maximum total intensity for the B6 termination
(leftmost panel) is approximately 7 times larger than its Sm (ss)
projection.

second Brillouin zone, there is clear evidence of a matching
surface-derived � pocket, which again has been interpreted as
an umklapp state [18,20]. Hence, to finally settle the apparent
discrepancy between theory and experiment, we support a
critical experimental reexamination of this umklapp assign-
ment [22]. For example, our data for the Sm termination
suggest that the � pocket has a much weaker spin polarization
than the X pocket, and that a surface reconstruction could
make it extend deeper into the bulk compared to the X pocket
as shown in Appendix C.

IV. CONCLUSION

The appropriateness of DFT+DMFT for describing the
strong correlations in SmB6 and the excellent description of
various experimental properties give us confidence that we
have achieved an accurate theoretical description of SmB6.
We determined its topology in a rigorous way from the sym-
metry properties of the PE Hamiltonian, formed by mapping
the pole structure of the self-energy onto a set of auxiliary
orbitals [14,15]. We prove that for a local DMFT self-energy
with a given parity it is enough to count the bands of the
opposite-parity channel at the TRIM points, under the condi-
tion that the self-energy does not have a pole at EF . This band
analysis shows that SmB6 constitutes a robust topological
insulator.

In general, if the positions of the bands in one parity
channel are well described by DFT, then the addition of a
local self-energy in the other parity channel will not change
the topology of the system as long as it remains insulating.
If the local self-energy has poles within the bulk band gap
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topological surface bands will still appear in the spectral
function, but they may gradually flatten out and lose spectral
weight as they approach the poles. Nevertheless, between the
poles they will always carry a finite weight. Our data suggest
however that the “missing” � pocket in SmB6 is not due to
poles in the band gap but that it simply has been interpreted as
an umklapp state [18,20,21].

ACKNOWLEDGMENTS

We are highly indebted to J. D. Denlinger and J. W. Allen
for making available their ARPES data. We would also like to
thank Annica Black-Schaffer and Dushko Kuzmanovski for
useful discussions. This work has been financially supported
in part by European Research Council under the Euro-
pean Union’s Seventh Framework Program (FP/2007-2013)
through ERC Grant Agreement No. 306447. The computa-
tions were performed in part on resources provided by SNIC,
under project SNIC 2018/3-489.

APPENDIX A: COMPUTATIONAL DETAILS

All the SmB6 DFT+DMFT calculations were performed
using the experimental cubic crystal structure (space group:
221, prototype: CaB6) with the lattice parameter a = 4.13
Å. The DFT exchange-correlation functional was set to the
local density approximation (LDA) [8], and the Brillouin zone
was sampled through a conventional Monkhorst-Pack mesh of
16 × 16 × 16 k points in the bulk and 16 × 16 × 16 k points
in the slab calculations. The local Coulomb interaction was
parametrized in terms of the Slater parameters F 0, F 2, F 4,
and F 6. The Hubbard U parameter F 0 is heavily screened by
the valence electrons and was set to 8.0 eV. The less screened
Slater parameters F 2, F 4, and F 6 were instead calculated
through Slater integrals at the beginning of each DFT itera-
tion, and then scaled by 0.95, 0.97, and 1.00, respectively [44].
The final self-consistent values are given in Table I.

TABLE I. Screened Sm 4 f Slater integrals (F 0–F 6) and the
double counting potential (μDC) of the Sm atoms in the bulk and the
Sm-terminated (Sm) and B6-terminated (B6) supercells. The latter is
depicted in Fig. 3, and the former in Fig. 10. The labels start from
the middle Sm atom (Sm1) and go toward the surface (Sm2–Sm4).
The Sm atoms have an intermediate valence except the outermost Sm
atom which is Sm2+ (Sm3+) in the slab with Sm (B6) termination.
The fully localized limit double counting potential (μFLL

DC ) is given as
a reference. All values are given in eV.

Label Termination F 0 F 2 F 4 F 6 μDC μFLL
DC

Sm Bulk 8.0 11.43 7.49 5.54 35.32 37.75
Sm1 Sm 8.0 11.39 7.47 5.52 35.55 37.82
Sm2 Sm 8.0 11.40 7.47 5.52 35.55 37.91
Sm3 Sm 8.0 11.39 7.47 5.52 35.70 37.85
Sm4 Sm 8.0 10.83 7.07 5.22 39.62 41.75
Sm1 B6 8.0 11.43 7.50 5.54 35.25 37.72
Sm2 B6 8.0 11.43 7.50 5.54 35.26 37.67
Sm3 B6 8.0 11.42 7.49 5.54 35.29 37.75
Sm4 B6 8.0 11.86 7.80 5.77 32.33 34.37

The fully charge self-consistent DFT+DMFT calculations
were performed using the full-potential linear muffin tin or-
bital (LMTO) code RSPt [41] and the DMFT implementation
presented in Refs. [42,43,47]. The lattice Hamiltonian as well
as the DMFT lattice Green’s function are calculated in the
full LMTO basis. The projection operators upon the localized
Sm 4 f orbitals are obtained from a k-dependent Löwdin
orthogonalization of the LMTO Sm 4 f orbitals, as detailed
in the Supplemental Material of Ref. [43]. The self-energy is
calculated explicitly for each Sm atom in the supercells used
in the slab calculations.

The Sm 5d and B 2p orbitals form a parabolic band cen-
tered at the X point. The band starts at −2 eV below the
Fermi energy and spans more than 15 eV through a folding
of the Brillouin zone at +7 eV. These orbitals are also very
extended compared to the contracted Sm 4 f orbitals, which
implies a stronger screening of the Coulomb interaction.
Hence, their effective Coulomb interaction is much smaller
than their kinetic energy. In addition, the intermediate valence
of the Sm 4 f make the occupation of the dispersive band
noninteger, which further suppress the effects of electronic
correlations. We have therefore only added a self-energy to
the Sm 4 f orbitals in the DFT+DMFT calculations, as the Sm
5d and B 2p orbitals are already well described by the DFT
Hamiltonian.

1. Exact diagonalization

The Sm 4 f orbitals are strongly contracted compared to
the Sm 5d and 6s orbitals, which makes the Sm 4 f or-
bitals hybridize very weakly with the orbitals on neighboring
atoms. The hybridization is completely captured by the local
hybridization function �(ω) [32–34] that describes how the
electrons propagate in the material once they leave the Sm 4 f
orbitals of a given atom. To put the weak Sm 4 f hybridization
in perspective: the Ni 3d hybridization function in NiO is
about 20 times larger than the Sm 4 f hybridization function
in SmB6 for comparable computational setups. The electronic
structure of SmB6 is therefore already well described on the
eV energy scale by completely neglecting the hybridization
[38]. However, this approach is not accurate enough to de-
scribe the important meV energy scale close to the Fermi
energy. It is particularly important that the hybridization func-
tion at the Fermi energy �(0) is accurately captured, as well as
the Sm 4 f occupation, to ensure that the Fermi energy remains
in the hybridization band gap during the DFT+DMFT self-
consistency cycle. The exact diagonalization (ED) impurity
solver [43,45,46] takes most of the hybridization between
the correlated Sm 4 f orbitals and the rest of the material
into account by including a limited number of effective bath
orbitals in the impurity problem. However, the total number of
bath orbitals that can be included in the impurity problem is
severely limited by the exponential growth of the many-body
Hilbert space. In order to still get an accurate representation
of �(0) and the Sm 4 f occupation we need to go beyond the
standard hybridization fitting scheme as well as modifying the
double counting correction. The details thereof are described
in the next two subsections.
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FIG. 5. One-particle term HED
0 , including the double counting correction and the down-folded high-energy bath states, of the self-consistent

Sm 4 f ED Hamiltonian of SmB6 (bulk). The 14 Sm 4 f spin orbitals are located in the upper left corner and ordered according to (lz, sz ) =
(−3, −1/2), (−2, −1/2), . . . , (3,−1/2), (−3, 1/2), . . . , (3, 1/2). The remaining 4 spin orbitals in the lower right corner are the bath states.
The energy unit is eV.

2. Bath discretization

In DMFT, the lattice self-energy is replaced with periodi-
cally repeated copies of the local self-energy �(ω). The bulk
lattice Green’s function Gk (ω) is hence given by

Gk (ω) = [ω − Hk − �(ω)]−1, (A1)

where the k point k belongs to the first Brillouin zone. In the
self-consistent DMFT scheme the lattice Green’s function in
Eq. (A1) is projected onto the local Sm 4 f orbitals (F) and
integrated over the Brillouin zone to yield the local Green’s
function GFF (ω). The hybridization function is then extracted
from the matrix inverse of GFF (ω),

�(ω) = ω1FF − HFF − �FF (ω) − [GFF (ω)]−1, (A2)

where HFF is the matrix representation of the locally pro-
jected Hamiltonian which includes the spin-orbit coupling, the
double counting, and all crystal field terms, and the matrix
�FF (ω) is the self-energy projected onto the local Sm 4 f
orbitals. The ED method proceeds by fitting a few bath state
parameters in the matrices HFB and HBB to �(ω) via the model
function

�ED(ω) = HFB[ω1BB − HBB]−1HBF , (A3)

where HBF = H†
FB. We fit the hybridization function on the

Matsubara axis with 6 bath states per Sm orbital using a
conjugate gradient scheme which also takes the off-diagonal
terms in �(ω) into account. The high-energy bath states (B′),
i.e., the eigenstates of HBB with energies Eb′ relatively far from
the Fermi energy (|Eb′ | 
 wb′ ≡ √

Hb′F HFb′ ), give only a per-
turbative contribution to the low-energy physics due to the
large energy cost of exciting these bath states. Their effect can
be estimated by introducing the scaling HB′B′ → λHB′B′ and
HFB′ → √

λHFB′ in �ED(ω), which keeps �ED(0) invariant,

and let the scaling parameter λ → ∞. The scaling shows that
the high-energy bath states can be replaced to zeroth order by
a static contribution

�ED(ω) ≈ HFB′′ [ω1B′′B′′ − HB′′B′′ ]−1H†
B′′F

+ HFB′ [−HB′B′ ]−1H†
B′F , (A4)

where B′′ is the low-energy complement to B′, i.e., B = B′′ +
B′. In our calculations we put the high-energy cutoff at |Eb′ | >

10wb′ . The remaining low-energy bath states were ordered
according to their weight wb, and included in B′′ to the extent
allowed by the computational resources, with a minimum of 4
bath states in total. The converged one-particle term of the ED
Hamiltonian HED

0 = HFF + HFB + HBF + HBB for the bulk
calculation is presented in Fig. 5.

3. Double counting correction

In the DFT+DMFT scheme, the explicit addition of a local
Coulomb interaction term to the DFT Hamiltonian introduces
a double counting (DC) of the electron-electron interaction.
The unknown form of the screening processes in the exchange
correlation functional prevents the implementation of an exact
double counting correction. In particular, the screening of
the local interaction between the Sm 4 f electrons, implic-
itly described within the LDA, may be different from the
effective (static) screening implied by the renormalized Slater
parameters. Due to this ambiguity several different double
counting corrections schemes have been suggested over the
years, such as the fully localized limit (FLL) [48] and around
mean field (AMF) [49]. The FLL correction removes the
spherically averaged Hartree-Fock contribution of an effective
atomic-like system with integer orbital occupations. The AMF
correction considers instead an effective itinerant system with
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TABLE II. Lowest energy many-body eigenstates of the impurity Hamiltonian obtained at 100 K. The symmetry (Sym), Sm 4 f occupation
(Nf ), energy (E), and thermal weight (GS) are tabulated for each eigenstate, as well as their contribution to the Sm 4 f total (J), angular (L),
and spin (S) moment.

Sym Nf E (meV) GS (%) J L S Jz Lz Sz

�+
1 6.002 0 46 0.03 2.95 2.94 0.00 0.00 0.00

�−
8 5.030 11 12 2.52 4.93 2.47 1.80 3.16 −1.36

�−
8 5.030 11 12 2.52 4.93 2.47 0.47 0.75 −0.28

�−
8 5.030 11 12 2.52 4.93 2.47 −0.47 −0.75 0.28

�−
8 5.030 11 12 2.52 4.93 2.47 −1.80 −3.16 1.36

�−
7 5.029 24 3 2.53 4.93 2.47 0.77 1.07 −0.30

�−
7 5.029 24 3 2.53 4.93 2.47 −0.77 −1.07 0.30

� 6.002 47 0 1.01 2.96 2.95 −1.00 −0.50 −0.50
� 6.002 47 0 1.01 2.96 2.95 0.00 0.00 −0.00
� 6.002 47 0 1.01 2.96 2.95 1.00 0.50 0.50

uniform (noninteger) orbital occupations. However, the ther-
mal ground state of an intermediate valence compound such
as SmB6 falls outside these two scenarios as it contains several
thermally occupied almost atomic-like many-body eigenstates
having different numbers of electrons, as shown in Table II in
Appendix B 1.

The occupation of an intermediate valence ground state
responds to the DC potential in Fermi-Dirac function-like
steps. However, the underlying assumptions of both FLL and
AMF make their DC correction linear in the occupation. The
two different behaviors always lead to a feedback loop away
from intermediate valence toward integer valence. A second,
less severe issue is that the finite discretization of the bath
states in ED causes a small mismatch between the impurity
Green’s function and the local Green’s function GFF (ω) pro-
jected from the lattice. To minimize these two problems we
automatically adjusted the double counting potential at each
DMFT iteration to obtain the same number of Sm 4 f elec-
trons on the impurity as in the lattice. This procedure makes
the occupation of the Sm 4 f orbitals in the bulk stabilize
to n f = 5.49 at a temperature of 100 K, and to n f = 5.50
at 75 K, 50 K, and 25 K. The experimentally observed Sm
4 f occupation stays constant at n f = 5.50 ± 0.01 between
15 K to 50 K, after which it increases linearly to n f = 5.43
at 130 K [50]. The increase is linked to a transition in the
phonon energy from a maximum at 50 K to a minimum
at 130 K [50], which is an effect outside the scope of our
calculations. The computationally expensive slab calculations
were performed at 100 K to speed up their convergence and
reduce their memory footprint. In these calculations we chose
to enforce the bulk Sm 4 f occupation of 5.49 for all the Sm
atoms except at the surface, to make the center Sm atom as
bulklike as possible and minimize the hybridization between
the surface states located at the top and bottom of the slab.

APPENDIX B: MANY-BODY ELECTRONIC STRUCTURE

1. Thermal ground state

The lowest energy many-body eigenstates of the self-
consistent impurity problem Hamiltonian HED are given in
Table II. The states have almost atomic-like Sm 4 f occu-
pations (Nf ) and total angular momenta (J), but the crystal

fields and the hybridization with the bath mix the dif-
ferent Jz configurations. The thermal ground state is an
incoherent mixture of the eigenstates according to their
Boltzmann weights (GS) e−βE/Tr[e−βH ] at 100 K. At this
temperature the largest contributions are given by the four
degenerate �−

8 states (48%) with J ≈ 5/2 and Nf ≈ 5, and
the �+

1 state (46%) with J ≈ 0 and Nf ≈ 6, in agreement with
nonresonant inelastic x-ray scattering data [51]. The remain-
ing 6% belongs to a �−

7 doublet.
In the slab calculations the surface introduces a tetragonal

symmetry breaking that lifts the degeneracy of the four �−
8

many-body states into two pairs of degenerate states. Depend-
ing on the surface termination the �−

8 states of the subsurface
and sub-subsurface Sm atoms split by about 2–7 meV, which
contributes to the multitude of bands seen in Fig. 3. The
nontrivial topology of the electronic structure of the insulating
bulk, i.e., the middle of the slab, is not affected by the surface
potential. However, the dispersion of the topological surface
states does depend on the details of the surface potential,
as explicitly demonstrated in Appendix C with the help of
additional perturbing potentials.

2. Bulk photoemission spectra

In Fig. 1 we have already shown the spectral function in
an intermediate energy range from −1.2 eV to 0.1 eV, which
resolves the J and jz multiplets for L = 5 and L = 3. In Fig. 6
and Fig. 7 we show the same k-integrated spectral function but
in a smaller and larger energy window, respectively. Clearly
the peaks obtained with DFT+DMFT agree well with the
experimentally measured (on-resonance) photoemission data
[11], which is not the case for the Sm 4 f -projected density of
states of plain LDA, as shown in Fig. 6. The relative weights
of the 4 f 6 → 4 f 5 transitions are also accurately captured.
The relative weights of the different 4 f 5 → 4 f 4 transitions
between −5 eV and −12 eV in Fig. 7 are in reasonable
agreement with the experimental data, even though we do
not include the resonance effect which strongly enhances
their total weight. This gives us further assurance that our
DFT+DMFT calculation faithfully describes bulk SmB6.

The shape of the Sm 4 f -projected spectral functions at
25 K, 50 K, 75 K, and 100 K is very similar, as shown in Fig. 6,
up to a shift in the chemical potential. The shift is linked to a

075131-7



P. THUNSTRÖM AND K. HELD PHYSICAL REVIEW B 104, 075131 (2021)

FIG. 6. Sm 4 f -projected DFT+DMFT spectral density of SmB6

at the temperatures 25 K, 50 K, 75 K, and 100 K, compared
to the Sm 4 f -projected LDA density of states and experimen-
tal photoemission data [11]. To more clearly visualize the almost
temperature-independent shape of the Sm 4 f spectral density, the
DMFT spectra at 25 K, 50 K, and 75 K have been aligned
to the spectrum at 100 K. Here, the alignment simply compensates
for the drift of the chemical potential toward the top of the valence
bands as the temperature is decreased.

reduction of the energy difference between the �1 many-body
state and the four �8 many-body states in the thermal ground
state. The only other difference is a suppression of a small
peak at about 23 meV in the unoccupied part of the spectrum.
The small peak corresponds to transition from a thermally
excited �7 state (n f = 5, E = 24 meV) to an n f = 6 state
at E = 47 meV, both listed in Table II. Since the calculated
electronic structure of the bulk is so similar within this tem-
perature range, and the small differences are well understood,
we are confident that the results from our slab calculations
at 100 K also give an accurate description of the electronic
structure at lower temperatures.

The main temperature-dependent effect observed in the
experimental photoemission spectrum [35] between 25–100 K
is a smearing of the bands, and as a result a reduced effective
hybridization between the dispersive Sm 5d + B 2p band and
the flat Sm 4 f bands. Most of the smearing starts to set in
at around 40–50 K, which coincides with a transition in the
phonon energy from a maximum at 50 K to a minimum at
130 K according to Ref. [50], which is an effect that is outside
the scope of our electronic structure calculations. However,
since the experimental bulk band gap is open at 25 K, and the
character of the bands does not change with thermal smearing,
it is not essential to take this effect into account in our analysis
of the topological character of the low-temperature electronic
structure.

APPENDIX C: ROBUSTNESS OF THE TOPOLOGICAL
SURFACE STATES

1. Adding a surface potential

To numerically confirm the topological protection of the
surface bands we applied time-reversal symmetric poten-
tials to the (sub)surface layer of the Sm-terminated supercell

FIG. 7. Sm 4 f -projected DFT+DMFT spectral density of SmB6

compared to experimental on-resonance (h̄ν = 140 eV) photoemis-
sion data [11]. The approximate J and L quantum numbers of the
final states are indicated.

displayed to the right in Fig. 10. The topological surface states
should survive under these perturbing potentials, which can
occur for example due to surface reconstructions. Our results
are shown in Figs. 8 and 9, where we applied the potential
to the jz = ±5/2 and jz = ±1/2 spin orbitals of the J = 5/2
Sm 4 f manifold, respectively. These spin orbitals were cho-
sen as the surface states around the � point have primarily
jz = ±5/2 character, while the surface states around the X
point have mainly jz = ±1/2 character. Technically, we sim-
ply added the potential term to the self-energy of these states
after DMFT convergence (a self-consistency including this
potential is beyond our illustrative purposes). Both figures
show the Sm 4 f projection on the subsurface (left panel) and
sub-subsurface states (right panel). Please remember that, as
discussed in the main text, the surface layer itself has another
Sm 4 f valence and is insulating. The topological surface
states hence appear in the subsurface layer in the unperturbed
systems.

Figure 8 (left) clearly shows that one of the flat 4 f orbitals
(i.e., the jz = ±5/2) is shifted above the Fermi energy upon
increasing the jz = ±5/2 potential V5/2. At the same time,
the topological surface states around the � point shift from
the subsurface layer for V5/2 = 0 to the sub-subsurface layer
at V5/2 = 0.73 eV. There is a crossover in between with the
surface states being extended to both layers.

At the same time the topological surface states around the
X point remain on the subsurface layer. If we instead apply a
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FIG. 8. The k-resolved DFT+DMFT spectrum in the presence of a perturbing potential at the subsurface Sm 4 f J = 5/2, jz = ±5/2 states
of the Sm-terminated SmB6 supercell depicted in Fig. 10. The left (right) panel shows the projection upon the subsurface (sub-subsurface) Sm
4 f states. The topological surface states around the � point shift from the subsurface to the sub-subsurface as the potential is increased.

potential to the jz = ±1/2 spin orbitals as in Fig. 9, it is these
topological surface states which start to shift to the next layer
below. The X pocket is however more robustly anchored to
the subsurface atom compared to the � pocket, and does not
shift completely away even for V = 0.73 eV.

The larger “mobility” of the � pocket in the jz =
±5/2, J = 5/2 spin orbitals is interesting, as it is
seen in some experiments [18,20,21] but not in oth-
ers [11,18,20]. In the latter experiments, the � pocket
might simply hide a few layers deeper in the bulk,
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FIG. 9. Same as Fig. 8, but now the perturbing potential is applied to the subsurface Sm 4 f J = 5/2, jz = ±1/2 spin orbitals. The
topological surface states around the X point shift partially from the subsurface to the sub-subsurface as the potential is increased.

escaping its detection in surface-sensitive photoemission
experiments.

Another possible explanation of the experimental discrep-
ancies reveals itself at V5/2 = 0.36 eV in Fig. 8. At this
potential strength the topologically derived X pocket and �

pocket get very close to each other around the Fermi energy,

and the latter pocket can easily be misidentified as an umk-
lapp state [20,21]. Interestingly, at the very same potential
there are trivial bands which grace the Fermi energy close
to the � point. These trivial bands may be connected to the
weak α pocket seen in some experiments [18,20,21]. How-
ever, to put these observations on firmer ground several fully
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FIG. 10. The k-resolved DFT+DMFT spectrum (including all layers) of the Sm-terminated SmB6 supercell, shown in the right panel, in
the presence of a spin-polarized (Bz) time-reversal symmetry breaking field. The left (middle) panel shows when the potential is applied to
the subsurface Sm 4 f J = 5/2, jz = ±5/2 ( jz = ±1/2) spin orbitals. The left panel shows a clear separation between the conduction and the
valence bands: the perturbing field destroys the topological protection of the surface bands. In the middle panel, the field is applied to the
jz = ±1/2 spin orbitals, and a smaller gap emerges around the X point, while the � pocket remains ungapped.

self-consistent slab calculations with various realistic surface
reconstructions are needed, which is beyond the scope of
current study.

2. Magnetic field perpendicular to the surface

Next we apply a spin-polarizing field instead of a potential
term to the surface. The field (Bz) is directed perpendicular
to the surface and it breaks the time-reversal symmetry of
the system. The perturbation is hence expected to destroy
the topological protection of the surface states. We target the
same two different pairs of states as for the potential term.
That is, we apply the field to the subsurface Sm 4 f J = 5/2,
jz = ±5/2, and jz = ±1/2 spin orbitals. As shown in Fig. 10,
the perturbing fields indeed allow the surface states around
the Fermi level to hybridize, including the otherwise protected
topological surface states.

Let us start with the field applied to the jz = ±5/2 spin
orbitals in Fig. 10 (left). The large coupling between the field
and the jz = ±5/2 component of the surface states makes the
surface bands very susceptible to the perturbing (time-reversal
symmetry breaking) field. The topological surface states start
to hybridize and an indirect band gap opens. Quantitatively,
the spectrum is altered more at the � point than at the X point
as here the jz = ±5/2 character dominates. But also at the X
point a small gap opens.

It is exactly vice versa if we apply the perturbing field
to the subsurface Sm 4 f J = 5/2, jz = ±1/2 spin orbitals;
see Fig. 10 (right). Here, actually only the topological surface
state around the X point is gapped out, whereas the topolog-
ical surface bands around � remain intact. While applying a
field to only part of the Sm 4 f states is, as a matter of course,
a theoretical construct, it still demonstrates that the � and X
pockets can clearly shift independently.
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