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Stephan Schönecker ,1,* Wei Li,2 Levente Vitos,1,3,2 and Xiaoqing Li1,†

1Unit of Properties, Department of Materials Science and Engineering, KTH-Royal Institute of Technology, Stockholm SE-10044, Sweden
2Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120, Uppsala, Sweden

3Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest H-1525, P.O. Box 49, Hungary

(Received 15 April 2021; accepted 1 July 2021; published 26 July 2021)

The generalized stacking fault energy (GSFE) is a material property that can provide invaluable insights into
describing nanoscale plasticity phenomena in crystalline materials. Lattice strains have been suggested to influ-
ence such phenomena. Here, the GSFE curves for sequential faulting pathways in dual phase [face-centered cubic
(fcc) and hexagonal close-packed (hcp)] Cr20Mn20Fe20Co20Ni20, Cr25Fe25Co25Ni25, Cr20Mn20Fe34Co20Ni6,
Cr20Mn20Fe30Co20Ni10, and Cr10Mn30Fe50Co10 high-entropy alloys are investigated on {111}fcc and (0002)hcp

close-packed planes using density-functional calculations. The dependence of GSFEs on imposed volumetric
and longitudinal lattice strains is studied in detail for Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10. The compe-
tition between various plastic deformation modes is discussed for both phases based on effective energy barriers
determined from the calculated GSFEs and compared with experimentally observed deformation mechanisms.
The intrinsic stacking fault energy, unstable stacking fault energy, and unstable twinning fault energy are found
to be closely related in how they are affected by applied strain. The ratio of two of these planar fault energies can
thus serve as characteristic material property. An inverse relationship between the intrinsic stacking fault energy
in the hcp phase and the axial ratio (c/a)hcp is revealed and explained via band theory.
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I. INTRODUCTION

The research field of high-entropy alloys (HEAs) has at-
tracted significant attention since these were proposed by
Yeh et al. [1] and Cantor et al. [2]. Some developed HEAs
possess excellent properties, e.g., good wear and corrosion
resistance, high strength and fracture toughness, good irradia-
tion resistance, high hardness, or good thermal conductivity
[3–8]. In instances where compound formation and phase
separation are suppressed, HEAs typically crystallize in sim-
ple structures, most frequently face-centered cubic (fcc) or
body-centered cubic. Few single-phase HEAs with hexag-
onal close-packed (hcp) structure were reported, such as
DyGdHoTbY composed of only rare earth elements [9].

Polymorphic HEAs are composed of two or more
solid-solution phases with different crystal structures. A
coexistence of fcc and hcp phases has been reported in
a wide variety of HEAs, some of which show certain
noteworthy mechanical properties [5,7,8,10,11]. A pressure-
induced transformation from the fcc phase to the hcp
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phase occurs in Cr20Mn20Fe20Co20Ni20 (Cantor alloy) and
Cr25Fe25Co25Ni25 at room temperature (RT) [12–14]. Because
the phase transformation is sluggish upon both pressuriza-
tion and depressurization, application of pressure may serve
as processing route for tuning the phase fractions in these
dual-phase HEAs. Besides, an fcc to hcp phase transforma-
tion in Cr20Mn20Fe20Co20Ni20 occurs under high-pressure
torsion at 77 K, but not at RT [10]. Tailoring phase sta-
bility in HEAs towards exhibiting a transformation-induced
fcc to hcp phase transition resulted in the development of
Cr20Mn20Fe34Co20Ni6 and Cr10Mn30Fe50Co10 [5,11]. Both
two-phase HEAs show superior strength-ductility combina-
tions than mono-phase counterparts owing to several active
hardening mechanisms. These recent experimental progresses
motivate to explore and understand the fundamental defor-
mation mechanisms underlying crystal plasticity in advanced
polymorphic HEAs.

The intrinsic stacking fault (ISF) energy is an experi-
mentally and theoretically accessible material property often
claimed to be correlated with the predominantly active plastic
deformation mode in the fcc phase of metals and alloys. The
ISF energy further determines the equilibrium separation of
partial dislocations and affects the propensity for dislocation
cross slip. The traditional notion is that dislocation glide is
favored in fcc metals and alloys with medium to high ISF
energy, whereas deformation twinning is typical of low to
medium ISF materials, and hcp martensitic transformation
prevails for low ISF energy [15,16]. However, Ag (16 mJ/m2)
and Ir (480 mJ/m2) are examples for metals with low ISF
energy and high ISF energy [17,18], respectively, which both
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twin under ordinary loading conditions at RT [19–22]. Fur-
thermore, Al (166 mJ/m2 [17,18]) does ordinarily not twin at
high strain rates and/or low temperatures unlike Cu and Ni,
but Al does twin in nanocrystalline form [23,24]. Obviously,
the ISF energy alone does not provide a complete picture of
the prevailing plastic deformation mode.

Theory and simulations of plasticity in crystalline materi-
als often resort to the theoretical concept of the generalized
stacking fault energy (GSFE) [25]. Broadly, it describes the
energy penalty due to shearing parallel slip planes in a certain
slip direction. The stable and unstable stacking fault energies
on GSFE curves contain sufficient fundamental information
in determining nanoscale plastic deformation modes in the
thermally nonactivated limit. The GSFE was employed to
describe nucleation mechanisms of deformation twins [26],
the competition of plastic deformation mechanisms [27–31],
twinning stresses [32], solid-solution strengthening [33], and
dislocation nucleation [34]. At present, GSFE curves are not
experimentally accessible. First-principles calculations and
atomistic simulations are thus the primary tools to obtain
them.

Strain is an external parameter known to affect the ISF
energy and GSFE curves. For instance, recent first-principles
studies demonstrated that already mild strain can lead to large
changes of the GSFE in fcc Cu, Ni, and Al [35–37]. Zhang
et al. suggested that lattice strain in hcp Mg and binary Mg
alloys alters dislocation core structure and preferred slip sys-
tems [38]. Understanding the implications of how the GSFE
depends on strain is particularly important for mechanical
properties, plasticity, and microstructural evolution of metals
and alloys subject to high pressure, in shock-loading condi-
tions, during severe plastic deformation or high strain-rate
deformation, and in nanocrystalline systems.

In this work, we are concerned with a density-functional
theory (DFT) investigation of GSFEs in the five polymor-
phic HEAs Cr20Mn20Fe20Co20Ni20, Cr25Fe25Co25Ni25,
Cr20Mn20Fe34Co20Ni6, Cr20Mn20Fe30Co20Ni10, and
Cr10Mn30Fe50Co10 in their compositionally identical fcc
and hcp phases. We concentrate on GSFEs associated with
dislocation slip on {111}fcc and (0002)hcp close-packed planes.
Besides often being an easy glide system in hcp metals and
alloys [17,39], further reasons motivated the present focus
on basal slip. While a martensitic transformation from
the fcc phase to the hcp phase is a primary deformation
mechanism in several of the considered alloys, a reverse
hcp to fcc martensitic transformation was observed in
Cr10Mn30Fe50Co10 and attributed to basal slip [40]. The
theory of plastic deformation modes presented below enables
direct comparison between the fcc and hcp cases. For a
comprehensive picture of dislocation slip in the hcp phase of
these alloys, it will be important to consider slip on prism and
pyramidal planes in future work.

After summarizing the necessary methodological and com-
putational details in Sec. II, we present and discuss our results
in Sec. III. We begin with the GSFE of all considered alloys
in the absence of superimposed strain. Cr20Mn20Fe20Co20Ni20

and Cr10Mn30Fe50Co10 are in the focus of a detailed study
on how homogeneous volumetric and longitudinal strains
influence the GSFEs in both close-packed phases. To calcu-
late GSFEs relevant for high pressure and shock conditions,

strains as large as ±10% are considered. We draw upon ef-
fective energy barriers derived from the calculated GSFEs
to discuss the competition between various plastic deforma-
tion modes and compare the outcome with experimentally
observed deformation mechanisms. We demonstrate that
strain-dependent stacking fault energies and their zero-strain
derivatives follow universal scaling rules closely. An approx-
imately inverse linear relationship between the axial ratio
(c/a)hcp and ISF energy in the hcp phases is revealed and
explained. Section IV concludes.

II. METHODOLOGICAL AND COMPUTATIONAL
DETAILS

A. GSFE and faulting pathways

Let E ({ui}) be a potential energy function associated with
planar faults created by simple alias shear [41], where integer
i labels consecutive stacking planes and ui is the relative shear
displacement vector between planes i and i − 1. We consider
the GSFE γ (η) as a function of the total displacement η � 0
(dimensionless scalar),

γ (η) = E ({ui}) − Eperfect

A
, (1)

for sequential fault pathways on close-packed planes.
Eperfect ≡ E ({ui = 0}) is the energy of the fault-free fcc or
hcp lattice and A is the fault area. Fault pathway prescriptions
introduced next relate relative shear displacements to total
displacements.

In fcc crystals, we consider the usual afcc/2[101̄](111)fcc

slip system where a perfect lattice dislocation can dissoci-
ate into two Shockley partials with Burgers vectors bfcc

p1 =
afcc/6[112̄]fcc and bfcc

p2 = afcc/6[21̄1̄]fcc. afcc is the fcc lattice
parameter. The stacking sequence of (111)fcc close-packed
planes is . . . ABC . . ., where the labels A through C corre-
spond to the three possible atomic positions in a (111)fcc plane
[Fig. 1(a)]. Without loss of generality, atoms in plane i = 1
assume the A position, those in plane i = 2 the B position,
and so on. We examine the GSFE by applying displacement
vectors as

ui�1 = [(x + 1)H (x + 1) − xH (x)]bfcc
p1 , (2a)

x = η − i,

ui�0 = 0, (2b)

which is illustrated in Fig. 2. H (x) is the Heaviside step
function.

The faulting pathway Eq. (2) is commonly considered as
twinning pathway in fcc materials [42]. The associated GSFE
for η � 2 provides, however, sufficient information to analyze
three competing deformation modes operating on the same
crystallographic slip system (stacking fault, full slip, and twin-
ning) as elaborated in Sec. III C 1.

Special stationary points of γ (η � 2) for the previous path
are the ISF with associated energy γisf ≡ γ (1) and the ex-
trinsic stacking fault (ESF) with energy γesf ≡ γ (2). Their
stacking sequences are indicated in Fig. 1(b). The saddle
point encountered between γ (0) and γisf is referred to as the
unstable stacking fault (USF) with energy γusf. The unstable
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FIG. 1. (a) Schematics of close-packed planes in the fcc and hcp
structures with three possible atomic positions A, B, or C, selected
crystallographic directions, partial Burgers vectors, and definition
of angle θ . Panels (b) and (c) show schematics of extended planar
defects imposed by alias shear and modeled by tilted supercells
(guided by solid lines). The viewing directions in (b) and (c) are
[11̄0]fcc and [112̄0]hcp, respectively. The stacking sequences of the
fault-free and faulted lattices are indicated and refer to one specific
(11̄0)fcc or (112̄0)hcp plane, wherein labels with a dot (Ȧ etc.) in
(b) and (c) indicate a nearest neighbor hcp stacking and a nearest
neighbor fcc stacking, respectively. bhcp

p2 tilts the cell out of the figure
plane and shifts atoms from an adjacent (112̄0)hcp plane (indicated
by a dashed circle) to the original plane.

twinning fault (UTF) with energy γutf is the saddle point
between γisf and γesf.

In hcp crystals, we consider the basal
ahcp/3[12̄10](0002)hcp slip system where a perfect
lattice dislocation can dissociate into two Shockley
partials with Burgers vectors bhcp

p1 = ahcp/3[11̄00]hcp and

bhcp
p2 = ahcp/3[01̄10]hcp. ahcp the hcp basal lattice parameter

and a (0002)hcp close-packed plane is illustrated in Fig. 1(a).
Unlike the GSFE in the fcc phase, the hcp slip potential

energy in a general direction of alias shear between planes
i and i − 1 differs from that between planes i + 1 and i be-
cause the (0002)hcp planes cycle only between two positions
(e.g., . . . AB . . .). To determine the GSFE, we use the con-
vention that positions A and B in the conventional hcp cell
are located at the point of origin and at ahcp/3[01̄10]hcp +
chcp/2[0001]hcp, respectively, where chcp the height lattice pa-
rameter. Atoms in stacking planes with odd i assume the A
position, and those in planes with even i the B position. We
examine the GSFEs for two faulting pathways, which branch
at η = 1 and are distinguished by superscripts α and β, by
applying displacement vectors as

uα
i�1 = [(y + 1)H (y + 1) − yH (y)]δm1bhcp

p1 , (3a)

y = η − i − 1

2
, m = i mod 2,

uβ

i�1 = [(x + 1)H (x + 1) − xH (x)]

×(
δm1bhcp

p1 + δm0bhcp
p2

)
, (3b)

uα,β

i�0 = 0. (3c)

Here, δi j is the Kronecker delta and mod the modulus func-
tion. Both pathways are illustrated in Fig. 2. The difference
between pathways α and β is that pathway α shears only every
other (0002)hcp plane (by the same shear vector), whereas
pathway β shear every plane but the shear vector alternates.

Faulting pathway α is one way to accomplish the hcp
to fcc martensitic transformation [40,43,44]. In terms of in-
creasing i, the stacking sequence of the resulting fcc phase
is . . . ABC . . . [cf. Fig. 1(c)]. A different, though equivalent
way of accomplishing the hcp to fcc transformation is by
shearing every even stacking layer (the B positions) by bhcp

p2 , in
which case the resulting fcc phase has the inverse, . . . ACB . . .

stacking sequence. Pathway β leads to a twinlike stacking
fault configuration [45]. This twinlike stacking fault should
be distinguished from crystallographic twin systems in hcp
metals and alloys, which most commonly form {112̄2}hcp,
{101̄2}hcp, or {101̄1}hcp twins [46,47]. The GSFEs for the
faulting pathways Eqs. (3) and η � 2 provides sufficient in-
formation to analyze four competing deformation modes on
(0002)hcp planes based on leading and partial dislocation nu-
cleation (stacking fault, full slip, twinlike fault, and nano-fcc
plate) as elaborated in Sec. III C 2.

The first two stationary points of the GSFE encountered
on either pathway are likewise referred to as USF and ISF.
On pathway α, the energy minimum at γspf ≡ γ α (2) is the
stable phase fault (SPF), and the saddle point between γisf and
γspf is referred to as unstable phase fault (UPF) with energy
γupf. On pathway β, the energy minimum at γstf ≡ γ β (2) is
the stable twinlike fault (STF), and the saddle point between
γisf and γstf is referred to as unstable twinlike fault (UTF). The
stacking sequences of the stable stacking faults are indicated
in Fig. 1(c). The ISF and the STF correspond to the fault I2 and
the fault T2, respectively, in the commonly employed notation
of Chetty and Weinert [45]. Note that for convenience UTF
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FIG. 2. Schematic illustration of the sequential faulting pathways. From left to right: no applied displacements, with relative displacements
ui, uα

i , and uβ

i . See the text for definitions and details.

also abbreviates unstable twinning fault in the fcc case, but
what UTF stands for is always obvious from context.

B. Determination of the GSFE

We carried out the calculations of the GSFE for super-
cells with dimensions e1 × e2 × e3 using the tilted supercell
methodology [48,49]. In the case of the fcc phase, the cell
vectors are e1 = afcc/2[11̄0]fcc, e2 = afcc/2[1̄01]fcc, and e3 =
nfccafcc[111]fcc for vanishing applied alias shear. The GSFE
was obtained by gradually displacing e3 in the direction of
bfcc

p1 , keeping internal ionic positions fixed, and shifting at
η = 1 the cell origin to the neighboring layer as schematically
shown in Fig. 1(b). The repeat unit nfcc was set to 3 after care-
ful tests [nine (111)fcc layers]. In the case of the hcp phase, the
cell vectors are e1 = ahcp/3[1̄1̄20]hcp, e2 = ahcp/3[21̄1̄0]hcp,
and e3 = nhcpchcp[0001]hcp for vanishing applied alias shear.
The GSFE was obtained by gradually displacing e3 in the di-
rection of bhcp

p1 or bhcp
p2 depending on pathway, keeping internal

ionic positions fixed, and shifting at η = 1 the cell origin to
a neighboring layer as schematically shown in Fig. 1(c). The
repeat unit nhcp was set to 4 after careful tests [eight (0002)hcp

layers].
As faulted configurations are created by simple alias shear,

structure relaxation is not considered. Going beyond this
approximation is possible within the present approach by
considering structure relaxation on a mean-field level due to
employing the coherent potential approximation (CPA); cf.
Sec. II D. As neither stresses nor forces are implemented in
the present total energy method (Sec. II D), manual structure
relaxation is feasible for one or two free parameters but labori-
ous for many degrees of freedom. Previous DFT investigations
for various transition metals and the presently considered
faulting pathways showed that structure relaxation typically
lowers the GSFE amplitude of unstable stacking faults by
typically 10% but reduces stable stacking fault energies by
much less than that value [35,50–53]. We anticipate similar
relaxation effects for the presently considered alloys. While
we expect that considering structure relaxation does not affect
the qualitative behavior of the GSFE curves reported in this
paper, quantitatively accurate GSFEs will require full struc-
ture relaxation.

C. Superimposed homogeneous strains

We imposed two types of homogeneous lattice strains,
namely volumetric (hydrostatic) strain and longitudinal strain,
to the fault-free lattices to determine how the GSFE varies as

a function of state of strain and strain level applied. Strained
structures with cell vectors e′

j (column-major order) are ob-
tained from unstrained ones via

[e′
1, e′

2, e′
3] = D[e1, e2, e3]. (4)

The diagonal deformation matrices D = D(ε) considered are

Dv = diag[1 + ε, 1 + ε, 1 + ε],

Dss = diag[1, 1, 1 + ε],

Dvc = diag[(1 + ε)−1/2, (1 + ε)−1/2, 1 + ε],

in the case of volumetric (v) strain, simple strain (ss), and
volume-conserving (vc) strain, respectively. ε is the strain
parameter, and positive (negative) values for it are referred to
as tensile (compressive) strain. For the two longitudinal strains
(Dss and Dvc), the strain loading direction is perpendicular to
the fault planes, i.e., parallel to [111]fcc and the [0001]hcp. In
the case of simple strain, the respective other two orthogonal
directions are fixed, whereas these directions are adjusted to
maintain a constant volume for volume-conserving strain.

D. Total-energy method

We computed the GSFE via DFT [54] employing the
exact muffin-tin orbitals (EMTO) method [55,56] to solve
the Kohn-Sham equations [57]. Exchange and correlation
were described by the generalized-gradient approximation
of the Perdew-Burke-Ernzerhof functional [58]. The scalar-
relativistic approximation and the soft-core scheme were
used, and the total energy was computed via the full
charge-density technique [59]. The electronic structure of
substitutionally disordered HEAs was described by the CPA
[60,61], with Refs. [59,62] detailing on its implementation
in EMTO. The CPA replaces the random alloy potential by
a self-consistently determined effective medium, whose prop-
erties are as close as possible to those of the configuration
average of that alloy. As the configuration average is re-
stricted to a single site of each alloy component embedded
in the coherent medium, averages over configurational fluctu-
ations beyond the single site are neglected. The CPA effective
medium possesses the symmetries of the underlying lattice.

All spin-polarized DFT calculations were carried out
assuming the paramagnetic (PM) state as the magnetic or-
dering temperatures of the studied HEAs are well below
RT. The disordered-local moment (DLM) model was adopted
to describe the PM state [63,64]. The DLM model is a
first-principles, mean-field type theory for the PM state
and describes the electronic structure in the presence of
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static, random orientational spin fluctuations. We solved the
DLM model within the random alloy picture analog as de-
scribed by the CPA [64,65]. For instance, the DLM state
of Cr10Mn30Fe50Co10 alloy is represented by the pseudo-
octonary alloy Cr↑

5 Cr↓
5 Mn↑

15Mn↓
15Fe↑

25Fe↓
25Co↑

5 Co↓
5 , where

fractions of atoms with up spins (↑) and down spins (↓)
are componentwise equal. Brillouin zone integrations were
performed on a 13 × 25 × 3 and a 12 × 24 × 3 k-points mesh
for hcp and fcc GSFE calculations, respectively, determined
after careful testing.

We carried out an assessment for various special points
on the considered faulting pathways for fcc Cu and hcp Mg.
The results detailed in Appendix A show that the present total
energy method gives a precise description of the close-packed
plane GSFEs in fcc and hcp systems.

The employed theoretical equilibrium lattice parameters
for the HEAs considered in this study equal those previously
determined by Li et al. [66] and were discussed therein. For
the sake of a self-contained presentation, we tabulate them in
Appendix B.

III. RESULTS AND DISCUSSION

A. Generalized stacking fault energies at equilibrium

Figure 3 shows the calculated GSFE curves up to a
total displacement of η = 2 for the five studied poly-
morphic HEAs in their fcc and hcp phases. In the fcc
phase, the five alloys have similar γ fcc

usf , while γ fcc
isf , γ fcc

esf ,
and γ fcc

utf differ strongly. The latter three fault energies are
the highest for Cr25Fe25Co25Ni25 and decrease in the se-
quence Cr20Mn20Fe30Co20Ni10, Cr20Mn20Fe34Co20Ni6, and
Cr10Mn30Fe50Co10, i.e., with decreasing net valence elec-
tron count (VEC). All the γ fcc

isf and γ fcc
esf values are negative

with γ fcc
isf being slightly lower in energy than γ fcc

esf . Negative
γ fcc

isf values for Cr25Fe25Co25Ni25 and Cr20Mn20Fe20Co20Ni20

were previously reported [67].
Often, direct connections between the magnitude of γ fcc

isf
and the hcp versus fcc phase stability are drawn [11,49]
based on

γ fcc
isf A ≈ 2(Ehcp − Efcc) ≡ 2	Ehcp-fcc, (5a)

� 2(E∗
hcp − Efcc) ≡ 2	E∗

hcp-fcc. (5b)

The first approximation results from the axial nearest
neighbor Ising model for the fcc phase [68] and considers
differences in stacking sequences. The second line differs
from the first in that E∗

hcp is the energy of the relaxed hcp
phase. Thus, the negative γ fcc

isf s in these HEAs suggest that
the hcp phase is more stable than the fcc phase at zero tem-
perature, and Cr10Mn30Fe50Co10 is predicted to be the most
stable in the hcp phase. By explicit total-energy calculations,
we found 	E∗

hcp-fcc < 0 and verified that the correlation in
Eq. (5b) holds. That is, the hcp phase is the theoretical ground
state phase for the considered alloys, while the fcc phase
is metastable. These findings are consistent with the avail-
able experimental observations for Cr20Mn20Fe20Co20Ni20,
Cr20Mn20Fe34Co20Ni6, and Cr10Mn30Fe50Co10, which re-
vealed the metastability of their fcc phase at RT [5,11,12,14].

The total energy difference, or γ fcc
isf following Eq. (5b),

indicates the chemical driving force for the martensitic fcc

FIG. 3. The GSFEs γ (η) for the faulting pathways in the fcc and
hcp phases and the five considered HEAs. The GSFE curves for
the pathways α and β in the hcp phases after branching at η = 1
are distinguished by dashed and solid lines, respectively. Special
stationary points are indicated.

to hcp phase transformation. Thus, Cr10Mn30Fe50Co10 and
Cr20Mn20Fe34Co20Ni6 are predicted to have the largest hcp
formation tendency. A dual phase microstructure was indeed
found experimentally for both alloys prior to mechanical
loading [5,11]. The experimental phase fractions, determined
under similar processing conditions (high-temperature water
quenching in the homogenized state), correlate well with
their ranking according to γ fcc

isf . The fcc to hcp allotropic
transformation in Cr20Mn20Fe20Co20Ni20 did not occur under
ordinary processing conditions [69,70] but requires me-
chanical stimulation to overcome the transformation barrier
[12,14], which is again consistent with a low chemical driving
force.

A simple and direct means of assessing whether the spin
polarization of the electronic structure gives an important con-
tribution to the GSFE amplitude is achieved by comparing to
results of non-spin-polarized electronic structure calculations
(nonmagnetic state). To this end, we performed additional
non-spin-polarized DFT calculations using the equilibrium
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lattice parameters from Table II to isolate the magnetic effect
and avoid possible interference from volumetric contributions.
Upon invoking spin polarization (PM state), we found that
γ fcc

usf decrease (10–30 mJ/m2) and γ fcc
utf increase (<20 mJ/m2)

slightly across the alloys, whereas γ fcc
isf and γ fcc

esf increase by
50–60 mJ/m2 and 45–70 mJ/m2, respectively, across the al-
loys. These results suggest that the spin polarization of the
electronic structure gives an important contribution to the
GSFE amplitude in the present alloys. In all alloy cases, Fe
sites were found to carry the largest local magnetic moments
in the PM state, with smaller induced magnetic moments on
Mn and Co sites and practically vanishing local magnetic
moment on Ni and Cr sites. No obvious correlation between
above described changes in GSFE amplitude and the fraction
of spin-polarized chemical species could be detected.

Turning to the hcp phase, the planar fault energies γ
hcp
isf ,

γ
hcp
usf , γ

hcp
utf , γ

hcp
stf , γ

hcp
upf , and γ

hcp
spf are positive throughout. The

γ
hcp
isf and γ

hcp
stf values are very similar, although these faults

have different stacking sequences. γ
hcp
upf and γ

hcp
spf on pathway

β are larger than γ
hcp
utf and γ

hcp
stf on pathway α, which is

consistent with short-ranged interactions between (0002)hcp

planes as explained below. The six planar fault energies are the
smallest for Cr25Fe25Co25Ni25 and increase with decreasing
VEC from Cr20Mn20Fe20Co20Ni20, Cr20Mn20Fe30Co20Ni10,
Cr20Mn20Fe34Co20Ni6, to Cr10Mn30Fe50Co10. The positive-
ness of the fault energies confirms the stability of the hcp
phase at zero temperature. The γ

hcp
utf are larger than the γ

hcp
usf

for all investigated HEAs, which is opposite to the fcc phase.

B. Generalized stacking fault energies under applied strain

We investigated the GSFEs under superimposed strain for
two HEAs, Cr10Mn30Fe50Co10 and Cr20Mn20Fe20Co20Ni20.
They were selected because both show deformation twinning
(cf. Sec. III C 1). The calculated fault energies of these two
HEAs under volumetric strain, volume-conserving strain, and
simple strain are shown in Figs. 4 and 5. Volumetric strain
deformations are plotted as a function of the volumetric strain
	V/V0 = (1 + ε)3 − 1, 	V = V − V0, where V = V (ε) is
the volume and V0 = V (0) is the equilibrium volume.

For fcc Cr20Mn20Fe20Co20Ni20 shown in Fig. 4(a), both
γ fcc

isf and γ fcc
esf steadily and nonlinearly increase with increasing

strain under all three strain conditions. The nonlinearity is the
most pronounced for simple strain. γ fcc

isf and γ fcc
esf change sign

at strains ε approximately equal to 7%, 10%, and 5% under
volumetric strain, volume conserving strain, and simple strain,
respectively. In addition, the values of γ fcc

esf remain slightly
larger than those of γ fcc

isf , but their difference becomes smaller
with increasing strain.

The decreasing trend of γ fcc
usf with decreasing compres-

sive strain and increasing tensile strain is similar for the
three states of strain, which is also found for γ fcc

utf under
volumetric strain. In contrast, γ fcc

utf exhibits a pronounced
nonlinear, nearly parabolic dependence under longitudinal
strain with maximum value at approximately 5% tensile
strain (volume-conserving strain) and near zero strain (simple
strain). Noticeable is also the increasingly larger difference
between γ fcc

utf and γ fcc
usf with increasing compressive strain,

which is not seen under tensile deformation.

FIG. 4. The GSFE of stationary points on the faulting pathways
as a function of applied strain for three states of superimposed strain
in fcc and hcp Cr20Mn20Fe20Co20Ni20.

For the hcp phase shown in Fig. 4(b), it is evident that all
six fault energies decrease with decreasing compressive strain
and increasing tensile strain in all three states of strain. Simple
strain has the most pronounced influence on the fault energies,
which is similar to the fcc phase.

The trends for Cr10Mn30Fe50Co10 shown in Fig. 5 are
qualitatively similar to those for Cr20Mn20Fe20Co20Ni20. Two
noticeable quantitative differences are that, first, γ hcp

usf and γ
hcp
utf

diverge more rapidly under compressive strains and, second,
γ

hcp
isf and γ

hcp
esf /γ

hcp
stf change more strongly as a function of the

strain parameter ε.
The data provided in Figs. 4 and 5 confirms via

Eq. (5b) the expected increase of the hcp phase stability
in Cr10Mn30Fe50Co10 and Cr20Mn20Fe20Co20Ni20 with pres-
sure (negative volumetric strain). One may also estimate the
effect of temperature-induced lattice expansion on the spe-
cial stationary points (positive volumetric strain), e.g., a 3%
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FIG. 5. The GSFE of stationary points on the faulting pathways
as a function of applied strain for three states of superimposed strain
in fcc and hcp Cr10Mn30Fe50Co10.

volume increase is associated with the effect of typically a
few hundred degrees Celsius. Accordingly, the effect of lattice
expansion may lead to both decreasing and increasing planar
fault energies. Furthermore, the shown strain dependencies of
stationary points implies that the GSFE surfaces are the least
corrugated at the largest superimposed tensile strains, i.e.,
when the interplanar distance between fcc or hcp close-packed
planes is the largest. This plausibly suggests that under tensile
strains the electron density across the slip plane is the least
perturbed by alias shear (presumably because of the enlarged
interstitial region), which is consistent with short-ranged in-
terlayer interactions (cf. Sec. III D).

C. Deformation modes

Dislocation slip by complete or extended dislocations,
martensitic transformation, and deformation twinning are
competing plastic deformation modes in many metals and al-
loys. Activated deformation twinning, for instance, can benefit

strain hardening rate, and often plays an important role in im-
proving the macroscopic mechanical properties of materials.

In the following two Secs. III C 1 and III C 2, we examine
competing plastic deformation modes in the considered HEAs
from a microscopic point of view. The plastic deformation
modes operate on the same slip system and involve dislocation
nucleation and glide of leading and trailing Shockley partials
on {111}fcc or (0002)hcp close-packed planes. We evaluate the
competition between the modes using data from the deter-
mined GSFE curves. In Sec. III C 3 we contrast the theoretical
outcome with available experimental observations.

1. Deformation modes on {111}fcc planes

Assume the presence of an ISF created by a leading partial
dislocation with Burger vector bfcc

p1 . The competition between
full slip (SL) and twinning (TW) deformation modes is as-
sociated with the nucleation and glide of a second, leading
or trailing partial [30,71,72]. An emission of a trailing partial
with Burgers vector bfcc

p2 on the original slip plane removes the

stacking fault (SL), whereas emission of bfcc
p1 on an adjacent

plane leads to formation of a two-layer microtwin (TW). SL
and TW are correlated modes as both require a pre-existing
ISF. A third deformation mode, stacking fault (SF), is the
uncorrelated emission of a leading partial bfcc

p1 forming an
isolated ISF (the existing and newly formed stacking faults
are assumed to be decoupled).

The athermal intrinsic energy barriers (IEBs) associated
with SF, SL, and TW modes are γ fcc

usf , γ fcc
usf − γ fcc

isf , and γ fcc
utf −

γ fcc
isf , respectively [30,71,73]. The competition between these

modes on a particular slip plane can be evaluated by com-
paring the projected components of an applied shear stress
necessary to initiate slip in the respective slip directions, i.e.,
the critical resolved nucleation stresses. Equivalently, one can
compare the effective energy barriers (EEBs) for a given di-
rection of applied in-plane shear defined by normalizing the
bare IEBs as [27,74]

γ̄sf(θ ) = γ fcc
usf

cos θ
, (6a)

γ̄tw(θ ) = γ fcc
utf − γ fcc

isf

cos θ
, (6b)

γ̄sl(θ ) = γ fcc
usf − γ fcc

isf

cos(θ − 60◦)
. (6c)

Assuming specifically the (111)fcc glide plane, the angle
θ measures the direction of applied shear clockwise around
the [111]fcc axis, where 0◦ is in the positive [112̄]fcc direction
and 60◦ in the positive [21̄1̄]fcc direction [cf. Fig. 1(a)]. The
interval 0◦ � θ � 60◦ covers all nonequivalent stress direc-
tions due to crystal symmetry. The deformation mode fraction
f quantifies how frequently a deformation mode occurs (i.e.,
the normalized θ domain in which a deformation mode has
the lowest EEB).

Figure 6(a) shows the three EEBs from Eq. (6) for fcc
Cr25Fe25Co25Ni25 and Cr10Mn30Fe50Co10 determined from
the GSFEs without superimposed strain. We note that qual-
itatively similar behavior was found for the three other
considered alloys (not shown). The SF and SL modes are
the predicted activated deformation modes as indicated by
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FIG. 6. The EEBs of Cr25Fe25Co25Ni25 and Cr10Mn30Fe50Co10

in (a) the fcc phase and (b) the hcp phase determined from the GSFEs
without superimposed strain. Solid and dashed lines in (b) refer to γ̄ I

and γ̄ II, respectively. The horizontal bar at the bottom of each panel
indicates which deformation mode is activated as a function of θ (the
total width of a mode normalized by 60◦ equals its deformation mode
fraction).

the colored bars in Fig. 6(a). The TW mode does not occur,
as SF and TW modes have the same θ dependence but SF
has the lower IEB (γ fcc

usf < γ fcc
utf − γ fcc

isf ). A transition point
defined by γ̄sf(θc) = γ̄sl(θc) (θc ∈ [0◦, 60◦]) divides the θ in-
terval into a domain where SF is preferred (γ̄sf < γ̄sl) and
a domain where SL is preferred (γ̄sf > γ̄sl). SF is the dom-
inantly activated deformation mode in all considered alloys
(θc > 30◦, fsf > 0.5) and SL the secondary one. Their rela-
tive frequency varies across the alloys: fsf is the smallest for
Cr25Fe25Co25Ni25 (0.56), followed by Cr20Mn20Fe20Co20Ni20

(0.66), Cr20Mn20Fe30Co20Ni10 (0.77), Cr20Mn20Fe34Co20Ni6

(0.82), and Cr10Mn30Fe50Co10 (0.95). The order is vice versa
for fsl = 1 − fsf.

These findings suggest that many uncorrelated ISFs
occur in the fcc phase during plastic deformation, par-
ticularly during the initial stage and most frequently for
Cr10Mn30Fe50Co10 and Cr20Mn20Fe34Co20Ni6. Besides, glide
of complete afcc/2〈11̄0〉 dislocations occurs. Formation of
uncorrelated ISFs lowers the Gibbs energy of the fcc phase
in these alloys, while their mutual interaction due to increased
stacking fault density may affect the energy dissipation pro-
cess. ISFs can act as nuclei for the martensitic transformation
to the stable hcp phase. Microscopically, a thin hcp martensite
plate can form by correlated nucleation of a leading partial
bfcc

p1 on the next but one plane containing the original ISF
[75]. That is, an fcc lattice with ISF has the stacking of
. . . CABĊḂCABC . . . and after emission of bfcc

p1 (on the under-
lined plane) the stacking becomes . . . CABĊḂĊḂCABC . . .,
doubling the number of close-packed layers with nearest
neighbor hcp stacking (indicated by a dot). The IEB for the
correlated nucleation of a leading partial bfcc

p1 on the next but
one plane containing the original ISF is expected to be rather

FIG. 7. Cumulated deformation mode fractions in (a) the fcc
phase and (b) the hcp phase of Cr20Mn20Fe20Co20Ni20 and
Cr10Mn30Fe50Co10 as a function of strain for three states of super-
imposed strain. Note that not every deformation mode is activated.

similar to that of the SF mode, due to short-ranged interactions
between close-packed layers (cf. discussion in Sec. III D and
related results for the hcp phase, Sec. III C 2). Growth of a hcp
plate can proceed by repeated nucleation of bfcc

p1 partials on
every other (111)fcc plane, where the fcc matrix and hcp plate
assume the Shoji-Nishiyama (SN) orientation relationship of
(0002)hcp ‖ (111)fcc and [112̄0]hcp ‖ [11̄0]fcc.

Turning to the effect of superimposed strain on the com-
petition between SF, SL, and TW modes, Fig. 7(a) shows
the predicted deformation mode fractions fsf, fsl, and ftw in
fcc Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10 as a func-
tion of state of strain and strain level applied. SF remains
the dominant deformation mode in the case of compressive
strains and for both alloys, in which fsf typically increases
with the magnitude of compressive strain. The TW mode re-
places SF for tensile simple strain in both alloys, as well as in
Cr20Mn20Fe20Co20Ni20 under tensile volume-conserving lon-
gitudinal strain. The reason for the transition from SF to TW
is that the nucleation barrier for SF decreases to below that for
TW as the strain level increases. As SF and TW are mutually
exclusive modes in the theory of athermal EEBs, their defor-
mation mode fractions change abruptly as shown in Fig. 7(a).
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Note that in drawing Fig. 7(a) we estimated the strain at
which this transition occurs based on interpolated GSFEs.
Moreover, fsl increases with tensile strain due to the fact that
the IEBs for SF, SL, and TW approximate each other. In both
Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10 fsl exceeds
0.5 at the largest considered tensile simple strains, suggesting
that SL becomes the dominating deformation mode under this
condition.

2. Deformation modes on (0002)hcp planes

The theory of competing deformation modes on (0002)hcp

planes as described by EEBs can be formulated largely analo-
gously to the fcc phase. This is due to crystallographic similar-
ity between {111}fcc and (0002)hcp close-packed planes, which
implies, for instance, that all nonequivalent in-plane shear
stress directions are confined to a θ interval of 60◦. Readers
are, however, reminded that in the case of the hcp lattice the
potential energy change for alias shearing an A plane over a B
plane in a general shear direction differs from that of shearing
a B plane over an A plane in the same direction (similar
considerations apply to when the hcp stacking sequence is as-
sumed to be . . . AC . . . or . . . BC . . .). This is in contrast to the
fcc lattice, where alias shearing an A plane over a C plane, a B
plane over an A plane, or a C plane over a B plane yields the
same potential energy surface for the same direction of alias
shear. Readers may convince themselves of this difference
with the help of Fig. 1(a), e.g., by comparing the positions
resulting from translating A, B, or C positions in the direction
of bfcc

p1 or bhcp
p1 . As elaborated below, a consequence of the hcp

stacking is that there is an equivalent faulting pathway to each
of the considered sequential faulting pathways. There are thus
two EEBs for each considered deformation mode [76].

First note that the currently considered faulting pathways
[Eq. (3)] translate between the three possible atomic positions
in a (0002)hcp plane by displacement vectors of Shockley type.
Displacements that would result in two or more consecutive
stacking planes occupying the same position (e.g., B followed
by B) increase the potential energy strongly and are not per-
mitted. Alias shearing is thus always into the unoccupied
position, e.g., shearing an A plane over a B plane into the
C position. The displacement vectors of Shockley type to
accomplish this belong to one out of two disjoint sets of dis-
placement vectors. These sets are referred to as I and II in the
following, where I = {bhcp

p1 , ahcp/3[1̄010]hcp, ahcp/3[011̄0]hcp}
and II = {bhcp

p2 , ahcp/3[1̄100]hcp, ahcp/3[101̄0]hcp}.
Due to crystal symmetry of the hcp structure, there are

two different routes to create the same planar stacking fault
by sequential faulting. Both routes are equivalent and merely
involve different directions of shear depending on stacking
plane sheared. Consider an example: An ISF can be formed
by shearing an A plane over a B plane by bhcp

p1 or, equivalently,

by shearing a B plane over an A plane by bhcp
p2 . The IEBs

are the same, but the two routes are in mutual competition
as their activation is controlled by the projected components
of an applied shear stress necessary to initiate slip along bhcp

p1

or bhcp
p2 . Consequently, there are two EEBs for the SF mode.

Analogous arguments apply to all displacement vectors in I
and II and all further stages (η � 1) on the sequential faulting

pathways. It follows that there are two EEBs for each plastic
deformation mode.

The presently determined GSFEs allow us to distinguish
between four deformation modes on (0002)hcp planes: SF, SL,
nano-fcc plate (NP), and twinlike fault (TF). In terms of our
present convention (Sec. II A), SF describes the uncorrelated
emission of a leading partial bhcp

p1 and formation of a new, iso-
lated ISF. The SL, NP, and TF modes describe the correlated
emission of a second leading or trailing partial and require a
pre-existing ISF. The SL and TF modes are, respectively, the
emission of a bhcp

p2 partial on the original slip plane removing
the ISF and on an adjacent plane forming an STF. NP is
accomplished by emission of bhcp

p1 on the next but one plane
containing the original ISF. The IEBs associated with SF, SL,
TF, and NP modes are γ

hcp
usf , γ

hcp
usf − γ

hcp
isf , γ

hcp
utf − γ

hcp
isf , and

γ
hcp
upf − γ

hcp
isf , respectively.

The EEBs adapted to these four deformation modes and
considering equivalency of faulting pathways may be written
in concise form as

γ̄ X
sf (θ ) = γ

hcp
usf

cos(θ − δXII60◦)
, (7a)

γ̄ X
np(θ ) =

γ
hcp
upf − γ

hcp
isf

cos(θ − δXII60◦)
, (7b)

γ̄ X
sl (θ ) = γ

hcp
usf − γ

hcp
isf

cos(θ − δXI60◦)
, (7c)

γ̄ X
tf (θ ) = γ

hcp
utf − γ

hcp
isf

cos(θ − δXI60◦)
, (7d)

where X is either I or II. Angle θ measures the direction of
applied in-plane shear clockwise around the [0001]hcp axis,
where 0◦ is in the positive [11̄00]hcp direction and 60◦ in the
positive [01̄10]hcp direction [cf. Fig. 1(a)]. γ̄ I and γ̄ II differ by
a 60◦ phase factor depending on whether progression along
the faulting pathway or its equivalent involves shear in the
direction of bhcp

p1 or bhcp
p2 .

Figure 6(b) shows the EEBs from Eq. (7) for hcp
Cr25Fe25Co25Ni25 and Cr10Mn30Fe50Co10 determined from
the GSFEs without superimposed strain. The solid and dashed
lines distinguish between the γ̄ I’s and γ̄ II’s, respectively. The
activated deformation mode as a function of θ is indicated by
a colored bar.

In Cr25Fe25Co25Ni25, the NP and SL modes are activated
corresponding to division into three θ domains: In a first
interval at low angles of θ � 20◦ and a second interval at
high angles of θ � 40◦ NP is activated. The former interval
is due to γ̄ I

np and the latter interval due to γ̄ II
np. The SL mode

occurs at intermediate θ values due to γ̄ I
sl in 20◦ � θ � 30◦

and γ̄ II
sl in 30◦ � θ � 40◦. The total deformation mode frac-

tions are fnp = 0.67 and fsl = 0.33. In Cr10Mn30Fe50Co10

only SL is activated as the IEB for SL lowers relative to that
of NP so that γ̄ I/II

sl (θ ) < γ̄ I/II
np (θ ) for all θ . The three other

considered HEAs exhibit qualitatively similar behavior with
intermediate deformation mode fractions, i.e., fsl is 0.64 in
Cr20Mn20Fe20Co20Ni20, 0.85 in Cr20Mn20Fe30Co20Ni10, and
0.91 in Cr20Mn20Fe34Co20Ni6 (NP mode fractions are fnp =
1 − fsl). It should be noted that as both the NP and SL modes
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require a pre-existing ISF, overcoming the activation barrier
for a leading partial to form an ISF is the limiting step for the
activation of NP and SL modes.

These findings suggest that basal slip by complete
ahcp/3[12̄10] dislocations is a primary carrier of plastic de-
formation on (0002)hcp slip planes. The activation of NP
as another primary deformation mode in all the alloys but
Cr10Mn30Fe50Co10 suggests that ISFs formed in the hcp
matrix grow into thin metastable fcc plates by successive nu-
cleation processes, in which the hcp phase and the induced fcc
plates assume the SN orientation relationship. Growth of the
fcc plates by thickening would raise the Gibbs energy per unit
area by an amount that approximately linearly increases with
plate thickness, suggesting that such plates remain thin. Such
stress-induced transformation from the stable hcp phase to a
lamellar microstructure containing metastable fcc plates and
SN orientation relationship were observed in Hf and Zr during
a cold-rolling process (with plate thickness up to several tenth
nm) [43,44] and suggested for some of the considered HEAs,
see below.

We turn to the effect of superimposed strain on the compe-
tition between SF, NP, SL, and TF modes. Figure 7(b) shows
the predicted deformation mode fractions associated with the
activated deformation modes in hcp Cr20Mn20Fe20Co20Ni20

and Cr10Mn30Fe50Co10. SL and NP are the two activated
deformation modes, but their deformation mode fractions
sensitively depend on strain level. fnp decreases with the mag-
nitude of compressive strain and increases with larger tensile
strain level applied in the three states of strain. By comparison
with Figs. 4 and 5, one realizes that fnp correlates closely with
the relative stability of the hcp phase if measured by γ

hcp
spf (or

γ
hcp
isf ), i.e., a lower γ

hcp
spf goes in hand with a larger fnp.

3. Comparison to experimentally observed deformation
mechanisms

We begin with summarizing the experimentally observed
deformation mechanisms for Cr10Mn30Fe50Co10 HEA. Ho-
mogenized and as-quenched samples revealed a composition-
ally equivalent two-phase alloy composed of an fcc matrix,
containing a large number of initial stacking faults and hcp
laminate layers [5,11]. Room-temperature tensile deformation
activated multiple plastic deformation mechanisms: In the fcc
phase martensitic transformation to the hcp phase occurred,
new stacking faults were formed (deformation faulting), and
dislocation slip was activated. Deformation twinning was not
observed. Plasticity in the hcp phase contributed to strain
accommodation with dislocation slip and deformation twin-
ning as well as formation of stacking faults. The types of
active dislocations in the fcc phase were not reported, but
the observation of stacking faults is consistent with splitting
(part) of afcc/2〈11̄0〉 dislocations into afcc/6〈112̄〉 partials.
Lu et al. [40] added that hcp Cr10Mn30Fe50Co10 blocks con-
tained fcc nanolaminates along (0002)hcp habit planes. The
experimental evidence indicated that these fcc nanolaminates
formed due to a reverse, mechanically induced martensitic
transformation from the hcp phase to the fcc phase inside
the hcp blocks. While the mechanism of reverse martensitic
transformation was not further investigated, the authors sug-
gested that it occurred via nucleation and glide of Shockley

partials on every second (0002)hcp plane, similar to the mech-
anisms described above. Focusing on active dislocations in
the hcp phase of Cr10Mn30Fe50Co10, Bu et al. observed 〈a〉,
〈c〉, and 〈c + a〉 type dislocations [77]. 〈a〉 type dislocations
were reported to be complete lattice dislocations Bu et al. did
not report on splitting of complete ahcp/3〈12̄10〉 dislocations
into ahcp/3〈1̄100〉 partials, but the mechanism suggested to
accomplish the hcp to fcc transformation would require that
dissociation on basal planes occurs.

Our present theoretical results and these previous experi-
mental findings for Cr10Mn30Fe50Co10 are consistent in that
deformation faulting, fcc to hcp martensitic transformation,
and dislocation slip occur as primary deformation modes in
the metastable fcc phase, whereas glide on (0002)hcp planes
is by complete lattice dislocations. Our results predict that
the reverse hcp to fcc martensitic transformation could take
place in a tensile-strained environment, which may occur as
a result of locally high stress concentrations. It should be
noted that the DFT overbinding error in Cr10Mn30Fe50Co10

HEAs underestimates the experimental lattice parameters and
atomic volumes; see Ref. [66] and Appendix B. Using the
experimental volume of the hcp phase as zero strain reference
is equivalent to applying a large positive volumetric strain
to the present theoretical equilibrium parameters. The trends
displayed in Fig. 7(b) suggest that such condition favors the
activation of the reverse hcp to fcc martensitic transformation.

We turn to Cr20Mn20Fe34Co20Ni6 HEA. The
phase composition of homogenized and as-quenched
Cr20Mn20Fe34Co20Ni6 dual-phase alloy was mostly fcc
(94 vol.% fraction) with an initially high density of
stacking faults and a minor fraction of hcp (balance) [11].
Deformation-induced displacive transformation from the
fcc phase to the hcp phase and dislocation plasticity were
reported as primary deformation modes at room temperature,
whereas deformation twinning was not observed. The types
of active dislocations were not reported, but the existence of
stacking faults in the fcc phase is consistent with splitting
(part) of complete afcc/2〈11̄0〉 dislocations into afcc/6〈112̄〉
Shockley partials. As stacking faults observed in the retained
fcc phase showed similar crystallographic orientation as the
deformation induced hcp laminates, it was suggested that the
fcc to hcp martensitic transformation proceeded by nucleation
and glide of Shockley partials on every other {111}fcc plane.
These experimental findings and our present theoretical
results for Cr20Mn20Fe34Co20Ni6 are consistent in that
deformation faulting, fcc to hcp martensitic transformation,
and dislocation slip occur as primary deformation modes in
the metastable fcc phase.

We continue with Cr20Mn20Fe20Co20Ni20 HEA. The
Cr20Mn20Fe20Co20Ni20 alloy in the single fcc phase exhibited
exclusively planar dislocation glide of complete afcc/2〈11̄0〉
lattice dislocations at small tensile strains below ≈2% [70].
In addition to complete lattice dislocations, stacking faults
were observed after small plastic deformations and attributed
to splitting into Shockley partials. Deformation twinning at
RT was observed close to fracture strain (above 20% true
tensile strain), but it frequently occurred at much lower strains
(above about 7% true tensile strain) when deformed at 77 K
[70,78]. High-pressure torsion of Cr20Mn20Fe20Co20Ni20

samples at RT exhibited deformation twins, but not at 77 K
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[10], and the hcp to fcc transformation was not observed
at RT.

These experimental findings and our present theoretical
results for Cr20Mn20Fe20Co20Ni20 are consistent in that full
dislocation slip, stacking faults, and fcc to hcp martensitic
transformation occur as primary deformation modes in the
fcc phase. The experimental results indicate that deforma-
tion twinning is also a primary mode of deformation. Our
theoretical results predict deformation twinning only in a
tensile-strained environment, which may occur as a result of
locally high stress concentrations. DFT again underestimates
the atomic volume of fcc Cr20Mn20Fe20Co20Ni20 HEAs,
Ref. [66] and Appendix B. The trends in Fig. 7(a) suggest
that the TW mode can be activated in less tensile-strained
environments relative to using the experimental volume as
zero strain reference.

We turn to Cr25Fe25Co25Ni25 HEA. The initial phase com-
position of Cr25Fe25Co25Ni25 alloy was a pure fcc phase
[79]. Extensive dislocation activity and a small amount of
deformation twinning occurred when deformed at RT, while
deformation twinning was extensive at 4.2 K and 77 K. The
density of stacking faults increases with lower deformation
temperature. Nanometer-thin hcp lamellae were seen after
plastic deformation at 77 K, but the amount of hcp phase
formed was insignificant to exhibit any obvious dislocation
activity. The fcc phase and induced hcp phase possessed the
SN orientation relationship, and the hcp lamellae were sug-
gested to form via the glide of Shockley partial dislocations
on every other {111}fcc plane.

These experimental findings and our present theoretical
results for Cr25Fe25Co25Ni25 are consistent in that dislocation
slip and fcc to hcp martensitic transformation occur as pri-
mary deformation modes in the fcc phase. The experimental
results indicate that deformation twinning is also a primary
mode of deformation, whereas our theoretical results do not
predict deformation twinning. Figure 6(a) shows that γ̄sf and
γ̄tw are energetically very close in fcc Cr25Fe25Co25Ni25 in
the absence of superimposed strain. Although GSFEs with
superimposed strain were not determined for this alloy, tensile
strain is expected to alter the competition between SF and TW
in favor of TW, similar to the trends displayed in Fig. 7(a) for
Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10. Finally, the
microstructural evolution of Cr20Mn20Fe30Co20Ni10 has not
been reported yet, to the best of our knowledge.

D. Universal scaling rule

In this section we neglect the superscripts ‘fcc’ and ‘hcp’
as we either focus on the totality of planar fault energies or
they are obvious from context. Most theoretically examined
transition and simple metals in their equilibrium fcc phase
satisfy an approximate scaling rule between γusf, γisf, and γutf

[80,81], viz.

γutf

γusf

 1

2

γisf

γusf
+ 1. (8)

In Fig. 8(a) we examine this rule for the fcc and hcp phases
of Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10 using the
totality of data points determined at equilibrium and un-
der strain. As is evident, the plot suggests a strong positive

FIG. 8. (a) Scaling plot of stable and unstable fault energies of
the GSFE for Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10 in their
fcc and hcp phases at equilibrium and under strain. The dashed line
indicates the universal scaling rule [Eq. (8)] proposed for the absence
of superimposed strain. (b) Analogous to (a) but for the zero-strain
derivatives, where γ ′ is short for dγ /dε|0. The dashed line indicates
the universal scaling rule derived from Eq. (9). The data point marked
by ∗ was scaled by a factor of 0.5 for displaying purposes.

correlation between γutf

γusf
and γisf

γusf
with coefficient of determi-

nation R2 equal to 0.92. The universal scaling rule is closely
fulfilled for both positive and negative ISF energies. Equa-
tion (8) implies that the fault energy barrier experienced by
the twinning partial weakly interacts with the pre-existing ISF
due to short-ranged interactions between close-packed layers,
which is generally consistent with the notion of short-ranged
d bonding in transition metals and alloys.

It should be noted that the similar magnitudes of γupf − γisf

and γusf in the hcp phase, as evident from Figs. 3(b) and 6,
further suggests short-ranged interlayer interactions between
(0002)hcp planes. Compliance with the universal scaling rule
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FIG. 9. Inverse relationship between γ
hcp
isf and (c/a)hcp ratio in

the hcp phase. The inset shows both quantities plotted as a function
of the average number of 3d electrons. The line guides the eye.

thus explains several findings from Sec. III B. First, γusf is
approximately equal to γutf when γisf ≈ 0 mJ/m2, i.e., at the
largest considered tensile strains ε. Second, γusf and γutf are
dissimilar when the magnitude of γisf is large, i.e., at the
largest considered compressive strains. Third, for positive ex-
cept the lowest γisf, γusf is smaller than γutf, and vice versa for
negative γisf.

The strain derivatives of planar fault energies evaluated at
zero strain are the simplest and perhaps the most important
measures of how sensitive planar fault energies are to small
strains. Besides, they offer a convenient way to compare the
effect of strain and strain conditions in different materials. We
found that the strain derivatives of γisf, γusf, and γutf evaluated
at zero strain closely satisfy the following relation,

dγutf

dε

∣
∣∣∣
0


 dγusf

dε

∣
∣∣∣
0

+ 1

2

dγisf

dε

∣
∣∣∣
0

. (9)

The associated scaling plot [fault energies in Eq. (8) replaced
by their strain derivatives] is shown in Fig. 8(b). The totality
of hcp and fcc data points fitted to the scaling plot has an
R2 coefficient of 0.83. The relation in Eq. (9) explains the
result from Sec. III B that the zero-strain derivative of γusf

is larger than that of γutf when dγisf/dε|0 > 0, while the
zero-strain derivative of γusf is smaller than that of γutf when
dγisf/dε|0 < 0. The ratio of two planar fault energy deriva-
tives with respect to strain is thus suggested to serve as
characteristic material property.

E. Relationship between γ
hcp
isf and (c/a)hcp and possible

implication for nonbasal slip

For the five HEAs investigated here, γ
hcp
isf and (c/a)hcp

have an approximately inverse linear relationship as shown
in Fig. 9. That is, the larger (c/a)hcp the smaller is γ

hcp
isf . We

previously noted [66] that the theoretical (c/a)hcp ratios of
these alloys are consistent with those determined experimen-
tally, although the calculations systematically underestimate
the experimental ratios (c/a)exp

hcp by 1.2–1.4.

The relationship between γ
hcp
isf and (c/a)hcp can largely be

understood by one-electron canonical band theory [82,83]. We
first verified that γ

hcp
isf A ≈ 2	E∗

fcc-hcp holds, where 	E∗
fcc-hcp is

defined analogously to Eq. (5b). The canonical band theory for
transition metals gives the structure dependence and structural
energy dependence of the d-band term neglecting hybridiza-
tion effects with s and p valence bands. Both (c/a)hcp and
the structural energy difference 	E∗

fcc-hcp are dominantly cor-
related to the one-electron d-band energy and therefore to
the d-band occupation [84,85]. Furthermore, canonical band
theory predicts a regular variation of both parameters with
canonical d-band filling, wherein the (c/a)hcp ratio decreases
(increases) with respect to the ideal ratio (

√
8/3) in the relative

stability range of the hcp (fcc) phase. A qualitatively similar
result was obtained by Ducastelle and Cyrot-Lackmann using
the moment theory of the site-resolved electronic density of
states [86].

The canonical inverse relationship between (c/a)hcp and
relative hcp-fcc phase stability remains essentially valid in
full DFT calculations, e.g., as corroborated in Refs. [84,85]
for the entire transition metal family, as well as the present
alloys. Element-specific features of the electronic structure
and particularly hybridization effects are, however, responsi-
ble that a sign change of 	E∗

fcc-hcp does not coincide exactly
with deviations from the ideal (c/a)hcp ratio.

The inset of Fig. 9 shows that γ
hcp
isf decreases with 3d-band

filling for the five considered alloys, while (c/a)hcp increases.
Here, the band filling is the compositional average over the
alloy components in their alloyed phase. The approximately
linear trends of γ

hcp
isf and (c/a)hcp with 3d-band filling are

incidental and originate from the particular band filling values.
These curves suggests that band filling may serve as a simple
parameter to tailor (c/a)hcp and γ

hcp
isf in the hcp solid solution

phase of HEAs consisting of Cr, Mn, Fe, Co, and Ni. The more
easily accessible VEC is nearly linearly related to the d-band
filling, implying that the VEC may be employed in lieu of the
band filling to tailor these quantities.

The compositional trend of (c/a)hcp shown in Fig. 9 can
be approximated using theoretical structure information for
the constituent elements in their hcp phases. We determined
for paramagnetic Cr, Ni, Co, Mn, and Fe a (c/a)hcp of 1.763,
1.638, 1.620, 1.622, and 1.587, respectively. From these data,
the estimated (c/a)hcp ratios (linear mixture rule) and calcu-
lated (c/a)hcp ratios for the HEAs agree within 2.5%. This
suggests that (c/a)hcp for the HEAs scales with the ratios of
their constituents elements.

Geometrical aspects, in particular the (c/a)hcp ratio, and
energetic aspects, such as the stacking fault energy, have been
identified as important intrinsic factors to select basal and
nonbasal dislocation glide systems in hcp metals and alloys
[17,77,87]. In general, a regime is sought after where both
〈a〉 and 〈c + a〉 slip can be promoted to overcome intrinsic
brittleness and texture sensitivity typical to hcp elements and
alloys.

Multiple dislocation modes (〈a〉, 〈c〉, and 〈c + a〉 slip) and
frequent cross slip were reported to be active in the hcp phase
of Cr10Mn30Fe50Co10 [77], whose experimental (c/a)exp

hcp ratio
is 1.616. Metals with very similar ratio, i.e., Mg, Co, and
Re [(c/a)exp

hcp of 1.624, 1.621, and 1.615, respectively], show
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predominantly basal 〈a〉 dislocation glide at RT [17]. Thus, the
geometrical (c/a)hcp ratio alone does not conclusively indi-
cate the predominantly activated crystallographic deformation
mode in the hcp phase of these materials.

Interestingly, the values of the ISF energies of
Cr10Mn30Fe50Co10 and those of the elements Mg, Co,
and Re differ significantly. Referring to theoretical literature
values, Mg has low γ

hcp
isf (∼26–36 mJ/m2, cf. Appendix

A), while Co (∼60–170 mJ/m2 [51]) and Re (∼206 mJ/m2

[88]) have intermediate values. For Cr10Mn30Fe50Co10, we
found a high value of γ

hcp
isf = 420 mJ/m2. This large spread

in ISF energy is expected to result in different dislocation
core structures and cross-slip behavior. As mentioned above,
perfect basal dislocations can dissociate into two Shockley
partials bounding an ISF, wherein the width of the stacking
fault ribbon is inversely correlated to the value of γ

hcp
isf .

Constriction of this ribbon is necessary for cross slip to
operate, which may be aided by increased stacking fault
energy. The frequent cross slip observed in the hcp phase
of Cr10Mn30Fe50Co10 thus appears to be consistent with its
high ISF energy. Further investigations of GSFEs on prism
and pyramidal planes are needed to understand the potential
activity of prism 〈a〉 and 〈c + a〉 dislocations.

IV. SUMMARY AND CONCLUSIONS

We presented a DFT investigation of GSFEs in five poly-
morphic, four- and five-component HEAs composed of Cr,
Mn, Fe, Co, and Ni in their compositionally equivalent fcc
and hcp phases. Specifically, we considered configuration-
averaged GSFEs along sequential faulting pathways as-
sociated with dislocation slip on {111}fcc and (0002)hcp

close-packed planes.
We dedicated a detailed study to the influence of vol-

umetric and longitudinal superimposed strains (up to a
strain parameter of ε = ±0.1) on the stable and unsta-
ble stacking fault energies of Cr20Mn20Fe20Co20Ni20 and
Cr10Mn30Fe50Co10. We demonstrated that already the appli-
cation of mild strains has significant effects on the planar
fault energies in both close-packed phases. Nonmonotonic
dependencies on strain occurred in the fcc phases, whereas
only monotonic trends appeared in the hcp phase. We showed
that the stacking fault energies γisf, γusf, and γutf in these
two HEAs and both phases are closely related in how they
change with superimposed lattice strains. The ratio of two of
these energies can thus serve as characteristic material prop-
erty (universal scaling relation). We found an approximately
inverse linear relationship between γ

hcp
isf and (c/a)hcp for the

presently considered alloys and explained it via band theory.
We discussed the implications of our results for the fcc

versus hcp phase stability and predicted activated plastic
deformation modes for all the investigated alloys in the ab-
sence of lattice strain, as well as the effect of superimposed
strain for Cr20Mn20Fe20Co20Ni20 and Cr10Mn30Fe50Co10.
Our predictions were compared with experimentally observed
deformation mechanisms.

Our results suggest that the resistance to partial dislocation
emission, as measured by IEBs, and the relative frequency

of active plastic deformation modes in strained lattice
environments can be starkly different from unstrained coun-
terparts. Localized, highly strained environments can, for
instance, occur in grain boundaries of nanocrystalline mate-
rials as a result of anomalous local stress intensities including
hydrostatic pressure and deviatoric stresses [35].

While understanding the implications of how the GSFE
depends on strain or stress is important in the context of metals
and alloys subject to high pressure, during severe plastic de-
formation or high strain-rate deformation, dislocation activity
in nanocrystalline systems, etc., the obtained results are also
useful in the mechanical analysis of dislocation nucleation
from a crack-tip or grain boundary in regard to accounting for
tension-shear coupling [89]. The results of this study are fur-
ther valuable for the parametrization of empirical interatomic
potentials used to simulate atomistic dislocation dynamics at
large stresses, for which fitting to planar fault energies versus
strain/stress data is required.
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TABLE I. Special stationary points of the GSFE (in mJ/m2) for
fcc Cu and hcp Mg obtained in this work, other theoretical results,
and experimental values (distinguished by Expt.).

γ fcc
usf γ fcc

isf γ fcc
utf γ fcc

esf

This work 199.9 47.1 227.4 52.9
Ref. [92] 181.0 41.0 200.0
Ref. [93] 210.0 49.0
Ref. [94] 180.0 210.0

Cu Ref. [36] 41.0
Ref. [41] 39.0
Expt. [95] 45
Expt. [96] 50

γ
hcp
usf γ

hcp
isf γ

hcp
utf γ

hcp
stf

This work 97.2 29.1 115.9 36.4
Ref. [13] 93.6 33.9 114.5 41.4
Ref. [97] 92.0 36.0 111.0 39.0
Ref. [98] 92.0 33.0 110.0 42.0

Mg Ref. [99] 94.9 26.1 111.2 37.1
Ref. [100] 30.0 40.0
Expt. [101] >50
Expt. [102] 60–150
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TABLE II. Zero-temperature equilibrium lattice parameters (in Å) for HEAs in their fcc and hcp phases from present theory in comparison
with room temperature experimental data. The error of the theoretical values relative to the experimental data (arithmetic average in the case
of multiple experimental data) is stated in parentheses, where applicable.

fcc phase hcp phase

theory experiment theory experiment

HEA afcc (	afcc) afcc ahcp (	ahcp) chcp (	chcp) ahcp chcp

Cr10Mn30Fe50Co10 3.503 (−0.029) 3.608 [77] 2.478 (−0.026) 3.948 (−0.039) 2.544 [77] 4.110 [77]
Cr20Mn20Fe34Co20Ni6 3.517 2.487 3.979
Cr20Mn20Fe30Co20Ni10 3.519 2.488 3.985
Cr20Mn20Fe20Co20Ni20 3.529 (−0.019) 3.597 [12] 2.493 (−0.018) 4.005 (−0.033) 2.544(1) [12] 4.142(3) [12]

3.597 [103] 2.535(2) [13] 4.138(1) [13]
Cr25Fe25Co25Ni25 3.529 (−0.013) 3.575 [14] 2.497 (−0.010) 4.025 (−0.022) 2.522 [14] 4.118 [14]

3.574 [103]

APPENDIX A: GENERALIZED STACKING FAULT
ENERGIES OF PURE FCC CU AND HCP MG

To access the accuracy of the EMTO method for GSFE
calculations in the fcc and hcp structures, we determined the
fault energies of the special stationary points encountered on
the faulting pathways introduced in Sec. II A. Pure fcc Cu and
hcp Mg were selected because a large amount of literature
data is available for comparison.

The calculated equilibrium lattice parameter of fcc Cu is
3.638 Å. For hcp Mg, we determined ahcp = 3.203 Å and
and chcp = 5.205 Å. These values are in close agreement with
available experimental data [90,91] and previous theoretical
results [36,38].

The calculated planar fault energies for Cu and Mg along
with other theoretical results and RT experimental data for
γ fcc

isf are listed in Table I. There, we do not discriminate be-
tween relaxed and unrelaxed planar fault energies, since those

theoretical studies reported relaxation effects to be small. For
both metals, one can see that our results are in close agreement
with the theoretical literature data. γisf for Cu is close to the ex-
perimental values, whereas all theoretical ISF energies for hcp
Mg are smaller than the experimental data. Overall, this as-
sessment indicates that the presently employed method gives
an accurate description for the GSFE in fcc and hcp systems.

APPENDIX B: LATTICE PARAMETERS

Table II presents the employed theoretical equilibrium lat-
tice parameters for the considered HEAs in their fcc and hcp
phases from present theory in comparison with room temper-
ature experimental data. Where applicable we also give the
error of present theoretical values with respect to experimental
lattice parameters. For further discussions we refer the reader
to Ref. [66].
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