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Efficient numerical method for evaluating normal and anomalous time-domain
equilibrium Green’s functions in inhomogeneous systems
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In this work we develop EPOCH (equilibrium propagator by orthogonal polynomial chain), a computationally
efficient method to calculate the time-dependent equilibrium Green’s functions, including the anomalous Green’s
functions of superconductors, to capture the time evolution in large inhomogeneous systems. The EPOCH
method generalizes the Chebyshev wave-packet propagation method from quantum chemistry and efficiently
incorporates the Fermi-Dirac statistics that is needed for equilibrium quantum condensed matter systems. The
computational cost of EPOCH scales only linearly in the system degrees of freedom, generating an extremely
efficient algorithm also for very large systems. We demonstrate the power of the EPOCH method by calculating
the time evolution of an excitation near a superconductor—normal metal interface in two and three dimensions,
capturing transmission as well as normal and Andreev reflections.
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I. INTRODUCTION

The study of time evolution in quantum mechanical
systems provides fundamental insights into the system’s
underlying structure, allowing for the development of applica-
tions harnessing dynamical quantum effects, with prominent
examples in quantum information processing [1-4]. Notably,
even quantum systems without any external time-dependent
drive usually present a highly complex dynamical behavior,
exhibited in its time-dependent correlation functions without
the need to go out of equilibrium. The dynamical behaviors
range from the transmission and reflectance across interfaces
to more general quantum transport properties, including also
quantum electronics with coherent single-electron excitations
in solids [1,5-7]. In superconductors, another remarkable
time-dependent phenomenon occurs when electrons pair at
unequal times, enabling odd-frequency pairing, present in, for
example, superconductor-ferromagnetic and multiband sys-
tems [8—14]. Moreover, through the fluctuation-dissipation
theorem, equilibrium correlations even predict the response
to time-dependent external perturbations [15-17].

At the same time, many systems with highly nontrivial
quantum dynamics also lack translation invariance, such as
those dominated by the presence of junctions, interfaces,
edges, or disorder. Therefore, these systems also see a
dramatic growth in the number of degrees of freedom that
must be treated simultaneously. This fact makes the use
of analytical methods, as well as brute force eigenvalue
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diagonalization, completely unrealistic, even for systems with
a noninteracting quasiparticle description and in equilibrium.
Faced by this very challenge, we seek a method that efficiently
and accurately computes time-domain properties with a low
computational cost even as the number of degrees of freedom
proliferate.

To extract interesting dynamical properties, the correct ob-
jects are usually the time-domain Green’s functions, encoding
the physical observables of any system. Fortunately, for any
generic noninteracting system, all higher-order Green’s func-
tions reduce to the computation of the single-particle Green’s
functions by virtue of Wick’s theorem [17]. The Green’s
functions are also by themselves inherently interesting ob-
jects, representing the direct physical probability amplitude
of finding a particle at a point in space-time (x, ,), after an
earlier insertion at (xp, #;). In superconductors, where particle
number is not conserved, the inserted particle may later be
found as a hole, and the amplitude for this conversion process
is properly handled by the anomalous Green’s functions. Here,
as an example, the unequal time anomalous Green’s functions
may display exotic odd-frequency dynamical pairing [12,13],
and are therefore also of large interest.

In terms of evaluating any physical observables in the time
domain, we first note that, for pure quantum states, the time
domain naturally lends itself to a step-by-step propagation in
time without the need of any costly diagonalization. Simply
because the Hamiltonian H is precisely the time-evolution
generator in any quantum system. Therefore, the time de-
pendence of a pure quantum state, i.e., single wave-packet
propagation, is directly achievable with only matrix-vector
multiplication; for instance, by Taylor expanding the uni-
tary time-evolution operator U(t) = e !, by naive finite
differences of the Schrodinger differential equation, or by
somewhat more involved algorithms [18].

The single wave-packet propagation methods are vastly
improved, both in terms of accuracy and efficiency
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(exponential over power-law convergence), by the Cheby-
shev method of time evolution [19], a method that is already
firmly established in quantum chemistry and molecular
dynamics [20-23]. The basis of the Chebyshev time-evolution
method is the expansion of the evolution operator in terms
of Bessel functions J,(t) and the Chebyshev polynomials
T,(x)as U(t) = Yo (2 = 8,0)(—iY' S ()T, (). where A =
H/|H| and 7 = ||H||¢ to fit the standard domain of T, (x).
The resulting series has the advantageous property that it
converges rapidly because for 7 < n, the Bessel J,(f) is ex-
ponentially suppressed. Therefore, before a given finite time
f, it is only the first n terms that contribute significantly.
A second underpinning of the method’s efficiency is that
at each expansion order, the next order is obtained via a
recursive relationship connecting the 7, (H) polynomials of
neighboring degree. This limits the computational cost to just
one additional (sparse) multiplication by the Hamiltonian H
per expansion order. As a result, the Chebyshev wave-packet
propagation method achieves both accuracy and stability with
a low computational cost.

In a broader context, the efficiency of the Chebyshev
wave-packet propagation method relates directly to the advan-
tageous properties of the underlying Chebyshev polynomials
T,(x), which, like all orthogonal polynomials, form a com-
plete basis set. It is therefore not surprising that orthogonal
polynomials have not just been found to be useful for wave-
function propagation, but also have a long history as a
versatile technique in approximation theory [24] and also
applied to electronic structure methods, where they have de-
veloped into a prominent linear-scaling method known as the
kernel polynomial method (KPM) [25,26]. This method has
notably been used to compute spectral functions and expecta-
tion values in very large systems [27,28] and underpin several
new software packages [29-32]. Despite this, it was only re-
cently that KPM was extended to also tackle superconducting
systems [33,34], but still not in the time domain, which is
necessary when studying, for instance, time evolution.

While the Chebyshev wave-packet propagation method has
already been highly successful to evaluate observables in the
time domain, a fundamental limitation for condensed matter
system is that it is only applicable to pure quantum states, i.e.,
single electrons, and not to many electron states, i.e., mixed
states. Thus, it cannot evaluate, for instance, thermodynamic
expectation values, which are central concepts in condensed
matter. Therefore, in order to achieve the same efficiency and
accuracy as the Chebyshev wave-packet propagation method
also in condensed matter systems, we need to incorporate
Fermi-Dirac statistics alongside the time evolution.

In this work, we develop the equilibrium propagator by or-
thogonal polynomial chain, or EPOCH, method, to efficiently
calculate the time-domain equilibrium Green’s functions for
both normal and anomalous correlations in generic quan-
tum condensed matter systems. Generalizing the Chebyshev
wave-packet propagation method from quantum chemistry,
the EPOCH method efficiently incorporates the Fermi-Dirac

I'The expansion follows from the well-known Jacobi-Anger expan-
sion e % = 3% 'i"(2 — §,0)J,(z) cos(nf) and the definition of the
Chebyshev polynomials 7,,(x) = cos[n arccos(x)].

statistics that is needed for the equilibrium physics of quantum
condensed matter systems.

To derive the EPOCH method, we first strategically depart
from the Chebyshev method and instead use the Legendre
polynomials since they in contrast allow us to derive analyt-
ical expressions for key quantities in the time domain. This
changes our reference starting point, from the expansion of the
evolution operator U (¢) in terms of the Chebyshev polynomi-
als 7,,(x) to an analogous expansion in terms of the Legendre
polynomials P, (x) [see [22], Eq. (7.12)]:

Ut) =Y (=)"Q@n+ 1)juD)P.(H), ey

n=0

where j,(7) are the spherical Bessel functions.” Next, in order
to move beyond the wave-packet propagation and towards a
Green’s function formalism, we in Sec. II first review the stan-
dard Bogoliubov—de Gennes (BdG) formalism for a generic
time-independent Hamiltonian H with an emphasis on the
time domain [17,35] since this formalism is applicable to
systems both with and without superconductivity. Thereafter,
we show how, at any inverse temperature 8 = 1/T, the ther-
mal equilibrium Green’s functions [the lesser G=<(¢), greater
G~ (1), and anomalous Green’s functions F(¢)] are all found
as the matrix elements of a quantity which we refer to as the
equilibrium propagator (EP) given by Lg(H, t) = e ' Fg(H),
with Fg(H ) being the Fermi-Dirac function. The key compo-
nent of the EPOCH method then boils down to a general series
expansion of the EP, which we derive in Sec. III. When specif-
ically applied to the Legendre polynomials P,(x) in Sec. IV,
we arrive at

_1(G=@)  F@)
Lﬂ(H, t) - 7(?10) [g>(t)]*>
1 - anl » oz C N ~
=5 ;(2;1 + D) [ja® + if§ O], (@)

where H = H/||H|| and f = ||H || to fit the standard domain
of P,(x). This expansion can be thought of as a generalization
to many-body fermionic systems of the Chebyshev wave-
packet propagation method already widespread in quantum
chemistry [19-23] or, likewise, as the series expansion for
the time-evolution operator in Eq. (1). Within this generaliza-
tion, the coefficients lg @) = (=D)"[j.@) + if;;‘(f)] receive an
additional second part fg(f ) not present in the time-evolution

operator in Eq. (1), which only has the coefficients j, (7).
The additional term fg(f ) is a projective mode transient and
contains all the temperature dependence and therefore fully
encapsulates the Fermi-Dirac function Fg(H ). Thus, with just
the crucial change of including the projective mode transient,
the full quantum statistics is taken into account. The projective
mode transients f(f) are, as shown in Sec. IV, the solutions
to a closed recurrence relationship with an inhomogeneous
source term, and we also show how to calculate them with
a numerically stable and efficient method.

2This expansion follows from the well-known plane-wave expan-
sion *T =" i"(2n + 1) j, (kr)P,(k - £).
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The computational cost in the EPOCH method is kept
extremely low as the method scales linearly with the degrees
of freedom (system size) and with the longest evolved time,
i.e., running the time evolution for twice as long will only
take twice as long to compute, all else being equal. This is
because each expansion order of Eq. (2) requires only one
additional multiplication by H (on very general grounds is a
sparse matrix), which follows from the three-term recursion
relationship of the Legendre polynomials. Another strength of
the EPOCH method is that any evolved time (or arbitrary set
of times) at all temperatures is directly and easily computable.
Moreover, the formalism offers a detailed account of any error
introduced by the inevitably finite truncation of the EP series
expansion. In Sec. V we establish the accuracy of the expan-
sion, and also show how Gibbs phenomenon, a possible error
source due to the sharp Fermi surface in systems without an
energy gap, is effectively avoided by going to small but finite
temperatures. For easy use and summary, we end the formal
development of the EPOCH method in Sec. VI by providing a
step-by-step outline of the numerical implementation together
with the error bounds.

As a demonstration of the capabilities of the EPOCH
method, we first use it in Sec. VII to calculate the particle
propagation both across and around a junction between a
superconductor and a normal metal in both two and three
dimensions. Despite the very large system sizes involved, es-
pecially for the three-dimensional problem, we capture all the
transmission and reflection amplitudes, including the Andreev
processes. While these examples are simple, they nonetheless
clearly illustrate the capabilities of the EPOCH method, and
how it enables efficient computation of the complex quantum
dynamics even on a standard laptop. As a second demonstra-
tion, we show in Sec. VIII how the dynamical correlations
between observables and the general time-dependent linear
response to external probes within the Kubo formalism can
be computed directly within the EPOCH method. In this ap-
plication, a clear advantage of EPOCH is that it automatically
gives all time and temperature dependence, without the need
to recompute the quantum propagation. EPOCH therefore en-
ables calculation of the response to pulse probes directly in
the time domain, predicting observables and material proper-
ties measured by, e.g., scattering, polarizability, and transport
[36].

II. TIME-DEPENDENT BOGOLIUBOV-DE GENNES
FORMALISM

To provide a simple starting point and ensure that our
approach is applicable to condensed matter systems with
or without superconductivity, we review the standard BdG
formalism. We consider a fully general quadratic time-
independent Hamiltonian H and separate it into two parts H =
Hy + A where the first part A, conserves particle number, thus
capturing the normal part, while the second part A contains all
terms that break the gauge invariance, notably the terms of a
superconducting condensate, if present. Such a Hamiltonian
models any device, with both a spatially varying normal state
or a superconducting order in any part of the system.

Adopting the block Nambu spinor X = (c ch)T of di-
mension 2N for the N degrees of freedom in the system

(lattice sites, spin, and orbital degrees of freedom), the Hamil-
tonian takes, up to a constant shift, the BdG bilinear form
[17,35]

A =x"HX = (¢ c)('Z? _;) (f) 3)
0

Using the matrix block structure, the eigenvectors of the BAG
Hamiltonian can be written as H(u v*)T =E(u v*)T,
with amplitudes « and v.

The particle-hole symmetry inherent to the BdG Hamil-
tonian implies that each eigenvector also has a symmetry
companion state of the opposite energy H(v u*)T =

—EW u*)T. Thus, the unitary transformation U U =1,
with the block structure

U=<u* v*>’
v u

diagonalizes the Hamiltonian A = (XTU)UTHU ) U'X) =
YTEY. The accompanying canonical transformation X = UY
defines the eigenstates ¥ = (y yT)T having definite en-
ergies, stored on the diagonals of E in & = diag(E, —E).
Notably, the eigenstates satisfy the fermionic anticommuta-
tion rules {y;, y;} = 0 and {y;, ij} = §;;. In the Heisenberg
picture they are also the eigenmodes of the time-evolution op-
erator 10,y (t) = [ys(), H] = Eys(t) and, therefore, we find
their time dependence simply from y,(¢) = =5y, for each
eigenstate s.

While each eigenstate has a definite time dependence, the
state of a condensed matter system is more complicated,
consisting of a mixed state that is not reducible to a single
eigenstate. The computation of observables therefore requires
not only that the eigenvalues themselves are found, but the
summation over the correct overlap functions of the many
involved eigenstates. An alternative is offered by the time-
dependent Green’s function, as they relate directly to physical
observables.

Directly corresponding to either transition or pairing am-
plitudes, the two-point single-particle Green’s functions are
the inhomogeneous and homogeneous solutions to the equa-
tion [17,37] [id, — H]G(¢t,t") = 8(¢t —t’). Since this equation
is linear, any linear combination of the solutions is also a
solution, allowing for many possible definitions, satisfying
different boundary conditions. We choose to work with the
lesser Qlj (t1, 1) and greater Q; (t1, ) Green’s functions as
they relate directly to the the local electronic density, and
as such naturally includes the quantum statistics via the
Fermi-Dirac function. The same holds true for the anomalous
Green’s function capturing the pairing amplitudes F;;(#, ).
These Green’s functions are homogeneous solutions, follow-
ing from their definitions [17,37]

G5 (02, 1) = i(ch)ein)),
G (0, 11) = —ilcit)e (1)), “)
Fij(ta, t1) = i{c;(t1)ci(t2)),

and through linear combinations including appropriate factors
of i and the Heaviside step function 8(¢) they also directly give
other conventionally defined Green’s functions, including the
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retarded, advanced, and time-ordered versions [17,37]:
Gl (1. 1) = i (£ ( — ) {ein). cf(t))) = £O( £ ( — 1))G;i(ta. 1) — G(t2.1)]
Gt 11) = —i(Tei(ta)c (1)) = 0ty — 1)G}(ta, 11) + 0t — )G (12, 11).

Thus, from the lesser, greater, and the anomalous Green’s functions, which we will calculate, we can easily find the other Green’s
functions.

Since the eigenstates with their definite time dependence completely specify the system within the BdG formalism, they
also determine the time dependence of the Green’s functions. This is because, between any two generic times #; and #,, a
transformation to the eigenstates via the transformation U gives the explicit time dependence through the matrix elements v;;
and u;; as ¢;(t) = uiys(1) + visyy (1),

G, 1) = il (t)ci()) = i ) _[uul;Fy(Ee ™ 4 vl Fy(—Ee™ =),
N

&)

A , (6)
Fijlta 1) = ifej(t)ci()) =i Y [uisvl;Fp(E)e ™ 4 viul Fy(—E,)e™ 2],

s

where Fg(Ey) = (y:ys) is the Fermi-Dirac function at the inverse temperature 8 = 1/7T and the summation runs over all
eigenstates indexed by s.

Having established the explicit expressions of the time-dependent Green’s functions in Eq. (4), we next show that they are
given by the matrix elements of the EP Lg(H, t) given by Eq. (2). In fact, just like the Green’s functions, the EP viewed as a
matrix equation is also a homogeneous solution to [id; — H]Lg(H, t) = 0, while, in addition, also the unique solution that for
equal times reduces to the Fermi-Dirac projection Fg(H ) and capturing the equilibrium statistics. This fundamentally establishes
a direct connection between the EP and the Green’s functions given by Eqgs. (4). In fact, the explicit eigenbasis forms of the
Green’s functions also show that the Green’s functions are the matrix elements of the EP. Because in the same eigenbasis,
the Hamiltonian has a diagonal form H = UEU " and the matrix function Lg(H, 1) = e"M'Fy(H) is found by simply applying
the same function to the real eigenvalues on the diagonal entries of £: Lg(H,t) = U e i€t Fg(E)UT. Multiplying out the matrix
blocks shows that each block corresponds to one of the Green’s functions when compared to the explicit expressions of Eq. (6):

—iEt
Ly(H. 1) = (:* :*) (F/S(E())e

_( uFp (E)e_’:E’uT + vF,g(—E)e”:T’v+
T\ F(E)e U’ + utFg(—E)eEvT

1<g<(t)

1 F(1) )
i\F'(t) [g0r)

Thus, the upper (lower) diagonal block in Eq. (7) is the
lesser (greater) Green’s functions and the upper off-diagonal
block corresponds to the anomalous Green’s functions with
its conjugate in the lower off-diagonal block, as defined in
Eq. (4). We therefore conclude that, by calculating the EP,
we have full access to all two-point Green’s functions, or
equivalently, to a single-particle/hole excitation over time in
a system with a time-independent Hamiltonian. We, there-
fore, focus on efficiently calculating the EP in the subsequent
sections.

III. ORTHOGONAL POLYNOMIAL EXPANSION
OF THE EQUILIBRIUM PROPAGATOR

It is clear from Eq. (7) of the previous section that the
time-dependent Green’s functions are numerically attainable
from diagonalization of the Hamiltonian. Diagonalization,
however, incurs a O(N?) computational complexity cost
for a system with N degrees of freedom, thus prohibiting
its use for large inhomogeneous systems. Fortunately, on
very general physical grounds, the full Hamiltonian matrix
of any typical quantum system is highly sparse [25] due

ut T
Fﬁ(—E)e"E’)<vT uT)

uFg(E)e EvT + vFp(—E)eE' ul ) o

VFR(E)e BT 4+ u*Fy(—E et u”

(

to short-ranged hopping amplitudes and interactions. This
sparseness opens up for linear-scaling iterative methods. In
particular, orthogonal polynomial expansion readily produces
O(N) methods because of the three-term recursion relation-
ship connecting successive polynomials, while at the same
time being numerically stable [25,26,38]. Thus, spurred by
the impasse at diagonalization, we proceed with the use
of orthogonal polynomials for computing the EP matrix
elements.

Generally, a set of orthogonal polynomials {¢,} are defined
from an inner product with a weight function w(x),

/ ¢n(-x)¢m(-x)w(x)d-x = 8mn”¢n”21
A

on an interval Z where they form a complete set of functions
with the completeness relationship

w(x")

27
[ nll

80 —x) = K(x, ) = ) $u()gn(x) ®)
n=0

thus allowing for a generalized Fourier series expansion of
generic functions on the interval.
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Because the BAG Hamiltonian matrix is Hermitian and
assumed to have a bounded spectrum, we can employ a set
of orthogonal polynomials to expand matrix functions of
the BAG matrix, too. Because H is in principle diagonaliz-
able with real eigenvalues, the action of the matrix function
defining the EP, Lg(H, 1) = e "' Fy(H ), would in a diagonal
representation be equivalent to applying the associated func-
tion Lg(E, 1) = e 'E'F3(E) to the real eigenvalues. Thus, to
expand the EP, we can work directly with the real-domain
function Lg(E, t).

Notably, inserting the above polynomials completeness
relationship and integrating over the kernel K of Eq. (8) pro-
duces the series expansion

>\ u(E)
LED=D o
n=0 n

u(E),
Z AR 50 ®

Fy(ENe E' ¢, (EYw(E")dE'

The immediate benefit of this step is that all of the dependence
on time and temperature is conveniently isolated to the mode
transients defined as

li(1) = / Fg(E)e "™ ¢, (E)Yw(E)dE. (10)
T

The transience of [5(¢) for any given n is a direct result of
the Riemann-Lebesgue lemma, guaranteeing that [g(r) — 0
in the limit # — oo [39]. As stated, the expansion in Eq. (9)
is directly carried over to the corresponding well-defined EP
matrix function as

(H
D=3 B, (11
n=0 n

meaning that the convenient separation of variables also ex-
tends to this orthogonal polynomial expansion of the EP.

Independently of what set of polynomials are used, the
expansion in Eq. (11) is, as shown, also a a series expansion of
the Green’s functions, as these are the matrix elements of the
EP. The choice of the polynomials {¢,} does, however, affect
the definitions of the functions lg(t) that depend on the set
used.

To clearly show the equality between the (anomalous)
Green’s functions and the matrix elements of L, we introduce
new basis vectors in the 2N-dimensional vector space for the
particle and hole part of the BAG Hamiltonian: [e;]; = §;; and
[hi]; = 8i+n)j. For these definitions, the explicit equality is

G55t — 1) = ilch()einr)) = ief[Lg(H, 1 — 11)]e;

[ ()]
= lZn 0 e ﬁ¢ ”2 < ln(t - tl)’

— 1) = i(cj(h)ci() = ie][Ly(H. 1,

AGHLIEY
=i, M ). (12)

]:ij(ZZ —tl)]hj

It is this series mode expansion, which explicitly separates
time and temperature effects, that is the foundation for the

EPOCH method for computing time-dependent Green’s func-
tions.

IV. LEGENDRE POLYNOMIAL EXPANSION OF THE
EQUILIBRIUM PROPAGATOR

To use the mode expansion of Eq. (12) we need to evaluate
both the elements of the matrix polynomial ¢,(H) and the
time-dependent mode transients [ g (t) given by Eq. (10). How-
ever, attempting the direct evaluation of either one of these
is both numerically unstable and inefficient. For instance, we
have not found any simple closed-form analytical expressions
for lg (t). Moreover, the integrand that defines / /’3‘ (t) in Eq. (10)
becomes for large n or ¢ highly oscillatory from the energy
phase factor and the high degree polynomial, thereby hinder-
ing direct numerical integration beyond the first few terms.
The key to surmounting these difficulties is to use the recur-
sive relationship between subsequent orthogonal polynomials
to derive recurrence relationships for both the matrix elements
¢,(H) and the mode transients lg(t). In this way, both of these
quantities are readily computed iteratively order by order,
which achieves both numerical stability and efficiency in one
sweep. This is a key ingredient of the EPOCH method.

For definite expressions suitable for numerical treatment,
we first have to choose an appropriate set of orthogonal
polynomials. We choose the Legendre polynomials P,(x) de-
fined on the interval Z = [—1, 1] having ||P,1||2 =2/2n+1).
Notably, the weight function w(x) = 1 associated with the
Legendre polynomials gives equal weight and therefore also
equal representational accuracy to the whole interval and
spectrum. This is in contrast to the Chebychev polynomials,
which add an unphysical weighting issue (see Appendix).
Moreover, the straightforwardness of the Legendre polyno-
mial weight function also streamlines all ensuing calculations,
thereby allowing us to derive key analytical expressions, as we
show below.

Since any finite-dimensional Hamiltonian has a bounded
spectrum, we can without loss of generality assume that the
spectrum is contained within the interval Z since the Hamilto-
nian can always be rescaled by a constant: H — H = H/A.?
For a bandwidth W, the spectrum of H will be entirely
contained in Z if A > W. In what follows and for ease of
presentation, we therefore assume that such a scaling has been
performed and work directly with the dimensionless rescaled
Hamiltonian A, which has its spectrum entirely contained
in Z. Similarly, all quantities with energy dimensions are
also subsequently rescaled, including the inverse temperature
B — B =B and time t — 7 = At, which all then become
dimensionless quantities. Proceeding with the Legendre poly-
nomials, below we calculate the matrix elements of ¢,(H) =
P,(H) and the mode transients lg (f) in order to generate the

series mode expansion in Eq. (12).

3We choose to only consider a rescaling of the spectrum because
a BdG Hamiltonian always has a particle-hole symmetric spectrum.
If there is no need for a BdG formalism, as for a system without
superconductivity, then the spectrum can, in addition to rescaling,
be translated to fit the interval Z = [—1, 1] on which the Legendre
polynomials are defined.
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A. Matrix elements

The matrix elements e/ P,(H)e; = (P,(H)e;)'e; and
e';P,,(H Yh; = (P,(H)e;)'h; that enter the mode expansions
of the normal and anomalous Green’s functions in Eq. (12)
are efficiently computed by using the three-term recurrence
relationship for the Legendre polynomials (n + 1)P,1;(x) =
(2n 4+ 1)xP,(x) — nP,_(x). For this relationship connects se-
quential orders of the left-hand vector e} = P,(H)e; via the
recursion relation

(n+ e = @2n+ 1)He! —ne/ . (13)

As a result, the matrix elements for all orders can be com-
puted iteratively as the inner products e}LP,,(H e = (e;?)?e j
and ean(ﬁ Y = (ef‘)*h ;- Because these inner products are
computationally cheap, the only significant computational
cost associated with the matrix elements is, therefore, the one
sparse matrix multiplication A e’ for each use of the recursion.
In addition, once the orders of a given initial state e} have all
been computed, the inner product with any end state, parti-
cle, or hole carries essentially no additional cost, making all
Green’s functions of that initial state available. Consequently,
the complexity cost for the whole mode expansion is just
O(N), making it very efficient.

B. Mode transients

The second ingredient needed for the mode expansion of
Eq. (12), in addition to the matrix elements, is the mode
transients / g(f ). Their defining equation (10) can be seen as the
Fourier transform of the product between the Legendre poly-
nomials and Fermi-Dirac function on the interval Z since for
the Legendre polynomials the weight function is identically
one. Without the Fermi-Dirac function, this Fourier transform
has a simple analytical close form because the Fourier coeffi-
cients of the Legendre polynomials are directly related to the
spherical Bessel functions j,(f) through f_ll e ETp(E)dE =
2(—i)"j,(f) (see Ref. [40], Eq. 7.243.5), which is also the
basis for constructing Eq. (1).

The transform of the mode transient including the Fermi-
Dirac function is, however, not so simple. Yet, parts of the
previous result can be salvaged, and the the above connection
to the Bessel functions is maintained even for the nontrivial
mode transients lg(f). Because of the odd or even symmetry

of the Legendre polynomials P,(—E) = (—1)"P,(E) and the
partition of unity 1 = Fg(E) 4 Fp(—FE),
! kg ~ ~ ~.
B+ (0 [Bo] = f e FIP(E)E = 2(~i)" ju(d).
-1
) (14)

Consequently, for all inverse temperatures f

n even — Relj(?) = (=12 (D),

n odd — Iml3(7) = (—DH)ED2 5 ().
Thus, for all n either the real or imaginary part of the complex
function lg (f) is already given by the spherical Bessel func-

tions j, (7).
To find the remaining complementary parts of [ Z (7) that is
not given by the Bessel functions, we derive a new recursion

relationship, by once more exploiting the recursive proper-
ties of the Legendre polynomials. Using that (2n + 1)P,(x) =
%[P,Hl(x) — P,—1(x)] and partial integration, we find

@n+ DE@ = if[ 57O = 7 O] + 85,0 (15)

We recognize Eq. (15) as intimately connected to the well-
known recurrence relationship for spherical (+) or modified
spherical (—) Bessel functions z,+1(x) £ z,—1(x) = 2n +
1)z,(x)/x (see Ref. [40], Eq. 8.4718.1), but with an inhomo-
geneous source term

1 Fro o~
Spa(D) = / [Pos1 (E) = Pact (E)I(=F5(E))e ™ 'dE. (16)
-1

To further isolate the remaining part of lg (), we define each
mode transient to be the sum of a unitary part that is simply
given by the spherical Bessel function j, and one as of yet
unknown projective part fg(f): lg(f) = (=)"(j. () + ifg(f)).
By this definition all of the temperature dependence is com-
pletely relegated to the projective part fé’ (f). From Eq. (15), it
follows, as we find, that the projective part fé’ (f) satisfies the
inhomogeneous spherical Bessel recurrence relation

2 f lfg(f) =R O+ O+ —S"’;m.

7

Notably, by exploiting the dependence of the integrand in
Eq. (16) with respect to £ and n, we find that the inho-
mogeneous part in Eq. (17), "'y ,(f)/1, is real for all n.
Therefore, all fg(f ) are also real.

To summarize, the results of this section show that when
the Legendre polynomials P,(x) are used as the orthogonal
polynomial modes in the expansion of the EP in Eq. (11),
the mode transients lg each decompose into a unitary and a
projective transient. First, the unitary transients are given by
the spherical Bessel functions j, (7). In standard wave-packet
propagation it is only this unitary part that contributes, giving
the expansion presented already in Eq. (1). Second, the pro-
jective transients fé’ (f) encode the equilibrium statistics and,
therefore, account for all the temperature dependence of the
Green’s functions. Like the unitary transients, the projective
transients are real functions satisfying the spherical Bessel
recursion relationship, but for f[;’ () the recursion is inhomo-

geneous because of the source term Sﬁ,n(f ). With the Bessel
functions j,(¢) well known, we only have left to solve for the
fé’ (f) to complete our task of computing the EP and thereby all
two-point Green’s functions. This task requires us to evaluate
the source term S/_z,’,,(f) in Eq. (16), which we do next.

C. Inhomogeneous source term

At first it might not seem that the integral defining the
source term S B,n(f ) in Eq. (16) is any easier to evaluate than
the integral originally defining the general mode transient in
Eq. (10). But, in analogy to the Sommerfeld expansion [41],
the source term Sﬁyn(f) in Eq. (16) is readily computed as
a low-temperature expansion in 1/B, by simply exploiting
that for low temperatures FB/(E ) is a sharply peaked function

that is exponentially localized to £ = 0. As a consequence,
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the sole contribution to the integral defining S B,n(f ) is only
coming from a small neighborhood around zero energy of
width 1/B. The energy scale associated with this width should
be compared to the overall bandwidth W of the system, and we
can therefore extend the limits of integration to the whole real
line since for any realistic condensed matter system SW > 1.

Further, because integration is a linear operation, we can
additively distribute the integration over the Legendre poly-
nomials appearing in the integral defining S B,n(f ) in Eq. (16).
S5 ,(f) is therefore always a linear combination of the dynam-
ical Fermi moments I , (f) = fll Ek(—Fé(E))e_iEde. This
allows us to first consider the integral of Iy «(0) and afterward
take the appropriate linear combination of the result. By intro-
ducing y = BE, we find

B k. y—i(y/B)
- y\ e
I~ 1) = = —d
pt) /5 (,3) @+ 177

3 k B e~ i@/By
=5 / T (A
f @+ DEer+1)
—i(f/B)y

(, 0 )k /OO e '
~(i— ————dy
i) | @t+her+D

X .
= (li) M (18)
df J sinhm(7/B)

where we have first rewritten the integral as a derivative over
the integral; next, because the integrand is exponentially sup-
pressed in both directions, we have extended the integration
to the whole real line allowing us then to perform the contour
integration in the last step. In restored units, the contributions
from outside the original interval are exponentially suppressed
in the ratio of the bandwidth W to the temperature by a factor
of eV . Thus, the approximation introduced by extending the
integral is inconsequential for any realistic condensed matter
system where SW > 1. For very large moment ordinals k,
however, the integrand eventually grows outside even this
interval and the assumption in Eq. (18) breaks down for very
large k 2 eBW. Still, using the expression of Eq. (18) for the
Fermi moments produces an asymptotic expansion that is very
accurate for all moments with k < gW.

The source term S ,(7) is now a linear combination of
the dynamical Fermi moments Iy (@) of Eq. (18), where the

coefficients are given by the explicit representation of the Leg-
ntk—1

endre polynomials P,(x) =2">;_, (Z)( 2 )xk. Thus, we
finally arrive at a low-temperature asymptotic expansion of
the source term

n+1 n k+n
3 (n+ 1)2'T (k1) 3
- — ~ l
Spn(0) Zkzo K (52 +n — k)lﬂ”‘(t)’ 19

where we use the gamma function I'. In the zero-temperature
limit B — o0, itis clear that all the dynamical Fermi moments
become time independent and only the first term is nonzero
IB,k(f) — &k0- In this case, therefore, Sy ,(7) is also time
independent and nonzero only for odd n, and reduced simply
10 Soo.n = [2"2n + DI (DV/IT(=5)T2 + n)l.

T9 summarize, because the derivative of the Fermi function
Fﬁ’ (E) is sharply peaked around zero for all temperatures that

01F ' ' '
— Re(/”(")) Im(/2,(7))

—/\ R\ Q20 /X
V\/\/VV\
~0.1kL
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t

(%)

n
=)
.O
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FIG. 1. Plot of the real part f*=!!(7) and i imaginary part j,— u@®
of the mode transient l” (f) at zero temperature B = oo.

are small compared to the bandwidth W, we can compute the
inhomogeneous source terms S B,n(f ) as an asymptotic series
expansion in the dynamical Fermi moments /5 (D), which is
rapidly converging. As a consequence, we can either use sim-
ply the zero-temperature source term Sy, , or the first terms
of the low-temperature expansion in Eq. (19) to always find
a good numerical approximation Sz , () for realistic tempera-
tures.

D. Calculating mode transients

With the inhomogeneous source term S B,n(f ) determined
in the previous subsection, we find the total mode transients
/ ; () by solving the recurrence relation (17) for the projective

transients f7 (7). However, when attempting to numerically

solve this recurrence relationship, care must be taken.

In fact, if one attempts to solve it by simple forward
propagation, calculating the next term from the previous two,
then rounding errors inevitably and disastrously accumulate
with each step. This is a well-known danger of second-order
recurrence relationships, including that of the Bessel functions
[42]. For our purposes, the instability of Eq. (17) is most
readily understood starting from its underlying homogeneous
Bessel recurrence relationship with its two linearly indepen-
dent solutions, commonly called J,, and Y,,. Here, the massive
domination of one solution over the other [|Y,(x)/J,(x)] ~
2(n!)?/(x/2)*" — oo, as n goes to infinity] implies that even
if just a small rounding error falls outside the subspace of J,
during numerical stepping procedure, then this spillover will
quickly grow and overtake the calculated solution such that
any resemblance to the desired J,, is disastrously lost.

Fortunately, there already exists a stable algorithm for solv-
ing linear recurrence relationships, including inhomogeneous
relationships. Central to this algorithm is the reformulation of
the recurrence relationship as an auxiliary linear boundary-
value problem; the left boundary is set by the true initial value
of f9, but the right boundary, at a sufficiently large M, is
instead set to an artificially imposed value of f¥ = 0. Solving
this boundary-value problem has been shown to converge to
the minimal solution, as the right bound is moved further away
with larger M [43,44]. The recurrence equation of Eq. (17) for
the projective transients f/.;‘(f) is therefore easily solved as a

boundary-value problem, given that we provide the initial con-

dition fg 0=/ 711 Fy (E)sin(—ET)dE by direct integration.
To illustrate the mode transients we plot in Fig. 1 the real

and imaginary parts of lg:w (f) for n = 11, where the real part
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is the projective transient fg(f) generated by Eq. (17), while
the imaginary part is the unitary transient, the spherical Bessel
function j,(f). As seen, the projective transient resembles
a phase-shifted version of its companion unitary transient,
characterized by an oscillating tail, decaying with time ~1/ Vi
for large 7. Similarly, the envelopes of both fg(t") and j,(f)

are of maximal height in the neighborhood of 7 ~ n. Thus,
for a given 7, it is precisely the orders with n ~ 7 that mainly
contribute to the time dependence in the series expansion of
the EP.

Generally, therefore, it is the envelopes of the two transient
functions that dictate which terms of the expansion make a
significant contribution to the mode expansion and in turn also
sets the accuracy of the Green’s functions when computed
from the truncated mode expansion. In this regard, there is a
distinction between the unitary and projective transients. For
while j,(7) is exponentially suppressed for 7 < n, the fg(O)
can take on finite initial values, meaning that even for short
evolution times a finite number of terms, to be specified in
Sec. V, are needed to capture the projective part.

E. Static limit

While our main focus in this work is on the dynamical
properties and the time-domain Green’s functions, the static
limit# — 0 is also of interest for two reasons. First, when? —
0, the EP reduces to the density matrix Lgz(H,0) = F3(H)
and its elements are the 7 = 0 Green’s functions, measuring
the densities of the system: the local electron density and
equal-time pair amplitudes, respectively. To have direct access
to these within the same formalism is of course of great utility.
Second, as seen in the previous subsection, the finite initial
values of fé‘(O) inform the rate of convergence of the mode
expansion; because, unlike the case with wave-packet propa-
gation, even at 7 = 0 the Fermi-Dirac statistics is encoded in
f3(0).

Conveniently, in the 7 — 0 limit the mode transient re-
cursion equation (15) decouples and, consequently, the mode
transients are proportional to the source terms: ZE(O) =
i"’lfé’(O) = 85,(0)/(2n+ 1) for all n > 1, whence j,(0) =
0. In addition, the static limit of the dynamical Fermi moments
of Eq. (18) is limj_¢ I , () = (27 /iB)*(2'~* — 1)By, where
By are the Bernoulli numbers [follows from the Taylor expan-
sion x/sinh(x) =1+ Z;’il 2(1 — 22~HBy,x?"/(2n)!]. In-
serting these static Fermi moments in Eq. (19) to get the
source terms SB,n(O)» the static limit of the mode expansion
of EP in Eq. (11) gives a polynomial expansion of the density
matrix:

Ly(H,0) = F3(H)

o0

P P.(H)
TR 2 12,11

n=1

n+l An ntk 1-k _ k
) Pl Wil (2—”> . Qo)
—r (52 r@ +n—k \ip

where lg(O) =1 is the origin of the n = 0 term. In the zero-
temperature limit 7 = 0, only the first k = 0 term remains:

Loo(H,0) = Fuxo(H)

oo

_ P(#) ZP"(H) 2'T(5)
1Pl LARRSINCSINCEID)

2D

n=1

Both Egs. (20) and (21) are particularly useful expansions of
the density matrix (Fermi operator) even at finite temperatures
compared to the pioneering expansions of Refs. [45,46]. Thus,
from Eqgs. (20) or (21) the density expectation values of the
system are given by (c}q) = ej[LE(I-?,O)]ej and (cic;) =
elT[LB (H,0)h ;- Because the assumption underlying the low-
temperature expansion of the Fermi moments in Eq. (18)
eventually breaks down for very large moment ordinals k,
the absolute values of the static moments / ,(0) pass through
a minimum at k ~ BW before eventually growing again. In
turn, the finite-temperature series of Eq. (20) is not formally
convergent to all orders. Still, because the minimum of IB, «(0)
is exponentially suppressed in the ratio of the bandwidth to the
temperature as e #V | the series of Eq. (20) is an exponentially
accurate asymptotic expansion for the density matrix. In the
zero-temperature limit, the asymptotic limit of the coefficients
in Eq. (21) decays as n~>/2, demonstrating the norm conver-
gence of this series.

V. TRUNCATION OF EQUILIBRIUM
PROPAGATOR EXPANSION

In the previous sections we have derived an exact ex-
pansion of the time-dependent two-point Green’s functions
using Legendre polynomials. While this series is, in princi-
ple, exact, in practice the expansion of the EP LB(E ,f) in
Eq. (9) has to be truncated at a finite number of terms in
order to produce a numerically useful algorithm. Because the
unitary part j,(7) only contributes significantly after 7 > n,
the truncation of this series to order M yields a remarkably
accurate approximation of the time dependence for all 7 < M.
We illustrate this in Figs. 2(a) and 2(b) where we plot the
numerical error |Loo(E, ) — LM (E, )| for M = 60 and 1000,
respectively. The only exception is a narrow energy window
8E ~ 1/M closest to the Fermi surface at E = 0, where the
representation of the steplike Fermi-Dirac function in the
projective transients fé’ (f) starts to deviate because of Gibbs

phenomenon (see below in Sec. V A). This is similar to the
residual norm of the truncated static mode expansion, which
also vanishes as ||Lo(E, 0) — LY (E, 0)|| ~ 1/M, because the
coefficients of Eq. (21) vanish as n~—3/2. However, this error
source at low energies is inconsequential for any gapped sys-
tem, such as insulators or superconductors with an energy gap
A. Simply put, since there are no contributing states in the
misrepresented region around the Fermi level, there can be no
numerical distortion of the Green’s functions. For example, if
for a superconductor we assume a temperature below the tran-
sition temperature, we are guaranteed that the time-dependent
Green’s functions computed using the truncated mode expan-
sion of Eq. (12) have excellent fidelity for all 7 < M, as long
as A/W < 1/M, where W is the bandwidth.
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FIG. 2. Finite moment truncation error |Ly(E, ) — 58 (E, )| of the zero-temperature mode expansion L., (E, ) as a function of time 7

and energy E for (a) M = 60 moments and (b) M =

1000 moments. (c) Finite-temperature 8 = 60 truncation error |Lg(E, ) — L?f (E, )| for

M = 60 moments. In each figure, the time 7 = M is highlighted by a vertical white line, while dashed white line in (a) indicates the energy cut

used in Fig. 3(c).

A. Gibbs phenomenon

The numerical errors found at the Fermi level and at low
temperatures in Fig. 2 can be understood as a manifestation of
the Gibbs phenomenon: general ringing or oscillations found
when an orthogonal series expansion is used to capture a step
function. In short, therefore, the Gibbs phenomenon appears
near the sharp Fermi surface in the finite series representa-
tion. As such, it is, however, only relevant for systems with
a finite density of states near the Fermi energy. Thus, the
Gibbs phenomenon is not relevant for an insulating or gapped
superconducting system, but it could matter for a metallic
system.

The Gibbs phenomenon comes about because truncating
LE (E, ) in Eq. (9) at the finite order M amounts to replacing
the underlying true integration kernel of Eq. (8) with the trun-
cated Dirichlet kernel KD(x,x') = ZnM=o P,(x)P,(x)/ || P ]I*
This replacement is a controlled approximation that does
narrow in on the Dirac delta function with a diminishing
width of §E ~ 1 /M [47], as illustrated by the black curve
in Fig. 3(a), where we plot KAL}(O, E) for M = 60. Nonethe-
less, it is also apparent that this kernel is subject to Gibbs
oscillations. A direct consequence of these oscillations is the
overshooting ripples in the finite series Dirichlet kernel ap-
proximation of the discontinuous 7" = 0 Fermi-Dirac function
seen in Fig. 3(b).

Echoing standard Fourier theory [39], the standard ap-
proach for combating the Gibbs phenomenon is to replace the
naive Dirichlet kernel with a suitable summability kernel [26].
For instance, the Jackson kernel is a common choice, which is
an everywhere positive optimal kernel with a minimal squared
peak width, as displayed by the red curve in Fig. 3(a). It is
defined by reweighing the terms of the series Kj,(x,x') =
M & Pu(x)P,(x")/||P, || with the diminishing weights g/ =
[((M + 1 —n)cos (37 ) +cot(M+1)s1n( /(M +1). In
Fig. 3(b) the red curve shows how adoptlng the Jackson ker-
nel results in an oscillation-free approximation of the 7 = 0
Fermi-Dirac distribution function. While this is a satisfactory
solution for the static representation of the Fermi-Dirac func-
tion, the diminished weight given to the high-order terms by

a
( ) 20.F 1
o — Dirichlet
xLL]h - b
-] 0.1 Jackson
g o
-1.0 -0.5 0.0 0.5 1.0
(b) -
1.p—— Dirichlet (8=60) 1
z%]a 0.5 Dirichlet (B=co F5-60(E) ]
- — Jackson (B=co)
0. . T .
-0.4 -0.2 0.0 0.2 0.4
E
(C) ] — Dirichlet — Jackson_

> | .
% \/ VY VY o
o Lo(1))
0 20 40 60 80 100
t

FIG. 3. (a) Plot of the Dirichlet K2(0, E) and Jackson K3, (0, E)
kernels using M = 60 moments. (b) Polynomial approximation
with M = 60 moments of the Fermi-Dirac distribution FB(E )=
(eBE~ + 1)7" at zero temperature B = oo [cf. Eq. (21)] for both the
Dirichlet or the Jackson kernel as well as the finite-temperature
approximation (B = 60) using the Dirichlet kernel. For comparison,
the true FB:(,O(F? ) is also shown (gray line). (c) Real part of the
finite moment approximation LY=% (£ = 0.5, ) using the Dirich-
let and Jackson kernels compared to the true function Lo(E =
0.5,7).
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the Jackson kernel (and also by other traditional summability
kernels such as the Fejér kernel or the Lorentz kernel [26])
simultaneously means that the convergence of the representa-
tion is severely damaged when extended to time evolution. For
when evolved to a time 7, then it is the terms of order n ~ f
that are the largest and have the most significant contribution
to the representation. Thus, the diminished weight given to
the higher-order terms by the summability kernels causes the
approximation of Ly (E,7) to deviate even after just a short
time evolution, as we display in Fig. 3(c) along with this
effect. In contrast, the Dirichlet kernel is, also in Fig. 3(c),
seen to accurately represent Lg (E, ) for all 7 < n, while the
Jackson kernel fails even for small 7. Thus, the standard ap-
proach for circumventing the Gibbs phenomenon is not useful
when going beyond the static Fermi-Dirac function to the time
evolution.

Although we find that the widely accepted technique of
kernel resummation is not appropriate for time evolution, we
nonetheless find a working solution to the Gibbs phenomenon
by transitioning to finite temperatures. At nonzero temper-
ature, the step discontinuity of the Fermi-Dirac distribution
is replaced by a smooth transition of width §E ~ B. The
distribution therefore becomes amenable to an accurate rep-
resentation by a polynomial approximation of order M ~ B,
as in Eq. (20). We illustrate this in Fig. 3(b) where the 8 = 60
distribution is plotted with M = 60 moments.

Importantly, by constructing the finite-temperature repre-
sentation of the EP by solving the recurrence relationships
of Eq. (17) for the projective mode transients with the first
few terms of the low-temperature expansion (19), we avoid
the problems arising from Gibbs phenomenon, and the re-
sulting representation of the EP has all the accuracy of its
zero-temperature version at all times 7 < n away from the
Fermi surface. But, in addition, the representation is now
also accurate around the step of the Fermi-Dirac distribution.
Meaning that, LB(E , ) is accurate for all 7 < n/2, includ-
ing the energies near the Fermi surface, as is illustrated in
Fig. 2(c). As a consequence, even quantitative calculations in
systems with a finite density of states near the Fermi energy
are possible at any finite temperature.

VI. SUMMARY OF EPOCH METHOD

In summary, we have shown that time-domain Green’s
functions of a time-independent Hamiltonian H are efficiently
and accurately computed as the matrix elements of the EP
by the orthogonal polynomial expansion (11) using Legen-
dre polynomials. We call this method EPOCH, standing for
equilibrium propagator by orthogonal polynomial chain. For
additional clarity, we here summarize the steps of the EPOCH
method:

(1) Rescale the Hamiltonian through a change of energy
units H — H = H/A so that the spectrum of H is entirely
contained in the interval [—1, 1] where the Legendre polyno-
mials are defined. For a bandwidth W, this is guaranteed if
A>W.

(2) For all inverse temperatures A and time steps At for
which the Green’s functions are to be calculated, solve the re-
currence equation (17) for the projective transients f;'s(At) as
a boundary-value problem with the method of Refs. [43,44].

For the source term S,g, use either the zero-temperature
source terms S, Or the first terms of the low-temperature
expansion (19).

(3) Construct the total mode transient as the sum of the
unitary and projective transients: li’ﬂ(kt) = (—)"[j.(At) +
ifyg(A1)], where the spherical Bessel functions j,(Af) are
already known.

(4) For all Green’s functions G5 or F;; of interest compute
the matrix elements e P,(H)e; = (¢!)'e; and e} P,(H)h; =
e"'h j» respectively, using the recursion relationship in
Eq. (13) for the vector e! = P,(H )e;, starting from the particle
vector of the injection site €/=0 = e;.

(5) Construct the normal and anomalous Green’s func-
tions in the time domain with t =¢# —f; by the mode
expansion of Eq. (12):

Ma

Gr(0) = ilch e ~ i Y [(e}) ;] (h),

n=0
M

Fijt) = ilc;teit)) =iy [(e ). (22)
n=0

The mode expansion in Eq. (22) using M modes is able to
faithfully represent the Green’s functions for At < M, except
in a narrow energy interval of width A/M around the Fermi
energy. If the system has an energy gap AE, then the Green’s
functions are faithfully represented for all Ar < M as long as
AE < A/M. Even for systems with a finite density of states
near the Fermi energy, it is possible to faithfully represent the
finite-temperature Green’s functions down to temperatures of
AB 2 M and out to Az < M/2 in time, as illustrated in Fig. 1.

The computational cost of the EPOCH method is mainly
set by the computation of the matrix elements of P,(H ), where
each additional moment requires a matrix-vector multiplica-
tion by H. For a sparse matrix, this is an O(N) operation,
that furthermore need only be done for the sites of interest
and is also easily parallelized over multiple CPU or GPU
cores. Moreover, the EPOCH methods also scale linearly in
propagated time, i.e., running the time evolution for twice as
long will, all else being equal, take twice as long to compute.
Thus, even for systems with large dimensions N the time-
domain Green’s function for large relative time differences is
efficiently and easily computed with the EPOCH method.

VII. EXAMPLE: SUPERCONDUCTOR-NORMAL
METAL INTERFACE

To illustrate the vast possibilities of the EPOCH method,
while still studying a well-known, but large system, we cal-
culate the time dependence of the normal and anomalous
Green’s functions in a superconductor-normal metal (SN)
junction in both two and three dimensions (2D and 3D). At the
SN interface, an incident particle can, in addition to normal
transmission and reflectance, also exhibit Andreev reflection
[48], where a particle is converted to a hole and a Cooper pair
is transferred to the superconductor. Andreev reflection is thus
the process responsible for the superconducting proximity
effect, which not only changes the properties of SN junctions
but also directly leads to the finite Josephson current in junc-
tions with two superconductors leads. Andreev refection is
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FIG. 4. Snapshots in time of the evolution of both the particle-particle |g; ()| (a)~(d) and the particle-hole |F;;(¢)| (e)—(h) correlation
amplitudes for a particle inserted on the normal side near the interface of a 2D NS junction, with interface indicated by dashed white line.
The square lattice is of dimensions L? = (201a)? and extends beyond the regions shown and the spatial scale is indicated by bar in (h). The
evolution was computed using the EPOCH method at zero temperature with M = 1000 moments applied to the Hamiltonian in Eq. (23) at the
chemical potential 1 = 2y and pairing potential A = 0.25y inside the superconductor.

thus experimentally detectable in tunneling experiments [49],
and with dual contact measurements the Andreev reflections
are even by themselves directly observable [50,51]. Scatter-
ing at SN interfaces is therefore an interesting fundamental
and experimentally measurable process, for which EPOCH is
ideally suited. Specifically, we consider a finite-sized tight-
binding model on the square and cubic lattice, respectively,
described by

H = -y Z [clTacj,, +Hc]—pu Zc;cia
i,0

(i.j).o

+A Y 0(=5 - Foleinci, + Hel, (23)

L

where the particles (electrons) are created by the operator c};

at the lattice site i with spin o =%, | at the position 7#; =
a(iyx + iy9) in 2D and 7; = a(i,X + i,y + i;2) in 3D, where
a is the lattice constant and the total length of each side of
the lattice is L. With respect to the BdG form of Eq. (3), the
diagonal normal part Hy includes the first two terms of H with
the nearest-neighbor hopping amplitude y and the chemical
potential . Similarly, the last term is the off-diagonal part
A of the BAG form, representing a constant superconducting
order parameter of finite amplitude A in half of the system
x < 0, given by the Heaviside step function. This generates
an NS interface at x = 0.

We are here interested in the equilibrium time evolution
of a particle (electron) that is initially created at time ¢t = 0
close to the SN interface on the N side, and then allowed to
propagate in time throughout the whole system. The physics
of this evolution is captured by the Green’s functions G5 (1)
and F;;(¢), where the former captures the time evolution of
the intact particle, while the latter represents the amplitude
associated with a particle at + = 0 appearing as a hole at a
later time ¢, i.e., a pair amplitude. Because the Hamiltonian in
Eq. (23) is isotropic in spin, we can without loss of generality
set Q; ®)=i (c;(r (0)cis (t)) to be between equal spins and the

anomalous correlations are those of a spin-singlet supercon-
ducting state between opposite spins F;;(t) = i{c;; (0)ciy (t)).
We show below that the underlying physics is the same in both
2D and 3D, but because the results are easier to illustrate in 2D
we treat this case first.

In Fig. 4 we show four snapshots in time of the evolution of
both |g; (#)| (top row) and |F;;(?)| (bottom row) for a 2D NS

junction of dimensions L? = (201a)?. The dashed white line
marks the interface with the N side on top. Because the super-
conducting gap also extends into the normal metal through the
proximity effect, we can compute the time evolution using the
EPOCH method even at zero temperature to high accuracy,
here using a total of M = 1000 moments.

As seen in Figs. 4(a)—4(d), the particle propagates outward
in approximately circular waves with some anisotropy due
to the the anisotropy of the Fermi surface at u = 2y. As
seen from the last two snapshots in Figs. 4(c) and 4(d) the
propagation is largely unimpeded and unaffected even into
the superconductor, but on the normal side there are clear
interference patterns emanating parallel to the interface from
a partially reflected wave at the SN interface. Studying the
anomalous Green’s function |F;;(#)|, we see that even at the
earliest snapshot in Fig. 4(e) there are finite particle-hole
correlations on the normal side of the interface, thus appearing
even before the main wave of the particle has reached the
SN interface. This is a manifestation of the superconducting
proximity effect. In the next snapshot, the particle wave in
Fig. 4(b) has reached the interface where it is transmitted but
also Andreev reflected back in the N region as a hole. This
shows up in the anomalous part in Fig. 4(f) as growing hole
correlations at and beyond the interface. As the particle wave
further propagates and extends along the SN interface, a part
is transmitted as a hole into the S region due to the finite
order parameter A, resulting in |g; ()| and | F;;(¢)| showing
matching patterns in the S region in Figs. 4(c) and 4(g) and
4(d) and 4(h). At the SN interface, the intersecting wave
crest of |gl§ (1)| is also Andreev reflected and the correlations
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FIG. 5. Snapshots in time of the evolution of both the particle-particle |G;(¢)| (a)—(e) and the particle-hole |F;(#)| (f)() correlation
amplitudes for a particle inserted on the normal side near the interface of a 3D NS junction with interface indicated by dashed white line.
Spatial density of |g; ()| (a) and | F;;(1)| (f) throughout the 3D volume with the nearest quadrant cutaway after an evolution time of 7 = 20y ~!
and with the length scale shown by the yellow box. (b)—(e) |Qij(t)\ for a vertical cross section passing through the start site j for the four
different snapshots in time. (g)—(j) |F;;(¢)| the same cross section and time steps as in (b)—(e). The cubic lattice is of dimensions L? = (125a)®
and extends beyond the regions shown and the spatial scale is indicated by bar in (j). The evolution was computed using the EPOCH method
at zero temperature with M = 1000 moments applied to the Hamiltonian in Eq. (23) at the chemical potential © = 4y and pairing potential

A = 0.25y inside the superconductor.

propagate back into the N region, producing the triangular
hole correlation wave front of |F;;(¢)| in Figs. 4(h) and 4(g)
in the N region.

Because of the O(N) scaling of the EPOCH method there
are no limitations in computing the time-evolved Green’s
functions also for a 3D bulk system. Thus, similarly to the 2D
NS junction, we show in Fig. 5 snapshots of the time evolution
of |g; ()] and | F;;(¢)| for a 3D NS junction with the system
dimensions L? = (125a)’. The dimension of the underlying
BdG Hamiltonian matrix is therefore over 3.9 x 10°. Still, us-
ing the EPOCH method implemented on a standard laptop we
generated Fig. 5 in a matter of minutes. This clearly illustrates
the power and versatility of the EPOCH numerical method.

Specifically, in Figs. 5(a) and 5(f) we show the spatial
extent of |g;(t)| and |F;;(t)| at t = 20y !, respectively,
throughout the 3D volume surrounding the NS interface re-
sulting from the propagation of a particle inserted on the
normal side (blue). To illustrate more details, we also show
snapshots at different times of the propagation of |G5(r)| in
Figs. 5(b)-5(e) | F;;(¢)| in Figs. 5(g)-5(j) on a vertical plane
intersecting the creation point. From Fig. 5 it is clear that
the same physical processes are present in both 2D and 3D.
The main difference is only that the amplitudes of |Ql§ ()| in
Figs. 5(b)-5(e) rapidly diminish on the vertical intersection
as the wave’s amplitude now spreads out in all three dimen-
sions, consistent with the propagation of spherical waves in
3D. Still, it is possible to discern from Figs. 5(g)-5(j) that
the approximately spherical particle amplitude wave is both
Andreev reflected at the interface and hole transformed inside
the superconductor, just as in 2D.

The results in Figs. 4 and 5 illustrate that the EPOCH
method readily computes the time-domain Green’s functions
even for large 2D and 3D superconducting systems. The
method therefore gives direct access to the dynamic equilib-
rium correlations of any normal or superconducting system,

enabling the fully quantum mechanical time evolution of con-
densed matter systems to be investigated. Notably, analyzing
an NS junction in the time domain offers a transparency
that clearly contributes to an intuitive understanding of the
underlying physical processes. Therefore, the EPOCH method
provides a tool for investigating phenomena occurring in large
highly inhomogeneous systems.

VIII. APPLICATION TO LINEAR RESPONSE

In this section we highlight yet another potential appli-
cation of EPOCH, using it in the calculation of correlation
functions directly in the time domain, such as current-
current (J,(7,1)J,(7, 1)) and spin-spin (S, (7, 1)S,(7, 1)) to
density-density (n(7, t)n(7, t)) correlation functions. All these
dynamical correlation functions are interesting in their own
right and, through the fluctuation-dissipation theorem, they
also govern a system’s response to external perturbations (not
driving the system out of equilibrium), such as magnetic and
electric fields [36]. For the latter, it is well established that cal-
culations within the Kubo formalism can be carried out using
the time-domain equilibrium Green’s functions [36], with the
susceptibility of an observable A = > Ai ;¢ cjto a field cou-
pling operator B = Zij B,-jcj'cj being xap(t —t') = —if(t —
tTr[AG™ (¢, t)BG=(t',t) — AG=(t,t)BG” (¢, t)]. Thus, the
expression for yap(t — t’) only requires the Green’s functions
that are directly computed in EPOCH, given by Eq. (2). As
a result, dynamical correlation functions and linear response
to external perturbations can be computed efficiently directly
in the time domain using the EPOCH method. Moreover, be-
cause the time and temperature dependencies of the response
enters only via the transients l;(t) = (—D)"[J.(t) + ifg(z)], a
distinctive advantage of EPOCH is that the response through
xap(t — t) can be evaluated at any time or temperature with-
out having to recompute any matrix elements of the quantum
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propagation. Thus, EPOCH applied to compute the time-
domain linear response is more versatile and efficient than
previous approaches that rely on a separate finite-difference
stepping of the underlying Schrodinger equation, which is ei-
ther only applicable at zero temperature [52] or, if extended to
finite temperatures through the Boltzmann-weighted method,
requires that the time stepping is redone at each temperature
[53]. To conclude, EPOCH is a general method of obtaining
the time-domain equilibrium Green’s functions in large inho-
mogeneous systems from which any linear response function
can be computed and it automatically gives all temperature
and time dependence in a single computation.

In terms of the computational efficiency of EPOCH we
note that, with response functions being central to many ex-
periments, they have been a prime target for also other linear
scaling methods [26,54]. This is especially the case in the
field of quantum transport [55], where several new software
packages have methods that also allow the conductivity to
be computed in large systems [29,31,56,57]. Since the con-
ductivity is given by the current-current correlation within
the Kubo formula [58-62], it can also be directly computed
using EPOCH. In fact, the direct time-domain approach of
EPOCH is particularly interesting for quantum transport [55]
because tracking of wave-packet diffusion in time allows for
the identification of ballistic, diffusive, and localized regimes.
This explains why the Chebyshev single wave-packet propa-
gation method is still often used in quantum transport works
[29,63-69], where the conductivity can be computed from the
velocity autocorrelation function [29,68] or the mean-square
displacement [63—-66]. However because single wave-packet
propagation does not include the full quantum statistics, un-
like EPOCH, any such wave-packet propagation relies on a
separate projection on the Fermi energy, as well as normal-
ization by a separately calculated density of states [55,69].
With EPOCH we entirely avoid these approximations and
separate calculations because the full quantum statistics is
always included at the outset, thus allowing the conductivity
tensor to be computed at any temperature and directly in time
domain, from which localization regimes and DC and AC
conductivities can easily be investigated.

In relation to the application in quantum transport, we
also note that a significant simplification used in many other
methods is that the important contributions are usually only
from a narrow energy window around the Fermi energy, the
so-called Fermi window. This simplification makes it possible
to compute the conductivity using only a few low-energy
states as, e.g., in the Landauer-Biittiker formalism [70]. Using
sparse matrix algorithms, the (M) lowest-energy states, or
generally the scattering states of semi-infinite leads, can then
be constructed with a linear scaling [O(MN)] in the system
size (N) [71]. One such approach is offered by the KWANT
package [56]. A further benefit of using wave functions is
that external time-dependent perturbations can be incorpo-
rated by directly propagating the wave functions using the
time-dependent Schrodinger equation. Numerically, the prop-
agation can be done either with the unitary Crank-Nicolson
for stability, or with Runga-Kutta (linear multistep methods)
as in the recent TKWANT code [57,72,73]. Thus, for quantum
transport problems, an approach based on scattering states
is highly efficient, achieving a linear scaling on par with

EPOCH. This favorable scaling is, however, only achieved
when considering the narrow low-energy window, and there-
fore does not extend beyond this ideal transport regime. Since
EPOCH always includes all occupied states, EPOCH does not
only avoid the cost that comes from working with M wave
functions, including computing the necessary overlap inte-
grals and energy integration, but EPOCH can also be directly
applied with linear scaling to problems where more than a few
occupied states have a finite contribution.

IX. CONCLUDING REMARKS

We develop a computationally efficient method EPOCH
(equilibrium propagator by orthogonal polynomial chain)
to extract the equilibrium thermal time-dependent Green’s
functions directly in the time domain that excels for any
large inhomogeneous system described by a time-independent
Hamiltonian. The method effectively generalizes the widely
adopted and successful Chebyshev wave-packet propaga-
tion method already widespread in quantum chemistry for
single-particle pure quantum states to also handle many-body
fermionic system in thermal equilibrium.

The centerpiece of the EPOCH approach is a quantity
which we refer to as the equilibrium propagator (EP), whose
matrix elements may be used to construct the well-known
single-particle Green’s functions of any fermionic state (such
as electron, hole, or Cooper pair) at equilibrium at any fixed
temperature. The main advantage of the EPOCH method lies
in the efficiency with which this EP may be calculated using
an expansion in orthogonal Legendre polynomials. All the
time dependence in EPOCH is relegated to the coefficients
of these polynomials, the mode transients, which may be
written in terms of two parts, a unitary part, simply given
by the predefined spherical Bessel functions, and a projective
part. The projective transient encodes the quantum statistics
by encapsulating all temperature dependence and is read-
ily computed from an efficient recursive relationship that
we derive. We arrive at the Green’s functions by summing
together the mode transients with matrix elements of the poly-
nomial powers of Hamiltonian. These powers are efficiently
calculated by single matrix-vector multiplications due to the
recursive relations of Legendre polynomials. Consequently,
the EPOCH method scales linearly in the degrees of freedom
of the system, while still both handling time dependence and
equilibrium fermionic statistics. The EPOCH method thus
paves the way for investigating quantum phenomena in large,
inhomogeneous, even superconducting, systems, where time
evolution or dynamical aspects are of interest, ranging from
quantum transport to odd-frequency superconductivity.

We illustrate the extreme efficiency of the EPOCH method
by computing both the normal and anomalous Green’s func-
tions for a large 3D superconductor—normal-state junction
within minutes on a standard laptop. The results show how
an electron created on the normal side of the junction propa-
gates towards the interface where it can be either transmitted,
normal reflected, or Andreev reflected, and finally builds up a
complex pattern of particle-particle (normal) and particle-hole
(anomalous or Cooper pair) waves in the junction. We have
also recently employed EPOCH to calculate the propagation
of even- and odd-frequency pair amplitudes in a disordered
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normal metal to superconductor junction to uncover unex-
pected robustness of odd-frequency superconductivity [74].

In summary, EPOCH is an extremely computationally ef-
fective method to calculate the equilibrium Green’s functions
directly in the time domain to capture dynamics in quantum
systems, with a wide range of possible applications.
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APPENDIX: INFLUENCE OF WEIGHT FUNCTIONS

In this Appendix we clarify the issue why the weight func-
tion w(x) makes the Legendre polynomials a better choice in
the EPOCH method than the Chebyshev polynomials. Fun-
damentally, the argument in favor of Legendre polynomials
traces back to the fact that a generalized Fourier series of
a function f (vector) truncated to the N first terms: fy =
Zflv:o(e,,, f)en with respect to an orthogonal basis {e,}, is the
orthogonal projection onto the subspace spanned by the basis
of first basis vectors {e,}"_,. Consequently, the finite series

minimizes the residual residue || f — fy|| with respect to the
inner product to the function f.

In the case of orthogonal polynomials, the inner product is
defined via the weight function. Since the weight function of
the Legendre polynomials is w(x) = 1, the residual norm is
just the integrated square difference between the approxima-
tion and the function fI[ f(x) — Fy(x)]*dx. However, for any
other weight function w(x) and polynomial set, the minimized
quantity fI wX@)[f(x) — Fy (x)?dx necessarily shifts priority
from one region to another through w(x), which leads to
unequal, and unphysical, treatment of different regions. For
example, the weight function of the Chebyshev polynomials
is 1/+/1—=x2=1//(1 —x)(1+x) and thus has diverging
poles at the end of the interval Z = [—1, 1]. A finite gener-
alized Fourier series in the Chebyshev polynomials therefore
sacrifices representational accuracy throughout the interval for
a tighter fit around the end points, where the weight function
adds most of the cost to any deviation.

A more quantitative statement of this weight function effect
can be made if the generalized Fourier series is combined with
the Jackson kernel, introduced in Sec. V A. In the Jackson
resummation, the truncated kernel of Eq. (8) is everywhere
positive, approximating a Gaussian curve that narrows in on
the ideal Dirac delta function, as the number of terms are
increased. At the center of the interval 7 = [—1, 1], i.e., at
E =0, which is arguably the most important part of the
spectrum of a condensed matter system, the width of this
Gaussian kernel is 7w /N using N Chebyshev polynomials [26],
but only 7 4/2/3/N when using N Legendre polynomials. But,
even more importantly in time evolution the whole spectrum
contributes. Therefore, the main advantage of the Legendre
polynomials is that they avoid placing any arbitrary extra
weight to any particular region of the spectrum at the expense
of another region.
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