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Neural quantum states are a recently introduced class of variational many-body wave functions that are very
flexible in approximating diverse quantum states. Optimization of an NQS ansatz requires sampling from the
corresponding probability distribution defined by squared wave function amplitude. For this purpose, we propose
to use kinetic sampling protocols and demonstrate that in many important cases such methods lead to much
smaller autocorrelation times than the Metropolis-Hastings sampling algorithm while still allowing to easily
implement lattice symmetries (unlike autoregressive models). We also use uniform manifold approximation and
projection algorithm to construct two-dimensional isometric embedding of Markov chains and show that kinetic
sampling helps attain a more homogeneous and ergodic coverage of the Hilbert space basis.

DOLI: 10.1103/PhysRevB.104.104407

The concept of neural quantum states (NQS) emerged sev-
eral years ago, when it was suggested that variational wave
functions possessing a structure of simple neural networks—
restricted Boltzmann machines—can be efficiently optimized
to approximate ground states of some many-body quantum
systems [1]. The idea of using an ansatz of that type turned
out to be very appealing because of neural networks’ flex-
ibility in representing data: Instead of constructing a very
specific trial function that accounts for physical properties of
the concrete model of interest [2], one could hope to get away
with a universal neural approximator [3] that can automati-
cally adjust itself over the course of learning and approach
the ground state of any local Hamiltonian. However, soon it
became clear that fermionic systems [4] (away from the neu-
trality point) and frustrated quantum magnets are challenging
for the NQS approach [5,6], just as they are for the more
traditional and established methods [7]. This posed a natural
quest for improving upon this approach and bringing it closer
to the point when it can be successfully applied to studying
such models. Since then, the method of NQS has evolved
into a solid framework embracing a number of optimization
schemes and variational ansitze (going far beyond the orig-
inally proposed shallow Boltzmann machines) [8-10], and
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considerable progress has been made in understanding both
strong points and shortcomings of neural network wave func-
tions [11]. On the positive side, it was realized that even the
simplest NQS could host volume law entanglement [12,13]
and, in fact, have great capacity to neatly express a vast variety
of many-body states, including ground states of frustrated
spin Hamiltonians [6]. For instance, choosing a suitable NQS
architecture combining the flexibility of a neural network with
some prior knowledge about the model allowed to attain high
accuracy in solving the J; — J, Heisenberg antiferromagnet
on a square lattice and reveal the Dirac nodal nature [14,15]
of its spin liquid phase [16,17]. Some of the reasons why
NQS could not be blindly applied to highly frustrated systems
have been identified as well. The progress made in the field
encourages further improvement of the method to make it
suitable for studying many-body systems that are currently
beyond its scope of applicability.

An important aspect of all the NQS optimization al-
gorithms is Monte Carlo sampling. Since neural network
architectures are not amenable to full contraction, computing
loss functions (energies, fidelities) require sampling from the
probability distribution defined on the Hilbert space basis by
the wave function amplitudes. At this point, exceptionally
high expressibility of NQS, while being a clear advantage of
the method, turns out to hold a hidden danger. During the
learning procedure, NQS undergo a sequence of weight up-
dates, and the corresponding probability distribution evolves
in a highly nontrivial way. It could easily happen that the
distribution acquires a form which is problematic to sampling
by means of Monte Carlo techniques. For example, if the dis-
tribution constitutes a number of well-separated narrow peaks
on the set of basis vectors, inaccurate sampling could lead to
ergodicity problems, incorrect estimates of the distribution,
and, as a result, the NQS following a wrong direction on the
optimization landscape.
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Perhaps, the most promising way to overcome the non-
ergodicity issue is to employ a certain class of neural
architectures called generative models [18], as was recently
suggested. The most well-known example of generative
models are autoregressive models [19]. These models are con-
structed to represent probability distributions as products of
conditional probabilities. In the context of finite-dimensional
lattice quantum models, the conditional probabilities have the
meaning of probabilities for a subset of degrees of freedom,
e.g., spins, to be in a certain classical state given the state of
the complementing degrees of freedom fixed. Such represen-
tation allows to sample from the distribution exactly without
resorting to Markov chain Monte Carlo (MCMC) techniques
[20]. The downside is that implementation of symmetries
becomes problematic. So far, only the basic constraints such
as the fixed total magnetization [21,22] and translation in-
variance [23] have been formulated within the framework of
generative models.

Since using all the accessible symmetries, such as lat-
tice symmetries, provides an essential advantage in studying
many-body quantum systems [15], it is natural to ask whether
there is an alternative way to bypass the problem of cor-
related samples generated with MCMC. In this paper, we
propose an approach to sampling from NQS probability dis-
tributions based on the concept of continuous-time kinetic
Monte Carlo. The idea behind it is to substitute the discrete
chain of proposition-acceptance steps with a rejection-free
process evolving in continuous time [24]. Although well-
appreciated in many other domains of computational physics
[25], it has not been used within the domain of machine
learning for quantum simulations, and here we make a step
in this direction. In particular, we focus on the minimal
continuous-in-time sampling algorithm which we shall call
Zanella process following [26]. We consider several classes
of many-body quantum states such as exact ground states
of frustrated systems of up to 36 spins (J; — J, Heisenberg
antiferromagnet on a square lattice and the nearest-neighbor
Heisenberg antiferromagnet on a kagome lattice) and neu-
ral quantum representations obtained during ground-state
optimization for the same models. For each state, we as-
sess the quality of sampling protocols. The two gauges we
use are autocorrelation time and the visualized coverage of
configuration space constructed with the uniform manifold
approximation and projection (UMAP) dimension reduction
algorithm [27].

The paper is organized as follows. In Sec. I, we outline the
implementation of lattice symmetries. In Sec. II, we provide a
pedagogical introduction to Zanella process closely following
Ref. [26]. Section III contains the main results regarding the
use of sampling protocols for different quantum states. We
conclude with Sec. I'V.

I. IMPLEMENTATION OF LATTICE SYMMETRIES

In the context of NQS, the conventional way to take into
account lattice symmetries is to impose the corresponding
constraints on the architecture of neural networks [1,5]. Al-
though it is rather straightforward to implement translation
invariance of a chain or a square lattice in this way, for more

general crystal symmetries, this approach becomes problem-
atic. To go beyond translation invariance, one can average
the output of the neural network: For a symmetry group G,
replace ¥ (o) by deg ¥ (o) [28]. The main drawback of
this approach is the increase in computational resources: One
now has to propagate many more spin configurations through
the neural network. Recently, group convolutional neural net-
works have been applied to quantum systems [29]. They allow
to also encode nontrivial symmetries (such as rotation) di-
rectly into the architecture. However, the implicit assumption
in all these methods is that no extra phase factors accumulate
from application of symmetry operators; in other words, cases
such as nonzero momentum cannot be treated easily.

If arbitrary quantum numbers are desired, one can resort
to operating within a symmetry-adapted Hilbert space basis,
which is often used in exact diagonalization [30,31] (see also
Refs. [32,33]). This approach was employed in Ref. [34], and
in contrast to averaging, it does not increase the computational
complexity. In our paper, we also adopt this approach and for
completeness outline it here. We work under the assumption
that the symmetry group has at least one one-dimensional
irreducible representation, and the state of interest which one
is sampling from can be expressed as a combination of basis
vectors from one of these representations.

Let H be the Hamiltonian and A be the finite symmetry
group generated by the lattice symmetry operators {1;}, i.e.,
operators which commute with the Hamiltonian: [H, 7] =
0. In 0% product state basis, spin configurations are repre-
sented as binary sequences |o) = |0103...0,), 0; =0, 1. To
define the symmetry-adapted basis, we first introduce equiv-
alence classes of basis spin configurations under the group
action as orbits orbit(|o)) = {g|lo)|g € A}. Every orbit is
then represented by the basis state |5) € orbit(|o)) which
has the minimal value when viewed as a binary representa-
tion of an integer number: representative(|o)) = |6) =
min;, orbit(o). For example, orbit of basis vector |o) =
[J411) = {0011} =22 +23 =12 in a periodic four-spin
chain would be represented by |5) = [11] ) = {1100} =
2042t =3

To build the one-dimensional representation, we note that,
since A is finite, for every symmetry generator Ty, there is a ny
such that 7" = 1, which is typically quite small (at most of
the order the of system size). Hence, eigenvalues of each sym-
metry generator are roots of 1, and 7;|0) = A¢|0), |Ax| = 1,
where |0) is the ground state of H. Thus for any g € A, one
can write g|0) = A,4|0), and Ay, = Aghy, for g, h € A, which
determines the one-dimensional irreducible representation of
the symmetry group.

Importantly, even if A itself is a non-Abelian group, this
construction is valid as long as its representation is Abelian.
Although generally [T;, T;] # 0, on the ground state (as well
as any other state |o) belonging to this representation):
[T;, T;1lo) = 0. For example, for square lattice, translation by
one lattice vector T, and rotation by 90 degrees, R% do not
commute, but 7;|0) = R% |0y = |0).

For each |o), there exists a g€ A such that (o|0) =
(51g"10) = 44(610). Thus,

(010) - o) = 45(610) - gl6) = (510) - A,gl6). (1)
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This means that the standard basis expansion of |0) can be

rewritten as
0) =) (0]0) - ZZ 4] @10) - 285)

o G geA
1
= 0)- Y nielé), ©))
geA

where N; € N is the number of original basis elements in the
orbit of |&); |A| denotes the number of elements in the symme-
try group A; the sum over o runs over all basis vectors of the
Hilbert space, and the sum over & runs over representatives of
all orbits. Using Eq. (2), we define a new basis,

ZA* glé), 3)

gEA

where 1/+/Nj coefficient is introduced to ensure proper nor-
malization.

We can redefine the Hamiltonian # in the new basis. Sup-
pose that originally we had H|o) = ), c;lo;). Then, in the
symmetry-adapted basis, we get

No,
H|S5) = Zci%lhi 18, 4

One should keep in mind that when constructing the
symmetry-adapted basis, we used the ground state |0) for
illustrative purposes only to make sure that the representation
we are dealing with includes |0). In a real-world scenario, one
does not know the ground state beforehand, and in fact it is
not required to find characters A of the representation. If the
group has several one-dimensional irreducible representations
and it is unknown which one the ground state belongs to, the
optimization problem should be solved separately in each of
the corresponding symmetry-adapted bases.

II. KINETIC MONTE CARLO

The Metropolis-Hastings algorithm [35,36] is the most
popular choice for Markov chain sampling from a probability
distribution 77 (x) defined on a discrete set of elements X, such
as the Hilbert space basis of a finite-dimensional quantum
system. At every iteration, the state of the chain is given
by some x € X. An element y from the vicinity dx of x is
then suggested, and the sampling process either transitions
to y or remains at x. The transition happens with probabil-
ity p = min(1, Z ) Which elements should be considered
as belonging to Bx depends on the problem, but for closed
quantum spin systems with fixed magnetization, where every
element is a product state |11 ... | |), dx is often chosen to
include elements that differ from x by a binary spin flip that
preserves total magnetization.

If for some x it turns out that 7 (x) > 7 (y) for the majority
of y € dx, the acceptance rate becomes very low and the
sampling process gets stuck at x for many iterations. This
negatively affects the quality of the sampled sequence, making
it too correlated and not accurately representing the desired
7 (x) distribution. If 7 (x) has a number of far-separated peaks
of this kind, or if elements of X tend to form clusters such

that the Markov chain cannot leave them once entered, the
sampling could lead to severely wrong results.

The Zanella process [24,26] is a natural way to bypass
this problem by using a rejection-free scheme instead of the
acceptance-rejection protocol. As before, at every step the
sampling process is located at some x; € X'. Now, however,
even if this point is a local maximum of the probability dis-
tribution and the acceptance rate in the Metropolis-Hastings
algorithm would be very low, the process still jumps to an
Xi4+1 from dx;. To preserve the information about probability
distribution, we introduce a waiting time. In other words,
before jumping, the process sits at x; for some time 7; € R
which depends on the probability ratio 7 (x;+)/7 (x;). Hence,
instead of getting stuck at x; for many steps, t; is set to a
high value and the process moves on. To be more precise, the
algorithm can be outlined as follows:

(1) At step i, compute normalization for the probability of
jumping away from x; (i.e., a decay rate),

_ 7 (y)
A= Zg(m))’

YEIX;

where g is a function obeying g(/) = [ - g(1/1), usually called
a balancing function [26].

(2) Estimate waiting time t; by sampling it from the expo-
nential distribution

7; ~ Exp(L)),

where the probability density function of Exp(A) is f(x; 1) =
A,
(3) Increase the overall running time:

liy1 =4+ T

(4) Choose a state y € dx; with probability

1, <@>
A & n(x))

(5) Jump to x;1; = y and repeat the scheme.

In this formulation, one can think of the sequence {x;} of
samples as if it were a piecewise constant function of time
x(t). Expectation value of a function defined on X can then
be computed as follows:

p(y) =

1
Edlf0] = Jim — / FGxe)dr

N-1 P
= lim ) 2 Bt ZH £ )
k=0
= lim —Z fx(kAt)), (5)

where At = ty/N. Balancing function g plays a role similar
to the importance sampling in MCMC, but in this paper we
consider the simplest case of g = 1.

As we will see, this simple algorithm already allows to
drastically improve the ergodicity of sampling from problem-
atic distributions.
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III. KINETIC SAMPLING VERSUS
METROPOLIS-HASTING

A. Assessment criteria

The standard way to estimate the quality of Monte Carlo
sampling is to compute autocorrelation time ., for some
relevant quantity O. The autocorrelation time is the charac-
teristic decay time (number of steps in the Markov chain) of
the corresponding two-point correlation function [37]:

Co(t) = (0(t)0(0)) — (O(1))?,
Co(1)/Co(0) ~ e /% fort > 1.

In the context of sampling from probability distributions given
by many-body wave functions, two natural choices of O are
logarithmic probabilityln [1/(S)|* and local energy estimator
Eioc(S) defined by the following equation:

(SIH|Y) 2
E = H = — . (S
(WIHY) ; ST (SI¥)]
= EuelS) - S~ D Eie(S).
S S~|y|?

Logarithmic probability is chosen instead of |1/ (S)|? to avoid
numerical issues. In the following, we will use Cy (¢) to de-
note autocorrelation function computed for In | (S(¢))|?, and
Cg (1) — for Ejoc(S(1)).

Although autocorrelation time is a well-established crite-
rion, it is not the only way to judge the quality of drawn
samples. In Ref. [20], authors used the principle component
analysis (PCA) algorithm [38] to reduce the dimension of
basis vectors. By visualizing the resulting 2D vectors, they
were able to compare the Metropolis-Hastings algorithm to
the exact sampling procedure of autoregressive neural net-
work architectures and demonstrate that the latter leads to
much more homogeneous coverage of the Hilbert space basis.
For systems considered in this work, PCA does not seem
to reveal much additional information about the quality of
samplers. Thus we suggest using a more involved but arguably
also superior dimension reduction algorithm called UMAP
[27]. We refer the reader to the original paper for a detailed

motivation and description of the algorithm (especially Sec.
3), but would still like to briefly outline the procedure here.

UMAP algorithm operates on a discrete data set {x;}
equipped with some metric d(x;, x;) which measures dissim-
ilarity between data points. In our case, the data set is a
subset of the Hilbert space basis sampled using either the
Metropolis-Hastings or Zanella algorithm (excluding all du-
plicates). The metric is simply the Hamming distance between
the corresponding spin sequences |1 ... 11). The first stage
of the algorithm is to equip the data set with a structure of a
weighted undirected graph. One fixes the number of nearest
neighbors k every vertex (basis vector) should be connected
with. For our purpose, it is natural to choose k < N, where N
is the number of spins in the system. Concretely, for 36-spin
systems we take k = 20. In the resulting graph, each edge is
assigned some weight w;; which is a function of d and k. Once
the graph is constructed, the UMAP algorithm projects it on a
low-dimensional space (usually the 2D plane) in a way that
approximately preserves the distances between the vertices
such that the resulting visualization maximally accurately rep-
resents the actual metric structure of the data set. Embedding
into a 2D space allows to directly compare the quality of
different samplers by contrasting sampled sequences visually
for different types of many-body quantum states.

To represent Monte Carlo samples, we adopt the following
protocol:

(1) Using each of the two samplers (Metropolis-Hastings
and Zanella), generate a sequence of 10° vectors.

(2) Merge these two sequences and discard all repetitions
to obtain a set of unique basis vectors visited by either of the
samplers.

(3) Equip this set with Hamming distance and build its
UMAP embedding into the two-dimensional plane.

(4) Visualize the sequences within this embedding.

B. Benchmarks

First, we compare the Monte Carlo algorithms by sam-
pling from the exact ground states of three quantum spin
models: the J; —J, Heisenberg antiferromagnet on 6 x 6
square lattice with periodic boundary conditions at J, = 0.0

— Metropolis Zanella
1004

10714 i i i
5 | Teorr = 113 | |
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10~3 . 1 i . . 1 | ;

0 100 200 0 50 100 0 50 100
t t t

FIG. 1. Autocorrelation function Cy, of Metropolis-Hastings and Zanella processes computed for the cases of sampling from probability
distributions corresponding to ground states of Heisenberg antiferromagnet on square lattice at J, = 0 (left) and J, = 0.55 (middle) and kagome
lattice (right). Autocorrelation function was computed by averaging 300 chains of length 8000
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Square lattice, Jo =0

Square lattice, Jo = 0.55

Kagome lattice

FIG. 2. UMAP visualization of sequences of basis elements produced by Metropolis-Hastings (dark blue) and Zanella (tan) samplers. The
sampled probability distributions correspond to ground states of Heisenberg antiferromagnets on square lattice at J, = 0 and J, = 0.55 and
kagome lattice. Every point represents a vector from the nonsymmetrized basis. Red points on the first two plots represent Neel states with
checkerboard spin ordering (so the Hamming distance between the two Neel states is 36). For both samplers, 800 elements are shown.

(nonfrustrated) and J, = 0.55 (maximally frustrated), and
Heisenberg antiferromagnet on 36-site kagome cluster with
periodic boundary conditions obtained with exact diagonal-
ization [39]. For exact ground states, energy autocorrelation
functions are not well-defined because Ej,.(S) are identical
for all basis spin configurations S. We thus only compute
the probability autocorrelation functions Cy, which are shown
in Fig. 1. For all three systems, the Zanella process shows
superior performance. In the ground states, it allows to reduce
autocorrelation time by a factor of 2—7, and, as will be shown
below; for more generic states encountered during NQS opti-
mization the gain could be up to a factor of 10-50. We expect
this effect to increase even more for larger systems.

Second, we analyze Zanella and Metropolis-Hastings algo-
rithms using UMAP dimension reduction. Defining a metric
on the symmetry-adapted basis is a nontrivial task and is
left for future studies. Instead, we do the sampling in a
nonsymmetrized basis. Dimension of the Hilbert space is
thus 9075135300 = O(10'°) for all three systems. Hamming
distance acquires a very concrete physical interpretation—it
counts the minimal number of steps an algorithm needs to

— Metropolis, log ||?

«
§ 100
IS
50 0.5
‘- ————
N e
0
60 80 100 120 140

epoch

Zanella, log | |2

move from one basis state to another. In Fig. 2, we show
relatively short (800 steps) parts of Markov chains. They are
taken from the middle of the chain to ensure that thermaliza-
tion effects do not disrupt the picture. Visual distance in the
figure approximately reflects the Hamming distance between
points (of course, some aberrations caused by embedding into
a lower-dimensional space are unavoidable). One can see that
for all three considered wave functions, the kinetic sampler
explores the Hilbert space in a much more ergodic and swift
manner than the Metropolis-Hastings algorithm. Note also
that for square lattice Metropolis-Hastings algorithm samples,
there are more unique states and it covers a bigger part of
the basis for J, = 0 than it does for J, = 0.55, even though
its autocorrelation time is much larger in the former case.
Without the UMAP algorithm, one would have ended up
under the impression that the frustrated case was easier to
sample.

Since we are mainly motivated by improving sampling
in the context of NQS, it is instructive to compare quality
of the methods in a realistic learning scenario. To perform
this test, we run stochastic reconfiguration optimization [1,40]

== Metropolis, Ej,. Zanella, Ej.

0.6
200 /\/\J\/’\/v\/\/wv
150
0.5 =
100 E
=
50
VA F0.4
e e o
0

FIG. 3. Evolution of autocorrelation time during the NQS training procedure for Heisenberg antiferromagnet on 6 x 6 square lattice with
J» = 0 (left) and J, = 0.55 (right). Grey curves represent overlap with the exact ground state, which is computed exactly at every learning
epoch by evaluating sum over the complete Hilbert space basis. Autocorrelation times were estimated from 200 chains of length 7000.
Upon approaching the ground state, the advantage of Zanella process becomes less significant, but over the course of learning it outperforms

Metropolis-Hastings sampling by at least an order of magnitude.

104407-5



BAGROV, ILIASOV, AND WESTERHOUT

PHYSICAL REVIEW B 104, 104407 (2021)

800 steps

2000 steps

10000 steps

FIG. 4. UMAP visualization of sequences of basis elements produced by Metropolis-Hastings (dark blue) and Zanella (tan) samplers.
The sampled probability distribution corresponds to a typical undertrained NQS (Heisenberg antiferromagnet on 6 x 6 square lattice with
J, = 0, epoch Ne200). Every point represents a vector from the nonsymmetrized basis. Red points represent Neel states with checkerboard
spin ordering (so the Hamming distance between the two Neel states is 36). As before, the parts of Markov chains are taken from the middle

of the chain to ensure proper thermalization.

of simple neural networks in the symmetry-adapted basis,
aiming at finding good approximations to ground states of
the J; —J, model on a 6 x 6 square lattice with periodic
boundary conditions at J, = 0 and J, = 0.55. Since in the
more complicated case of the kagome lattice, the NQS method
leads to quite a large relative energy error and low fidelity
of the variational approximation, we do not consider it here.
We represent absolute values and signs of the wave func-
tion coefficients with two independent one-hidden-layer dense
networks with 4 x 36 = 144 hidden neurons. To make the
comparison unbiased, to optimize the NQS, we use neither of
the Monte Carlo samplers but rather compute energies of the
variational states and the weight updates at every epoch by
means of exact sampling. We view squared amplitudes of the
wave as a discrete probability distribution and sample from
it directly using standard textbook algorithms [41]. After the
optimization, we go through obtained NQS at every epoch
of training and sample from them using Metropolis-Hastings
and Zanella algorithms. Corresponding autocorrelation times
are shown in Fig. 3. One can see that autocorrelation times
computed from both energy and probability correlation func-
tions Cg and Cy are significantly smaller for the Zanella
process. Upon approaching the ground state, the probabilistic
autocorrelation time of the Zanella process tends to increase,
but using kinetic sampling remains highly advantageous at
all stages of optimization. In Fig. 4, we show UMAP visual-
ization of Metropolis-Hastings and Zanella Markov chains in
the case of sampling from a typical NQS encountered during
the learning process. The advantage of kinetic sampling over
the Metropolis-Hastings algorithm is evident: while the latter

tends to stick to the Hilbert space basis sector around one
of the two Neel states, the former explores the basis in a
much more ergodic manner. The transition between two Neel
states is problematic for two reasons: the states are far from
each other (Hamming distance between them is maximal) and
happen to have very high amplitudes. Although both samplers
struggle to make this transition, the Zanella algorithm seems
to handle this issue much better than the Metropolis-Hastings
algorithm. Note, however, that if the variational ansatz gets
trapped in a local metastable minimum over the course of
learning (which often happens for highly frustrated quantum
spin models) even perfect sampling method cannot help es-
cape it, and the whole optimization procedure needs to be
modified [42].

IV. CONCLUSIONS

In most of the NQS optimization algorithms, unless one is
using generative models, Monte Carlo sampling is required to
compute observables and gradients, which makes it a crucial
part of the learning scheme. In this paper, we have analyzed
how the quality of sampling from probability distributions de-
fined by many-body wave functions can be improved by using
a kinetic Monte Carlo algorithm—continuous-in-time Zanella
process—instead of the conventional Metropolis-Hastings al-
gorithm. Being extremely easy to implement, the Zanella
process gives a substantial improvement in autocorrelation
times. To further assess the quality of sampling, we proposed
to employ an UMAP embedding algorithm which constructs
visualizations of high-dimensional data sets approximately
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preserving distances between elements. It thus serves as a
much better source of geometric intuition about the data set
structure than, for example, principal component analysis. As
follows from UMAP analysis, on top of having smaller auto-
correlation times, the Zanella process gives a more uniform
coverage of the Hilbert space basis.

Possibly, the main research domain where the advantage
provided by kinetic sampling could be of high importance
is NQS application to real-time dynamics of nonequilibrium
quantum many-body systems. In settings of that kind, not only
does the resulting quality of approximation matter, but every
single step of the simulation should conform with energy-
preserving Hamiltonian evolution. Slight nonergodicity of the
sampler could introduce deviations from the proper evolution
trajectory that would eventually lead to accumulation of large
errors. In this context, employing a sampling algorithm that
generates high-quality uncorrelated sequences could be as
important as using neural network architectures with good
expressibility and generalization properties.

Although even the simplest Zanella algorithm appears
to be superior to the Metropolis-Hastings algorithm, further
improvements are possible. Using a rejection-free continuous-
in-time process allows to avoid getting trapped at the same
point for many iterations. However, another possible danger
is localization of a Markov chain within a small subset of
the space X. If the process enters a region of high probabil-
ities, it could start wandering along short closed trajectories
within this region such as x -y - z — x — ..., which
would negatively affect ergodicity. For probability distribu-
tions of this kind, an algorithm that forbids back-tracking
might be desirable. Recently, an extension of Zanella process
has been suggested which approximately avoids back-tracking
on short-to-medium time scales. This is done by promot-
ing Zanella process to a non-Markovian metaheuristic which
combines ideas of kinetic Monte Carlo and self-avoiding
walks. The algorithm was named Tabu sampler [26]. When
applied to sampling from probability distributions on large
graphs, Tabu sampler was shown to decrease autocorrela-
tion times by one or two orders of magnitude compared to
Zanella process. Implementing it for sampling from many-
body wave functions is straightforward if lattice symmetries
of the quantum system are not taken into account. However,
the algorithm requires non-trivial modifications to be applied
in the symmetry-adapted basis, which is a direction for future
research.
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APPENDIX A: CORRECTNESS OF SAMPLING
ALGORITHMS IMPLEMENTATION

When a sampling algorithm is suggested, it is important to
make sure whether it actually samples the correct probability
distribution. To assess that, we have conducted two types of
tests. First, we took ground states of a few short antiferro-
magnetic isotropic Heisenberg spin chains (so the Markov
chain can visit each basis vector a large number of times),
sampled from the corresponding probability distributions, and
performed %2 [43] and ¢, closeness [44] tests comparing
frequencies of basis vectors appearing in the Markov chain
with the expected exact probabilities. For both Zanella and
Metropolis-Hastings algorithms, we run 32 Markov chains
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: Zanella
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FIG. 5. Comparison of quality of different samplers. Zanella
(orange) and Metropolis-Hastings (lavender) algorithms are used to
compute energy of a partially converged NQS of 6 x 6 (top) and
10 x 10 (bottom) square lattices. In both cases, we run 100 Markov
chains of 10 000 samples, and the resulting energies are binned
in histograms. Sweep size was taken 1 for Zanella Markov chains
and 5 for Metropolis-Hastings Markov chains. Gauss enveloping
functions represent the mean and the standard deviation within the
ensemble of Markov chains. For the 6 x 6 lattice, black Gaussian
curve represents the distribution of energies computed with exact
sampling algorithms with the same number of runs/samples (without
showing the histogram).
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FIG. 6. Comparison of quality of different samplers. Zanella (orange) and Metropolis-Hastings (lavender) algorithms are used to compute
(S.S;) correlation function of a partially converged NQS for different distances between sites (bold numbers represent coordinates on the
square lattice). In both cases, we run 100 Markov chains of 10000 samples, and the resulting energies are binned in histograms. Sweep size
was taken 1 for Zanella Markov chains and 5 for Metropolis-Hastings Markov chains. Gauss enveloping functions represent the mean and
the standard deviation within the ensemble of Markov chains. Black Gaussian curve represents the distribution of (S,S,) value computed with
exact sampling algorithms with the same number of runs/samples (without showing the histogram).

of length 10° for x? test (where we took chains of four and
six spins, both in symmetric and nonsymmetric bases), and
10* — for £; closeness tests (chains of four, six, and eight
spins, both in symmetric and nonsymmetric bases). In the
x? test, we test that the combined p-value of all Markov
chains exceeds 10~*; in the £,-closeness test we assert that
the sampled and target distributions are e-close in £; norm for
e=10"%

To demonstrate correctness of sampling in a real-life NQS
learning scenario, we picked a generic partially converged
neural quantum state of a system of 36 spins (Heisenberg
antiferromagnet on a square lattice without frustration, 36

| —— Metropolis

Zanella
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Time per Markov chain step (ms)
o
ot

o
=)

100 125 150 175
System size

2% 50 75

FIG. 7. Performance of different samplers. Time per one Markov
chain step for Zanella (orange) and Metropolis-Hastings (blue) algo-
rithms is shown as function of the system size. For Zanella algorithm,
this dependence can be fit with t ~0.524 +5.34 . 1075N? ms.
Sampling was performed on NVIDIA Tesla V100 GPU for a two-
hidden-layer dense network with 512 neurons in each hidden layer
and ReLU activation function.

spins, epoch No. 86) and employed Zanella and Metropolis-
Hastings algorithms, as well as exact sampling, to estimate
its energy, Fig. 5, and spin correlation function (S,S.), Fig. 6.
We have found that for the same length of Markov chain (or
the number of samples in the case of exact sampling) and
the same number of runs, both sampling schemes give very
similar mean values of the observables, while the standard
deviation is much lower for the kinetic Zanella algorithm.
Even with sweep size 1, it is nearly as good as that of the exact
sampling algorithm when used to estimate energy. To attain a
similar quality with the Metropolis-Hastings algorithm, sweep
size should be taken ~2100.
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FIG. 8. Autocorrelation function Cy, of Metropolis-Hastings and
Zanella processes computed for the cases of sampling from prob-
ability distributions corresponding to approximate ground states of
Heisenberg antiferromagnet at J, = 0 on square lattice with 100
spins. Autocorrelation function was computed by averaging 300
chains of length 8000.
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APPENDIX B: PERFORMANCE
OF DIFFERENT SAMPLERS

To compare performance of samplers, we use them to sam-
ple from probability distributions set by randomly initialized
NQS of one-dimensional spin chains of various sizes with
global spin inversion and parity symmetries taken into ac-
count. We see that time per elementary step of Zanella sampler
increases quadratically as the system size is increased, but
even for 200 spins it is still less than four times larger than that
of the Metropolis-Hastings algorithm, Fig. 7. Taking into ac-
count that, as outlined in the previous section, Zanella sampler
requires much smaller sweep sizes than Metropolis-Hastings
sampler, it is still highly beneficial to use Zanella even on large
systems.

The quadratic scaling is due to the computation of dx;
at every step of sampling rather than forward propagation
through the neural network [i.e., computation of 7 (y)] and
can be reduced by optimizing the code. In our particular im-
plementation, we allowed arbitrary magnetization-preserving
binary spin flips, meaning that the number of configurations
in dx; is ~N2. However, it could easily be the case that if
the Markov chain goes over a sparser graph on the Hilbert

space basis (e.g., only jumps between basis vectors coupled
via Hamiltonian matrix element are allowed), quality of sam-
pling would not be significantly affected with the performance
drastically improved.

APPENDIX C: AUTOCORRELATION TIME
FOR LARGE SYSTEMS

Finally, we would like to check whether the gain in au-
tocorrelation time provided by the kinetic sampler is still
considerable for larger systems. For that, we used Zanella and
Metropolis-Hastings algorithms to sample from the ground
state of the Heisenberg antiferromagnet (J/, = 0) ona 10 x 10
lattice. Since it is impossible to have an exact ground-state
wave function of that large number of spins, we need to work
with its approximation. To make our analysis unbiased, we
borrowed a well-trained restricted Boltzmann machine from
Ref. [1] with parameters corresponding to relative energy
error ~8 x 10~*. Similarly to the case of a 6 x 6 lattice, the
autocorrelation time of Zanella Markov chain is two times
smaller than that of Metropolis-Hastings, Fig. 8, indicating
that the advantage factor does not depend on the system size.
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