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Influence of intersublattice coupling on the terahertz nutation spin dynamics in antiferromagnets
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Spin-nutation resonance has been well explored in one-sublattice ferromagnets. Here, we investigate the spin
nutation in two-sublattice antiferromagnets as well as, for comparison, ferrimagnets with inter- and intrasub-
lattice nutation coupling. In particular, we derive the susceptibility of the two-sublattice magnetic system in
response to an applied external magnetic field. To this end, the antiferromagnetic and ferrimagnetic (sub-THz)
precession and THz nutation resonance frequencies are calculated. Our results show that the precession reso-
nance frequencies and effective damping decrease with intrasublattic nutation coupling, while they increase with
intersublattice nutation in an antiferromagnet. However, we find that the THz nutation resonance frequencies
decrease with both the intra- and intersublattice nutation couplings. For ferrimagnets, conversely, we calculate
two nutation modes with distinct frequencies, unlike antiferromagnets. The exchangelike precession resonance
frequency of ferrimagnets decreases with intrasublattice nutation coupling and increases with intersublattice
nutation coupling, as antiferromagnets, but the ferromagneticlike precession frequency of ferrimagnets is
practically invariant to the intra- and intersublattice nutation couplings.
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I. INTRODUCTION

Efficient spin manipulation at ultrashort timescales holds
promise for applications in future magnetic memory tech-
nology [1–5]. Introduced by Landau and Lifshitz, the time
evolution of magnetization M(r, t ) can be described by the
phenomenological Landau-Lifshitz-Gilbert (LLG) equation
of motion, which reads [6–9]

Ṁ = −γ (M × H ) + α

M0
(M × Ṁ), (1)

with the gyromagnetic ratio γ , constant magnetization am-
plitude M0, and Gilbert damping parameter α. The LLG
equation consists of the precession of spins around a field
H and transverse damping that aligns the spins towards the
field direction. While the spin precessional motion can be ex-
plained by Zeeman-like field-spin coupling, there are several
fundamental and microscopic mechanisms leading to Gilbert
damping [10–22].

When one approaches the femtosecond regime, however,
the spin dynamics can not only be described by the traditional
LLG dynamical equation of motion [23,24], but it has to
be supplemented by a fast dynamics term due to magnetic
inertia [25–28]. Essentially, the inclusion of magnetic inertia
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leads to a spin nutation at ultrashort timescales and can be
described by a torque due to a double time derivative of the
magnetization, i.e., M × M̈ [27,29]. The inertial LLG (ILLG)
equation of motion has the form

Ṁ = −γ (M × H ) + α

M0
(M × Ṁ) + η

M0
(M × M̈), (2)

with the inertial relaxation time η. In general, the Gilbert
damping α and the inertial relaxation time η are tensors [30],
however, for an isotropic system, these parameters can be
considered as scalars. The emergence of spin nutation has
been attributed to an extension of the Kamberský breathing
Fermi surface model [31,32], namely, an s-d-like interaction
spin model between local magnetization and itinerant elec-
trons [33,34]. Moreover, the ILLG equation has been derived
from the fundamental Dirac equation [20,30]. Note that the
Gilbert damping and inertial relaxation time are related to
each other as the Gilbert damping is associated with the
imaginary part of the susceptibility, while the inertial dy-
namics are associated with the real part of the susceptibility
[20,35]. The characteristic timescales of the nutation have
been predicted to be in a range of 1–100 fs [26,33,36,37]
and 1–10 ps [37,38]. More recently, it has been demonstrated
that simple classical mechanical considerations superimposed
with Gilbert dynamics naturally lead to magnetic inertial
dynamics [39,40].

Theoretically, the spin nutation has recently been exten-
sively discussed for one-sublattice ferromagnets [26,37,41–
45]. The nutation resonance has also been observed in ex-
periments, however, for two-sublattice ferromagnets [38].
A recent theoretical investigation predicts that the preces-
sion and nutation resonance frequencies may overlap in

2469-9950/2021/104(10)/104405(8) 104405-1 Published by the American Physical Society

https://orcid.org/0000-0002-4529-0027
https://orcid.org/0000-0002-9069-2631
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.104405&domain=pdf&date_stamp=2021-09-02
https://doi.org/10.1103/PhysRevB.104.104405
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


RITWIK MONDAL AND PETER M. OPPENEER PHYSICAL REVIEW B 104, 104405 (2021)

two-sublattice ferromagnets [46]. The spin-nutation reso-
nance has been observed at a higher frequency than ferro-
magnetic resonance, e.g., while the ferromagnetic resonance
occurs in the GHz regime, the nutation resonance occurs in
the THz regime [38,47]. Moreover, the spin nutation shifts
the ferromagnetic resonance frequency to a lower value. Al-
though this shift is very small, the linewidth of the resonance
decreases, however, and thus the effective damping decreases,
too.

While the coupling of spin dynamics to mechanical inertia
in antiferromagnets has been discussed [48], the pure spin-
nutation effects have not yet comprehensively been discussed
in antiparallel aligned two-sublattice magnetic systems (e.g.,
antiferromagnets, ferrimagnets). In a recent investigation, it
has been predicted that the spin nutation in antiferromag-
nets may have much significance [47]. Due to the sublattice
exchange interaction, the antiferromagnetic resonance fre-
quency lies in the THz regime, while the nutation resonance
frequency has a similar order of magnitude. This helps to de-
tect the antiferromagnetic precession and nutation resonances
experimentally as they fall in the same frequency range. More-
over, the calculated shift of the antiferromagnetic resonance
frequency is stronger than that of a ferromagnet. Additionally,
the nutation resonance peak is exchange enhanced [47], which
is beneficial for detection in experiments. However, the pre-
vious investigation only considers the intrasublattice inertial
dynamics, while the effect of intersublattice inertial dynamics
is unknown.

In a previous work, the LLG equation of motion with
intersublattice Gilbert damping has been explored by Kamra
et al. [49]. It was found that the introduction of intersublattice
Gilbert damping enhances the damping [49–51]. In this paper,
we formulate the spin dynamical equations in a two-sublattice
magnetic system with both intra- and intersublattice inertial
dynamics as well as inter- and intrasublattice Gilbert damp-
ing, thus extending previous work [47]. First, we derive the
magnetic susceptibility with the intersublattice effects and
compute the precession and nutation resonance frequencies.
We find that the precession resonance frequency and the
effective Gilbert damping decrease with the intrasublattice
nutation coupling in antiferromagnets, however, they increase
with the intersublattice nutation. Unlike antiferromagnets,
we find for ferrimagnets that the change of precession res-
onance frequencies is more pronounced with both intra- and
intersublattice nutation coupling constants in the exchangelike
mode, but nearly negligible for the ferromagnetic mode.

The paper is organized as follows. First, in Sec. II, we dis-
cuss the linear-response theory of spin dynamics to calculate
the magnetic susceptibility with the intra- and intersublattice
nutation effects. In Sec. III, the precession resonance frequen-
cies have been calculated with analytical and numerical tools
for antiferromagnets (Sec. III A) and ferrimagnets (Sec. III B).
We summarize the obtained results in Sec. IV.

II. LINEAR-RESPONSE SUSCEPTIBILITY
IN TWO-SUBLATTICE MAGNETS

For two-sublattice magnetic systems, namely A and B rep-
resenting the two sublattices, the ILLG equations of motion

read

ṀA = − γA(MA × HA) + αAA

MA0
(MA × ṀA)

+ αAB

MB0
(MA × ṀB) + ηAA

MA0
(MA × M̈A)

+ ηAB

MB0
(MA × M̈B), (3)

ṀB = − γB(MB × HB) + αBB

MB0
(MB × ṀB)

+ αBA

MA0
(MB × ṀA) + ηBB

MB0
(MB × M̈B)

+ ηBA

MA0
(MB × M̈A). (4)

In the above dynamical equations, the first terms relate to the
spin precession, the second and third terms represent the intra-
and intersublattice Gilbert damping, and the last two terms
classify the intra- and intersublattice inertial dynamics. The
intrasublattice magnetization dynamics has been character-
ized with the Gilbert damping constants αAA, αBB and inertial
relaxation time ηAA or ηBB, while the intersublattice dynamics
is characterized by Gilbert damping αAB or αBA and inertial
relaxation time ηAB or ηBA. Note that the Gilbert damping pa-
rameters are dimensionless, however, inertial relaxation time
has a dimension of time [26,27,30]. The extended equations
of motions in Eqs. (3) and (4) represent general magnetization
dynamics for two-sublattice magnets (e.g., antiferromagnets,
ferrimagnets, two-sublattice ferromagnets, and so on).

The free energy of the considered two-sublattice system
reads

F (MA, MB) = − H0(MAz + MBz ) − KA

M2
A0

M2
Az

− KB

M2
B0

M2
Bz + J

MA0MB0
MA · MB. (5)

Here, the first term defines the Zeeman coupling of two sub-
lattice spins with an external field H0 = H0ẑ. The second and
third terms represent the anisotropy energies for the sublat-
tice A and B, respectively. The last term can be identified as
the Heisenberg exchange energy between the two sublattices.
Note that the Heisenberg coupling energy J > 0 for antifer-
romagnets and ferrimagnets, but J < 0 for ferromagneticlike
coupling.

We calculate the effective field in the ILLG equation as
the derivative of free energy in Eq. (5) with respect to the
corresponding magnetization

HA = −∂F (MA, MB)

∂MA

=
(

H0 + 2KA

M2
A0

MAz

)
ẑ − J

MA0MB0
MB, (6)

HB = −∂F (MA, MB)

∂MB

=
(

H0 + 2KB

M2
B0

MBz

)
ẑ − J

MA0MB0
MA. (7)

First, in the ground state, we consider that the A sublat-
tice magnetization is MA = MA0ẑ, while the B sublattice
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magnetization is antiparallel MB = −MB0ẑ, such that we can
describe the antiferromagnets (MA0 = MB0) and ferrimagnets
(MA0 > MB0). We then expand the magnetization around the
ground state in small deviations, MA = MA0ẑ + mA(t ) and
MB = −MB0ẑ + mB(t ). The small deviations mA/B are in-
duced by the transverse external field hA/B(t ).

For convenience, we work in the circularly polarized basis,
i.e., mA/B± = mA/Bx ± imA/By, hA/B± = hA/Bx ± ihA/By, and
define �A = γA/MA0(J + 2KA + H0MA0), �B = γB/MB0(J +
2KB − H0MB0). With the time-dependent harmonic fields and
magnetizations hA/B±, mA/B± ∝ e±iωt , we obtain the magnetic
susceptibility tensor [47]

(
mA±
mB±

)
= 1

�±

(
1

γBMB0
(�B ± iωαBB − ω2ηBB + ω) − 1

γBMA0

(
γB

MB0
J ± iωαBA − ω2ηBA

)
− 1

γAMB0

(
γA

MA0
J ± iωαAB − ω2ηAB

)
1

γAMA0
(�A ± iωαAA − ω2ηAA − ω)

)(
hA±
hB±

)

= χAB
±

(
hA±
hB±

)
, (8)

with the definition of the determinant �± =
(γAγBMA0MB0)−1(�A ± iωαAA − ω2ηAA − ω)(�B ±
iωαBB − ω2ηBB + ω) − (γAγBMA0MB0)−1( γA

MA0
J ± iωαAB −

ω2ηAB)( γB

MB0
J ± iωαBA − ω2ηBA).

As one expects, the intersublattice Gilbert damping and
inertial dynamical contributions arise in the off-diagonal com-
ponents of the susceptibility tensor, while the intrasublattice
contributions are in the diagonal component of the suscep-
tibility [47]. Note that without inertial dynamics terms, the
expression for the susceptibility is in accordance with the one
derived by Kamra et al. [49].

To find the resonance frequencies, the determinant �±
must go to zero, thus one has to solve the following fourth-
order equation in frequency

A±ω4 + B±ω3 + C±ω2 + D±ω + E± = 0, (9)

where the coefficients have the following forms,

A± = ηAAηBB − ηABηBA, (10)

B± = ∓i(αAAηBB + αBBηAA) − (ηAA − ηBB)

± i(αABηBA + αBAηAB), (11)

C± = −1 ± i(αAA − αBB) − (�AηBB + �BηAA)

−αAAαBB +
( γA

MA0
ηBA + γB

MB0
ηAB

)
J

+αABαBA, (12)

D± = (�A − �B) ± i(�AαBB + �BαAA)

× ∓ i
( γA

MA0
αBA + γB

MB0
αAB

)
J, (13)

E± = �A�B − γAγB

MA0MB0
J2. (14)

The solutions of the above equation (9) result in four different
frequencies in the presence of a finite external field. Two of
those frequencies can be associated with the magnetization
precession resonance ωp± (positive and negative modes) that
exists even without nutation. The other two frequencies dictate
the nutation resonance frequencies ωn± (positive and negative
modes).

III. RESULTS AND DISCUSSION

The intrinsic intrasublattice inertial dynamics have been
discussed extensively in Ref. [47]. Essentially, the resonance

frequencies and effective damping decrease with increasing
intrasublattice inertial relaxation time for antiferromagnets
and ferrimagnets. Therefore, we consider a constant intrasub-
lattice inertial relaxation time in this work. In this section, we
specifically discuss the effects of intersublattice nutation in
both antiferromagnets and ferrimagnets.

A. Antiferromagnets

To start with, we calculate the frequency-dependent dis-
sipated power of an antiferromagnet. Using the expressions
for the susceptibility in Eq. (8), we calculate the dissipated
power in the inertial dynamics with the following def-
inition, PAB = ṁA · hA + ṁB · hB = 1

2 (ṁA+hA− + ṁA−hA+ +
ṁB+hB− + ṁB−hB+), which leads to a complicated expres-
sion (not given). For convenience, we define αAA = αBB =
α, ηAA = ηBB = η. To focus on the intersublattice nutation
ηAB = ηBA = η′, we set the intersublattice Gilbert damping
to zero, i.e., αAB = αBA = 0, and choose MA0 = MB0 = 2μB.
The exchange and anisotropy energies, magnetic moments
used in the here-presented computations are comparable to
a typical antiferromagnetic NiO [23,52,53] or CoO [54,55]
system. However, we mention that NiO or CoO bulk crys-
tals have biaxial anisotropy. Also, the Gilbert damping of
NiO is very small, αAA = αBB = α ∼ 10−4, i.e., less than the
here-used value. In contrast, a large spin-orbit coupling in
antiferromagnetic CrPt (that has ∼2μB Cr moments) leads
to a higher Gilbert damping α ∼ 10−2 [56,57]. Importantly,
the inertial relaxation times η and η′ are not known in these
antiferromagnetic systems. Our simulations pertain therefore
to typical, selected model systems. We show the evaluated dis-
sipated power with and without inertial dynamics for such an
antiferromagnet in Fig. 1. Note that the dissipated power has
already been calculated in Ref. [47], however, without the in-
tersublattice inertial dynamics. We can observe that while the
intrasublattice inertial dynamics decreases the precessional
resonance frequencies (see the cyan lines in Fig. 1), the in-
tersublattice inertial dynamics works oppositely. Note that the
nutation resonance frequencies decrease with the introduction
of intersublattice inertial dynamics.

To understand the effect of the intersublattice nutation
terms, first, we solve Eq. (9), considering again αAA =
αBB = α, ηAA = ηBB = η, ηAB = ηBA = η′, and αAB = αBA =
0. As the nutation in antiferromagnets is exchange en-
hanced [47], we calculate the effect of intersublattice terms
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FIG. 1. The calculated dissipated power vs frequency for an
antiferromagnet with MA0 = MB0 = 2μB, and various values of the
intra- and intersublattice nutation parameters η and η′. The inset
shows the dissipated power in dimensionless units (d.u.) close to
the precession resonance frequencies. The other used parameters are
γA = γB = 1.76 × 1011 T−1 s−1, J = 10−21 J, KA = KB = 10−23 J,
H0 = 1 T, αAA = αBB = 0.05, αAB = αBA = 0, ηAA = ηBB = η, and
ηAB = ηBA = η′.

on the precession and nutation frequencies, setting γA =
γB = γ and MA0 = MB0 = M0 for antiferromagnets. There-
fore, the fourth-order equation in Eq. (9) reduces to an
equation with AAFM

± = η2 − η′2, BAFM
± = ∓i2αη, CAFM

± =
−1 − (�A + �B)η + 2 γ

M0
η′J , DAFM

± = (�A − �B) ± i(�A +
�B)α, and EAFM

± = �A�B − ( γ

M0
J )2. The solution of the

above equation results in precession and nutation resonance
frequencies for the two modes (positive and negative). In-
serting the real and imaginary parts of the solutions ω± =
Re(ω±) + i Im(ω±), we numerically calculate the precession
resonance frequencies and effective damping (the ratio of
imaginary and real frequencies) for an antiferromagnet as a
function of intersublattice nutation. The results are shown in

Fig. 2, where the data points correspond to the numerical
solutions.

On the other hand, the fourth-order equation, AAFM
+ ω4 +

BAFM
+ ω3 + CAFM

+ ω2 + DAFM
+ ω + EAFM

+ = 0, can analytically
be solved using the considerations that KA = KB = K , J � K ,
M0H0, and α � 1. Therefore, one has �A = �B ≈ γ (J +
2K )/M0. Essentially, the fourth-order equation reduces to

(η2 − η′2)ω4 −
[

1 + 2
γ η(J + 2K )

M0
− 2

γ η′J
M0

]
ω2

− 2iαηω3
(0) + 2γ H0ω(0) + 2iγα

M0
(J + 2K )ω(0)

+ γ 2

M2
0

(J + 2K )2 − γ 2J2

M2
0

− γ 2H2
0 = 0, (15)

with ω(0) being the solution of the above equation for α = 0
and H0 = 0. The solutions of the above equation are rather
simple and provide the two precession frequency modes
(positive and negative) for antiferromagnets. Expanding the
solutions of Eq. (15) up to the first order in α and H0, and also
in first order in K/J � 1, the precession resonance frequen-
cies are obtained (neglecting the higher-order in ω(0) terms)
as

ωp± ≈ ± γ

M0

√
4K (K + J )√

1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)

+ γ H0 + i γα

M0
(J + 2K )√

1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)

|ω(0)|
γ

M0

√
4K (K + J )

. (16)

Now substituting the |ω(0)| from the leading term in
the frequency expression into the perturbative terms in
Eq. (16), the approximate precession frequencies are

10−1 100 101 102

η′ (fs)
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0.2

0.24

0.28

0.32

ω
p
±/

2π
(T

H
z)

η = 100 fs, η′ = 0

η = 100 fs, η′ = 0

η = η′ = 0

η = η′ = 0

(a)

Re(ωp+)

Re(ωp−)

Eq. (17)
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η′ (fs)

0.16

0.2

0.24

I
m
(ω

p
±)

/R
e
(ω

p
±)

η = η′ = 0 η = η′ = 0

η = 100 fs, η′ = 0 η = 100 fs, η′ = 0

(b)

Im(ωp+)/Re(ωp+)

Im(ωp−)/Re(ωp−)

Eq. (18)

FIG. 2. The calculated precession frequencies as a function of intersublattice nutation η′ for an antiferromagnet, setting MA0 = MB0 = 2μB.
The data points denote the numerical solution of Eq. (9) and the black lines correspond to the analytical solution in Eq. (16). (a) The real part
of the resonance frequency, and (b) the ratio of imaginary and real part of the frequency have been plotted. The other used parameters are γA =
γB = 1.76 × 1011 T−1 s−1, J = 10−21 J, KA = KB = K = 10−23 J, H0 = 1 T, αAA = αBB = α = 0.05, αAB = αBA = 0, ηAA = ηBB = η = 100
fs, and ηAB = ηBA = η′. The horizontal lines correspond to solutions with zero intersublattice nutation (η′ = 0). Note that we show Re(ωp−)
as −Re(ωp−).
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obtained as

ωp± ≈ ± γ

M0

√
4K (K + J )√

1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)

+ γ H0 + i γα

M0
(J + 2K )

1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)
. (17)

This equation has been plotted in Fig. 2 as black lines. Note
that for ωp− we show for convenience −Re(ωp−) in Fig. 2(a)
and in the following. Due to the presence of η − η′ in the
denominator of the frequency expressions, the precession
resonance frequency increases when intersublattice nutation
is taken into account (η′ < η), which explains the increase
in frequency in Fig. 2(a). At the limit η → η′, the nutation
(intra- and intersublattice) does not play a significant role as
the precession resonance frequency is decreased by a factor√

1 + 4γ ηK
M0

which is very small due to K � J . We emphasize

that the overall inertial relaxation time of a physical system
has to be positive definite, which means that η′ is bounded,
η′ � η. The values of η′ > η provide an unphysical result.
Note that the two resonance frequencies are approximately
0.332 and 0.276 THz with α = 0 and η = η′ = 0, while these
two frequencies are 0.322 and 0.266 THz with α = 0.05 and
η = η′ = 0. The latter has been shown in Fig. 2(a) as dashed
lines. Therefore, the Gilbert damping has already the effect
that it reduces the resonance frequencies.

The effective Gilbert damping can be calculated using the
ratio between the imaginary and real parts of the frequencies,
i.e., the linewidth. From Eq. (17) one arrives at

Im(ωp±)

Re(ωp±)
≈ α

(J + 2K )√
4K (K + J )

1√
1 + 4γ ηK

M0
+ 2γ J

M0
(η − η′)

.

(18)

Note that the two resonance modes have the same effective
damping. For ferromagnets, the exchange energies do not con-
tribute and thus the effective damping remains the same as α,
in the absence of magnetic inertial terms (see Ref. [46]). How-
ever, in antiferromagnets the effective damping is enhanced
due to the exchange interaction by a factor (J+2K )√

4K (K+J )
, even

without any inertial terms. As investigated earlier [47], the
effective damping decreases with the intrasublattice relaxation
time. However, similar to the increase in frequency, the ef-
fective damping also increases with the intersublattice inertial
relaxation time, as seen in Fig. 2(b). The analytical solution
in Eq. (18) agrees excellently with the numerical solutions.
Close to the limit η′ → η, the effective Gilbert damping in
Eq. (18), one expects the effective damping to be increased by
a factor (1 + 4γ ηK

M0
)−1/2, as can be seen in Fig. 2(b).

Next, we discuss the field dependence of the resonance fre-
quencies. The precession resonance frequencies and effective
damping have been plotted as a function of the applied field
H0 for several intersublattice relaxation times in Fig. 3. As
can be observed, at zero applied field, the two modes (positive
and negative) coincide in antiferromagnets, a fact that can
be seen from Eq. (17). However, the applied field induces
the splitting of these two modes. The frequency splitting
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FIG. 3. The calculated precession frequencies at several in-
tersublattice relaxation times as a function of applied field for
antiferromagnets using MA0 = MB0 = 2μB. The solid and dashed
lines represent the positive and negative modes, respectively. (a) The
real part of the resonance frequencies and (b) the ratio of imaginary
and real part of the frequency have been plotted. The other used
parameters are γA = γB = 1.76 × 1011 T−1 s−1, J = 10−21 J, KA =
KB = K = 10−23 J, αAA = αBB = α = 0.05, αAB = αBA = 0, ηAA =
ηBB = η = 100 fs, and ηAB = ηBA = η′.

scales with [1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)]−1γ H0, meaning that the
splitting is linear in the applied field H0. On the other hand,
at a constant field, the splitting also depends on the inter-
and intrasublattice nutation. From Eq. (17), it is clear that
the splitting is reduced with intrasublattice nutation, while it
is enhanced with intersublattice nutation. Such a conclusion
can also be drawn from the numerical solutions in Fig. 3(a).
The effective damping of the antiferromagnet remains field
independent which can be observed in Fig. 3(b).

Proceeding as previously, we obtain the following nutation
frequencies,

ωn± ≈ ± 1

η

√√√√1 + 4γ ηK
M0

+ 2γ J
M0

(η − η′)

1 − η′2
η2

×
(

1 −
4γ 2K (J+K )(η2−η′2 )

M0

2
[
1 + 4γ ηK

M0
+ 2γ J

M0
(η − η′)

]2

)

−
γ H0 − iα

[
η

η2−η′2 + γ

M0
(J + 2K )

]
1 + 4γ ηK

M0
+ 2γ J

M0
(η − η′)

. (19)

Note that at the limit η′ → 0, the nutation frequencies
without the intersublattice coupling are recovered [47]. The
dominant term in the calculated frequency is the first term
in Eq. (19). With the introduction of intersublattice coupling
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FIG. 4. The calculated nutation frequencies as a function of in-
tersublattice nutation for antiferromagnets using MA0 = MB0 = 2μB.
(a) The real part of the nutation resonance frequencies and (b) the
ratio of imaginary and real part of the nutation resonance fre-
quency have been plotted. The other used parameters are γA = γB =
1.76 × 1011 T−1 s−1, J = 10−21 J, KA = KB = K = 10−23 J, H0 =
1 T, αAA = αBB = α = 0.05, αAB = αBA = 0, ηAA = ηBB = η =
100 fs, and ηAB = ηBA = η′.

η′, both the numerator and denominator of the dominant fre-
quency term decrease and therefore the nutation frequencies
approximately stay constant (with a slow decrease) with inter-
sublattice nutation when η > η′ as plotted in Fig. 4. However,
in the limit η′ → η, the denominator vanishes, and thus the
nutation frequencies diverge as can be seen in Fig. 4. It is
interesting to note that the intersublattice inertial dynamics
increase the precession resonance frequencies, but decrease
the nutation frequency. Such an observation is also consistent
with the dissipated power in Fig. 1. The damping of the
inertial dynamics also shows a similar behavior: It stays nearly
constant with a divergence at the limit η′ → η.

As mentioned before, the inertial relaxation times η and η′
are not known for typical antiferromagnetic systems. Notwith-
standing, we obtain the general result that the precession
resonance frequencies decrease with intrasublattice inertial
dynamics, but increase with intersublattice inertial dynam-
ics. Thus, to experimentally realize the signature of inertial
dynamics, an antiferromagnet with a higher ratio of intra-
to intersublattice inertial relaxation time (η/η′ � 1) is better
suited.
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FIG. 5. The calculated precession and nutation frequencies as
a function of intersublattice nutation for ferrimagnets using MA0 =
5MB0 = 10μB. The real part of the (a) precession resonance and
(b) nutation resonance frequencies have been plotted. The other
used parameters are γA = γB = 1.76 × 1011 T−1 s−1, J = 10−21 J,
KA = KB = K = 10−23 J, H0 = 1 T, αAA = αBB = α = 0.05, αAB =
αBA = 0, ηAA = ηBB = η = 100 fs, and ηAB = ηBA = η′.

B. Ferrimagnets

Next, we consider a ferrimagnetic system where the mag-
netic moments in the two sublattices are different, i.e., MA0 �=
MB0. In this case, the analytical solution of Eq. (9) becomes
cumbersome. The main reason is that �A �= �B for ferri-
magnets, in fact, we calculate �A − �B = γ (J+2K )(MA0−MB0 )

MA0MB0
+

2γ H0. For antiferromagnets, the magnetic moments in the two
sublattices are exactly the same, i.e., MA0 = MB0, and thus,
within the approximation of J � M0H0, we find �A = �B

which simplifies the analytical solution of Eq. (9). Thus, we
numerically solve Eq. (9) to calculate the precession and nu-
tation resonance frequencies for ferrimagnets. We consider
the case where MA0 = 10μB and MB0 = 2μB, reminiscent
of rare-earth–transition-metal ferrimagnets such as GdFeCo
[2,3] or TbCo [58–60]. However, we emphasize that the
inertial relaxation times η and η′ are not known for these
materials. The calculated precession frequencies are shown
in Fig. 5(a). The effect of intrasublattice inertial dynamics
has already been studied in Ref. [47]. For ferrimagnets, the
negative frequency mode appears to have a higher frequency
(i.e., larger negative) than the positive one. However, both pre-
cession frequencies decrease with intrasublattice relaxation
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time η [47]. We therefore have set the intrasublattice relax-
ation time η to 100 fs and vary the intersublattice relaxation
time η′ < η. The upper precession resonance mode ωp−—the
exchangelike mode—increases with the intersublattice relax-
ation time η′, while the ferromagneticlike mode ωp+ shows
a very small increase. Thus, for ferrimagnets, the change in
precession frequencies is more significant in the exchangelike
mode than in the ferromagneticlike mode. At the limit η′ → η,
the precession resonance frequencies almost coincide with the
resonance frequencies calculated at η = η′ = 0, meaning that
the inertial dynamics do not play any role for the preces-
sion resonance frequency. The latter can clearly be seen in
Fig. 5(a). These observations are similar to the antiferromag-
net as discussed earlier. The nutation resonance frequencies in
Fig. 5(b) again decline with the intersublattice relaxation time
showing a divergence at the limit η′ → η. However, one can
notice here two distinguishable nutation resonance frequen-
cies unlike almost the single-valued nutation frequencies of
antiferromagnets.

IV. SUMMARY

In summary, we have formulated a linear-response theory
of the ILLG equations for antiferromagnets with inter- and
intrasublattice inertial dynamics. The calculation of the sus-
ceptibility tensor shows that the intrasublattice terms appear in
the diagonal elements, while the intersublattice terms appear
in the off-diagonal elements. The dissipated power contains
a precession resonance peak in the sub-THz regime for anti-
ferromagnets, however, the introduction of inertial dynamics
causes another peak, a nutation resonance peak at a higher,

few THz frequency. Moreover, we observe that the intersub-
lattice inertial dynamics work oppositely to the intrasublattice
inertial one. By finding the poles of the susceptibility, we
calculate the precession and nutation resonance frequencies.
While the precession resonance frequencies decrease with
intrasublattice relaxation time, the intersublattice inertial dy-
namics have the opposite effect. In fact, we observe that the
magnetic inertia does not have any effect on the antiferro-
magnetic precession resonance at the limit η′ → η. On the
other hand, the THz nutation resonance frequency decreases
slightly with the introduction of intersublattice inertial dy-
namics, however, showing a divergence at the limit η′ → η.
Our derived analytical theory explains such intersublattice
contributions. Finally, for ferrimagnets, we find a similar be-
havior for the intersublattice inertial dynamics. However, the
precession resonance frequency of the exchangelike mode de-
pends significantly on the nutation couplings in contrast to that
of the ferromagneticlike mode that is practically independent
of the nutation constants.
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