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Malignant cells are commonly characterised by being capable of invading tissue, growing
self-sufficiently and uncontrollably, being insensitive to apoptosis induction and
controlling their environment, for example inducing angiogenesis. Amongst them, a
subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained
replicative potential, tumor-initiating properties and chemoresistance. These
characteristics make CSCs responsible for therapy resistance, tumor relapse and
growth in distant organs, causing metastatic dissemination. For these reasons,
eliminating CSCs is necessary in order to achieve long-term survival of cancer
patients. New insights in cancer metabolism have revealed that cellular metabolism in
tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting
their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific
nutrients that represent potentially targetable vulnerabilities. This review focuses on three
of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC),
hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove
whether CSCs from different tumour types share common metabolic requirements
and responses to nutrient starvation, by outlining the diverse roles of glucose and
amino acids within tumour cells and in the tumour microenvironment, as well as the
consequences of their deprivation. Beyond their role in biosynthesis, they serve as
energy sources and help maintain redox balance. In addition, glucose and amino acid
derivatives contribute to immune responses linked to tumourigenesis and metastasis.
Furthermore, potential metabolic liabilities are identified and discussed as targets for
therapeutic intervention.
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INTRODUCTION

Cancer and Cancer Stem Cells
Cancer is one of the leading causes of death in modern society.
Fourteen million new cancer cases are diagnosed and eight
million people die of cancer yearly worldwide (Torre et al.,
2016). Cancer is characterised by specific genetic alterations,
genome-widespread epigenetic alterations and chromosomal
aberrations. This leads to key genes either gaining or losing
their molecular function and signaling pathways, and thus
reflecting changes in the physiological function of the affected
cell type and tissue. Typically, tumour cells develop from normal
cells that make mistakes in their DNA repair mechanisms and
accumulate mutations, which results in the acquisition of new
properties, such as an uncontrolled cell division that usually leads
to non-malignant tissue hyperplasia. Malignant cells are capable
of de-differentiation, tissue invasion, nutrient recruitment
through blood by angiogenesis induction, self-sufficient
growth, insensitivity to negative growth control and apoptosis
initiation, and limitless replicative potential (Hanahan and
Weinberg, 2011).

The development of modern treatments and their
application in specific cancer patients in combination with
surgery (physical resection of the tumour), chemotherapy
(use of drug combinations) or radiotherapy (high-energy
radiation that damages DNA and kills cells), have led to a
significant improvement in their overall survival rate.
Unfortunately, the cure for cancer remains challenging due
to the frequent relapse in patients that receive one or several of
these modern treatments. This is due to cancer cells
heterogeneity within each tumour, some of which develop
resistance mechanisms to the treatment and manage to
survive (Dagogo-Jack and Shaw, 2018). The usually small
pool of resistant and surviving cells initiate and generate
new tumours in the primary site, even after their temporary
elimination, and progress by causing distant metastasis in
secondary sites in the human body (Lawson et al., 2015).
The cells that can initiate the new tumour outgrowth, which
also exhibit treatment resistance, are often described as
“tumour-initiating cells” or cancer stem cells (CSCs) (Diehn
et al., 2009; Wang et al., 2010).

CSCs share some properties with normal adult stem cells, such
as: 1) specific gene expression (Ginestier et al., 2007), 2) division
by generating a CSC (self-renewal) and another cell that can later
differentiate to diverse malignant cell types in a given tissue, and
3) the activation of common signalling pathways that contribute
to proliferation, self-renewal and survival/resistance (Kanwar
et al., 2010; Rossi et al., 2020). CSCs, however, differ from
normal adult stem cells in that they remain fundamentally
cancer cells and that the regulating mechanisms in normal
stem cells are deregulated in CSCs. This leads to the
continuous expansion and production of an aberrantly
differentiated progeny: the tumour (Rossi et al., 2020). To
complicate matters, CSCs are also thought to be generated by
pre-malignant or malignant cells via a process of de-
differentiation that makes tumour cells resemble embryonic
cells to some extent. Therefore CSCs and embryonic cells may

share common cell biological and molecular properties (Lambert
andWeinberg, 2021). The understanding of CSCs is consequently
essential to identify molecules that can be targeted for drug
development, and thus improve the outcome of cancer
treatments.

CSCs are also important for the metastatic dissemination of
primary tumours to distant organs (Diehn et al., 2009; Wang
et al., 2010).Whether CSCs generate cells with enhanced ability to
invade and initiate metastasis as they proliferate, or their
contribution to metastasis primarily involves growth after
colonising new organs or tissues remains relatively unexplored.
(Karuna Ganesh, 2013). Based on the latter, once circulating
tumour cells manage to form micrometastases, they generate
CSCs required to fuel the secondary tumour expansion to the
metastatic site (Lambert and Weinberg, 2021). These important
alternative function modes linking CSCs to metastasis are actively
studied (Ganesh and Massagué, 2021).

This review focuses on three of the most aggressive tumour
types, namely pancreatic ductal adenocarcinoma (PDAC),
hepatocellular carcinoma (HCC) and glioblastoma (GBM).
The aim is to understand and identify common CSCs
metabolic requirements and responses to nutrient starvation,
as well as potential metabolic vulnerabilities that can be
exploited therapeutically.

Brief Overview of Cancer Cell Metabolism
Glucose Metabolism
Cancer cells in solid tumours are subjected to high energy
demands to support their accelerated growth rate. At the
same time, essential nutrient supply, such as glucose, is
affected by a dysregulated vasculature that results in a
microenvironment characterised by low glucose, hypoxia and
acidic pH (Wang X. et al., 2019). Thus, glucose deprivation and
lactic acidosis are common adverse microenvironments in solid
tumours (Duan et al., 2018), both consequence of an elevated
glycolytic activity in tumour cells (Warbug effect). Besides
producing energy, glucose metabolism supports the synthesis
of metabolic building blocks, such as nucleotides and lipids,
it provides NADPH to maintain the cellular redox state and,
additionally, glucose is used for the post-translational
modification (O-GlcNAcylation) of intracellular proteins that
regulate nutrient sensing and stress response via the hexosamine
biosynthetic pathway (HBP) (Lam et al., 2021). Due to the
essential role of glucose in cancer cells proliferation and survival,
transporters and enzymes involved in glucose metabolism are
frequently up-regulated in cancer cells (Yamaguchi et al., 2020).
Glycolysis was initially postulated as the main metabolic feature
in cancer cells. However, it is currently accepted that most
cancers still produce ATP via mitochondrial oxidative
phosphorylation (OXPHOS) and modulate the contribution
of glycolytic and OXPHOS pathways in different phases of
the cell cycle or in response to environmental factors, such as
oxygen availability (De Berardinis and Chandel, 2016). For
example, cells located close to blood vessels may favour
OXPHOS due to the relatively higher oxygen concentration
(Talasila et al., 2017), whereas cells closer to the hypoxic tumour
areas favour glycolysis.
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Amino Acid Metabolism
Mammals cannot synthesise all the necessary amino acids for
protein synthesis and must acquire nine out of twenty amino
acids from the diet, called essential amino acids (EAA: histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, threonine,
tryptophan and valine). Although, by definition, all the non-
essential amino acids (NEAAs: alanine, arginine, asparagine,
aspartic acid, cysteine, glutamine, glutamic acid, glycine,
proline, serine, tyrosine) can be synthesised de novo, recent
evidence indicates that some cancer cells may show specific
amino acid requirements, becoming dependent on
conditionally essential amino acids (CEAAs). For that reason,
metabolic reprogramming in cancer is also characterised by
enhanced amino acid uptake and de novo metabolism of
otherwise NEAAs (Fuchs and Bode, 2005; Dunphy et al.,
2018). Indeed, cancer cells upregulate amino acid transporters
to transfer them across the plasma membrane. Amongst the
transporters, SLC6A14 shows the broadest substrate selectivity
encompassing all EAAs and glutamine (Figure 1), and it is
upregulated in several cancers (Lieu et al., 2020).

Although classified as non-essential for normal cells, recent
data indicate that multiple tumours require high glutamine
availability and are severely inhibited by its depletion (Wise
et al., 2008), making them virtually addicted to this amino
acid (Zhang et al., 2017). Glutamine metabolism involves its
uptake via SLC1A5, followed by the glutaminolysis process, by
which the enzyme glutaminase (GLS) generates glutamate and
ammonium (Figure 1). This process supports cancer cell

proliferation in multiple ways: 1) via generation of
mitochondrial tricarboxylic acid (TCA) cycle intermediates,
which are involved in ATP production and lipid synthesis
through anaplerosis (Chiu et al., 2014); 2) via glutathione
(GSH) synthesis for redox regulation, either acting as a
substrate for glutamate-cysteine ligase (GCL) or facilitating
cysteine uptake through the cysteine/glutamate transporter
xCT (also known as SLC7A11); 3) via purine and
pyrimidine biosynthesis, acting as nitrogen donor
(DeBerardinis et al., 2007); 4) via NEAA synthesis:
glutamate can be transformed into proline through a series
of reductive steps, into aspartate, alanine, serine and glycine
via transaminases and into asparagine via asparagine
synthetase (ASNS).

One of the main by-products of glutaminolysis is ammonium,
which needs to be detoxified in the urea cycle (Morris, 2002). This
pathway involves several enzymes, such as argininosuccinate
synthetase (ASS) and arginase (ARG). The latter catabolises
arginine into urea and ornithine (Figure 2). Additionally,
arginine is used as a carrier of nitrogen, whereas arginine-
derived polyamines alter gene expression by modulating global
chromatin structure and cancer cell proliferation (Pegg, 2009).

The metabolism of the EAA methionine involves the
methionine cycle and related pathways, such as
transsulfuration, that synthesises GSH for methylation
reactions, especially important in cancer. Indeed, methionine
is converted into S-adenosylmethionine (SAM, the main
methyl donor) in a reaction catalysed by methionine adenosyl

FIGURE 1 | Amino acid transporters and metabolism in aggressive cancers. The amino acids (AAs) glutamate (Glu, dark green) and glutamine (Gln, dark blue) are
key players for amino acid transport and global cellular metabolism in PDAC, HCC and GBM tumours. Glutamine transported into the tumour cells by the transporters
SLC6A14 or ASCT2 is metabolised to glutamate via glutaminolysis or serves as substrate for the antiport of branched-chain (BCAAs) and bulky amino acids via LAT1.
Glutamate facilitates cysteine (Cys) uptake via xCT or supports key energy and biosynthetic pathways, such as glutathione, non-essential AA and nucleotides
synthesis or TCA cycle anaplerosis. Depicted in red, AA transporters inhibitors.
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transferases (MAT) (Kaiser, 2020), which contributes to
nucleotide biosynthesis, necessary for cancer cell proliferation.
Methionine can also be used directly as a substrate in polyamine
synthesis.

Another EAA, tryptophan, follows a metabolic fate that has
acquired great visibility in the last years due to its implication in
cancer immunotherapy: kynurenine produced from tryptophan
by the enzyme indoleamine 2,3-dioxygenase (IDO) induces
immunosuppression (Fallarino et al., 2003; Greene et al., 2019)
by binding to and activating the transcription factor aryl
hydrocarbon receptor (AhR) (DiNatale et al., 2010; Opitz
et al., 2011). This impairs the ability to target and eliminate
cancer cells of immune-tolerant dendritic cells (DCs) and
regulatory T cells (Mezrich et al., 2010).

NUTRIENT STARVATION IN PANCREATIC
DUCTAL ADENOCARCINOMA
Metabolism in Pancreatic Ductal
Adenocarcinoma Cancer (Stem) Cells
The existence of CSCs in PDACwas initially demonstrated in 2007
(Hermann et al., 2007; Li et al., 2007). They were identified by
combining surface markers such as CD44+CD24+ESA+ (Li et al.,
2007) or CD133+ CXCR4+ (Hermann et al., 2007), which help to
isolate cancer cell subpopulations with increased self-renewal and

tumourigenicity, capable of giving rise to differentiated progenies.
Cells with elevated metastatic potential have also been identified
using CD133+ CXCR4+. CSCs in PDAC could be originated either
by local stem cells suffering malignant transformation or by
differentiated cells acquiring stem-like abilities (Wang et al.,
2009). Besides the well-known developmental pathways such as
Hedgehog (Li et al., 2007) or Nodal/activin (Lonardo et al., 2011), it
has been demonstrated that specific metabolic traits also play a key
regulatory role in maintaining the pluripotency and tumourigenic
potential of PDAC CSCs (Sancho et al., 2015; Sancho et al., 2016).
Indeed, PDAC CSCs are fundamentally oxidative as opposed to
their glycolytic differentiated counterparts, a phenotype governed
by balance in expression between the oncogene c-MYC and the
mitochondrial biogenesis factor PGC-1alpha (Sancho et al., 2015).
Precisely, mitochondrial homeostasis in PDAC CSCs is controlled
throughout the different stages of the mitochondria lifecycle from
mitochondrial biogenesis, via PGC-1alpha upregulation (Sancho
et al., 2015), fission, by increasing DRP-1 expression and activity
(Courtois et al., 2021), and mitophagy, in a process dependent on
the post-translational modification known as mitochondria
ISGylation (Alcalá et al., 2020). Blocking any of these processes
severely impacts PDAC stemness and tumour-initiating capacity.

In general, cellular metabolism plays a crucial role in tumour
progression in PDAC. Indeed, pancreatic tumours are
characterised by a desmoplastic stroma that represents up to
90% of the tumour volume. The extensive fibrosis and matrix

FIGURE 2 | Differential expression of enzymes regulating the biosynthesis and metabolism of asparagine and arginine in aggressive tumours. The amino acid
aspartate is synthesised from oxaloacetate, a TCA cycle intermediate, and from glutamate via the transaminase GOT1. Aspartate is then used in the biosynthesis of
asparagine mediated by the enzyme ASNS (Asparagine synthetase), enters the urea cycle to contribute to the synthesis of arginine via ASS1 (argininosuccinate synthase
1), or can provide its amino group as free ammonia that builds carbamoyl phosphate via CPS1, thus initiating the urea cycle. Arginine is further metabolised by ARG
(arginase, isoforms 1 and 2) to produce urea and ornithine, thus completing the urea cycle, or to polyamines and nitric oxide, both of them implicated in cancer cell
aggressiveness through chromatin remodelling and cell signalling. As indicated, the expression of ASNS, ASS1 and ARG is differentially dysregulated in PDAC (red
arrows), HCC (blue arrows) and GBM (orange arrows).
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deposition prevent proper PDAC tumour vascularisation,
generating a hypoxic microenvironment with limited nutrient
availability. To thrive in this environment, PDAC cells develop a
distinct metabolic programme generally characterised by
increased glucose and glutamine uptake and metabolism, lipid
and protein scavenging, and autophagy to recycle cellular
components (Espiau-Romera et al., 2020). Interestingly,
extracellular matrix (ECM) proteins, such as collagen,
represent an alternate source of energy for PDAC cells,
providing proline that feeds the TCA cycle, thus helping
PDAC cells to cope with nutrient deprivation (Olivares et al.,
2017). Additionally, stromal cells provide essential nutrients to
cancer cells, such as TCA cycle components, lipids or amino
acids; these metabolites are released extracellularly either directly
or carried by extracellular vesicles. These alternative mechanisms
create complex metabolic networks amongst the different
resident cell types that fuel PDAC cell proliferation, survival
and metastasis (Sousa et al., 2016; Zhao et al., 2016; Banh et al.,
2020). Additionally, this metabolic interplay also occurs between
functionally distinct cancer cells: for instance, glycolytic
differentiated tumour cells could provide oxidative CSCs with
end-products of glycolysis, such as lactate (Sancho et al., 2015).
Theoretically, the metabolic particularities of PDAC CSCs may
reflect a proficient adaptation to their nutrient-deprived
microenvironment. Indeed, due to their increased
mitochondrial activity, they could produce NADH and
FADH2 used to synthesise ATP in their mitochondria from a
wide range of substrates: glycolysis end-products such as lactate
and acetyl-CoA derived from glucose, lipids or ketone bodies and
several amino acids.

Glucose Starvation
As mentioned above, the PDAC microenvironment is essentially
hypoxic due to the lack of vascularisation, which favours
metabolic reprograming towards glycolysis (Cao et al., 2019).
Additionally, PDAC driver mutations on K-RAS and TP53
further enhance the expression of glycolytic enzymes and
transporters, such as GLUT1, hexokinase 1 and 2 (HK1, HK2)
and lactate dehydrogenase A (LDHA). Globally, PDACmetabolic
reprogramming improves survival in presence of low glucose
levels (Bryant et al., 2014), by enhancing glycolysis, which then
fuels the anabolic branches of PDAC metabolism to provide the
cancer cells with building blocks for proliferation (Ying et al.,
2012). Accordingly, a glycolytic gene expression signature is
related to bad PDAC prognosis, invasiveness and metastatic
onset (Espiau-Romera et al., 2020; Tian et al., 2020). In fact,
samples frommetastatic PDAC showed an important enrichment
of a glycolysis-related gene signature (Chaika et al., 2012). In
addition, epithelial-to-mesenchymal transition (EMT) driven by
the transcription factor SNAIL, which promotes cancer
metastasis, induced a transcriptional program that enhanced
glucose uptake and lactate production (Liu et al., 2019). As
predicted from gene expression studies, glycolysis inhibition by
the glucose mimetic 2-deoxyglucose (2-DG) (Roy et al., 2015) or
lactate eflux inhibition by knocking down the monocarboxylate
transporters (MCT) impaired PDAC invasiveness (Kong et al.,
2016).

At the same time, most PDAC CSCs are mainly oxidative
and could use a wider range of endogenous substrates to fuel
their TCA cycle, making them resistant to, not only glucose,
but general metabolite deprivation. Indeed, CD133+ cells from
a patient-derived xenografts (PDXs) panel showed resistance
to glucose and glutamine deprivation in vitro, while most of
the CD133− differentiated counterparts died in such
conditions (Sancho et al., 2015). Interestingly, the glucose-
dependence of differentiated PDAC cells can be used as a CSC
enrichment method in vitro (Valle et al., 2020). Indeed,
providing galactose instead of glucose as carbon source
sharply decreases glycolysis and forces cells to engage
mitochondrial OXPHOS to obtain energy and survive.
While CD133+ PDAC cells were able to proliferate normally
under these conditions, CD133− cells suffered cell death, thus
increasing the percentage of CSCs. Furthermore, metabolic
stress triggered by galactose containing media favoured CSC
identity acquisition by a small percentage of non-CSCs,
highlighting the close connection between OXPHOS
metabolism and stemness in PDAC.

Amino Acid Starvation
PDAC tumours have developed different strategies to counteract
the lack of amino acids in their nutrient-deprived environment.
On the one hand, PDAC cells can uptake individual amino acids
from plasma (Tumas et al., 2019) or secreted by different stromal
cells (Meyer et al., 2016; Sousa et al., 2016; Banh et al., 2020; Zhu
et al., 2020) through membrane transporters like L-type amino
acid transporter 1 (LAT1) or cystine/glutamate exchanger
(SLC7A11/xCT) (Figure 1). For this reason, the expression of
amino acid transporters has been associated with
chemoresistance and poor prognosis (Altan et al., 2018; Daher
et al., 2019). On the other hand, PDAC cells capture and degrade
external proteins such as albumin or collagen through
macropinocytosis (Davidson et al., 2017; Olivares et al., 2017),
representing an essential source of amino acids to sustain central
carbon metabolism. Additionally, whole-body protein
breakdown is an early event in PDAC development, further
intensified as the disease progresses and, especially, under
conditions of terminal cachexia (Holmstrom and Olive, 2014).

Essential Amino Acids
Branched-Chain Amino Acids
High plasma concentration of branched-chain amino acids
(BCAAs) leucine, isoleucine and valine is associated with
PDAC risk (Mayers et al., 2014; Maertin et al., 2017) and can
be considered an early event of PDAC development (Tumas et al.,
2019). Although mouse models of PDAC show decreased BCAA
levels in later stages of tumour development (Mayers et al., 2016),
human PDAC cell lines support fatty acid synthesis via BCAAs,
which sustains in vitro proliferation (Lee et al., 2019). Indeed,
BCAA catabolism inhibition through downregulation of
branched-chain keto acid dehydrogenase E1 subunit alpha
(BCKDHA) or branched-chain amino acid transaminase 2
(BCAT2) expression significantly impaired clonogenicity,
suggesting BCAAs have a supportive role in PDAC self-
renewal (Lee et al., 2019).
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Tryptophan
Very recently, tryptophan metabolism via the enzyme IDO1 has
been proven to serve as one-carbon unit for nucleotide synthesis,
substituting serine and glycine and, subsequently, supporting
tumour growth in genetically engineered PDAC mouse models
(Newman et al., 2021). Interestingly, IDO1 expression was higher
in anchorage-independent conditions via c-Jun N-terminal
kinase (JNK) activation, suggesting that this pathway may be
stimulated under CSC-enriching conditions. In addition, the
release of formate, a by-product of tryptophan metabolism, by
cancer cells can be used by stromal cells to support their
own nucleotide synthesis (Newman et al., 2021), representing
another example of metabolic crosstalk within the PDAC
microenvironment.

Non-essential Amino Acids: Conditionally Essential
Amino Acids
Lately, different reports have demonstrated that PDAC cells show
heterogeneous requirements for specific NEAAs, becoming
CEAAs.

Alanine
Although alanine requirement in PDAC cells is heterogeneous,
since they combine de novo synthesis and uptake from the
environment at different proportions (Parker et al., 2020), it
has been shown that exogenous alanine supplementation
supports proliferation and tumour growth in nutrient-deprived
conditions (Sousa et al., 2016; Parker et al., 2020), creating a
metabolic crosstalk within the tumour microenvironment.
Alanine is mainly supplied by pancreatic stellate cells (PSCs),
which secrete alanine through different transporters, including
SLC1A4, while PDAC cells upregulate the SLC38A2 to promote
alanine uptake (Parker et al., 2020). Exogenous alanine will be
used to produce pyruvate in order to fuel the TCA cycle, thus
decreasing PDAC cells dependence on glucose and serum-
derived nutrients. Interestingly, alanine uptake via SLC38A2
supports tumour cells clonogenic and tumour-initiating
potential even in nutrient-rich conditions, highlighting another
vulnerability of PDAC cells with enhanced tumourigenic
potential.

Arginine
It has been shown that arginine catabolism by the enzyme
arginase 2 (ARG2) supports PDAC tumour growth, specially
in an obesity context (Zaytouni et al., 2017). ARG2 is
overexpressed in obese mouse models and its expression level
is positively correlated with body mass index in PDAC patients.
In fact, considering the enhanced protein and amino acid
catabolism carried out by pancreatic cancer cells, an increased
ARG2 expression and activity could represent a mechanism to
detoxify excessive nitrogen through the urea cycle (Figure 2).
Accordingly, ARG2 knockdown inhibits tumour growth, severely
impairing tumour initiation in obesity conditions (Zaytouni et al.,
2017). Several studies demonstrated the implication of arginine in
PDAC metastasis. Indeed, arginine deprivation via arginine
deiminase (ADI-PEG 20) treatment inhibited the expression of
the EMT transcription factors SNAIL, SLUG and TWIST and

impaired pancreatic cancer cells adhesion and invasion (Wang
et al., 2020). Additionally, arginine promotes PDAC invasiveness
via nitric oxide production (Wang et al., 2016).

On the other hand, the enzyme argininosuccinate synthetase 1
(ASS1), that generates the precursor to arginine biosynthesis, has
been proposed as a negative PDAC prognostic value (Kim et al.,
2020). When arginine deprivation by ADI-PEG was combined
with histone deacetylase (HDAC) inhibitors, it impaired
clonogenicity and anchorage-independent cell growth in
PDAC cell lines (Kim et al., 2020). Together with the report
mentioned above, these works suggest that arginine deprivation
bears potential to impair PDAC stem-related properties.

Asparagine
Asparagine can be considered a CEAA for PDAC. In fact, the
expression of the enzyme ASNS, which converts aspartate and
glutamine into asparagine and glutamate, is underexpressed or
undetectable in the great majority of PDAC patient samples
(Figure 2) (Dufour et al., 2012). Indeed, treatment
with exogenous L-asparaginase to deplete asparagine
concentration reduced PDAC cell lines proliferation in vitro
and in vivo (Dufour et al., 2012). Moreover, further works
suggest that a combinatorial approach would effectively target
the amino acid metabolism. This is due to the fact that
PDAC cells respond to asparagine or glucose starvation by
activating the ATF4 transcription factor, via mitogen-activated
protein kinase or via AMP-activated protein kinase (AMPK)
respectively, to upregulate ASNS (Cui et al., 2007; Pathria
et al., 2019). Importantly, ASNS upregulation was responsible
for chemoresistance under glucose-starvation conditions, which
may compromise the efficacy of this treatment.

Cysteine
Several reports have highlighted the critical role of cysteine
uptake, specifically in its oxidised form (cystine) via the
cystine/glutamate exchanger SLC7A11, which supports tumour
initiation and progression in PDAC (Daher et al., 2019; Badgley
et al., 2020; Mukhopadhyay et al., 2021). Indeed, SLC7A11
genomic disruption, either via CRISPR-Cas9 in human PDAC
cells or in genetically engineered mice, induced cell death via
ferroptosis, associated to low levels of intracellular reduced
glutathione (GSH), severely impairing PDAC cells clonogenic
and tumourigenic potential (Daher et al., 2019; Badgley et al.,
2020). Importantly, in vitro SLC7A11 transporter inhibition also
sentitised cancer cells to chemotherapy, further highlighting the
importance of GSH biosynthesis, fuelled by cysteine uptake in
this case, for stemness-related properties in PDAC (Jagust et al.,
2020).

Glutamine
The NEAA glutamine is essential for PDAC cancer cells since it
participates in crucial metabolic processes, such as lipid
biosynthesis, TCA anaplerosis and redox balance through
NAPDH generation and GSH biosynthesis (Liang et al., 2016;
Halbrook and Lyssiotis, 2017). In this tumour type, glutamine is
metabolised through a non-canonical pathway driven by K-RAS
or MYC oncogenes, mediated by transaminases, such as aspartate
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aminotransferase (Son et al., 2013). Interestingly, glutamine
metabolism could partially compensate the ATP drop
subsequent to glucose deprivation in MUC1 overexpressing
cells (Gebregiworgis et al., 2017).

Recently, it has been described that tumour-initiating cells
from the genetically engineered KPC PDAC mouse model
upregulate the glutamine transporter ASCT2 and promote its
localisation in the plasma membrane via the tetraspanin CD9,
enhancing glutamine uptake that fuels tumour initiation and
growth (Wang VM. et al., 2019). Partially contradictory data can
be found in the literature regarding the effects of glutamine
deprivation on PDAC CSCs. On the one hand, CD133+ cells
isolated from different PDAC PDXs were resistant to glutamine
deprivation in terms of apoptosis, when compared with their
CD133- counterparts, although no functional data on CSC
properties, such as self-renewal, was reported in this case
(Sancho et al., 2015). On the other hand, “side population”
cells (representing CSCs) and spheroids isolated from
pancreatic cell lines were strongly affected by glutamine
deprivation, which impaired self-renewal and induced
apoptosis due to dysregulation of their redox state (Li et al.,
2015; Liao et al., 2017). Furthermore, mitochondrial glutamine
transporter ASCT2 knockdown diminished clonogenicity and
sensitised PDAC cell lines and PDXs to gemcitabine treatment
through impaired reactive oxygen species (ROS) scavenging by
GSH (Yoo et al., 2020), further supporting the Gln-GSH axis
crucial role in maintaining stemness-related functions in PDAC.

Glutamine deprivation leads to EMT and metastasis in PDAC
cells (Recouvreux et al., 2020). Indeed, nutrient stress leads to a
MEK/ERK/ATF4 pathway activation, ultimately upregulating the
EMT master regulator SLUG, responsible for EMT induction,
invasion and survival under glutamine deprivation conditions
(Recouvreux et al., 2020).

Proline
Proline has been described as a CEAA for a PDAC cell lines
subset unable to synthesise proline from glutamate and orthinine
(Sahu et al., 2016). For that reason, under proline deprivation
conditions, cell lines that depend on this amino acid display
constant endoplasmic reticulum stress and deregulated
mTORC1-4EBP1, ultimately leading to lower clonogenicity
and tumourigenicity (Sahu et al., 2016). Under glucose and
glutamine deprivation, PDAC cells can degrade collagen I and
IV from the extracellular matrix, uptake fragments via
macropinocytosis and then metabolise the incorporated
proline as alternative nutrient source to support cancer cell
metabolism (Olivares et al., 2017). Under such conditions, the
enzyme proline oxidase (PRODH1) catabolises proline to support
survival and, crucially, clonogenic and tumourigenic potential.
These reports suggest an important link between proline
metabolism and tumour-initiating abilities in PDAC cells,
underpinning an exploitable metabolic vulnerability for CSC
targeting.

Serine
Although initially described as NEAA for PDAC cells in the
genetically engineered KPC mouse model (Maddocks et al.,

2017), further studies have shown that around 40% of human
PDAC cell lines depend on exogenous serine to proliferate (Banh
et al., 2020). These cells are not able to upregulate crucial genes
from the serine biosynthesis pathway (SBP), such as
phosphoglycerate dehydrogenase (PHGDH) and
phosphoserine aminotransferase 1 (PSAT1), making them
dependent on serine released by tumour-infiltrating nerves to
the microenvironment (Banh et al., 2020). While serine
participates in several metabolic pathways, such as GSH
biosynthesis or the folate cycle, serine deprivation in PDAC
cells that depend on this amino acid only affected translation
of UCC and UCUmRNA codons and, interestingly, increased the
selective translation and secretion of nerve growth factor to
facilitate nerve recruitment into the tumour. Whether CSCs
from serine-dependent PDAC tumours maintain the same
serine requirements as their differentiated counterparts
remains to be investigated.

HEPATOCELLULAR CARCINOMA

Role of Cancer Stem Cells in Hepatocellular
Carcinoma
The liver is the major site for metabolic processes in the body,
including blood detoxification, bile production for fat breakdown
in the digestive track, glucose storage in the form of glycogen, and
the amino acid precursors synthesis. Hepatocytes make up to 85%
of the total liver mass and are responsible for most metabolic
processes. HCC, the liver cancer that originates from hepatocytes,
dysregulates a large number of metabolic processes to fuel
tumourigenesis (Nwosu et al., 2017). HCC is a genetically
heterogeneous and complex type of tumour. So far, molecular
data have poorly contributed to explain the clinical variability of
the disease and have not resulted into prognostic or predictive
biomarkers (El-Serag, 2011). HCC is the most common liver
cancer and one of the leading causes of cancer-related deaths,
with increasing prevalence globally (Dhanasekaran et al., 2012;
Wang et al., 2018). Sorafenib, regorafenib and lenvatinib are
drugs currently used as treatment for HCC. Whether combined
or not with radiation therapy and chemotherapy, they have been
shown to enhance survival rates in individuals with non-
resectable HCC (Jindal et al., 2019; Faivre et al., 2020).
Unfortunately, the clinical benefits achieved are limited and
patients develop rapid drug resistance and tumour recurrence
(Jindal et al., 2019; Faivre et al., 2020). In the context of HCC,
CSCs are termed liver cancer stem cells (LCSCs) and are
associated to metastasis and tumour relapse after developing
drug resistance (Li and Zhu, 2019). Regarding their origin, a
widely accepted theory proposes that the inflammatory
microenvironment that commonly characterises HCC,
whatever its cause (chronic viral infection, alcoholic or non-
alcoholic fatty liver disease or long-term exposure to toxicity),
leads to the proliferation of stem cells with genetic or epigenetic
alterations, facilitating their transformation from normal liver
stem cells to LCSCs (Wang et al., 2018;Wu et al., 2020). There are
different surface markers, including epithelial cell adhesion
molecule (EpCAM), CD133, CD90, CD13, CD44, CD24,
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CD47, oval cell marker (OV-6), aldehyde dehydrogenase
(ALDH), keratin 19 (K19), cKit and ATP binding cassette
subfamily G member 2 (ABCG2), which influence the
activation of signalling pathways, cell phenotypes and
therapeutic drugs resistance in LCSCs (Liu et al., 2020).

Glucose Starvation
LCSCs have adapted to overcome oxygen and nutrient deficiency
that commonly characterises HCC tumour microenvironment
(Tsuchiya and Shiota, 2021). CD133 is a surface marker expressed
in LCSCs encoded by the PROM1 gene. Other cells like neurons
and bone marrow progenitor cells also express CD133, but in the
context of HCC, it is suggested that CD133 performs regulatory
functions required in maintaining LCSCs undifferentiated status
(Tsuchiya and Shiota, 2021). Treatment with a CD133
monoclonal antibody resulted in cell death in hepatoma LM3,
HepG2, Hep3B and Huh-7 cells, especially under low glucose
conditions (Chen et al., 2013a). It also inhibited the formation of
spheroids, colonies and xenograft tumours. These effects were
attributed to the autophagy blockage and cell death increase.
Therefore, targeting CD133 under low glucose conditions may
represent a potential therapeutic approach for HCC (Chen et al.,
2013b). It is important to highlight that autophagy is a conserved
mechanism for degradation of intracellular material in lysosomes
and metabolite recycling, that plays a key role in stem cell
maintenance, self-renewal and various cell differentiation
processes (Chen et al., 2018). Another study also
demonstrated that CD133 regulates autophagy and glucose
uptake in response to low glucose conditions, which is vital
for cell survival and tumour growth (Chen et al., 2013a). In
addition, authors showed that, under glucose starvation
conditions, CD133 expression stimulated the formation of
autophagosomes and increased glucose uptake and ATP
production. In contrast, silencing of CD133 reversed these
activities and reduced xenograft tumour formation in NOD/
SCID mice. Therefore, this work demonstrated that autophagy
regulation and glucose uptake by HCC cells expressing CD133 is
involved in cell survival and may be essential for LCSCs to survive
in a nutrient-deficient tumour microenvironment (Chen et al.,
2013a). Additional data have suggested a regulatory role of HBP
on CD133+ LCSCs under low glucose conditions (Lin et al., 2016).
Under high glucose conditions, HBP inhibition reduced the
proportion of the CD133+ LCSCs subpopulation and CD133
expression (Lin et al., 2016). In addition, under low glucose
conditions and in the presence of GlcNAc, which is
commonly used to increase HBP, CD133+ LCSCs were
rescued. Altogether, these data indicated that the HBP may
coordinate with the glycolytic pathway to regulate CD133
expression in hepatoma cell lines, thus maintaining the CSC-
like phenotype (Lin et al., 2016). Interestingly, metformin (known
to perturb mitochondrial OXPHOS and to activate AMPKs via
AMP accumulation) inhibited proliferation, migration and
invasion in LCSCs, effect maximised by glucose deprivation
(Ferretti et al., 2019). Hence, metformin arises as a potent
migration and invasion inhibitor in HCC cells, and therefore,
a combined therapy for HCC would be an effective strategy.

Amino Acid Starvation
Essential Amino Acids
Branched-Chain Amino Acids
In contrast to PDAC, BCAAs have proven their effects in
inhibiting liver cancer cell proliferation and neovascularisation.
Consequently, they may benefit patients with HCC (Tajiri and
Shimizu, 2018). Importantly, BCAAs also induce the
differentiation of EpCAM+ LCSCs, sensitising them to
chemotherapy (Nishitani et al., 2013). This effect was
mediated by mTORC1 activation upon treatment with high
doses of BCAA, leading to Wnt/β-catenin pathway inhibition.
As a result, LCSCs lost EpCAM expression and significantly
decreased their tumourigenic potential and chemoresistance.

Methionine
In the liver, methionine is converted into SAM, the most
important cofactor for transmethylation reactions (Lu and
Mato, 2012), via the enzyme methionine adenosyl-transferase
MAT1A, mainly expressed in adult liver. Deactivation of the
isoform type 1 of MAT1A causes HCC development (Martínez-
Chantar et al., 2002). Moreover, liver carcinogenesis has been
associated with a switch between MAT1A and MAT2A (mostly
expressed in foetal liver and extrahepatic tissues), resulting in a
less efficient methionine metabolism that enhances HCC cell
proliferation and genomic instability, as it is the case with global
DNA hypomethylation (Frau et al., 2013). Not surprisingly, the
pro-tumourigenic effects caused by SAM deficiency can be
inhibited by reconstituting its normal levels via exogenous
administration (Wang et al., 2017).

Tryptophan
The expression level of IDO1 positively correlates with the
occurrence of distant metastases in HCC (Opitz et al., 2020).
Furthermore, lack of IDO1 resulted in reduced HCC formation
and Foxp3+ T-reg cells infiltration in an IDO1 knockout mouse
model (Shibata et al., 2016).

Immune checkpoint blockade with anti-CTLA-4 and anti-
PD1 antibodies has shown promising results in HCC, but some
HCC patients developed resistance to immune checkpoint
inhibitors by upregulating IDO1. Therefore, combining
immune checkpoint and IDO inhibitors could improve the
HCC treatment outcome (Brown et al., 2018).

Moreover, a key enzyme involved in tryptophan degradation,
kynurenine 3-monooxygenase, was highly expressed in HCC
compared to normal tissue. In vitro studies have shown that it
promotes HCC cells proliferation, migration, and invasion (Jin
et al., 2015).

Non-Essential Aminoacids: Conditionally Essential
Amino Acids
Arginine
HCCs are often deficient in ASS1 (Figure 2) and depend on
exogenous arginine for cell proliferation, growth, and survival
(Ensor et al., 2002). Interestingly, early studies had already shown
that arginine depletion in hepatoma using arginine deiminase
(ADI) purified from Mycoplasma arginini and Mycoplasma
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hominis resulted in hepatoma cell lines growth inhibition
(Takaku et al., 1995).

Asparagine
Similar to the situation observed in PDAC, the asparagine
biosynthesis enzyme ASNS expression is downregulated or
even lost in malignant HCC cases (Figure 2). In fact, ASNS
re-expression can suppress tumourigenic phenotypes, confirming
its tumour-suppressing role (Zhang et al., 2013). Consequently,
treatments using asparaginase have shown to arrest proliferation
and induce apoptosis in HCC (Tardito et al., 2011).

Glutamine
Lower plasma levels of glutamine have been observed in HCC
patients due to the increased uptake by tumours via glutamine
transporter ASCT2 upregulation in HCC cells (Sun et al., 2016),
which has also been observed in PDAC (Wang VM. et al., 2019).
Interestingly, the enzyme glutamine synthetase (GS) is
overexpressed and represents a diagnostic marker for HCC
(Di Tommaso et al., 2007). In normal human and rodent
livers, GS is expressed in early hepatocyte precursors and its
hepatocyte expression is higher during regenerative states, such as
chronic hepatitis B and C, focal nodular and peritumoural
hyperplasias, and in some neoplasms, including hepatocellular
adenoma and hepatocellular carcinoma (Fleming and Wanless,
2013).

Tumours with activating mutations in the gene that encodes
for β-catenin (CTNNB1) segregate as a group with distinctive
clinical and genetic characteristics (Cieply et al., 2009). These
tumours show constitutive activation of the canonical Wnt
pathway, display distinctive histology (Dal Bello et al., 2010)
and overexpress a number of target genes functionally linked to
amino acid metabolism (Boyault et al., 2007). Indeed, these
tumours increase GS expression, resulting in higher
intracellular glutamine levels that activate mTORC1 and lead
to an enhanced protein translation, which in turn supports cell
growth and proliferation (Adebayo Michael et al., 2019).
Mutations in other upstream components of the Wnt
pathway, such as the AXIN1 gene, may have the same
functional effect (White et al., 2012).

Besides GS, it has been described that an increased GLS1
expression is associated with stemness and advanced
clinicopathological features in HCC. In fact, GLS1 depletion
results in higher ROS levels and Wnt/β-catenin pathway
inhibition (Li et al., 2019), promoting differentiation.

Glycine
The enzyme glycine decarboxylase (GLDC), which belongs to the
glycine cleavage system, is downregulated in HCC cells to support
tumour progression and metastasis. On the one hand, GLDC
downregulation promoted intracellular ROS levels accumulation,
while reducing the GSH/GSSG ratio in HCC cells, which
enhanced ROS-induced cell migration via cofilin stabilisation
(Zhuang et al., 2018). On the other hand, ROS accumulation
following GLDC downregulation, modulated autophagy levels in
metastatic HCC, a necessary process to sustain their migratory
capacity (Zhuang et al., 2019).

Proline
Hydroxyproline, the direct proline derivative, correlates with
HCC pathogenesis; HCC tumours show increased proline
consumption and hydroxyproline accumulation, which
promotes HCC progression and resistance to Sorafenib by
modulating hypoxia-inducible factor 1-alpha (Tang et al., 2018).

Tyrosine
Tyrosine is mainly degraded in the liver to produce
gluconeogenesis and ketogenesis intermediates or precursors.
It was already described in the 1980s that HCC patients had
elevated serum tyrosine levels (Watanabe et al., 1984), which
could indicate tyrosine metabolism deregulation. It was also
described that tyrosine aminotransferase (TAT) downregulation
contributes to HCC progression (Fu et al., 2010). Not only
TAT expression is downregulated in HCC, but also that of
other genes involved in tyrosine catabolism, such as 4-
hydroxyphenylpyruvic acid dioxygenase, homogentisate 1,2-
dioxygenase, and GTSZ1. Their low expression correlates
with poor prognosis (Nguyeni et al., 2020). In contrast, a
different study showed that CD13+ LCSCs had negligible
glycolytic activity, and that their viability did not depend on
glucose or glutamine, but on tyrosine, as tyrosine deprivation
induced apoptosis. High tyrosine consumption in CD13+ cells is
concomitant with higher expression levels of enzymes involved
in tyrosine degradation compared to CD13− cells, rendering
CD13+ addicted to tyrosine. Interestingly, targeting tyrosine
metabolism by nitisinone eliminates CD13+ LCSCs and
enhances the anti-tumourigenic effects of 5-fluorouracil in an
in vivo setting (Sun et al., 2019).

GLIOBLASTOMA

Glioblastoma and Cancer Stem Cells
GBM develops in the glia of the human brain and represents the
most common andmalignant type of brain tumours (Prager et al.,
2019; Waker and Lober, 2019). A positive aspect is that its
prevalence is estimated at 1/100 000 and it is usually
diagnosed in 45- to 70-year-old patients. However, the
prognosis of patients is poor, surviving only 12 months after
diagnosis. This survival time can be slightly increased after
chemotherapy with temozolomide, when combined with
radiotherapy and surgery. Temozolomide causes double-
stranded DNA breaks, which lead to cell cycle arrest in the
G2/M phase and eventually to cell death (Nagel et al., 2017).

GBM belongs to the gliomas, a broader class of brain tumours,
with three subtypes: classical, mesenchymal and proneural. These
subtypes are characterised by their genetic mutations, cell of
origin and invasiveness. The classical GBM subtype usually
contains phosphatase and tensin homolog (PTEN) mutations
and epidermal growth factor receptor (EGFR) amplification. The
proneural subtype is characterised by phosphoinositide-3′-kinase
(PI3K) mutations and platelet-derived growth factor receptor
alpha (PDGFRA) amplifications (Prager et al., 2019; Waker and
Lober, 2019). The mesenchymal GBM subtype typically contains
loss-of-function mutations in the tumour suppressor genes p53,
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PTEN and NF1 (Prager et al., 2019; Waker and Lober, 2019). It is
also the most aggressive due to its high angiogenic and invasive
capacities (Saito et al., 2019). The three subtypes are mainly
determined by three potential GBM cells of origin: 1) the neural
stem cells (NSCs), with a high regenerative plasticity and
development potential (Jacques et al., 2010); 2) the NSC-
derived astrocyte progenitors that generate the mature
astrocytes through symmetric division in adults (Chow et al.,
2011); and 3) the oligodendrocyte precursor cells, which
represent the main dividing cell population in the adult brain
(Rebetz et al., 2008). Common features of the three GBM
subtypes are their high proliferation rate and chemoresistance.
They are able to form secondary tumours inside and, more rarely,
outside the brain (Anderson et al., 2020).

Identifying glioblastoma stem cells (GSCs) is difficult due to
the high plasticity of glioblastoma cells, allowing them to shift
from a non-GSC state to a GSC state in response to molecules and
other cells in their microenvironment (Safa et al., 2015). For
instance, nutrient deprivation (Mondal et al., 2018) and hypoxia
(Bar et al., 2010) induce metabolic changes that regulate GSCs
interconversions. Such metabolic shifts are associated with
phenotypic changes, for example an increased self-renewal
capacity in GSCs and proliferation rates, as well as the
capacity to initiate a tumour in vivo that reproduces the
cellular complexity of the original tumour (Lathia et al., 2015).
In order to distinguish the glioblastoma cells from GSCs,
intracellular proteins (SOX2, OLIG2, MYC and NESTIN) and
cell surface proteins (CD133, SSEA-1 and CD44) are used as
detection and discrimination agents (Suvà et al., 2014; Fiscon
et al., 2018). GBM tumours use glucose for both glycolysis and
oxidative phosphorylation, and synthesise glutamine and glycine
de novo from glucose (Maher et al., 2012; Marin-Valencia et al.,
2012).

Glucose Starvation
Glucose metabolism is different depending on the GBM tissue
region. In the surrounding normal tissue, glucose is converted to
pyruvate through glycolysis and pyruvate enters the TCA cycle
producing ATP via oxidative phosphorylation. A different
mechanism works in the central region of the tumour, where
glucose also produces ATP via glycolysis, but the resulting
pyruvate provides mainly lactic acid that accumulates in this
region. Lactic acid can be a signalling factor and increases the
expression of the H+/lactate symporters MCT4 and MCT1.
MCT4 effluxes lactic acid to the lateral region of the tumour
where MCT1 uptakes it to be part of the mitochondrial oxidative
metabolism to maintain the high level of ATP (Duan et al., 2018).
In GBM, under low glucose conditions, various mechanisms that
promote the survival of tumour cells are activated. It is reported
that, on the one hand, cytosolic glutamate dehydrogenase 1
(GDH1) binds to the IKK (inhibitor of NF-κB kinase)
complex and converts glutamate to α-ketoglutarate (α-KG).
α-KG activates IKKβ and NF-κB signalling, responsible for the
overexpression of GLUT1 which promotes glucose uptake,
glycolysis and tumour cell survival under glucose deprivation
conditions (Wang X. et al., 2019). On the other hand, glucose
deprivation creates the perfect environment for xCT-induced cell

death, due to increased ROS levels. Glioblastoma cells frequently
show a high expression of xCT, the light chain subunit of the xc

−

system, responsible for extracellular cysteine and intracellular
glutamate exchange across the plasmamembrane (Figure 1). xCT
expression correlates with tumour growth and poor survival. In
this context, cell density plays an important role because high
density inhibits the function of mTOR and consequently
increases xCT lysosomal degradation, promoting GBM cell
survival (Yamaguchi et al., 2020) and thus protecting tumour
cells from glucose deprivation-induced cell death. Moreover,
under nutrient deprivation conditions, GSCs upregulate
GLUT3 expression (Flavahan et al., 2013). When considering
glycolysis and tumourigenesis, PTEN is a relevant factor. This
tumour suppressor is frequently mutated or deleted in cancer,
having an important role in glucose metabolism via the PI3K/
AKT pathway. It has been described that PTEN establishes
direct contact with the glycolytic enzyme phosphoglycerate
kinase 1 (PGK1), dephosphorylating it and inhibiting its
autophosphorylation; ultimately PTEN inhibits glycolysis, ATP
production and brain tumour cell proliferation (Qian et al., 2019).
Another tumour suppressor associated with glucose metabolism
is p53. This protein stimulates apoptosis in GBM under acute
glucose metabolism inhibition conditions (Mai et al., 2017). In
other cases, glucose levels do not seem to play a major role.
AMPK is described as a cellular energy sensor able to regulate the
GBM bioenergetics transcriptional programme. In normal cells,
glucose starvation activates AMPK, whereas the abundance of
glucose reduces its activity. In GSCs, AMPK activity is chronically
increased and depends on glucose levels. Consequently, AMPK
inhibition reduces GSC viability (Chhipa et al., 2018).

The first step in glucose metabolism is converting glucose into
glucose-6-phosphate. Glucose-6-phosphate participates in
glycolysis, but it also takes part in the glycosaminoglycan
(GAG) synthesis pathway. High levels of GAG are implicated
in GBM and the UDP-glucose 6-dehydrogenase (UGDH) is a
relevant enzyme for their production. UGDH regulates cell
proliferation and migration in vitro and its inhibition reduces
the amount of GAG and other ECM key components in GBM
cells, thus compromising GBM growth (Oyinlade et al., 2018).

In GBM cells, glucose deprivation translates into bioenergetic
stress. The exchange of glucose for galactose as carbon source
causes glycolytic inhibition and dependence on mitochondrial
oxidative phosphorylation. The mitochondrial oxidative
phosphorylation results in ATP molecules that provide energy
for an optimal cell growth and survival. GSCs are able to easily
adapt to the glucose-galactose shift, probably by increasing
O2 consumption rates and basal respiration to compensate
for glycolysis decrease, as well as by enhancing NF-κB-
inducing kinase and dynamin-related protein 1-dependent
mitochondrial fission (Kamradt et al., 2021).

Interestingly, whether GSCs are dependent on glycolysis or on
oxidative phosphorylation has been debated for more than a
decade. According to the study by Vlashi et al., in 2011, GSCs
were less glycolytic than differentiated glioma cells, concluding
that GSCs rely mainly on oxidative phosphorylation. However,
when OXPHOS was inhibited, the GSCs could use additional
metabolic pathways (Vlashi et al., 2011). More recent studies have
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shown that GSCs can produce both glycolytic and mitochondrial
energy to sustain tumour propagation, and, as described in 2011,
GSCs relying on OXPHOS have more plasticity and can switch
towards a glycolytic phenotype when needed (Shibao et al., 2018).

Finally, D-galactose is described as a cell senescence inducer
through glutamine synthetase signalling (Shen et al., 2014) or by
compromising the autophagy flux and mitochondrial functions
(Xu et al., 2018). The mechanism of senescence induction by
D-galactose implicates the YAP/CDK6 pathway inactivation (Xu
et al., 2020).

Amino Acid Starvation
Essential Amino Acids
Branched-Chain Amino Acids
The first step of BCAA catabolism generates glutamate and
branched-chain ketoacids (BCKAs); the high BCKA excretion
levels in GBM cells are impacted by the MCT1 transporter
(SLC16A1) expression levels. Interestingly, MCT1 is located
near BCAT1. The excreted BCKAs are then uptaken by
macrophages and reduce the phagocytic capacity of
macrophages, which could identify BCKA as a tumour
immune suppressor (Silva et al., 2017).

Methionine
Studies on cellular methionine uptake by GBM cells have shown a
significant uptake when compared to normal human astrocytes
(Palanichamy et al., 2016). Interestingly, the expression of the key
enzyme for methionine salvage, methylthioadenosine
phosphorylase (MTAP), lacks in the majority of GBMs due to
MTAP promoter deletion or methylation (Palanichamy et al.,
2016). MTAP loss results in an increased methionine
uptake. When comparing methionine deprivation effects on
GBM cell lines grown under conditions that favour
differentiation (monolayer in media with serum) versus
the same cell lines grown in stem cell conditions (spheres
with a stem cell media composition), it was observed that only
when GBM cells were grown under stem cell conditions,
methionine was required for neurosphere formation (Zgheib
et al., 2019).

Tryptophan
The enzyme IDO1 is highly expressed in GBM patients (Zhai
et al., 2017). In GBM mouse models where IDO1 expression has
been genetically suppressed, a decrease of intra-glioma T-reg
accumulation as well as loss of T-cell-mediated survival was
observed (Wainwright et al., 2012, 2014). Uptake monitoring
of α-[11C]-methyl-L-Trp (AMT), a tryptophan analogue that
allows for tryptophan metabolism quantification, has revealed
that higher intratumoural AMT uptake is associated with shorter
survival (Kamson et al., 2014; Lukas et al., 2019).

Non-Essential Amino Acids: Conditionally Essential
Amino Acids
Arginine
Due to ASS1 and/or arginosuccinate lyase silencing (Figure 2),
30% of GBM patients are auxotrophic for arginine (Syed et al.,
2013; Mörén et al., 2018). The majority of arginine present in the

central nervous system comes from its biosynthesis in the kidney
and imported from peripheral blood, which renders such GBM
patients sensitive to arginine pharmacological depletion (Przystal
et al., 2018). Arginine deprivation in GBM cells decreased cell
viability, cell motility, invasiveness and adhesion; arginine
deprivation resulted in decreased β-actin filament content, and
in reduced β-actin arginylation (Pavlyk et al., 2015), shown to be
crucial for cell migration and cardiomyocyte contractility
(Kurosaka et al., 2012).

Asparagine
The ASNS gene is amplified in GBM (Figure 2), correlating with
decreased survival (Thomas et al., 2021). Forced ASNS
overexpression in GSCs led to a slower basal metabolism and
greater plasticity to increase glycolysis or OXPHOS when
necessary. The changes in metabolism were concomitant with
increased proliferation and invasiveness, as well as with increased
radiation resistance due to a higher endurance under cellular and
oxidative stress (Thomas et al., 2021). Patients who do not express
high levels of ASNS might benefit from being treated with
recombinant L-asparaginase, since this treatment induces
apoptosis in vitro, reduces GBM growth when tumour cells
are implanted subcutaneously in mice and enhances
ABT263 anti-tumoural effects (a BCL2/BCL-XL inhibitor)
(Karpel-Massler et al., 2016).

Glutamine
In vitro studies have shown that glutamine is used by GBM cell
lines to produce TCA intermediates. It is then converted to lactate
producing NADPH, which provides energy for fatty acid and
nucleotide production (DeBerardinis et al., 2007). In contrast, in
vivo studies have shown that glucose was preferred over
glutamine for oxidative metabolism in GBM (Marin-Valencia
et al., 2012). Later, it was shown that GBM cells were indeed not
dependent on glutamine, since glutamine deprivation did not
always reduce GBM cell proliferation. Interestingly, GCSs have a
higher GS expression, rendering their growth independent of
glutamine supplementation compared to differentiated GBM
cells derived from the same patients. Finally, it was also
observed that the stem-like population did not depend on
glutamine for anaplerosis (Tardito et al., 2015). According to
this study, most glutamine in GBM cells is transformed to
glutamate, which does not sustain fatty acids biosynthesis
under normoxic conditions (Tardito et al., 2015).

The source of glutamine in GBM cells has been proven to be
mainly glucose-derived or produced by the astrocytes in the
tumour microenvironment, as injection of labelled glutamine
was barely uptaken by GBM cells (Tardito et al., 2015). In a
different study, it was shown that patient-derived GSCs cluster
in two groups, one that is glucose-dependent and another group
that adapts to glucose deprivation, since it can use glutamine for
anaplerosis (Oizel et al., 2017). Interestingly, the group of
patient-derived GSCs that uptake high glutamine levels,
transcriptomically classifies as the GBM mesenchymal
subtype, while the glucose-dependent group does not (Oizel
et al., 2017). Not surprisingly, tumours generated by
mesenchymal GSCs show increased glutamine uptake and
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conversion to glutamate when compared to non-mesenchymal
GSCs (Oizel et al., 2020). In the same study, it was shown that
the non-mesenchymal GSCs (which belong to the proneural and
classical subtypes) express high levels of GS (Oizel et al., 2020).
These studies seem to contradict the work mentioned earlier by
Tardito et al. (2015) and Marin-Valencia et al. (2012), in which the
authors described that the stem-like population does not depend on
glutamine. However, GBM cells had not been classified as
mesenchymal or non-mesenchymal in those studies, according to
Verhaak et al. (2010), so it could be possible that they did not include
any mesenchymal GBM cultures, which can explain the apparent
disagreement.

In a more recent study, it was demonstrated that GSCs have
different responses to glutaminase inhibition; GSCs that depend
on glutaminolysis for cell growth and viability have low
expression of the astrocytic glutamate transporters, also known
as excitatory amino acid transporters (EAAT), EAAT1 and
EAAT2. In such cells, targeting glutaminase leads to
intracellular glutamate depletion, triggering the amino acid
deprivation response, causing cell death. GSCs that express
high EAAT1/EAAT2 levels can be sensitised to glutaminase
inhibition by blocking glutamate transport with L-trans-
pyrrolidine-2,4-dicarboxylic acid (PDC, Figure 1) (Restall
et al., 2020).

Moreover, there is a group of GBM patients with a mutation at
the R132 residue of isocitrate dehydrogenase 1 (IDH1), giving rise
to a neoenzyme, which produces the oncometabolite 2-
hydroxyglutarate (2-HG) from α-KG. In such cases, IDH1
mutant cells depend on glutamine to obtain α-KG. First,
glutamine is converted to glutamate via glutaminase and
finally it is metabolised to α-KG via transaminases. In
addition, 2-HG inhibits BCAA transaminases, BCAT1 and
BCAT2, impairing BCAA catabolism and glutamate
biosynthesis, which also explains IDH1 mutant cells
dependency on glutaminase to obtain glutamate from
glutamine (McBrayer et al., 2018).

Glutamate
Glutamate is a major cause of brain toxicity associated with
glioblastoma growth (Ye and Sontheimer, 1999) and may be
responsible for brain edema as well as other tumour-related
symptoms. Glutamate also supports GBM cells invasion (Lyons
et al., 2007). Interestingly, even thoughGBMandGSCs express high
levels of GLAST, a glutamate-aspartate transporter expressed in
astrocytes responsible for glutamate uptake, GSCs release, rather
than uptake, glutamate because they lack Na+/K+-ATPase
expression, needed to create the Na+ electrochemical gradient
necessary for glutamate uptake to take place. Na+/K+-ATPase
overexpression restores glutamate uptake and induces apoptosis
in GSCs (Corbetta et al., 2019).

Serine
In gliomas, PHGDH expression, the first and rate-limiting step to
divert substrates from glycolysis to serine production, was
increased while PHGDH silencing reduced proliferation and
invasiveness in GBM cells (Liu et al., 2013). In hypoxic
conditions PHGDH levels were increased and serine

restriction via PHGDH inhibition sensitised GBM cells to
hypoxia-induced cell death (Engel et al., 2020).

Taurine
Taurine is an amino sulfonic acid not used for protein synthesis,
but with several physiological roles as osmotic pressure controller,
neuromodulator and immunomodulator (Shen et al., 2021).
Taurine is synthesised either from cysteine oxidation via
cysteine dioxygenase, which generates cysteinesulfinate that is
decarboxylated by cysteinesulfinic acid decarboxylase, or from
cysteamine oxidation by cysteamine (2-aminoethanethiol)
dioxygenase (ADO) (Ueki and Stipanuk, 2009). ADO
expression is significantly higher in GBM when compared to
lower grade gliomas and its expression is upregulated in GSCs.
Moreover, ADO overexpression promotes glioma stemness via
NF-κB signalling (Shen et al., 2021).

METABOLIC THERAPEUTIC APPROACHES
FOR CANCER STEM CELLS TARGETING

Targeting Amino Acids
As inferred from the previous sections, amino acid metabolism
represents one of the most promising approaches for targeting
CSCs in PDAC and GBM through nutrient deprivation. Efforts
have beenmade to develop therapeutic agents targeting amino acid
transport and catabolic/biosynthetic pathway in many different
cancer types. In this section we aim to summarise strategies against
specific amino acids in our focus cancer types (Table 1). The
transporter SLC6A14, which transports 18 of the 20 amino acids
including all EAAs, was found to be upregulated in PDAC PDXs,
primary tumour tissues and cell lines compared to normal tissue or
cells (Coothankandaswamy et al., 2016), but not inGBMandHCC.
Interestingly, SLC6A14 inhibition with α-methyltryptophan
(Figure 1) induced amino acid starvation in PDAC cells and
not only reduced tumour growth and proliferation in vivo and
in vitro, but also CSC-related features such as clonogenicity and
invasiveness. The use of such inhibitor could also have promising
outcomes when applied to other cancer types.

Targeting Essential Amino Acids
Tryptophan
The administration of indoximod (an oral IDO1 inhibitor)
combined with temozolomide has demonstrated synergistic
survival benefits in GBM mouse models (Wainwright et al.,
2014; Hanihara et al., 2016), which is under investigation in
GBM patients (Zakharia et al., 2015, 2016). Moreover, different
clinical trials against IDO1 in PDAC and HCC are ongoing.

Targeting Non-essential Amino Acids
Arginine
Arginine deprivation has been proven to impair clonogenicity
and tumour initiation (Zaytouni et al., 2017; Kim et al., 2020), as
well as PDAC prometastatic properties (Wang et al., 2020).
Interestingly, the amino acid starvation by ADI-PEG 20 also
sensitised PDAC cells to gemcitabine treatment (Prudner et al.,
2019) and radiotherapy in ASS1-deficient pancreatic cell lines
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(PANC-1, Miapaca-2, AsPC1, and Capan1) (Singh et al., 2019).
The use of ADI-PEG 20 enhanced the survival rate of mice with
intracranial GBM and demonstrated therapeutic synergy with
temozolomide in tumours expressing ASS1 (Przystal et al., 2018).
In HCC, several clinical trials have been performed using ADI-
PEG 20 (Table 1) (Izzo et al., 2004; Yang et al., 2010; Harding
et al., 2018), showing acceptable safety and initial results
demonstrating efficient elimination of detectable plasma
arginine in a subset of HCC patients. Yet, a Phase III clinical
trial using ADI-PEG 20 as monotherapy did not improve overall
survival in a second-line setting for HCC (Abou-Alfa et al., 2018).

Asparagine
Considering the low ASNS expression in PDAC patients and the
anti-tumoural effects seen in different in vitro and in vivo
preclinical data (Dufour et al., 2012), PDAC treatment with
L-asparaginase encapsulated in red blood cells (GRASPA,
ERY001, Eryaspase) is under intense testing in clinical trials
(Table 1). Indeed, after a phase I trial demonstrating that this
treatment was well tolerated by metastatic PDAC patients (Bachet
et al., 2015), a phase IIb trial showed improvements in progression-
free and overall survival when combined with gemcitabine or
FOLFOX in second-line advanced PDAC, irrespective of ASNS
expression (Hammel et al., 2020). This last trial provided
particularly important data since chemoresistant PDAC cells
upregulate ASNS that could compromise the efficacy of the
L-asparaginase approach (Cui et al., 2007). Interestingly,
L-asparaginase was able to deregulate the redox balance of side

population CSC-like cells, significantly affecting their stemness
potential (Liao et al., 2017), although the authors of the study
attributed these anti-tumoural effects to glutamine deprivation and
not to direct impact on asparagine homeostasis.

Cysteine
Interestingly, intracellular cyst(e)ine depletion by the xCT
inhibitor erastin or cyst(e)inase administration induced
ferroptosis in PDAC, both in vivo and in vitro (Daher et al.,
2019; Badgley et al., 2020). In human PDAC cells, erastin
suppressed clonogenicity (Daher et al., 2019), suggesting that,
combined with chemotherapy, it bears long-term survival
potential, eliminating CSCs.

Glutamine
The glutaminase inhibitors 968 and BPTES and, more recently, the
orally available CB839 have demonstrated benefits in vitro against
different PDAC models (Son et al., 2013; Biancur et al., 2017),
leading to the design of a phase I clinical trial testing CB839
(Table 1). Unfortunately, glutaminase inhibition seems to be
ineffective in vivo as a stand-alone treatment, since multiple
compensatory mechanisms were activated in response to the
inhibitor. However, appropriate dosing of combined treatments
could lead to survival benefits as demonstrated in vitro (Biancur
et al., 2017). Interestingly, combining radiation with BPTES, 968,
or the antiashmatic compound Zaprinast, identified as a novel
glutaminase inhibitor (Elhammali et al., 2014), diminished PDAC
CSCs self-renewal in vitro and in vivo (Li et al., 2015).

TABLE 1 | Clinical trials targeting amino acids.

Trial ID Phase Target
aa

Intervention Status

PDAC NCT02071862 I Gln CB839 Completed

NCT01523808 I Asn GRASPA Completed Bachet et al.
(2015)

NCT02195180 II Asn ERY001 + Gemcitabine or FOLFOX Completed Hammel et al.
(2020)

NCT03665441 III Asn Eryaspase + Gemcitabine/Abraxane or FOLFIRI Recruiting

NCT02101580 I/Ib Arg ADI-PEG 20 + Gemcitabine/Abraxane Completed Lowery et al.
(2017)

NCT00739609 I IDO Indoximod Terminated

NCT02077881 I/II IDO Indoximod + Gemcitabine/Abraxane Completed

NCT03432676 II IDO Epacadostat + Pembrolizumab Withdrawn

NCT03006302 II IDO Epacadostat + Pembrolizumab + CRS-207 ± Cyclophosphamide/GVAX Recruiting

NCT03085914 I/II IDO Epacadostat + Pembrolizumab + Chemotherapy (7 different combinations) Active, not recruiting

GBM NCT04587830 I Arg ADI-PEG20 + radiotherapy and temozolomide Recruiting

HCC NCT 01287585 III Arg ADI-PEG 20 Completed Abou-Alfa et al.
(2018)

NCT00056992 II Arg ADI-PEG20 Completed

NCT02006030 II Arg Phase 2 Trial of ADI-PEG20 + Concurrent Transarterial Chemoembolization (TACE)
Versus TACE Alone

Completed

NCT021020022 I/II Arg ADI-PEG20 + modified FOLFOX6 Terminated Harding et al.
(2018)

NCT02101593 I Arg ADI-PEG20 + Sorafenib Completed

NCT02178722 I/II IDO Combining MK-3475 + INCB024360 Terminated

NCT03277352 I/II IDO INCAGN01876 or Epacadostat or Pembrolizumab Completed
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Asmentioned earlier, GBMs of the mesenchymal subtype have
increased glutamine uptake when compared to non-
mesenchymal tumours, which could initiate the use of
glutamine metabolic targeting as a therapeutic strategy.
Indeed, it was recently shown that CB839 delayed tumour
progression in mesenchymal GBM tumour-bearing mice, while
having no effect in non-mesenchymal GBM tumour-bearing
mice (Oizel et al., 2020), and obtained similar effects when
using EGCG, a GDH inhibitor (Oizel et al., 2020). In vitro
experiments have proven that CB839 selectively impairs the
stemness of GSCs expressing high GLS levels (Koch et al.,
2020). Since clinical trials using CB839 have resulted in
promising advances for triple-negative breast cancer and renal
cell carcinoma (Garber, 2016), combining CB839 with standard
therapy in GBM could improve patient survival.

In patients with IDH1-mutant GBM cells, glutaminase
inhibition with BPTES slows their proliferation, without major
effects in wild-type cells (Seltzer et al., 2010). It has been shown
that treatment with CB839 radiosensitised IDH1 mutant cells in
an in vivo model, resulting in tumour growth inhibition of IDH1
mutant gliomas but not of wild-type tumours (McBrayer et al.,
2018). These results motivated a clinical trial combining CB839
with radiotherapy and temozolomide in low grade glioma
patients with IDH mutations (NCT03528642), but not yet in
glioblastoma patients.

In HCC, using CB839 alone did not bear strong effects, even
when in highly glutamine addicted HCC cells. However,
combining CB839 with a glutamine transporter ASCT2
inhibitor (V-9032), resulted in apoptosis of glutamine-
dependent HCC cells in vitro, and inhibited tumour growth in
HCC xenograft mouse models in vivo (Jin et al., 2020). In another
pre-clinical study, it was observed that the growth of human
CTNNB1-mutated HCC xenografts was delayed by combining
Crisantaspase, a drug in clinical use for acute lymphoblastic
leukaemia, with the irreversible GS inhibitor MSO (Chiu et al.,
2014). These two studies indicate that glutamine depletion may
be a pharmacological approach to treat HCC. Moreover, GLS
inhibition with BPTES prolonged the survival of a MYC-
overexpressing mouse model of liver cancer, with MYC-
dependent GLS expression (Xiang et al., 2015).

Proline
Another relatively successful dietary intervention in preclinical
in vitro and in vivo works is proline starvation, which was well
tolerated by mice. Indeed, prevention and efficacy studies in vivo
show that a proline-free diet for 1month significantly reduced tumour
initiation and maintenance in cell lines from different tumour types
with developed auxotrophy for proline (Sahu et al., 2016).

Serine
Serine or glycine dietary restriction did not modify tumour
growth in the KPC mouse model (Maddocks et al., 2017),
suggesting that PDAC tumours were able to activate SBP to
synthesise their own serine. Although new data on human PDAC
cells suggested that serine deprivation by dietary intervention,
SBP inhibitors or serine uptake may slow tumour growth in
patients, intratumoural nerves recruitment into the tumor mass

may conflict with this intervention as they could provide serine to
the tumour (Banh et al., 2020).

Interestingly, by combining serine restriction and the IDO
inhibitor epacadostat in a KPC tumour implanted in
immunocompromised mice to discard the well-known
immunological effects of IDO inhibition, tumour growth was
significantly slowed down, while the single interventions showed
no effect (Newman et al., 2021). These results suggest that IDO
inhibition, currently tested in numerous clinical trials for PDAC
treatment (Table 1), may have anti-tumoural effects by affecting
both the immune system and tumour cells.

CONCLUSION

Different cancer types show diverse metabolic dependencies and
find different ways to adapt to nutrient deprivation, yet, similarities
can be observed (Table 2 and Table 3). For instance, both PDAC
and GBM CSCs rely mainly on oxidative phosphorylation to
produce ATP, but certain subpopulations can switch to
glycolysis if needed. The three cancer types discussed here
depend on arginine (at least in a subgroup of patients, if not in
every patient) for proliferation and motility, rendering them
sensitive to arginine deprivation, using ADI-PEG 20. Glutamine
is one of the most broadly studied amino acids in several cancers.
Different reports have strongly linked glutamine metabolism and
maintenance of stemness-related properties via redox control in
both PDAC and HCC, which may also be the case for
mesenchymal subtypes in GBM. Finally, targeting the enzyme
IDO1 seems a very promising strategy in the three cancer types
studied for immunosuppression impairing, butmost probably such
treatment will need to be combined with other chemotherapies
currently applied in each cancer type. In addition, IDO1 role and
its inhibition effects on stemness and metastasis are unknown,
which could also compromise the viability of this approach.
Clearly, targeting amino acid metabolism and its transporters in
combination with other targeted therapies could bring us a step
closer to finding a treatment attacking the most tumourigenic and
metastatic subpopulations in several cancer types.
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TABLE 2 | Effects of glucose in the studied cancer types.

GLUCOSE PDAC HCC GBM

CSCs
phenotype

OXPHOS Sancho et al. (2015) Glycolysis & HBP Chen et al. (2013a),
Lin et al. (2016)

OXPHOS with plasticity towards glycolysis Vlashi
et al. (2011), Shibao et al. (2018)Glycolysis related to bad prognosis and metastasis

Espiau-Romera et al. (2020); Tian et al., 2020)
Inhibitors Metformin inhibits self-renewal Sancho et al. (2015) Metformin inhibits proliferation and

invasion Ferretti et al. (2019)MCT, 2DG inhibit metastasis Roy et al. (2015), Kong et al.
(2016)

TABLE 3 | Effects of amino acids in the studied cancer types.

PDAC HCC GBM

EAA BCAAs ↑Proliferation and self-renewal Lee et al. (2019) ↓ Proliferation neovascularisation and
stemness Nishitani et al. (2013), Tajiri and
Shimizu (2018)

↓ Macrophage activity Silva et al. (2017)

Methionine MAT1A ↓ MAT2A↑ MTAP ↓
↑ HCC development and progression
Martínez-Chantar et al. (2002)

↑ Met uptake Palanichamy et al. (2016)

↑Stemness Zgheib et al. (2019)
Tryptophan IDO1 ↑ IDO1 ↑ IDO1 ↑

↑ Nucleotide synthesis, tumour growth and
stemness Newman et al. (2021)

↑ distant metastases and immune
suppression Opitz et al. (2020), Shibata
et al. (2016)

↑ immune suppression and shorter survival Zhai
et al. (2017), (Wainwright et al. (2012), (2014);
Lukas et al. (2019)

NEAA/
CEAA

Arginine ARG2 ↑ ASS1 ↑ tumourigenesis, clonogenicity,
anchorage-independent cell growth and
invasiveness Wang et al. (2016), Zaytouni et al.
(2017)

↓ ASS1
↑dependency on exogenous Arg for cell
proliferation, growth, and survival Ensor
et al. (2002)

↓ ASS1 (30% of patients)
↑ dependency on exogenous Arg Syed et al.
(2013), Mörén et al. (2018) to support cell
viability and invasion Pavlyk et al. (2015)

ADI-PEG 20
↓ stemness Kim et al. (2020)

Purified ADI
↓ proliferation Takaku et al. (1995)

ADI-PEG 20
↑survival and therapeutic synergy with
temozolomide in GBM expressing
ASS1 Przystal et al. (2018)

Asparagine ASNS ↓ Dufour et al. (2012) ASNS ↓ Zhang et al. (2013) ASNS ↑
↑chemoresistance after ASNS upregulation by
glucose deprivation, Cui et al. (2007), Pathria et al.
(2019)

L-Asparaginase ↓ proliferation ↑
apoptosis. Tardito et al. (2011)

↑ proliferation, invasiveness, resistance to
radiation Thomas et al. (2021)

L-Asparaginase ↓ proliferation in vitro and in vivo
Dufour et al. (2012)

L-Asparaginase ↑ apoptosis ↓ tumour growth
Karpel-Massler et al. (2016)

Glutamine CEAA Liang et al. (2016), Halbrook and Lyssiotis,
(2017)

CEAA NEAA, mostly transformed to Glu Tardito et al.
(2015)

ASCT2 ↑ Wang et al. (2019a) ASCT2 ↑ Sun et al. (2016) ↑ GS for stemness Tardito et al. (2015)

Gln deprivation ↑ EMT Recouvreux et al. (2020)
↑ apoptosis ↓ self-renewal Li et al. (2015), Liao
et al. (2017)

GS ↑ Zhang et al. (2013)
↑Gln induces cell growth AdebayoMichael
et al. (2019)
↑GLS1 for stemness Li et al. (2019)

Proline ↑PRODH1 ↑ Pro consumption leading to Hydroxy-Pro
accumulation

↑ survival, tumourigenicity Olivares et al. (2017) ↑ HCC progression and chemoresistance
Tang et al. (2018)

Serine ↑PHGDH ↑PSAT1 (60% PDAC cell lines) ↑PHGDH Engel et al. (2020)
↑ proliferation Banh et al. (2020) ↑proliferation and invasiveness Liu et al. (2013)
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