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a b s t r a c t 

Background and Objective: To achieve the full potential of deep learning (DL) models, such as understand- 

ing the interplay between model (size), training strategy, and amount of training data, researchers and 

developers need access to new dedicated image datasets; i.e., annotated collections of images represent- 

ing real-world problems with all their variations, complexity, limitations, and noise. Here, we present, 

describe and make freely available an annotated transmission electron microscopy (TEM) image dataset. 

It constitutes an interesting challenge for many practical applications in virology and epidemiology; e.g., 

virus detection, segmentation, classification, and novelty detection. We also present benchmarking re- 

sults for virus detection and recognition using some of the top-performing (large and small) networks 

as well as a handcrafted very small network. We compare and evaluate transfer learning and training 

from scratch hypothesizing that with a limited dataset, transfer learning is crucial for good performance 

of a large network whereas our handcrafted small network performs relatively well when training from 

scratch. This is one step towards understanding how much training data is needed for a given task. 

Methods: The benchmark dataset contains 1245 images of 22 virus classes. We propose a representative 

data split into training, validation, and test sets for this dataset. Moreover, we compare different estab- 

lished DL networks and present a baseline DL solution for classifying a subset of the 14 most-represented 

virus classes in the dataset. 

Results: Our best model, DenseNet201 pre-trained on ImageNet and fine-tuned on the training set, 

achieved a 0.921 F1-score and 93.1% accuracy on the proposed representative test set. 

Conclusions: Public and real biomedical datasets are an important contribution and a necessity to in- 

crease the understanding of shortcomings, requirements, and potential improvements for deep learning 

solutions on biomedical problems or deploying solutions in clinical settings. We compared transfer learn- 

ing to learning from scratch on this dataset and hypothesize that for limited-sized datasets transfer learn- 

ing is crucial for achieving good performance for large models. Last but not least, we demonstrate the 

importance of application knowledge in creating datasets for training DL models and analyzing their re- 

sults. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Deep learning (DL) shows great promise in various biomedical 

nd microscopy image analysis applications as shown e.g. in these 

ecent reviews on deep learning in medical image analysis [1] , in 

edical and biomedical (pathology) applications [2] , in image (mi- 

roscopy) based cell analysis [3] , and in different aspects of elec- 

ron microscopy, also including biomedical applications [4] . How- 

ver, for these methods to achieve their full potential and gain ac- 

eptance in a clinical and diagnostic setting, the knowledge and 
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nderstanding of how and when they can be trusted need to be 

ncreased. Machine learning researchers and application special- 

sts need access to representative image datasets, to fulfill in other 

mage domains, the amazing results achieved on natural scene 

mages and videos from the internet which is currently driving 

he machine learning field. Datasets from different imaging tech- 

iques and application domains are required to identify problems 

nd biases with current methods and commonly used benchmark 

atasets and applications. That is, annotated images representing 

eal-world problems with all their real imperfections and complex- 

ty such as variations in imaging condition, noise, sample prepara- 

ion, limitation in size, etc. are desirable not only for the applica- 

ion itself but also for theoretical method development [ 5 , 6 ]. 
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Electron microscopy applications are just a tiny part of the re- 

orted biomedical deep-learning-related research. The recent re- 

iew [4] , shows the potential of deep learning in the many var- 

ous aspects relating to electron microscopy imaging and appli- 

ations (not only in biomedicine), such as denoising, superreso- 

ution, segmentation, image classification, protein structure deter- 

ination, etc. It also contains a section about TEM datasets and 

tates: “…of which most are small, esoteric and not partitioned 

or machine learning.” Recently, the same author made two large 

EM and STEM image datasets with partitions for machine learn- 

ng publicly available [7] . The images of highly varied content and 

or different purposes and applications were acquired within re- 

earch projects at Warwick University. In addition, EM imagery 

as also used in some of the seminal papers of deep learning in 

he biomedical field [ 8 , 9 ] with data from the ISBI 2012 challenge

 10 , 11 ]. 

In the field of automatic virus recognition in transmission elec- 

ron microscopy (TEM) images, there is only a handful of published 

apers. Many of which come from our group [ 12 , 13 , 14 , 15 , 16 ] and

ome from others [ 19 , 20 , 21,22 ]. This low number of publications is

ikely due to the shortage of publicly available image datasets suit- 

ble for machine learning. Datasets or databases of single or a few 

EM images of viruses and virus-infected cells as diagnostic ref- 

rence/support exists for example from the Robert Koch Institute 

 23 ], but for datasets of a size and design suitable for developing

nd evaluating machine learning purposes, only the KylbergDataset 

 24 ] is publicly available to the best of our knowledge. It consists

f cut-outs of viruses resampled to a fixed size, so it is useful for 

 local pattern or texture analysis but not for semantic segmenta- 

ion or combined segmentation and recognition methods. This lack 

f datasets for automating the recognition process is somewhat 

urprising considering the proven importance of manual TEM as a 

apid and reliable virus diagnostic tool in emergencies to take ad- 

quate measures [ 25 ], as well as to identify the virus in emerging

r zoonotic virus outbreaks or bioterror attacks. The importance of 

EM, and the risk of new and emerging viruses slipping through 

he nets of molecular detection, was for example experienced in a 

revious SARS-CoV outbreak [ 26 ], and the Monkeypox outbreak in 

he US, in 2003, where the viruses were identified using TEM [ 27 ].

he current outbreak of SARS-CoV2 will likely lead to an increased 

nterest also in image-based automated diagnosis. 

In this paper, we present and make freely available an an- 

otated transmission electron microscopy (TEM) image dataset. 

he dataset contains images of 22 virus classes along with ex- 

racted image patches centered on virus particles. Although parts 

f this dataset have been used in previously published research 

 12 , 13 , 14 , 15 , 16 , 28 ], this is the first time the whole virus image col-

ection is made publicly available. This after careful curation and 

reparation/partitioning into a benchmark dataset suitable for ma- 

hine learning method development and evaluation. Moreover, we 

resent DL classification results on virus image patches for a hand- 

rafted small network and some of the top-performing (large and 

mall) networks for the 14 virus classes with the highest number 

f virus particles in the dataset. We compare and evaluate transfer 

earning and training from scratch hypothesizing that with a lim- 

ted dataset, transfer learning of a large network may be a better 

hoice than training a custom network from scratch if the real- 

orld deployment situation allows for a larger network. This is 

ne step towards understanding how much training data is needed 

or a task. We also compare different data splits (which images 

re used for training and testing) and show that variation in the 

ataset split in an unfortunate (or correct) way may impact the 

esults. This highlights the importance of not only machine learn- 

ng domain expertise but also application domain expertise for un- 

erstanding and correct interpretation of results and method (DL) 

erformance. 
2 
. Materials and methods 

.1. Context virus dataset 

The dataset contains in total 1245 images of 22 virus classes 

aptured with two different electron microscopes: an LEO (Zeiss, 

berkochen, Germany) with a Morada (Olympus) camera and a 

ecnai 10 (FEI, Hillsboro, OR, USA) with a MegaView III (Olym- 

us, Münster, Germany) camera. Before imaging, all samples were 

reated with 10% phosphate-buffered saline, placed on carbon- 

oated TEM grids, and stained with 2% phosphotungstic acid fol- 

owing standard procedures. As mentioned in the introduction, 

arts of the dataset have been used in previous publications. Here, 

e make the full dataset available with manual annotations after 

aving cleaned the dataset by removing overlapping images. 

The virus classes in the dataset are strongly unbalanced both 

egarding the number of images (from 9 to 129) and in the number 

f virus particles (from 38 to 1934). The sizes of all images are ei- 

her 1376 × 1032 or 2048 × 2048 pixels (depending on with which 

lectron microscope they were captured) but the pixel sizes vary 

rom 0.26 to 5.57 nm, i.e., they were acquired at different magnifi- 

ations. 

Each virus particle is annotated only with its approximate cen- 

er, i.e., a single point for isolated spherical particles or a centerline 

n case of clustered viruses (beyond visual recognition of individ- 

al particles) or elongated virus. The annotations are in the form of 

oordinate points stored in a separate text file for each image. The 

irus image dataset is challenging due to many reasons: limited 

nnotation (a center point/line and not a full segmentation mask), 

 relatively small number of images per class, diffuse virus bound- 

ries, imperfect focus, noise, different magnifications, and a large 

ariation of the virus, background, and debris appearance. 

In our previous study [16] , we observed that when dealing with 

irus classes represented by relatively few images with a highly 

aried number of particles per image, it is very important to make 

ure that the images are carefully split between training, valida- 

ion, and test sets to make the sets as representative as possible. 

herefore, before splitting the image dataset, we first ordered the 

mages in each class by the number of virus particles they con- 

ained. Next, we assigned the images in a repeating sequence to 

he training, test, training, validation, and training sets until there 

ere no more images left for that class. This resulted in a split of 

mages roughly corresponding to 60-20-20 % for training, valida- 

ion, and test sets, respectively. In this way, each set received some 

mages with few particles and some with many particles of a given 

lass. Table 1 presents the number of particles and images in each 

irus class and the corresponding number selected for the training, 

alidation, and test sets. 

.2. Data preprocessing 

Many CNNs require input images to be of the same size. There- 

ore, before training our CNN models, we decided to rescale and 

rop the original images. We used Lanczos-3 kernel interpolation 

o rescale all images so that their pixel size corresponds to 1 nm. 

ext, we cropped the images to patches of 256 × 256 pixels 

256 × 256 nm) around the annotation points: the manually se- 

ected center points for spherical virus particles and all center-line 

ertices for elongated virus particles, except for the elongated par- 

icles that were annotated with a center-line composed of only 2 

oints (this would usually indicate an oval-shaped virus particle 

uch as e.g. Orf) – in this case, we selected a new midway point for 

he center of the patch. This resulted in more image patches than 

articles in virus classes with elongated particles, particularly in 

arburg, Ebola, Influenza, Lassa, and Nipah. E.g., the test set con- 

ains only 24 Marburg virus particles but there are 173 patches 
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Table 1 

TEM virus dataset. The virus types used in the classification are marked in bold. 

Virus 

av. particle size [μm] # images # particles 

Train val. test Total train val. test Total 

Adenovirus 80 40 13 14 67 160 44 86 290 

Astrovirus 25 46 15 15 76 266 86 66 418 

CCHF 120 44 15 15 74 249 100 86 435 

Cowpox 270 30 10 10 50 189 70 57 316 

Dengue 45 19 6 7 32 72 15 44 131 

Ebola 80 65 22 22 109 173 70 60 303 

Guanarito 140 13 4 4 21 31 10 7 48 

Influenza 110 56 19 19 94 365 158 125 648 

Lassa 140 62 21 21 104 222 92 80 394 

LCM 120 22 7 8 37 31 10 14 55 

Machupo 120 20 6 7 33 69 16 23 108 

Marburg 80 57 19 19 95 78 28 24 130 

Nipah 95 25 8 8 41 75 22 17 114 

Norovirus 30 32 11 11 54 231 104 84 419 

Orf 145 38 13 13 64 92 76 31 199 

Papilloma 55 19 6 6 31 693 227 187 1107 

Pseudocowpox 145 20 7 7 34 46 21 16 83 

Rift Valley 90 77 26 26 129 1140 408 386 1934 

Rotavirus 80 22 7 7 36 169 48 40 257 

Sapovirus 30 8 3 3 14 19 11 8 38 

TBE 50 25 8 8 41 39 12 11 62 

WestNile 50 5 2 2 9 88 66 34 188 

Total 745 248 252 1245 4497 1694 1486 7677 
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Marburg viruses are very elongated). We used mirror padding 

or cropping patches that would partially lay outside the original 

mage border. As many annotation points were placed relatively 

lose to each other (due to natural clustering of the virus parti- 

les and/or complex shapes of the elongated particles), the patches 

ropped from the same image sometimes overlap with each other 

o some degree. However, this did not lead to a data leakage be- 

ween the training, validation, and test sets because they were es- 

ablished at the image level and special care was taken to remove 

mages from the dataset that captured the same virus particles (i.e., 

verlapping images). 

The virus classes in this dataset are strongly unbalanced in the 

umber of virus particles and, thus, the number of extracted image 

atches. Therefore, we augmented the training set image patches 

y flipping and multiple 90 degrees rotations so that each class 

ontains 736 input samples. Those classes that originally contained 

ore than 736 patches were randomly reduced to this number. Fi- 

ally, before passing the images to the models we normalized their 

ntensities by subtracting the mean from each image patch and di- 

iding by the standard deviation. 

We make the following variants of the virus image dataset pub- 

icly available at [17] : 

1) raw images – the original images from the TEMs with the cor- 

responding annotations and metadata, 

2) image patches – cropped from images rescaled to 1 nm per 

pixel, 

3) selected classes – the collection of selected virus classes used 

in the classification research presented in this paper; including 

the augmented training set. 

All four datasets are split into train, validation, and test sets 

s described above. Fig. 1 presents sample image patches of all 

irus classes in the dataset. For the classification problem that we 

resent in the rest of this paper, we excluded the 8 least popu- 

ous classes (in terms of either image or particle number) from 

he dataset. Too few samples would likely not represent all pos- 

ible data variations within these classes and thus be insufficient 

or good generalization and effective training. 
3 
.3. Convolutional neural networks 

We designed a custom-made network inspired by ResNet [29] . 

t is composed of 4 residual blocks of double convolutional layers 

ith batch normalization, max-pooling, and dropout, followed by a 

lassification block composed of the final convolutional layer, and 

 fully connected layers with dropout between the first two layers. 

ig. 2 presents our CNN architecture. 

In addition, we fine-tuned some of the most popular networks 

ia transfer learning. The framework architecture and the list of the 

sed CNNs are presented in Fig. 2 . All networks were pre-trained 

n ImageNet [30] , and we replaced their original top layers with 

 fully connected layers with interposed dropouts. Some networks 

the best-performing ones in the different tests) were also trained 

rom scratch, i.e., not using transfer learning. 

We trained the models from scratch for 300 epochs and the 

ne-tuned (transfer learning) models for 50 epochs. We used the 

ategorical cross-entropy loss function and early stopping based 

n the validation performance. The models achieved the best per- 

ormance after around 250 and 30 epochs for the training from 

cratch and fine-tuning, respectively. 

All models were implemented using TensorFlow [31] and Keras 

32] . Our code and the best-trained models are available here [18] . 

. Virus recognition benchmarking 

The top part (above the double line) of Table 2 presents the 

erformance scores of our models on the test set. Besides the clas- 

ification accuracy, we report precision, recall, and F1-score that 

ere averaged across all classes in the test dataset regardless of 

he number of instances in each class. Thus, we weigh each class 

qually, and hence, do not hide errors in a problematic but small 

lass. Figs. 3 and 4 present the test set confusion matrices of our 

ustom architecture model and the best model – DenseNet201 

ransferred from ImageNet, respectively. 

To investigate and demonstrate the sensitivity of data split 

trategy on the performance, we trained and tested our custom 

odel and the two top-performing models from the first experi- 

ent on data that was split into the training, validation, and test 

ets in the worst possible manner with respect to the representa- 

iveness of particle number per image. That is, we sorted the im- 
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Fig. 1. Example virus patches from the training dataset. The scale bars are 100 nm. The two bottom rows present virus classes that were not used in the classification tests 

reported in this paper. 

Table 2 

Deep Learning performance. 

Model Trainable params Accuracy Precision Recall F1-score 

Custom (from scratch) 14,651,401 0.901 0.895 0.898 0.893 

DenseNet201 [ 33 ] (transfer) 144,987,022 0.931 0.926 0.921 0.921 

DenseNet201 (from scratch) 144,987,022 0.811 0.775 0.821 0.791 

InceptionV3 [34] (transfer) 98,330,798 0.895 0.887 0.894 0.889 

MobileNetV2 [35] (transfer) 87,174,926 0.846 0.803 0.849 0.813 

ResNet50 [29] (transfer) 158,817,294 0.898 0.883 0.881 0.877 

ResNet50V2 [36] (transfer) 158,802,062 0.887 0.862 0.885 0.869 

VGG16 [37] (transfer) 49,334,094 0.923 0.906 0.916 0.908 

VGG19 [38] (transfer) 54,643,790 0.918 0.909 0.924 0.912 

Xception [39] (transfer) 156,089,654 0.895 0.887 0.900 0.891 

Custom (from scratch) – bad data split 14,649,867 0.765 0.751 0.619 0.640 

VGG16 (transfer) – bad data split 49,334,094 0.832 0.822 0.726 0.737 

VGG16 (from scratch) – bad data split 49,334,094 0.678 0.604 0.560 0.559 

DenseNet201 (transfer) – bad data split 144,987,022 0.805 0.794 0.705 0.711 

DenseNet201 (from scratch) – bad data split 144,987,022 0.689 0.639 0.556 0.558 

4 
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Fig. 2. The custom CNN architecture (top) and the established network architectures (bottom) that were used in the virus classification. 

Fig. 3. The test set confusion matrix of our custom architecture model. 
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ges in each virus class according to the number of the virus par- 

icles and then split them by taking the first 60% of images to the 

raining set, the next 20% to the validation set, and the last 20% 

o the test set. Also, for this case, we trained the well-established 

odels both using transfer learning and from scratch. The “bad 

ata split” results are presented in the last five rows of Table 2 . 
5 
. Discussion 

The performance of our custom architecture model trained from 

cratch is comparable to much larger fine-tuned models trans- 

erred from ImageNet. In fact, our network achieves substan- 

ially better results than the best model (DenseNet201) trained 
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Fig. 4. The test set confusion matrix of the best model: DenseNet201 transferred from ImageNet. 
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rom scratch on the same data despite being 10 times smaller 

n terms of trainable weights. In this case, we can observe that 

enseNet201 performed much better when fine-tuned from Im- 

geNet. This could indicate that the virus dataset is too small to 

uccessfully train large networks from scratch. Typically, the larger 

he network, the more data samples are necessary. With too lit- 

le data large neural networks tend to overfit, i.e., they memorize 

ndividual data samples rather than learn the underlying patterns 

nd dependencies. 

From the confusion matrices in Figs. 3 and 4 we can deduce 

hat a group of Ebola and Adenovirus instances were particularly 

ifficult to classify for both models. Adenovirus and Rift Valley 

irus particles have different textures (especially when it comes 

o the virus membrane) but they have somewhat similar sizes and 

hapes. Ebola and Marburg are two related and similar viruses 

both being very elongated). Nevertheless, we believe that the 

ain causes for these misclassifications are limited dataset and im- 

ge quality: virus particle decomposition, clustered particles, stain- 

ng artifacts, and imperfect image acquisition. Indeed, visual in- 

pection and error tracing revealed that most of the misclassified 

articles come from a couple of problematic images in the test set 

i.e., these image/particle appearances are not represented in the 

raining set and have low overall image quality). Fig. 5 presents 

he typical images of Ebola, Marburg, Adenovirus, and Rift Valley 

n the training set. We also show the problematic images from the 

est set with the virus particles that were erroneously classified. It 

s clear that had we excluded these images from the test set (and 

ncluded them in the training set instead) the overall performance 

f the models would increase. This, however, would lie about the 

ractical usefulness of the network when dealing with problem- 

tic cases. On the other hand, the quality of these images can be 

uestioned. It is common for clinical image analysis tools to in- 

lude quality control image pre-processing that could potentially 

xclude such images and ask the technician preparing the samples 

o repeat the sample preparation and/or imaging. Nevertheless, de- 

eloping such quality control is not trivial and there would always 

e complicated border cases. Therefore, we decided to keep these 

mages in the test set and report the original results leaving space 

or the future development of methods that may be able to han- 

le these difficult cases. One such alternative would be incorporat- 

ng pre- and post-processing methods to optimally prepare the im- 
s

6 
ges for their classification and to refine the results. These classical 

mage analysis methods have been shown to improve deep learn- 

ng performance in various applications [39] . However, the scope 

f this work was only the classification of virus image patches. 

e have published virus detection and segmentation methods in 

13] and [16] . If this was to be considered a complete system, many

dditional steps should be added including: sample handling, au- 

omatic imaging, image quality control, sliding window operation, 

nd pre-/post-processing. 

In our previous paper [16] , we observed that the number of 

irus particles per image and whether they are separate or clus- 

ered are important features learned by CNNs trained on this 

ataset. Therefore, we included the tests on badly split data. The 

esulting models achieved substantially worse performance scores 

han the same networks trained on the representative dataset 

plit. This leads to the conclusion that for a realistic (and limited) 

ataset the application knowledge and understanding of the image 

ariation are very important when splitting the data to train and 

est DL models. Moreover, such knowledge is crucial when eval- 

ating and investigating their performance: to understand which 

raining examples should be added or what precautions/measures 

such as prescreening and removing poor quality images) should 

e performed to improve the model. Analyzing the details of the 

rrors and the patterns therein allows us to comprehensively eval- 

ate a model and understand/predict its performance and short- 

omings in a real setting. Moreover, in this way we can under- 

tand what performance level is good or acceptable for the dataset, 

.e., what is actually meaningful to strive for, thus extending our 

nowledge about the dataset. 

. Conclusions 

We publish and describe a benchmark dataset with TEM virus 

mages. Public and real biomedical datasets are an important 

ontribution and a necessity to increase the understanding of 

hortcomings, requirements, and potential improvements for deep 

earning solutions on biomedical problems or deploying solutions 

n clinical settings. We also presented baseline classification mod- 

ls with the best one achieving a 0.921 F1-score and 93.1% ac- 

uracy on the proposed representative test set. The dataset con- 

titutes an interesting challenge for many practical applications 
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Fig. 5. Problematic images in the test set and the corresponding reference images from the training set. The image patches with bold frames are shown below the original 

images. The colors of the patches correspond to the best model (DenseNet201 transferred from ImageNet) classification results: Ebola – orange, Marburg – blue, Adenovirus 

– yellow, and Rift Valley – pink. The scale bars represent 250 nm (the patches are 256 × 256 nm). 
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n virology and epidemiology; e.g., virus detection, segmentation, 

lassification, and novelty detection. We compare transfer learn- 

ng to learning from scratch and hypothesize that for limited- 

ized datasets transfer learning is crucial for achieving good perfor- 

ance for large models. The performance drop is similar for both 

enseNet201 with ∼145 M weights and VGG16 with 49M weights. 

ast but not least, we demonstrate the importance of application 

nowledge in creating datasets for training DL models and analyz- 

ng their results. 

eclaration of Competing Interest 

None. 

cknowledgment 

This work was funded by the Swedish e-science initiative 

SSENCE and the Uppsala University initiative AI4Research. The au- 

hors have no further relevant financial or non-financial interests 

r competing interests to disclose. 
7 
eferences 

[1] H.P. Chan , R.K. Samala , L.M. Hadjiiski , C. Zhou , Deep learning in medical im-

age analysis, in: Deep Learning in Medical Image Analysis, Springer, 2020, 
pp. 3–21 . 

[2] G. Litjens , T. Kooi , B.E. Bejnordi , A .A .A . Setio , F. Ciompi , M. Ghafoorian , J.A. van

der Laak , B. Van Ginneken , C.I. Sánchez , A survey on deep learning in medical
image analysis, Med. Image Anal. 42 (2017) 60–88 . 

[3] A. Gupta , P.J. Harrison , H. Wieslander , N. Pielawski , K. Kartasalo , G. Partel ,
L. Solorzano , A. Suveer , A.H. Klemm , O. Spjuth , I.-M. Sintorn , C. Wählby ,

Deep learning in image cytometry: a review, Cytometry Part A 95 (4) (2019) 
366–380 . 

[4] J.M. Ede , Deep Learning in Electron Microscopy, Machine Learn. (2020) . 

[5] H. Kerner, Too many AI researchers think real-world prob- 
lems are not relevant, Opinion. MIT Technology Review 

(2020) https://www.technologyreview.com/2020/08/18/1007196/ 
ai-research-machine-learning-applications-problems-opinion/ . [last visited 

on 17-04-2021] . 
[6] K.L. Wagstaff, Machine learning that matters, in: Proceeding of the 29th Inter- 

national Conference on Machine Learning, 2012, pp. 1851–1856 . 

[7] J.M. Ede , Warwick electron microscopy datasets, Machine Learn. (2020) . 
[8] D. Ciresan , A. Giusti , L.M. Gambardella , J. Schmidhuber , Deep neural networks

segment neuronal membranes in electron microscopy images, Adv. Neural In- 
form. Process. Syst. (2012) 2843–2851 . 

[9] O. Ronneberger , P. Fischer , T. Brox , U-net: Convolutional networks for biomed-
ical image segmentation, in: Proceeding of the Conference on Medical Image 

Computing and Computer-Assisted Intervention, 2015, pp. 234–241 . 

http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0002
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0004
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0004
https://www.technologyreview.com/2020/08/18/1007196/ai-research-machine-learning-applications-problems-opinion/
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0006
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0007
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0008
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0009
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0009


D.J. Matuszewski and I.-M. Sintorn Computer Methods and Programs in Biomedicine 209 (2021) 106318 

 

 

 

 

[  

 

 

 

[  

[  

[  

[  

[

[

[  

 

[  

 

[

[  

[  

[  

 

 

 

[

[  

[  

[  

[  

[

[

[  

P
s  

s
t

r
t  

c

A

r
i

f
(

T
c

c

[10] ISBI Challenge: Segmentation of neuronal structures in EM stacks http:// 
brainiac2.mit.edu/isbi _ challenge [last visited on 17-04-2021] 

[11] I. Arganda-Carreras , S.C. Turaga , D.R. Berger , D. Ciresan , A. Giusti , L.M. Gam-
bardella , J. Schmidhuber , D. Laptev , S. Dwivedi , J.M. Buhmann , T. Liu , M. Seyed-

hosseini , T. Tasdizen , L. Kamentsky , R. Burget , V. Uher , X. Tan , C. Sun ,
T.D. Pham , E. Bas , M.G. Uzunbas , A. Cardona , J. Schindelin , H.S. Seung , Crowd-

sourcing the creation of image segmentation algorithms for connectomics, 
Front. Neuroanatomy 9 (142) (2015) . 

12] G. Kylberg , M. Uppström , I.-M. Sintorn , Virus texture analysis using local bi-

nary patterns and radial density profiles, in: Proceeding of the Iberoamerican 
Congress on Pattern Recognition, 2011, pp. 573–580 . 

[13] G. Kylberg , M. Uppström , K.-O. Hedlund , G. Borgefors , I.-M. Sintorn , Segmenta-
tion of virus particle candidates in transmission electron microscopy images, J. 

Microsc. 245 (2) (2012) 140–147 . 
[14] I.-M. Sintorn , G. Kylberg , Virus recognition based on local texture, in: Proceed-

ing of the 22nd International Conference on Pattern Recognition (ICPR), 2014, 

pp. 3227–3232 . 
[15] D.J. Matuszewski , I.-M. Sintorn , Minimal annotation training for segmentation 

of microscopy images, Proceeding of the 15th International Symposium on 
Biomedical Imaging (ISBI), 2018 . 

[16] D.J. Matuszewski , I.-M. Sintorn , Reducing the u-net size for practical scenarios: 
Virus recognition in electron microscopy images, Comput. Methods Programs 

Biomed. 178 (2019) 31–39 . 

[17] D.J. Matuszewski, I.-M. Sintorn, TEM virus dataset, Mendeley Data 3 (2021), 
doi: 10.17632/x4dwwfwtw3.3 . 

[18] D.J. Matuszewski, I.-M. Sintorn, TEM virus images: benchmark dataset and 
deep learning classification – CODE, Mendeley Data 2 (2021), doi: 10.17632/ 

kxsvzhcfgs.2 . 
[19] F.L.C. dos Santos , M. Paci , L. Nanni , S. Brahnam , J. Hyttinen , Computer vision

for virus image classification, Biosystems Eng. 138 (2015) 11–22 . 

20] Z. Wen , Z. Li , Y. Peng , S. Ying , Virus image classification using multi-scale com-
pleted local binary pattern features extracted from filtered images by multi-s- 

cale principal component analysis, Pattern Recognit. Lett. 79 (2016) 25–30 . 
21] E. Ito , T. Sato , D. Sano , E. Utagawa , T. Kato , Virus particle detection by con-

volutional neural network in transmission electron microscopy images, Food 
Environ. Virol. (2018) 1–8 . 

22] C. Xiao , X. Chen , Q. Xie , G. Li , H. Xiao , J. Song , H. Han , Virus identification

in electron microscopy images by residual mixed attention network, Comput. 
Methods Programs Biomed. 198 (2021) . 

23] M. Laue , L. Möller , The virusexplorer DEM - a database for diagnostic electron
microscopy of viruses, Zenodo (2016) . 

24] G. Kylberg. Virus Texture Dataset v. 1.0. (2012). 
http://www.cb.uu.se/ ∼gustaf/virustexture/index.html [last visited on 17- 

04-2021] 

25] H.R. Gelderblom , D. Madeley , Rapid viral diagnosis of Orthopoxviruses by elec- 
tron microscopy: optional or a must? Viruses 10 (142) (2018) . 

26] T.G. Ksiazek , D. Erdman , C.S. Goldsmith , S.R. Zaki , T. Peret , S. Emery , S. Tong ,
C. Urbani , J.A. Comer , W. Lim , P.E. Rollin , A novel coronavirus associated with

severe acute respiratory syndrome, N. Engl. J. Med. 348 (20) (2003) 1953–1966 . 
27] K.D. Reed , J.W. Melski , M.B. Graham , R.L. Regnery , M.J. Sotir , M.V. Wegner ,

J.J. Kazmierczak , E.J. Stratman , Y. Li , J.A. Fairley , G.R. Swain , The detection of
monkeypox in humans in the Western Hemisphere, N. Engl. J. Med. 350 (4) 

(2004) 342–350 . 

28] D.J. Matuszewski , Image and Data Analysis for Biomedical Quantitative Mi- 
croscopy, Acta Universitatis Upsaliensis, 2019 . 
8 
29] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: Proceeding of the IEEE Conference on Computer Vision and Pattern Recog- 

nition (CVPR) (2016), 2021, pp. 770–778 . 
30] J. Deng , W. Dong , R. Socher , L.J. Li , K. Li , L. Fei-Fei , Imagenet: a large-scale hi-

erarchical image database, in: Proceeding of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), 2009, pp. 248–255 . 

31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schus-

ter, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War- 

den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng. TensorFlow: Large-scale ma- 
chine learning on heterogeneous systems (2015). Software available from ten- 

sorflow.org. 
32] F. Chollet, et al. Keras, 2015. Software available from https://keras.io . 

33] G. Huang , Z. Liu , L. Van Der Maaten , K.Q. Weinberger , Densely connected con-

volutional networks, in: Proceeding of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR, 2017, pp. 4700–4708 . 

34] C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , Z. Wojna , Rethinking the incep-
tion architecture for computer vision, in: Proceeding of the IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR, 2016, pp. 2818–2826 . 
35] M. Sandler , A. Howard , M. Zhu , A. Zhmoginov , L.C. Chen , Mobilenetv2: In-

verted residuals and linear bottlenecks, in: Proceeding of the IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–4520 . 
36] K. He , X. Zhang , S. Ren , J. Sun , Identity mappings in deep residual networks,

in: Proceeding of the European Conference on Computer Vision (ECCV) (2016), 
2021, pp. 630–645 . 

37] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale 
image recognition. arXiv preprint (2014) arXiv:1409.1556. 

38] F. Chollet , Xception: Deep learning with depthwise separable convolutions, in: 

Proceeding of the IEEE Conference on Computer Vision and Pattern Recogni- 
tion (CVPR, 2017, pp. 1251–1258 . 

39] M. Salvi , U.R. Acharya , F. Molinari , K.M. Meiburger , The impact of pre-and
post-image processing techniques on deep learning frameworks: a compre- 

hensive review for digital pathology image analysis, Comput. Biol. Med. (2020) 
104129 . 

hD Damian J. Matuszewski received his MSc in Computer Science at the Univer- 
ity of São Paulo, Brazil in 2014 and PhD in Computerized Image Processing at Upp-

ala University, Sweden in 2019. Currently he is working as a post-doc researcher at 
he Department of Informoation Technology, Uppsala University, Sweden. His main 

esearch interests are image analysis, machine learning and deep learning. In par- 
icular, he is driven by the practical use of these technologies and tools in multidis-

iplinary applications, especially in biomedical microscopy. 

ssociate Professor Ida-Maria Sintorn received her PhD in image processing and 

emote sensing at the Swedish Agricultural University 2005, spent two years as an 
mage analyst at the scientific research institute CSIRO in Sydney, Australia, be- 

ore returning to Sweden. She has since then shared her time between academia 
Swedish University of Agricultural Sciences and Uppsala University), and as Chief 

echnology Officer at Vironova AB, a biotech company in the field of electron mi- 
roscopy and analysis. Her main research interests are image processing and ma- 

hine learning for automated microscopy imaging and analysis. 

http://brainiac2.mit.edu/isbi_challenge
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0011
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0012
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0013
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0014
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0015
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0016
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0016
https://doi.org/10.17632/x4dwwfwtw3.3
https://doi.org/10.17632/kxsvzhcfgs.2
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0019
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0020
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0021
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0022
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0023
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0025
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0026
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0028
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0029
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0030
https://keras.io
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0033
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0034
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0035
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0036
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0038
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0039
http://refhub.elsevier.com/S0169-2607(21)00392-8/sbref0039

	TEM virus images: Benchmark dataset and deep learning classification
	1 Introduction
	2 Materials and methods
	2.1 Context virus dataset
	2.2 Data preprocessing
	2.3 Convolutional neural networks

	3 Virus recognition benchmarking
	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	References


