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Abstract: The migratory behavior of wild birds contributes to the geographical spread of ticks and
their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of
Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward
in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the
Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from
244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by
microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on
tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes
was the most common tick species and had a high prevalence of Francisella, including co-occurrence
of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed
the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic
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inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like
endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study
suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the
AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a
dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of
H. rufipes.

Keywords: African-Western Palaearctic region; migratory birds; ticks; Hyalomma rufipes; Francisella;
Francisella-like endosymbionts; spotted fever group Rickettsia; Rickettsia aeschlimannii; Midichloria;
PCR; metagenomics

1. Introduction

Ticks (Acari: Ixodida) transmit pathogens of both human and veterinary importance,
such as bacteria in the genera Anaplasma, Borrelia, Coxiella, Francisella, and Rickettsia. They
also can be co-infected with different pathogens that potentially can cause co-infections
in hosts [1,2]. Additionally, ticks harbor endosymbionts living symbiotically within them.
Bacterial endosymbionts of ticks are mostly from the genera Coxiella, Francisella, and
Rickettsia; they are closely related to pathogens and may be necessary for the survival of the
host [3]. Ticks are strictly hematophagous, meaning their diet consists solely of vertebrate
blood, which is nutritionally unbalanced since it contains a high level of proteins but few
vitamins [4]. Endosymbiotic bacteria present within tick cells are believed to support the
dietary requirements of ticks by providing nutrients that are absent in vertebrate blood [5,6].

The genus Francisella includes both pathogenic and non-pathogenic species, including
endosymbionts [7]. Francisella has previously been divided into two major genetic clades [8],
but recently four major clades have been recognized (Clade 1–4) [7]. Francisella tularensis
and Francisella-like endosymbionts (FLEs) are assigned to Clade 1 [7]. F. tularensis is
primarily present in the Northern hemisphere and has a broad host range, including
mammals, birds, and arthropods [9]. Furthermore, F. tularensis, the causative agent of
tularemia, is regarded as a potential agent of biological warfare [10]. Infection in humans
is acquired via direct contact with infected animals, ingestion of contaminated food or
water, inhalation of contaminated particles, or bites of blood-feeding arthropods (i.e.,
ticks, tabanids, and mosquitoes) [9]. Multiple tick species from the genera Amblyomma,
Dermacentor, Ixodes, and Haemaphysalis are vectors of F. tularensis [9]. The genomes of FLEs
include pseudogenes and inactivated versions of virulence genes of F. tularensis, suggesting
they arose from a pathogenic ancestor [5,11]. FLEs replicate intracellularly and can infect
the ovaries of female ticks, enabling transovarial transmission (i.e., from the female tick to
her offspring) and ensuring the continuation of the symbiotic relationships [12,13]. FLEs
are known to have a broad geographical distribution [14–22], and are widely distributed
across tick taxa, including both soft (Argasidae) and hard (Ixodidae) tick species, such as
Ornithodoros moubata, Amblyomma maculatum, Dermacentor andersoni, Dermacentor reticulatus,
Dermacentor variabilis, and Hyalomma marginatum [5,15,21–25]. Little is known about FLEs
due to culturing difficulties and a limited number of assembled and characterized genomes.

The bacterium Midichloria mitochondrii was first described as an endosymbiont of
Ixodes ricinus ticks known to reside primarily in the ovarian primordia or ovaries, enter the
mitochondria, and be transmitted by transovarial transmission to the offspring [26–28]. The
prevalence of M. mitochondrii in female I. ricinus ticks has been reported to be 100% [27]. The
bacterium also has been detected in ticks of the genera Hyalomma, Rhipicephalus, Amblyomma,
and Haemaphysalis [29]. DNA of M. mitochondrii and of bacteria related to M. mitochondrii
has been detected in the salivary glands of I. ricinus ticks [30] and in blood samples from
canines [31], respectively, and antibodies against Midichloria have been detected in blood
samples collected from canines and humans bitten by ticks [31,32], indicating potential
horizontal transmission of the bacterium.



Microorganisms 2022, 10, 1393 3 of 18

The genus Rickettsia has been divided into four groups [33]. Most tick-borne Rickettsia
belong to the spotted fever group (SFG), which includes members that are considered to
be emerging human pathogens in Europe (e.g., Rickettsia conorii, Rickettsia massiliae, and
Rickettsia aeschlimannii) [34,35]. Rickettsia species in the SFG are transmitted to humans by
multiple tick genera, including Rhipicephalus, Ixodes, and Hyalomma [34]. Wild birds are fre-
quently parasitized by Ixodes and Hyalomma ticks, and the migratory behavior of the avian
hosts aids in the geographical spread of ticks and their associated microorganisms [36–38].
Because they are intracellular tick-borne bacteria, Francisella, Midichloria, and Rickettsia are
difficult to culture, and culture-independent generation of genome sequences is of impor-
tance for increasing the knowledge and understanding of these bacteria. In this study, we
aimed to investigate the dispersal and co-occurrence of Francisella and SFG Rickettsia (SFGR)
species in ticks infesting northbound migrating birds in the African-Western Palaearctic
region (AWPR), using microfluidic real-time (q) PCR and metagenomics.

2. Materials and Methods
2.1. Trapping of Birds and Collection of Ticks

Birds were trapped using mist nets at bird observatories in Spain (several sites in
the provinces of Huelva and Sevilla and the Canary Islands: 37◦30′ N, 5◦30′ W; 37◦33′ N,
6◦55′ W; 28◦9′ N, 15◦25′ W), Italy (Capri: 40◦33′ N, 14◦15′ E), Greece (Crete and Antikythira;
35◦51′ N, 23◦18′ E), and Israel (Jerusalem and its vicinity: 31◦47′ N, 35◦13′ E) during their
northbound 2014 and 2015 spring migration. Birds were visually inspected for ticks
by blowing apart the feathers. Collected ticks were stored in RNAlaterTM (Invitrogen,
ThermoFisher Scientific, Waltham, MA, USA) at −20 ◦C or at refrigerator temperature
during the bird ringing season, a period when birds are trapped, measured, weighed, and
ringed (i.e., banded) by ringers/ornithologists at bird observatories. After the ringing
season, ticks were stored at −80 ◦C. Only northward migrating birds were included in the
study. See Hoffman et al. 2021 [39] for additional details.

2.2. DNA Extraction

In brief, absolute ethanol (Sigma-Aldrich, Merck, Darmstadt, Germany) and sterile
H2O were used for surface sterilization of the ticks before homogenization. Mechanical
homogenization was performed using a stainless-steel bead (Qiagen, Hilden, Germany),
TRIzolTM (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA), and a TissueLyser
II (Qiagen). After homogenization, additional TRIzolTM was added to the homogenate,
followed by centrifugation and collection of the supernatant. RNA was isolated and
removed using a phase separation technique, in which chloroform (Sigma-Aldrich) was
added to the supernatant. Thereafter, DNA was extracted from the organic phase using
a back-extraction buffer, inversion, and centrifugation. DNA present in the upper phase
was purified using the Nucleospin gDNA Clean up kit (Macherey-Nagel, Bethlehem, PA,
USA). The DNA was eluted in DE buffer and stored at −20 ◦C. For additional details, see
Hoffman et al. 2021 [39].

2.3. Molecular Screening and Confirmation Analyses
2.3.1. Francisella

Tick extracts were screened for the presence of DNA from the genus Francisella
and the species F. tularensis specifically by microfluidic qPCR (BioMarkTM Dynamic Ar-
rays, Fluidigm, CA, USA) and with FopA (genus-specific) and Tul4 (species-specific)
primers and probes (Table 1), at the Animal Health Laboratory (Paris, France) according to
Michelet et al. [40]. Samples with a cycle threshold (Ct) value higher than 30 were consid-
ered negative [40]. To confirm the initial putative findings of F. tularensis (Tul4+ samples),
subsequent qPCRs were performed using the Francisella qPCR assays in Table 1 [40–43]. In
brief, the DNA was pre-amplified (due to the limited amount of DNA) using the RepliG
midi kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The
PCRs (25 µL) consisted of 2X PerfeCTa qPCR ToughMix (VWR, Radnor, PA, USA), 0.5 µM
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(final concentration) of each primer, 0.1 µM (final concentration) of each probe, and 1 µL
template. The temperature profile was as follows: 95 ◦C for 10 min, followed by a two-step
cycle of 15 s at 95 ◦C and 60 s at 60 ◦C. Positive and negative controls were included.
The tick DNA samples were tested for PCR inhibitor with an additional qPCR using seal
herpesvirus type 1 [44].

Table 1. Primers and probes used for real-time PCR assays targeting tick taxa, Francisella,
and Rickettsia.

Organism Genus/Group/
Species Target Gene PCR

ID Name Sequence
(5′ → 3′)

Amplicon
(bp) Reference

Tick 12S rDNA 12S
T1B AAA CTA GGA TTA GAT ACC CT

320 [43]T2A AAT GAG AGC GAC GGG CGA TGT

Francisella

fopA
Forward GGC AAA TCT AGC AGG TCA AGC

[40]Francisella FopA Reverse CAA CAC TTG CTT GAA CAT TTC TAG 89
Probe GGT GCT TGG GAT GTG GGT GGT G

sucC
Forward AAC TGG CTG ACC TTC AGC AT

[41]Francisella GF1 Reverse GTG GTC GTG GTA AAG CTG GT 125
Probe CCG ATT AGG CTT TCT GCT ACT TCA CGA

lpnA Tul4
Forward ACC CAC AAG GAA GTG TAA GAT TA

76 [40]F. tularensis Reverse GTA ATT GGG AAG CTT GTA TCA TG
Probe AAT GGC AGG CTC CAG AAG GTT CTA AGT

Forward CGC AGG TTT AGC GAG CTG TT
F. tularensis lpnA iQFt1 Reverse GCA GCT TGC TCA GTA GTA GCT GTC T 108 [42]

Probe CAT CAT CAG AGC CAC CTA ACC CTA

Rickettsia
SFG gltA GltA

SFG_gltA_F CCT TTT GTA GCT CTT CTC ATC C
145 [40]SFG_gltA_R GCG ATG GTA GGT ATC TTA GCA A

SFG_gltA_P TGG CTA TTA TGC TTG CGG CTG TCG GT

Rickettsia 17 kDa 17
kDa

Rr17 kDa.61p GCT CTT GCA AC TTC TAT GTT
434 [45]Rr17 kDa.492n CAT TGT TCG TCA GGT TGG CG

bp—base pairs; 12S rDNA—12S ribosomal DNA gene; fopA—gene encoding the outer membrane protein A
(FopA); sucC—gene encoding the succinyl-CoA ligase [ADP-forming] subunit beta; lpnA—gene encoding the
lipoprotein A (LpnA); gltA—gene encoding citrate synthase; SFG—spotted fever group; 17 kDa—17 kilo Dalton
surface antigen.

2.3.2. Spotted Fever Group Rickettsia

Ticks also were screened for SFGR DNA by microfluidic qPCR, using primers and
probes targeting the gltA gene, according to Michelet et al. [40]. Samples with a Ct-value
higher than 30 were considered negative [40]. Confirmation analyses were executed on a
small set of ticks (n = 38) with Ct-valuesgltA ranging from 5.6 to 29.6, using primers targeting
the 17 kDa gene by Carl et al. [45] (Table 1). This was done because the confirmation PCR
did not include a pre-amplification step, as was the case with the microfluidic qPCR,
making it a less sensitive method. In brief, the reaction comprised of 1X Phusion Green HF
buffer (ThermoFisher Scientific, Waltham, MA, USA), 200 µM dNTP (Invitrogen, Thermo
Fisher Scientific), 0.25 µM (final concentration) of each primer (Invitrogen), 0.02 U/µL
Phusion HotStart II DNA polymerase (ThermoFisher Scientific), 8.4 µL sterile H2O, and
5 µL template. The reaction profile was as follows: 98 ◦C for 30 s followed by 35 cycles of
30 s at 98 ◦C, 30 s at 62 ◦C, and 30 s at 72 ◦C, and a final extension at 72 ◦C for 10 min.

2.4. Tick Taxon

Tick taxa and Hyalomma species were determined by PCR, using primers by Beati
and Keirans [43] (Table 1). See Hoffman et al. 2021 [39] for further details. Morpholog-
ical determination was not performed since identification of species level of immature
ticks belonging to the tick complex H. marginatum, including the species H. rufipes and
H. marginatum, is difficult and not recommended [46]. Furthermore, life stage determina-
tion was not performed for the infesting ticks. However, the majority of the avian-associated
ticks were likely immatures [36,47].
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2.5. Characterization
2.5.1. Sanger Sequencing

12S rDNA and 17 kDa amplicons were treated with illustra ExoProStarTM 1-step kit
(Cytiva, Marlborough, MA, USA), according to the instructions by the manufacturer, prior
Sanger sequencing at Macrogen (Amsterdam, the Netherlands).

2.5.2. Spotted Fever Group Rickettsia

The CLC Main Workbench 7 by Qiagen (Aarhus, Denmark) was used for assem-
bling partial 17 kDa sequences, which were compared to sequences deposited in the
GenBank database [48] using the nucleotide Basic Local Alignment Search Tool (BLASTN)
(v.2.10.0) [49].

2.5.3. Metagenomic Sequencing

Two DNA samples putatively positive for F. tularensis by microfluidic qPCR were
whole genome amplified (RepliG midi kit, Qiagen, Hilden, Germany) before being subjected
to further characterization using two sequencing technologies. Non-enriched samples were
prepared using TruSeq PCR-free library kits (Illumina, San Diego, CA, USA) and sequenced
as 2 × 150 base pairs (bp) in one lane on an S4 flow cell in a NovaSeq 6000 sequencing
instrument (Illumina) at the SNP&SEQ platform at NGI Uppsala (Sweden). Enriched sam-
ples were prepared using Nextera library kits (Illumina) and sequenced as 2 × 150 bp on a
300-cycle sequencing flow cell using a NextSeq instrument (Illumina) at NAU (Northern
Arizona University). Non-enriched samples were also prepared using LSK-109 library kits
(Oxford Nanopore Technologies, Oxford, UK) and sequenced in MinION R9.4.1 flow cells
using a MinION sequencing device (Oxford Nanopore Technologies).

2.5.4. Enrichment

Due to few metagenomic reads mapping to Francisella, RNA baiting was performed
at NAU to enrich Francisella DNA present in the tick extracts. Briefly, pre-amplified tick
DNA extracts were uniquely indexed in ~300 bp sequencing libraries and exposed to RNA
hybridization baits (probes) of 120 bp (Agilent Technologies Inc., Santa Clara, CA, USA).
The RNA baits were designed against a Francisella pan-genome defined by 498 Francisella
genomes examined in [7]. Sequences <120 bp were removed, and regions with a homology
of ≥80% with non-Francisella bacteria and ribosomal RNA genes were excluded, yielding
188,430 unique probe signatures, which included 2X tiling to ensure 50% sequence overlap
to optimize capture. To further refine optimal capture, manufacturing of replicate copies
of ~20,000 probes comprised of high (≥50%) or low (≤22%) GC content was performed.
Bait capture was executed twice for increased purification of Francisella sequences from
background tick DNA.

2.5.5. Taxonomic Classification of Sequence Reads

Sequenced tick samples were characterized with a custom-made database containing
bacteria, eukaryotes, and viruses, using Kraken 2 [50]. The database was created using
FlexTaxD [51] with bacteria based on the taxonomy from the Genome Taxonomy Database
(GTDB) together with eukaryotes and viruses from the National Center for Biotechnology
Information (NCBI). The post-processing tool StringMeUp (v.0.1.4) (https://github.com/
danisven/StringMeUp, accessed on 15 May 2021) was used for adjusting the results for
different confidence scores.

2.5.6. Genome Assembly
Enriched Samples

Illumina reads from enriched tick samples were analyzed using a pipeline controlled
by Snakemake (v.6.2.1) [52]. Initially, the data were pre-processed by using BBMap (v.38.90)
(https://sourceforge.net/projects/bbmap/, accessed on 15 May 2021) to map reads to
the collection of 498 Francisella genomes [7] that were used in the design of hybridiza-

https://github.com/danisven/StringMeUp
https://github.com/danisven/StringMeUp
https://sourceforge.net/projects/bbmap/
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tion baits and only keeping mapped reads followed by digital normalization step us-
ing bbnorm in BBMap with the settings k = 31 and kmer coverage 100. The remain-
ing reads were de novo assembled using SPAdes (v.3.15.3) [53]. Post-processing of as-
semblies was performed by removing contigs <500 bp and keeping contigs matching
BLAST results containing the ‘*rancisella’ string (to include all different genera inside
the family) through BLAST-based filtering. The following blastn settings were used:
culling_limit = 5, evalue = 1e-25. Finally, two rounds of Pilon (v.1.24) [54] polishing final-
ized the assembled sequences before calculating summary statistics using assembly-stats
(v.1.0.1) (https://github.com/sanger-pathogens/assembly-stats, accessed on 15 May 2021).
The quality of metagenome-assembled genomes (MAGs) was evaluated using checkM
(v.1.1.3) [55] and BUSCO (v.5.1.3) [56].

Non-Enriched Samples

Illumina reads from non-enriched tick samples were analyzed using the same work-
flow as enriched samples but with the modification of keeping contigs that matched
‘Rickettsia’ and ‘Midichloria’. Nanopore reads were assembled using Flye (v.2.8.3) [57] and
polished using Medaka (v.1.3.0) (https://github.com/nanoporetech/medaka, accessed on
15 May 2021) followed by BLAST-based filtering, keeping contigs matching tick mitochon-
drial genomes.

2.5.7. Tick Species Confirmation

Species confirmation of the metagenomic characterized ticks was performed using
assembled mitochondrial genomes and the animal identification engine provided by
BOLD [58], in which the mitochondrial cytochrome oxidase subunit 1 (COI) gene was used.

2.5.8. Phylogenetic Analyses
Tick Phylogenies

Assembly of 12S rDNA sequences was performed in the CLC Main Workbench 7
(Qiagen, Aarhus, Denmark). Partial 12S rDNA sequences were aligned using the MAFFT al-
gorithm and compared to sequences available in GenBank [48] using BLASTN (v.2.10.0) [49]
and to sequences from morphologically determined reference specimens of multiple species
of Hyalomma. Maximum likelihood 12S rDNA phylogenies were built in MEGA7 [59], and
tick sequences were grouped based on their position in the 12S rDNA phylogenies. See
Hoffman et al. 2021 [39] for details.

Whole Genome and Mitochondrion Phylogenies

Publicly available sequences for Francisella, Rickettsia, Midichloria, and tick mitochon-
dria, as determined by the GTDB (bacteria) and NCBI (ticks) taxonomies, were downloaded
from NCBI (Table S1 in the Supplementary Materials) using NCBI-genome-download
(v.0.3.0) (https://github.com/kblin/ncbi-genome-download, accessed on 15 May 2021).
Using the workflow manager Snakemake (v.6.2.1) [52], the genome assemblies and the
public genomes were aligned pairwise with prograssiveMauve (v.2015_02_13) to selected
reference genomes: F. tularensis tularensis strain SCHUS4 (GCF_000008985.1) for Francisella-
positive samples, Rickettsia rickettsii strain Iowa (GCA_000017445.3) for Rickettsia-positive
samples, Midichloria mitochondrii strain IricVA (GCA_000219355.1) for Midichloria-positive
samples, and Hyalomma asiaticum strain WY042-2 (NC_053941) for tick mitochondrial
sequences. The Python script included in CanSNPer (v.1.0.8) [60] was used to set the align-
ments to the reference coordinates and to merge them into a multi-FASTA file. IQ-TREE
(v.2.1.2) [61] with ModelFinder setting (-m TEST) was used to create the four separate
phylogenies. The selected best fit models according to Bayesian Information Criterion
(BIC) for Francisella was GTR + F + I + G4, for Rickettsia TVM + F + I + G4, for Midichloria
TVM + F + I + G4, and for tick mitochondria K3Pu + F + I + G4. The trees were recalculated
with the selected models, and support values were calculated with bootstrap –b 100. The
trees were visualized using iTOL [62]. The Francisella tree was rooted in Clade 2 accord-

https://github.com/sanger-pathogens/assembly-stats
https://github.com/nanoporetech/medaka
https://github.com/kblin/ncbi-genome-download
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ing to a previous publication [7], the Midichloria and Rickettsia phylogenies were rooted
in Orientia tsutsugamushi (Genome: Orientia tsutsugamushi strain Karp GCF_900327275.1)
according to the Encyclopedia of Life [63], and the tick mitochondrion phylogeny was
rooted by Rhipicephalus decoloratus (NC_053941) [64].

2.6. Genome Analysis
2.6.1. Average Nucleotide Identity

The similarity between two genomes at the nucleotide-level, average nucleotide iden-
tity (ANI), was calculated pairwise for all genomes within each dataset using pyANI
(v.0.2.10) with ANIb (BLASTN+) method setting [65].

2.6.2. Biotin Synthesis Pathways

Previous analyses have identified multiple genes involved in the biotin synthesis
pathway in the FLE of the tick O. moubata, including bioA, bioB, bioC, bioD, and bioF [11,13].
Homologs to these genes are present in the genome of the FLE of the tick species Ar-
gus arboreus (Francisella persica) [66]. To assess the conservation of these same genes in
the genomes of the Francisella-like and Midichloria endosymbionts from H. rufipes sam-
ples D14IT15.2 and D14IT20, sequencing reads from both the enriched and non-enriched
metagenomic data for these samples were mapped to these genes in the F. persica and
M. mitochondrii genomes with minimap2 (v.2.22) [67] and the breadth of coverage was
calculated with Samtools (v.1.11) [68] at a minimum depth of 3X.

3. Results
3.1. Bird Trapping and Tick Collection

In total, 10,209 birds were trapped and screened for ticks. Of these, 244 (2.4%) birds
were found to be infested by ticks (n = 575) (Table S2 in the Supplementary Materials). Most
of the tick-infested birds were long-distance migrants (98.0%). See Hoffman et al. [39] for
additional details and information about the distribution pattern of ticks on the bird species.

3.2. Tick Determination

The collected ticks were assigned to the Ixodidae genera Hyalomma, Ixodes, Amblyomma,
and Haemaphysalis, according to their position in phylogenies based on partial 12S rDNA
sequences [39]. The assignment was not possible for 11.5% of the ticks due to the absence
of PCR amplicons. The most common tick species were H. rufipes and H. marginatum [39].
The two metagenomics characterized ticks were confirmed as H. rufipes based on their
similarity to a known COI sequence from H. rufipes and their positioning in the Hyalomma
12S rDNA [39] and mitochondrion (Figure 1) phylogenies.
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genomes (in bold) form a highly supported clade together with the species Hyalomma rufipes (shaded
area). Rhipicephalus decoloratus was used to root the tree. Bootstrap values ≥ 75 are presented at the
nodes. The scale bar represents the expected number of substitutions per site.

3.3. Detection and Determination
3.3.1. Francisella

Results from the microfluidic qPCR suggested the presence of Francisella spp. in 72.5%
(417/575; fopA+) of the total collected ticks, including 77.0% (371/482) of the Hyalomma
ticks (H. rufipes: 76.7% (343/447); H. marginatum: 75% (18/24)), 5.9% (1/17) of the Ixodes
ticks, 100% (2/2) of the Haemaphysalis ticks, 62.5% (5/8) of the Amblyomma ticks, and 57.6%
(38/66) of the undetermined ticks. Furthermore, screening results from the microfluidic
qPCR suggested the putative presence of F. tularensis in two H. rufipes ticks (0.3%; 2/575;
fopA+ and lpnA/Tul4+) collected from two whinchats (Saxicola rubetra) trapped on the
island of Capri (Italy) in 2014, a result that was not confirmed using the F. tularensis specific
Tul4 and iQFt1 primers and probes (Table 2).

Table 2. Confirmation results of the two ticks that tested positive for the putative presence of
Francisella tularensis DNA during screening.

Method Microfluidic qPCR
(Screening)

qPCR
(Confirmation)

Species/Genus F. tularensis Francisella F. tularensis Francisella

Tick/PCR ID Tul4 FopA iQFt1 Tul4 GF1 FopA

D14IT15.2 Positive
Ct = 26.9

Positive
Ct = 22.3

Negative
Ct = N/A

Negative
Ct = N/A

Positive
Ct = 28.2

Positive
Ct = 29.6

D14IT20 Positive
Ct = 26.6

Positive
Ct = 21.6

Negative
Ct = N/A

Negative
Ct = N/A

Positive
Ct = 19.8

Positive
Ct = 29.6

PCR—polymerase chain reaction; qPCR—real-time PCR; Ct—cycle threshold value; N/A—not available.

3.3.2. Spotted Fever Group Rickettsia

The microfluidic qPCR data suggested the presence of SFGR in 59.1% (340/575, gltA+)
of the total collected ticks, including 60.0% (289/482) of Hyalomma ticks (H. rufipes: 61.5%
(275/447); H. marginatum: 50.0% (12/24)), 17.6% (3/17) of Ixodes ticks, 100% (2/2) of
Haemaphysalis ticks, 50.0% (4/8) of Amblyomma ticks, and 63.6% (42/66) of the undetermined
ticks. Presence of SFGR was confirmed in 26 out of 38 analyzed samples by comparison
with 17 kDa sequences deposited in GenBank.

3.3.3. Co-Occurrence

Screening data suggested the presence of both Francisella and SFGR spp. in 47.1%
(271/575; fopA+ and gltA+) of the total collected ticks, including 48.8% (235/482) of
Hyalomma ticks (H. rufipes: 50.6% (226/447); H. marginatum: 29.2% (7/24)), 5.9% (1/17) of
Ixodes ticks, 100% (2/2) of Haemaphysalis ticks, 25% (2/8) of Amblyomma ticks, and 47%
(31/66) of the undetermined ticks.

3.3.4. Metagenomics

Classification of metagenomic sequencing reads from tick samples that were puta-
tively positive for F. tularensis by microfluidic qPCR confirmed the presence of FLEs and
not F. tularensis. However, assembly of complete Francisella genomes was not possible
from these data due to low read count and coverage (Table 3). Two rounds of Francisella
enrichment were therefore performed, resulting in >95% Francisella DNA after enrichment.
The assembly of Francisella DNA present in the sequenced enriched sample D14IT15.2
was in total 1,413,985 bp divided into 510 contigs with N50 = 10,189 and N50n = 36. The



Microorganisms 2022, 10, 1393 9 of 18

assembly of Francisella DNA present in the sequenced enriched sample D14IT20 was, in
total, 1,415,455 bp divided into 506 contigs with N50 = 11,392 and N50n = 35.

Table 3. Relative abundance of bacterial reads of selected species in metagenomic sequence data
according to Kraken 2 results for the two ticks testing putatively positive for presence of Fran-
cisella tularensis by microfluidic real-time PCR. Species determination according to the Genome
Taxonomy Database.

Tick ID D14IT15.2 D14IT20

Total Reads (M) 225.9 173.6

Genus/Species Reads (M) % Reads (M) %

Rickettsia 44.4 19.7 103.5 59.6
R. rhipicephali 38.8 17.2 93.2 53.7

Midichloria 9.4 4.2 0.95 0.55
M. mitochondrii 9.4 4.2 0.95 0.55

Francisella 0.080 0.0035 0.026 0.015
FLE 0.074 0.0035 0.025 0.014

M—million; FLE—Francisella-like endosymbiont.

The levels of Rickettsia and Midichloria DNA present in the metagenomic data were
relatively high compared to that of Francisella DNA. The assembly of Rickettsia DNA present
in the sequenced non-enriched sample D14IT15.2 was in total 1,317,746 bp divided into
20 contigs with N50 = 225,990 and N50n = 3. The assembly of Rickettsia DNA present
in the sequenced non-enriched sample D14IT20 was in total 1,318,206 bp divided into
20 contigs with N50 = 225,819 and N50n = 3. The assembly of Midichloria DNA present
in the sequenced non-enriched sample D14IT15.2 was in total 1,069,525 bp divided into
105 contigs with N50 = 17,240 and N50n = 23. The assembly of Midichloria DNA present
in the sequenced non-enriched sample D14IT20 was in total 952,239 bp divided into
151 contigs with N50 = 9933 and N50n = 34.

3.3.5. Phylogenetic Inference of Metagenome-Assembled Genomes

Phylogenetic inference of the MAGs of Francisella revealed that D14IT15.2 and D14IT20
belonged to Clade 1 of Francisella [7], are separated from F. tularensis (FSC200, SCHUS4), and
are members of a subclade within the FLE group (GTDB cluster: Francisella sp002095075)
(Figure 2, shaded area). The FLE group consists of both cluster F. persica and Fran-
cisella sp002095075. Characterization of metagenome-assembled Midichloria and Rickettsia
genomes revealed resemblance to M. mitochondrii and R. aeschlimannii, respectively, with the
latter within the clade of Rickettsia rhipicephali, according to the taxonomy used by GTDB
(Figures S1 and S2 in the Supplementary Materials).
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Figure 2. Whole-genome maximum likelihood phylogeny of Clade 1 Francisella. The phylogeny
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contains 13 representative Francisella genomes, and the shaded area indicates the subclade within the
FLE group (GTDB cluster: Francisella sp002095075) in which the Francisella metagenome-assembled
genomes (in bold) generated in this study are assigned. The tree was rooted in Clade 2 of Francisella
(not shown). Bootstrap values ≥75 are presented at the nodes. The scale bar represents the expected
number of substitutions per site. FLE—Francisella-like endosymbiont; FLE-Om (host: Ornithodoros
moubata); FLE-Am (host: Amblyomma maculatum); FLE-Hr (detected in Hyalomma rufipes); sp.—species;
subsp.—subspecies.

3.4. Genome Analyses
3.4.1. Average Nucleotide Identity

The highest ANI values observed were between the generated MAGs and the genomes
of FLE-Om, R. rhipicephali (R. aeschlimannii), M. mitochondrii, and H. rufipes, respectively
(Table 4, Figures S3–S6 in the Supplementary Materials). In GTDB R. aeschlimannii be-
longs to the species R. rhipicephali while it is a recognised species in NCBI. The sequence
identity between the two genomes of: (i) FLE-Hr (FLE_D14IT15.2 and FLE_D14IT20) was
99.7–99.8%, (ii) Midichloria-Hr (MID_D14IT15.2 and MID_D14IT20) 99.9–100%, (iii) Rick-
ettsia-Hr (RICK_D14IT15.2 and RICK_D14IT20) 100%, and (iv) Hyalomma (HYA_D14IT15.2
and HYA_D14IT20) 99.3%.

Table 4. Highest average nucleotide identity for bacterial (n = 6) and tick (n = 2) metagenome-
assembled genomes generated in this study detected in two avian-associated Hyalomma rufipes ticks
(D14IT15.2 and D14IT20) that tested positive for Francisella tularensis and spotted fever group Rickettsia
during screening.

Tick ID D14IT15.2 D14IT20
Organism ANIb (%) Genome ANIb (%) Genome

FLE-Om 96.8/97.0 MAG 96.7/96.9 MAG
(GCF_002095075)

Rickettsia rhipicephali 1

(R. aeschlimannii 2)
99.8/99.8 MAG 99.8/99.9 MAG

(GCA_001051325)

Midichloria mitochondrii 91.5/91.7 MAG 91.8/92.3 MAG
(GCA_000219355)

Hyalomma rufipes 98.1/98.1 MAG 3 98.0/98.1 MAG 3

(KY457528)
1 According to the Genome Taxonomy Database; 2 According to the National Center for Biotechnology Information;
3 Mitochondrion; MAG—metagenome-assembled genome; ANIb—average nucleotide identity, BLAST method;
FLE—Francisella-like endosymbiont; Om—Ornithodoros moubata.

3.4.2. Biotin Gene Conservation

Based upon the mapping of reads to the corresponding F. persica coding DNA se-
quences (CDSs) encoding homologs to bioA, bioB, bioC, bioD, and bioF, at least bioA appears
to be missing in the FLE MAGs generated from the enrichment of samples D14IT15.2 and
D14IT20, indicating the biotin pathway is not intact in these FLEs (Table 5). We note that
mapping of FLE reads from the non-enriched metagenomic sequencing data to these same
CDSs was very limited, owing to the low proportion of FLE reads in these data (Table 3).
In contrast, there was significant mapping of reads from the non-enriched metagenomic
data to all of the examined biotin genes in the M. mitochondrii genome, indicating that
this pathway is likely intact in the Midichloria endosymbiont of H. rufipes. There was a
limited mapping of reads from the enriched metagenomic data to the biotin genes in M.
mitochondrii, which is not unexpected given the high proportion of Francisella DNA in these
samples following enrichment.
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Table 5. Coverage breadth (%) of sequencing reads of samples D14IT15.2 and D14IT20 mapped to genes involved in the biotin synthesis in the genome of
Francisella persica and Midichloria mitochondrii, indicating an intact biotin synthesis pathway of Midichloria and a disrupted biotin synthesis pathway of Francisella-like
endosymbionts detected in the tick species Hyalomma rufipes.

Enriched Non-Enriched
Homolog in Midichloria/Francisella Genomes D14IT15.2 D14IT20 D14IT15.2 D14IT20 Genes Involved in the Biotin Synthesis
lcl|NC_015722.1_cds_WP_013950979.1_473 [M. mitochondrii] 0 * 0 100 100 bioA
lcl|NC_015722.1_cds_WP_013950663.1_135 [M. mitochondrii] 13.4 0 99.0 98.6 bioB
lcl|NC_015722.1_cds_WP_237697388.1_131 [M. mitochondrii] 0 0 99.7 95.4 bioC
lcl|NC_015722.1_cds_WP_013950658.1_130 [M. mitochondrii] 0 0 93.7 93.5 bioD
lcl|NC_015722.1_cds_WP_237697389.1_134 [M. mitochondrii] 0 0 88.0 87.9 bioF
lcl|NZ_CP013022.1_cds_WP_064461154.1_1224 [F. persica] 21.5 19.7 0 0 Homolog to bioA in F. tularensis (FTT_0938)
lcl|NZ_CP013022.1_cds_WP_064461748.1_1225 [F. persica] 100 100 0 0 Homolog to bioB in F. tularensis (FTT_0937c)
lcl|NZ_CP013022.1_cds_WP_064461156.1_1227 [F. persica] 76.3 74.3 0 0 Homolog to bioC in F. tularensis (FTT_0935c)
lcl|NZ_CP013022.1_cds_WP_064461157.1_1228 [F. persica] 99.3 99.3 0 32.5 Homolog to bioD in F. tularensis (FTT_0934c)
lcl|NZ_CP013022.1_cds_WP_064461155.1_1226 [F. persica] 63.3 64.4 0 0 Homolog to bioF in F. tularensis (FTT_0936c)

Reads deposited to NCBI sequence read archive SRR16203935 SRR16203936 SRR16203939 SRR16203940

* Values are color-coded and the highest values are indicated by bright red.
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4. Discussion

In this study, screening of ticks infesting birds migrating in a northward route from
wintering areas in Africa revealed a high prevalence of Francisella in the tick species
H. rufipes (fopA+: 76.7%), a known vector of SFGR and Crimean-Congo hemorrhagic
fever virus [69], which suggest that migratory birds in the AWPR may contribute to
northward dispersal of Francisella-infected ticks. The high prevalence of Francisella likely
represents a high prevalence of FLEs, as FLEs have previously been detected in multiple
species of Hyalomma ticks and at a high prevalence [17,20,70]. The two Francisella MAGs
generated from two H. rufipes (Hr) were found to be members of a subclade within the
FLE group (GTDB cluster: Francisella sp002095075) in Clade 1 of Francisella (Figure 2),
which includes the FLE species FLE-Om (present in the soft tick O. moubata) and FLE-Am
(present in the hard tick A. maculatum). The FLE-Hr had the highest identity to FLE-
Om (ANIb: 96.7–97.0%). Several ticks tested positive for both Francisella and SFGR spp.
(fopA+/gltA+: 47.1%), suggesting that presence of Francisella did not prevent the occurrence
of SFGR spp.; a similar observation has been reported by Scoles [19]. ANI and phylogenetic
inference indicated the highest similarity of the Rickettsia MAGs detected in H. rufipes
(Rickettsia-Hr) with R. aeschlimannii (ANIb: 98.8–99.9%), a SFGR (i) reported to cause
human infections [71,72], (ii) associated with Hyalomma ticks, including H. rufipes and H.
marginatum [34,73–77], (iii) previously identified together with FLEs in H. marginatum [23],
and (iv) detected at similar prevalences as in this study in ticks of the H. marginatum species
complex infesting northbound migratory birds [36,78]. Data from the two metagenomic
sequenced H. rufipes ticks indicated co-occurrence also with a species of Midichloria. ANI
and phylogenetic inference of the Midichloria MAGs detected in H. rufipes (Midichloria-
Hr) indicated a close relationship to M. mitochondrii (ANIb: 91.5–92.3%). Midichloria sp.
bacteria have previously been detected in H. marginatum species complex ticks infesting
northbound trans-Saharan spring migrating birds trapped in Italy [47]. That study found a
high prevalence of Midichloria DNA in the investigated Hyalomma ticks (>90%) and in a
considerable fraction of the blood samples from the avian hosts (>40%) and suggested that
the presence of Midichloria DNA in the blood was associated with lower fat reserves in the
tick-infested birds [47].

Ticks may depend on FLEs because they provide nutrients that are absent in the
tick diet, such as B vitamins (folate/folic acid (B9), riboflavin (B2), and biotin (B7)) and
co-factors, and thereby improve the fitness of the tick [5,11]. It has been suggested that FLEs
serve as alternative obligate symbionts in some species of ticks [5,79], whereas Coxiella-like
endosymbionts (CLEs) are considered to be obligate symbionts (i.e., present in most speci-
mens) in most tick species [6,80]. Ticks may escape a negative symbiosis by replacing an old
symbiont with a new bacterium [81]. FLEs may have replaced CLEs in several tick lineages,
including O. moubata and A. maculatum [5,13,79]. M. mitochondrii has also been suggested to
be a nutritional endosymbiont since it encodes genes for the production of several co-factors
and B vitamin biotin [82]. Buysse et al. [23] showed that the genomes of FLEs detected
in H. marginatum included functional biosynthesis pathways for folate and riboflavin but
were deprived of a functional biosynthesis pathway for biotin. The authors suggested
that this was compensated for by the co-symbiosis with Midichloria bacteria also present in
H. marginatum, since their genomes included an intact biotin biosynthesis operon [23]. The
Midichloria detected in H. marginatum had a partial riboflavin biosynthesis pathway, indi-
cating that co-occurrence of FLEs and Midichloria may be essential for complete nutritional
symbiosis in H. marginatum [23]. We observed similar patterns for H. rufipes: a disrupted
biotin biosynthesis pathway in its FLE but an apparently intact biotin biosynthesis pathway
within its Midichloria endosymbiont (Table 5), suggesting the co-occurrence of these bacteria
also may be essential for nutritional symbiosis in H. rufipes. As noted by Buysse et al. [23],
a similar dual symbiosis may be present in several other Hyalomma tick species (Hyalomma
aegyptium, Hyalomma anatolicum, Hyalomma dromedarii, Hyalomma excavatum, Hyalomma
impeltatum, Hyalomma lusitanicum, and Hyalomma truncatum), as they found evidence for
the presence of both FLEs and Midichloria within them. The apparent exception within this
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tick genus to date appears to be Hyalomma asiaticum, which does not harbor any Midichloria
but instead has an FLE with an intact biotin pathway [83].

Molecular species determination of members of the H. marginatum species complex—
currently consisting of five species, including H. marginatum and H. rufipes [84]—can be
difficult due to the inclusion in public databases of sequences obtained from incorrectly
identified specimens [46]. Complete tick mitochondrial MAGs were therefore constructed
to verify the initial 12S rDNA-based speciation of the metagenomically characterized ticks.
The two characterized tick specimens were found to group in the H. rufipes clade also in the
mitochondrion phylogeny, verifying the initial 12S rDNA speciation results.

5. Conclusions

Understanding the biology, ecology, and evolution of tick endosymbionts is important,
as they may share a close evolutionary relationship with pathogenic bacteria and also may
influence the fitness [4] and even the behavior of the tick host [85]. The results of this
study demonstrate that FLEs are present in many H. rufipes ticks, and migratory birds in
the AWPR contribute to the northward geographical spread of FLE-containing ticks. The
absence of F. tularensis in the investigated ticks does not provide evidence supporting that
immature life stages of H. rufipes contribute to the transmission of F. tularensis in the study
region. Furthermore, the results suggest that migratory birds also contribute to northward
geographical spread in the AWPR of H. rufipes ticks containing SFGR spp., including R.
aeschlimannii and Midichloria bacteria, and that a dual endosymbiosis (co-symbiosis) of
FLEs and Midichloria may support the nutritional requirements of the medically important
tick vector H. rufipes. We acknowledge that the majority of the results of this study are
based on unconfirmed screening data and that the reported detection results are therefore
conservative estimates of the prevalence. Future studies should therefore focus on verifying
the Francisella and SFGR prevalence in H. rufipes as well as investigate the Midichloria
prevalence in H. rufipes and the impact that FLEs and Midichloria may have on H. rufipes,
including their interaction with bacterial pathogens, such as SFGR.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/microorganisms10071393/s1, Table S1. Publicly available genomes for Fran-
cisella, Rickettsia, Midichloria, and tick mitochondria downloaded from GTDB and NCBI. Table S2.
Microfluidic real-time PCR data for ticks collected from bird species trapped in the Mediterranean
basin during the spring migration of 2014 and 2015. The ticks were screened for Francisella and
spotted fever group Rickettsia species using primers targeting the fopA and gltA genes. Figure S1.
Whole genome maximum likelihood phylogeny. Highlighted area indicates Midichloria clade. Study
genomes are in bold. Orientia tsutsugamushi strain Karp was used to root the tree. Bootstrap values
≥ 75 are presented at the nodes. The scale bar represents the expected number of substitutions
per site. Figure S2. Whole genome maximum likelihood phylogeny of Rickettsia. Highlighted area
indicates clade for Rickettsia aeschlimannii. Study genomes are in bold. Orientia tsutsugamushi was
used to root the tree. Bootstrap values ≥ 75 are presented at the nodes. The scale bar represents
the expected number of substitutions per site. Figure S3. Heatmap of the average nucleotide iden-
tity (ANI), demonstrating nucleotide-level genomic similarity between Francisella genomes. The
pairwise comparison of 19 Francisella genomes was computed by BLAST, using the pyANI software.
Study genomes are in bold. FLE, Francisella-like endosymbiont. Figure S4. Heatmap of the average
nucleotide identity (ANI), demonstrating nucleotide-level genomic similarity between Rickettsia
genomes. The pairwise comparison of 138 Rickettsia genomes was computed by BLAST, using the
pyANI software. Study genomes are in bold. For NCBI organism names, see Table S1. Figure S5.
Heatmap of the average nucleotide identity (ANI), demonstrating nucleotide-level genomic similarity
between bacterial genomes. The pairwise comparison of 23 genomes was computed by BLAST, using
the pyANI software. Study genomes are in bold. Figure S6. Heatmap of the average nucleotide
identity (ANI), demonstrating nucleotide-level genomic similarity between Hyalomma mitochondrial
genomes. The pairwise comparison of 23 Hyalomma mitochondrial genomes was computed by BLAST,
using the pyANI software. Study genomes are in bold.
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