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ABSTRACT  

Obesity is associated with adverse health outcomes, but the metabolic effects have not yet been 

fully elucidated. We aimed to investigate the association between adiposity with circulating 

metabolites and to address causality with Mendelian randomization (MR). Metabolomics data 

was generated by non-targeted ultra-performance liquid-chromatography coupled to time-of-

flight mass-spectrometry in plasma and serum from three population-based Swedish cohorts: 

ULSAM (N=1,135), PIVUS (N=970), and TwinGene (N=2,059). We assessed associations 

between general adiposity measured as body mass index (BMI) and central body fat distribution 

measured as waist-to-hip ratio adjusted for BMI (WHRadjBMI) with 210 annotated 

metabolites. We employed MR analysis to assess causal effects. Lastly, we attempted to 

replicate the MR findings in the KORA and TwinsUK cohorts (N=7,373), the CHARGE 

consortium (N=8,631), the Framingham Heart Study (N=2,076) and the DIRECT consortium 

(N=3,029). BMI was associated with 77 metabolites, while WHRadjBMI was associated with 

11 and 3 metabolites in women and men, respectively. The MR analyses in the Swedish cohorts 

suggested a causal association (p-value <0.05) of increased general adiposity and reduced levels 

of arachidonic acid, dodecanedioic acid and lysophosphatidylcholine (P-16:0) as well as with 

increased creatine levels. The replication effort provided support for a causal association of 

adiposity on reduced levels of arachidonic acid (p-value 0.03). Adiposity is associated with 

variation of large parts of the circulating metabolome, however causality needs further 

investigation in well-powered cohorts.  
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INTRODUCTION 

The increasing prevalence of obesity is a major health problem, as epidemiological as well as 

clinical evidence state that both general and central obesity constitute strong risk factors for 

several adverse health outcomes including cardiovascular disease and type 2 diabetes1, 2. The 

metabolic effects of increased adiposity are not yet fully understood. Metabolomics methods 

can detect and quantify small compounds such as sugars, amino acids, organic acids, 

nucleotides and lipid molecules (up to ~1,500 Da) in biological samples and can be used to 

assess metabolic effects of different exposures. Contemporary metabolomics approaches 

include gas chromatography (GC) and ultra-performance liquid chromatography (UPLC) 

coupled with mass spectrometry-based methods (MS) or nuclear magnetic resonance (NMR) 

spectroscopy methods3. MS approach may entail greater sensitivity than NMR and thus has the 

potential to discover a larger number of metabolites4. Previous metabolomics studies have 

shown that increased adiposity is associated with many different metabolites such as increased 

levels of circulating aromatic amino acids, branched-chain amino acids, and certain fatty acids5-

7.  

Mendelian randomization (MR) is a framework to study the causal effects of modifiable 

exposures on different phenotypes, where genetic variants are used as instrumental variables 

for the exposures of interest. As the random assortment of genetic variants occurs at the time 

of conception, these variants are not affected by confounding or reverse causation8. Previous 

MR studies examining the causal relationship between general adiposity, which was measured 

as body mass index (BMI), and metabolomics as measured by NMR9, 10, have indicated that 

increased adiposity has an impact on the levels of multiple circulating metabolites, including 

lipoproteins, branched-chain and aromatic amino acids, and inflammation-related glycoprotein 

acetyls. A recent study in TwinsUK (mainly females)7 found that up to a third of metabolites 

measured by MS methods were associated with obesity. However, in their genetic analysis, the 
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BMI associated genetic risk score based upon 97 BMI predisposing variants was not found to 

be associated with any specific metabolite.  

Another approach to investigate causal effects of adiposity on the metabolome is through 

repeated measurements of the metabolome in weight-loss trials. Two weight-loss intervention 

studies, where one studied calorie restriction only, while the other focused on either calorie 

restriction only, calorie restriction combined with physical activity or calorie restriction  

combined with a centrally acting serotonin-norepinephrine reuptake inhibitor approved for 

weight loss, found that weight loss was associated with increased plasma levels of medium- 

and long-chain acylcarnitines11, 12. Another study of 57 women allocated to an intensive lifestyle 

weight-loss program or control group showed that three months of lifestyle intervention led to 

higher levels of 3-hydroxybutyrate (3-HB), formate, methylguanidine, myo-inositol, and 

phosphocreatine as well as lower levels of proline and trimethylamine13. 

However, more studies of the effect of general adiposity and body fat distribution on the 

circulating metabolome are necessary to better understand the metabolic consequences of 

obesity. The aim of the current study was therefore twofold, 1) to identify circulating 

metabolites measured with MS associated with adiposity and central body fat distribution, and 

2) to investigate if these associations were due to a causal effect of adiposity.  
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MATERIALS AND METHODS 

Cohorts 

Three population-based Swedish cohorts were utilized. The Uppsala Longitudinal Study of 

Adult Men (ULSAM) cohort enrolled male residents born between 1920 to 1924 in Uppsala, 

Sweden at age 50 (N=2,322) and includes several in-person assessments over nearly 50 years14. 

The current study uses information and metabolomics profiling from the 1,135 individuals 

participating in the investigation at age 70. The Prospective Investigation of Vasculature in 

Uppsala Seniors (PIVUS) study (N=970) enrolled a random sample of both women and men, 

at age 70, from the residents of Uppsala in 2001. Participants were invited for repeated tests at 

age 75 and 80 also, and metabolomics profiling was performed on the 970 samples from the 

age 70 assessment. The TwinGene cohort includes a total of 12,591 twins born in Sweden 

before 195815. The current study used a sample (N=2,059) that underwent metabolomics 

profiling in samples from 2004-2008 and with complete information on covariates, average age 

68.6 (SD 8.3)16. In the subsampling strategy only one twin per pair were prioritized and few 

complete twin pairs were therefore included16. Metabolite measurements underwent a log2-

transformation followed by SD transformation. 

 

The Cooperative Health Research in the Region of Augsburg (Kooperative Gesundheits-

forschung in der Region Augsburg, KORA) is a population-based cohort from southern 

Germany that includes prospectively measured health assessment and blood samples 

collections between 2006-200817. The current study  (KORA F4) is based upon 1,768 

participants and mean age 60.8 ± 8.8 years for whom the metabolomics assessment were 

performed. TwinsUK is a mainly (93%) women cohort of twins recruited from the UK. The 

current study is based upon 6,056 participants with a mean age of 53.4 ± 14.0 years who were 

analyzed for the metabolite profiling17. Summary GWAS data from meta-analysis of KORA 
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and TwinsUK17 were obtained from public repositories and were expressed as the per-allele 

log10-unit change in metabolite levels.  

The CHARGE consortium GWAS for plasma phospholipid fatty acid fractions was based on 

samples from 8,631 individuals (age range 45.8 to 72.0 years,  55% women) from the five 

epidemiological cohorts18.  In CHARGE consortium, arachidonic acid was were expressed as 

percentage of total fatty acids.  

The Framingham Heart Study (FHS) is a population-based cohort of European ancestry 

participants (age range 45.0 to 65.0 years, 51% women) from the United States. Samples from 

2,076 FHS study participants underwent plasma metabolite and GWAS profiling. In the FHS 

cohort, GWAS analysis were conducted using normalized residuals of metabolites levels 

employing linear mixed effect models accounting for age and sex19.   

The DIRECT (Diabetes Research on Patient Stratification) consortium (N= 3,029)  includes the 

participants with pre-diabetes (age range 56.0 to 68.0 years, 24% women) and type 2 diabetes 

(age range 56.0 to 68.1 years, 42% women) from the population based cohorts across Europe20. 

In DIRECT, metabolite levels were expressed as residuals from a linear mixed model 

accounting for technical variables. 

All participants provided written informed consent prior to inclusion in the respective cohort 

study and the research was approved by the Ethics Committees of Uppsala University 

(ULSAM, PIVUS) and Karolinska Institutet (TwinGene), or the respective Institutional Review 

Boards for the replication cohorts. The study was conducted according to the principles of the 

Declaration of Helsinki. 

Anthropometric measurements 

Across all three Swedish cohorts, height was objectively measured to the nearest cm and body 

weight to the nearest 0.1 kg. BMI was calculated as the ratio between weight (kg) to height 
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(m2), and used as a proxy for general adiposity. The waist was measured as a midway between 

the lowest rib and the iliac crest, while the hip circumference were measured over the widest 

part. Waist-to-hip ratio (WHR) was calculated as the ratio between waist (cm) to hip (cm), and 

used as a proxy for central body fat distribution.  

Measurement of metabolites 

In all Swedish cohorts, samples for metabolite assessment were taken on the same day as the 

anthropometric measurements. Blood was drawn from the study participants with overnight 

fasting in all cohorts.   

Swedish cohorts 

The samples were treated with methanol for protein precipitation. Non-targeted metabolite 

profiling was carried out using ultra-performance liquid chromatography (Acquity Ultra-

Performance Liquid Chromatography) (UPLC) equipped with an Acquity UPLC BEH C8 

analytical column (1.7 µm, 2.1 mm x 100 mm) coupled to a time-of-flight mass spectrometer 

(Waters Corporation, Milford, MA, USA) with an electrospray source operated through 

positive ion mode. For quality control (QC), prior to each batch of two 96-well plates of 

samples, instrument maintenance (cone cleaning, mass calibration, and detector gain 

calibration) was performed, and an external QC standard mix was injected containing 2 μg 

mL−1 each of caffeine, terfenadine, sulfadimethoxime, and reserpine. The QC standards were 

evaluated for retention time (+/− 0.05 min), signal intensity (< 25% relative standard deviation), 

and mass accuracy (<3 ppm). All samples were randomized prior to instrumental analysis. Since 

internal standards were not available at the time of analysis, randomized duplicate injections 

were performed to mitigate potential within-sample variation originating from the instrumental 

analysis. Average peak areas of the duplicate injections were then used for the relative 

quantitation. 
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Details of the metabolomic measurement procedures across these cohorts are available in the 

Supplement, and have also been described previously16. Several approaches for the annotation 

of metabolomic features were employed using both MS and MS/MS (MSE) information in 

accordance with the  metabolomics standard initiative (MSI)16. After peak detection and data 

processing, metabolomic features were matched between cohorts and metabolites were 

annotated based on retention time, accurate mass, and MS/MS spectra as standards. After data 

processing and adjustment for technical factors, intensities were scaled to SD units prior to 

statistical analyses. The entire processing pipeline for metabolomics measurement has been 

described previously21. Annotation of metabolites were performed using the in-house spectral 

library of authenticated standards and several publicly available spectral databases. The level 

of confidence to which a positive metabolite annotation has been performed was categorized 

as: (level 1) match with accurate mass (±5 ppm), fragmentation pattern, and retention time with 

the in-house spectral library containing > 930 authentic standards collected under the same 

experimental conditions; (level 2) match based on accurate mass and fragmentation pattern 

using available mass spectra in public data bases without retention time information; (level 3) 

match based on a combination of mass spectra and fragmentation pattern knowledge, accurate 

mass, and retention time window to assign the metabolite to a chemical class/formula. In total. 

106 out of 220 metabolites were assigned at MSI Level 1; 98 out of 220 were assigned MSI 

Level 2; and 4 out 220 metabolites were assigned MSI Level 3.  

 

Replication cohorts 

Metabolites were assessed in serum or plasma using liquid chromatography-tandem mass 

spectrometry (LC-MS) applying the Metabolon platform in KORA, TwinsUK and DIRECT 17. 

In the CHARGE consortium, arachidonic acid was measured in plasma phospholipids through 

thin layer gas chromatography (except in the InCHIANTI study where arachidonic acid was 
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directly measured by gas chromatography)18 and expressed as percentage of total plasma fatty 

acids. In the FHS cohort, plasma creatine metabolite was quantified through LC-MS method 

using triple quadrupole mass spectrometer (Applied Biosystems/Sciex)19. 

 

Statistical Analyses  

Observational analyses of the association of general adiposity with metabolites 

The analysis plan and cohorts used are described in Figure 1. We used a series of linear 

regression models to assess the association between general adiposity measured as BMI and the 

annotated metabolites from the ULSAM and PIVUS cohorts. In PIVUS, models were adjusted 

for age and sex, while for the ULSAM cohort, the models were adjusted for age only; ULSAM 

contains only men.  

The beta coefficients from the two cohorts were meta-analyzed using the DerSimonian-Laird 

random effects model, details are found in Supplemental Text 222. The random effects model 

was chosen as initial analysis indicated considerate heterogeneity in effect estimates between 

cohorts.  

A 5% false discovery rate (FDR) using the Benjamini–Hochberg procedure23 was used to 

account for multiple testing. Metabolites that passed the FDR threshold were assessed in 

TwinGene. A similar model was used, but with cluster-robust standard errors to account for 

dependency within twins. Out of 2,059 individuals, 75 complete twin-pairs were included. 

Metabolites were considered replicated in TwinGene if the estimates were directionally similar 

and showed a p-value of <0.05.  

Observational analyses of the association of central body fat distribution with metabolites 

Similarly, we used a series of linear regression models to assess the association between body 

fat distribution measured as WHR and the annotated metabolites in the ULSAM and PIVUS 



 11 

cohorts. All models were also adjusted for age and BMI, and run separately in men and women 

as the distribution of WHR is sex-specific. This model is hereafter referred to as 

“WHRadjBMI”.  For men, estimates from ULSAM and PIVUS men samples were pooled and 

meta-analyzed using the DerSimonian-Laird random effects model. For women, only PIVUS 

samples for WHR-metabolites association analyses were used in the first step as ULSAM is 

men-only. The Benjamini–Hochberg procedure23 at a 5% FDR was again used to account for 

multiple testing. Metabolites that passed the FDR threshold were assessed in TwinGene. A 

similar model was used, but cluster-robust standard errors were used to account for dependency 

within twins. Out of 2,059 individuals, 75 twin-pairs were included. Metabolites were 

considered replicated in TwinGene if estimates were in the same direction and showed a p-

value of <0.05. As a sensitivity analysis, we used waist circumference (WC), hip circumference 

(HC) and unadjusted waist-hip ratio as alternative measures for body fat distribution. We 

assessed the association of WC and HC with metabolites identified in main analysis adjusting 

for weight, height and age using the same sex-stratified strategy as for WHRadjBMI while 

WHR was only adjusted for age.  

Mendelian Randomization 

Metabolites associated with BMI in the observational analyses were taken forward to 

Mendelian randomization analyses. We performed a two-sample MR analysis where the 

association between the genetic instrument and adiposity was based on previous large GWAS 

studies24, 25 and the association between the genetic instrument and each metabolite was 

assessed in ULSAM, PIVUS, TwinGene, KORA and TwinsUK.  

We created three genetic instruments, one for BMI (sex-combined) and two sex-specific 

instruments for WHRadjBMI (male and female) based on two large GWAS studies24, 25. BMI 

and WHRadjBMI was expressed as Z-scores in these GWAS, derived from inverse normal 

transformation of residuals from a regression adjusted for age, age-squared, study-specific 
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covariates if necessary. The WHR-phenotype was additionally adjusted for BMI. For the BMI-

instrument, we included independent SNPs showing association  (p-value <5´10-8) with BMI 

in sex-combined analysis24. For each of the two sex-specific WHRadjBMI instruments, we 

included SNPs that showed association with WHRadjBMI if they a) had p-value <5´10-8 in 

sex-combined and p-value <2.5´10-4 in sex-specific analysis or b) p-value <5´10-8 in sex-

specific analysis. The BMI instrument thus included 97 SNPs, the female WHRadjBMI 

instrument included 47 SNPs and the male WHRadjBMI instrument included 22 SNPs. Both 

for SNP-BMI24 (estimates were taken from Locke et al24 Table 1, Extended Table 2 and S4 

Euro Sex Combined) and SNP-WHRadjBMI25 (estimates were taken from Shungin et al25 Table 

1 and Supplementary Table 4) estimates were taken based upon the results from the European 

ancestry sample. A complete list of included genetic variants along with allele frequencies 

regarding BMI among sex combined while WHRadjBMI traits among females and males in the 

ULSAM, PIVUS and TwinGene cohorts are reported in Tables S1, S2 and S3, respectively. 

Variants were extracted using PLINK 2.0 (http://pngu.mgh.harvard.edu/~purcell/plink/) from 

ULSAM, PIVUS and TwinGene. Alleles were aligned to the reported obesity-increasing allele. 

We used both directly genotyped SNPs and imputed SNPs using Hap Map imputation (ULSAM 

and PIVUS cohorts) or 1000 genome imputation panel (TwinGene) variants. All SNPs had 

minor allele frequency >1%, Hardy-Weinberg p-value > 0.01 and MACH2 imputation metric 

>0.95.  

We investigated the association of each SNP with each metabolite using linear regression 

models in each Swedish cohort separately, with subsequent random-effects meta-analysis 

across all three Swedish cohorts. The genetic effects were assumed to be additive. All analyses 

were adjusted for age, sex and the first four genetic principal components from each of three 

cohorts. Cluster-robust standard errors (twin-pair as cluster) were used in the TwinGene cohort. 

For WHRadjBMI, analyses were performed separately among women and men.  
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The multiplicative random effects inverse variance weighted26 (IVW) method was used to 

estimate causal effects as the main MR analysis. Mendelian randomization-Egger (MR-Egger) 

and weighted median regression (WMM) methods were used as sensitivity analyses26. The MR-

Egger method can be used to detect and adjust for directional pleiotropy, while the robust 

WMM method provides consistent estimates as long as at least 50% of the weights are based 

upon valid (non-pleiotropic) instrumental variables26, 27. MR analyses were performed using the 

MendelianRandomization package in R studio (R version 3.6.0 (https://www.r-project.org/)). 

In MR analyses, we considered p-values <0.05 as statistically significant. 

Pathway enrichment analysis 

As an extended analysis, we performed enrichment analysis using the “fast gene set enrichment 

analysis” tool to identify groups of metabolites enriched for genetic associations of obesity 

variants with single metabolites. We followed the same MR pipeline as previously, except that 

no observational analysis was used for filtering out non-significant metabolites. The p-values 

from the MR analysis from the Swedish cohorts were then carried forward to fast gene set 

enrichment analysis (FGSEA) as implemented in the R-package fgsea. At least 10 metabolites 

had to be present in a metabolite class for the FGSEA analysis to be performed.  

Replication  

We attempted replication of MR results for metabolites with p-value<0.05 in the Swedish 

cohorts. Each replication cohort only had a few of the metabolites of interest available. The 

SNP-metabolite associations from replication cohorts were aligned to the BMI-increasing 

allele. Causal MR estimates were obtained using IVW while the MR sensitivity analyses were 

performed through MR-Egger and WMM methods. We applied the Stouffer p-value-based 

meta-analysis28 to pool Z-scores from each replication cohort derived from one-sided p-values, 

accounting for directionality of the individual cohort estimate.  
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Statistical analyses were performed using Stata 15.0 (Stata, College Station, TX, USA) and R 

studio (R version 3.6.0) (https://www.r-project.org/), unless otherwise noted.  

Data and Resource Availability 

The data that support the findings of this study from ULSAM, PIVUS and TwinGene are 

available but restrictions apply to the availability of these data, which were used under license 

for the current study and therefore are not publicly available. Data are however available from 

the authors upon reasonable request and with permission of ULSAM, PIVUS and TwinGene 

steering committees and with permission of the Swedish Ethical Review Authority. Data from 

KORA and TwinsUK are available here: http://metabolomics.helmholtz-muenchen.de/gwas/. 

Data from the CHARGE consortium is publically available for download  

http://www.msi.umn.edu/~wguan/CHARGE_N6GWAS/. Summary data for the association of 

SNPs with creatine was retrieved from the FHS19. GWAS-metabolites data from the DIRECT 

consortium is publically available at DOI: 10.5281/zenodo.447568120. 
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RESULTS 

Baseline characteristics of the study participants are reported in Table 1.  

Observational analyses of the association of general adiposity with metabolites 

In the meta-analysis of PIVUS and ULSAM, we found that BMI was associated with 109 out 

of 210 tested metabolites (Table S4), whereof 77 metabolites were replicated in TwinGene 

(Table S5). Of these 77 metabolites, BMI was inversely associated with 13/15 

lysophosphatidylcholines, and positively associated with 8/8 glycerolipids, 6/7 unsaturated 

fatty acids, 4/6 amino acids, peptides, and derivatives, 3/3 carnitines and acyl carnitines, and 

5/5 bile acids. 

Observational analyses of the association of central body fat distribution with metabolites 

In the meta-analysis of men from PIVUS (N=483) and ULSAM (N=1,112), WHRadjBMI was 

associated with 32 metabolites (Table S6), whereof only three metabolites were replicated in 

TwinGene (N=1,167) (Table S7). In women from PIVUS (N=487), WHRadjBMI was 

associated with 47 metabolites. Eleven of those metabolites were replicated in the female 

sample of TwinGene (N=879). Of these, positive associations were found for 7/7 glycerolipids 

(Table S7).  

In the sensitivity analyses, most associations were comparable for the alternate exposures WC 

and unadjusted WHR with the exception of sphingomyelin(32:2). The association of 

sphingomyelin(32:2) with WHRadjBMI seems driven by association with HC adjusted for 

weight and height rather than WC (Table S8).  

Mendelian Randomization – general adiposity 

In the meta-analysis of estimates in the ULSAM, PIVUS, and TwinGene cohorts, we found 

results consistent with a causal effect of general adiposity reducing levels of arachidonic acid, 
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dodecanedioic acid and lysophosphatidylcholine(P-16:0) (Table 2). We also observed evidence 

consistent with a causal effect of general adiposity on increased creatine levels (Table 2). We 

observed that dodecanedioic acid and lysophosphatidylcholine (P-16:0) had a strong negative 

correlation with BMI while arachidonic acid and creatine were positively correlated (Table 

S11). 

Mendelian Randomization – body fat distribution 

We found evidence of a causal effect of central body fat distribution on decreased levels of 

sphingomyelin(32:2) in women (Table 2). No findings were present in men.  

Pathway enrichment analysis 

We were unable to identify any enrichment for metabolite class-wise associations for BMI or 

WHRadjBMI in the Mendelian Randomization (Table S12).  

Replication 

Next, we attempted to replicate MR results in four independent studies with data for three of 

the metabolites with p<0.05 in the Swedish cohorts. Genetic association results were available 

for arachidonic acid results and creatine in three cohorts, and for dodecanedioic acid in one 

cohort. We observed directionally consistent results for all tested metabolites in all cohorts 

compared to the Swedish cohorts except for creatine in FHS (Table 2). Meta-analysis provided 

support of replication for causal effect of adiposity on lowering arachidonic acid (p-value 0.03) 

but not for creatine (p-value 0.25). 

Sensitivity analyses 

The sensitivity analysis using MR-Egger and WMM yielded wide confidence intervals but with 

point estimates in general agreeing with the IVW method. For arachidonic acid, we observed 

directionally similar beta coefficients for WMM and MR-Egger methods in the Swedish cohorts 
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(Table S9), KORA/TwinsUK, the CHARGE but not in the DIRECT consortium compared to 

IVW estimates (Table S10). For creatine, we observed directionally consistent beta coefficients 

for WMM and MR-Egger methods in the Swedish cohorts (Table S9), KORA/TwinsUK, the 

DIRECT (not for MR-Egger) and the FHS (not for WMM) compared to IVW estimates (Table 

S10). Supplemental Figure 1A-D show scatter plots of the ratio estimates for genetic 

associations between SNP-BMI and SNP-metabolites among the Swedish and the replication 

cohorts when available, which allow visualization of the causal effect estimates. Supplemental 

Figure 2A represent scatter plots of the ratio estimates for genetic associations between SNP-

WHRadjBMI and SNP-metabolites (sphingomyelin(32:2)) among the Swedish cohorts.  
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DISCUSSION 

In this study of middle-aged and elderly men and women, we found associations of BMI with 

large parts of the measured metabolome. We identified 77 BMI-metabolite associations, 11 

WHRadjBMI-metabolite associations in women, and 3 WHRadjBMI-metabolite associations 

in men. We noted that the direction of association was similar within chemical classes of 

metabolites. Of the 77 BMI-associated metabolites, BMI was inversely associated with 13/15 

lysophosphatidylcholines, and positively associated with 8/8 glycerolipids, 6/7 unsaturated 

fatty acids, 4/6 amino acids, peptides, and derivatives, 3/3 carnitines and acyl carnitines, and 

5/5 bile acids. Our findings further provided some evidence of causal association of general 

adiposity on lower levels of arachidonic acid. 

Comparison with literature 

A previous29 study comparing metabolites measured with MS to different measures of adiposity 

found that metabolites showed similar relationships with BMI and waist circumference adjusted 

for hip circumference. Their main findings included positive associations with four amino acids 

and two sphingomyelin while negative correlations with LysoPCs, and mixed directions for 

phosphatidylcholines. In our study, we adjusted all WHR analyses for BMI, which may explain 

that few metabolites overlapped between the phenotypes.  

Unsaturated Fatty acids 

In observational analysis, we found positive associations between BMI with six out of seven 

unsaturated fatty acids including arachidonic acid. Arachidonic acid, a derivative of linoleic 

acid, is an omega-6 polyunsaturated fatty acid generally present in the human cell membrane, 

and the majority of arachidonic acid-related metabolites are pro-inflammatory30.  

However, our MR analyses suggested an inverse association of adiposity on arachidonic acid. 

In the Swedish cohorts, and in KORA/TwinsUK as well as the DIRECT study, the levels of 
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arachidonic acid represent free circulating arachidonic acid, while in CHARGE the % of 

arachidonic acid were measured in phospholipids (PL). The discrepancies between 

observational analysis and MR directions as found in our study, might be explained by 

bidirectional effects or in the case of confounding of the observational estimate. Previously 

published literature about the relationship between obesity and circulating arachidonic acid is 

inconclusive. Some studies report higher plasma phospholipid arachidonic acid in obese 

children31 and adults32 and other have reported lower erythrocyte phospholipid arachidonic acid 

in obese33. The potential biological mechanisms for how genetic predisposition to higher BMI 

would lower circulating arachidonic acid indicated in our MR analyses are unclear. However, 

we speculate that it might involve lowered amounts of the enzyme delta-5-desaturase (D5D), 

which is encoded by the FADS1 gene and converts the precursor dihomo-gamma-linolenic acid 

into arachidonic acid. Surrogate measures of D5D activity were indeed found negatively 

correlated with BMI when assessed in circulating PL34, 35. Other regulators of arachidonic acid 

levels are the amount of linoleic acid, the enzymes delta-6-desaturase, encoded by the FADS2 

gene, and elongases.  

We found some evidence of a causal effect of general adiposity on reduced dodecanedioic acid 

levels in the Swedish data, but the results were not replicated in external data. Reduced levels 

of dodecanedioic acid has been observed in obese children compared with non-obese controls5. 

Dodecanedioic acid is a water soluble even-numbered dicarboxylic acid and structurally similar 

to medium chain free fatty acids. The metabolic pathway of these fatty acids substances are 

intermediate to lipids and carbohydrates36.   

Amino acids, Peptides, and Derivatives  

In observational analyses, BMI was positively associated with four of the amino acids, peptides, 

and derivatives while negatively associated with two of the metabolites from this class. In 

observational and MR analyses BMI was positively associated with creatine in the Swedish 
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cohort, but these MR results were not replicated in external data. Creatine is an important 

metabolite for cellular energetics within skeletal muscle and plays a critical role in muscle 

catabolism during different physiological processes through increasing the ability of muscles 

to generate more ATP from ADP to match energy demands37. Increasing body fat percentage, 

BMI, and waist circumference have previously been associated with higher creatine levels38, 

likely due to larger muscle mass. Similarly, in a lifestyle intervention study, weight loss was 

associated with decreased creatine13. Hence, our observational and MR results in the Swedish 

data align well with previous reports, but MR results needs to be confirmed.  

Sphingomyelins 

Sphingomyelin  is one of the major lipids in the mammalian plasma membrane, and changes in 

membrane lipid composition not only changes structure but also membrane function and 

receptor reorganization39. In a previous study of the sphingomyelin profile of Korean middle-

aged men with early stages of diabetes, most species of sphingomyelins were increased in 

subjects with abdominal obesity compared to those who were lean40. In the current study, we 

observed that BMI was associated with reduced levels of two sphingomyelins. Similarly, in the 

current study we found preliminary evidence for increased central body fat distribution 

lowering sphingomyelin 32:2 in women but no external replication data was available. 

However, sensitivity analysis using alternative measures of body fat distribution indicated that 

the identified association with WHRadjBMI was driven by increased hip circumference rather 

than reduced waist circumference. We are not aware of any similar studies in women and our 

findings need to be validated before drawing further conclusions. 

Lysophosphatidylcholines  

Lysophosphatidylcholines (LysoPC) are the major components of oxidized low-density 

lipoprotein cholesterol. In the current study, we found inverse associations between BMI and 
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thirteen LysoPC and positive association with two. In MR analyses in the Swedish data, we 

found evidence that increased adiposity was causally associated with reduced levels of LysoPC 

(P-16:0). However, no replication data was identified, and these results need confirmation. Most 

observational studies have reported inverse associations between adiposity and LysoPC. 

Reduced LysoPC levels have been observed after weight loss41 while other studies observed 

non-significant differences in LysoPC species following weight reduction11. LysoPC (P-16:0) 

levels has positively been associated with neonatal birth weight42.  

Strengths and limitations 

The strengths of the study include the combination of cross-sectional analysis with Mendelian 

randomization analyses and objectively assessed anthropometric measures. However, a few 

potential limitations deserve mentioning. First, the study size only yielded moderate statistical 

power to detect causal effects of obesity on metabolites, and also the non-targeted metabolomics 

approach only captured a limited set of metabolites. Replication data availability was limited. 

Second, all analyses were conducted in Europeans who were of older age and therefore our 

results may have limited generalizability to other ethnicities and age groups. The limited 

number of annotated metabolites are due to the single liquid chromatography setting and by 

somewhat limited availability of in-house standards. Another limitation is related to the 

measurements of central body fat distribution. We explored alternative measures of body fat 

distribution for our top findings from the main analysis. We observed comparable results for 

most metabolites with the alternative waist-related measures but few associations with hip 

circumference supporting waist-related adiposity as the main link to these metabolites. 

Sphingomyelin (32:2) was exception to this pattern where the inverse associations with 

WHRadjBMI were driven by increased hip circumference. Furthermore, although the causal 

associations between adiposity and arachidonic acid were mostly consistent across different 

MR methods, our findings require validation using physiological models, particularly to rule 
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out any potential biases related to unmeasured horizontal pleiotropy and canalization. Another 

potential limitation is that, the non-targeted metabolomics platform was biased towards 

detection of metabolites that can be separated with reverse-phase liquid chromatography and 

that are readily detected in positive electrospray ionization mode, i.e., various phospholipids, 

fatty acids, acyl-carnitines, non-polar amino acids and their derivatives as well as several other 

semi-polar metabolites such as for example imidazopyrimidines (caffeine and theobromine) 

and indoles (indolelactic acid, 3-indolepropionic acid). Another potential limitation is that the 

external validation data set DIRECT consortium includes participants with prediabetes and 

patients having newly diagnosed type 2 diabetes, while the participants of all other cohorts were 

predominantly disease free. Since metabolites were measured on a relative scale and with 

different normalization procedures in Swedish (ULSAM, PIVUS and TwinGene), 

KORA/TwinsUK cohorts, CHARGE and DIRECT consortia, effect size comparison between 

the Swedish cohorts, the KORA/TwinsUK, CHARGE and DIRECT consortia are not possible, 

hence, p-value based meta-analysis was performed. The effect estimates were in general larger 

for WHRadjBMI compared to BMI. This is due to the difference in the unit of measurement 

for BMI and WHR. For SNP-BMI and WHRadjBMI association analysis z-score 

transformation was used. Some metabolite measurements may be affected by difference in 

matrix (plasma or serum), which may have limited the power of the study. In our previous 

studies, we have, however, been able to replicate a large proportion of associations with disease 

phenotypes across the three Swedish cohorts43, 44. Lastly, although we aimed to assess the 

causality between adiposity and annotated metabolites, we did not assess reverse causality, 

mainly because no specific genetic variants are available for the majority of studied metabolites.  

Conclusions 

In summary, we confirmed previous findings that adiposity are associated with large parts of 

the circulating metabolome. In the MR analysis, our findings suggested a causal association of 
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increased general adiposity and reduced levels of arachidonic acid. Our findings regarding 

arachidonic acid need to be verified in larger sample, and investigated in relation to 

cardiometabolic disease to understand whether they represent pathways of obesity causing 

diabetes and cardiovascular disease. Circulating arachidonic acid was not associated with future 

risk of CVD in a large observational study45. However, plasma phospholipid arachidonic acid 

has shown some evidence for increasing risk of  ischaemic heart disease, ischaemic stroke, and 

peripheral artery disease in an Mendelian randomization analysis, but our results do not support 

that obesity aggravates this pathway as our results indicate that obesity lower circulating 

arachidonic acid46. Although we observed robust observational associations of BMI with a large 

number of metabolites, the explained variance of these circulating metabolites was in general 

low. In summary, larger studies including genetic data, metabolomics, anthropometric 

measurements and follow-up for incident diabetes and cardiovascular events are needed to tease 

out whether metabolites mediate some of the increased risk of cardiometabolic disease in 

obesity. 
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Figure 1. Schematic flow and cohorts used in the current analysis 
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Table 1 Clinical Characteristics of the ULSAM, PIVUS and TwinGene Swedish Cohorts   
  ULSAM PIVUS TwinGene 
N total 1135 970 2059 

% men 100 50 58 

Age, years  70.9 (0.6) 70.2 (0.2) 68.6 (8.3) 

BMI, kg/m2 26.3 (3.4) 27.1 (4.3) 26.3 (4.0) 

WHR  0.95 (0.05) 0.90 (0.7) 0.91 (0.1) 

Waist (cm) 94.9 (9.6) 90.1 (15.7) 93.6 (11.9) 

Diastolic blood pressure (mmHg) 79.6 (8.6) 78.6 (10.2) 82.0 (10.6) 

Systolic blood pressure (mmHg) 140.0 (16.3) 149.7 (22.6) 142.7 (20.2) 

HDL-cholesterol (mmol/l) 1.3 (0.3) 1.5 (0.4) 1.4 (0.4) 

LDL-cholesterol (mmol/l) 3.9 (0.9) 3.4 (0.9) 3.7 (1.0) 

Triglycerides (mmol/l) 1.5 (0.8) 1.3 (0.6) 1.4 (0.8) 

Total cholesterol (mmol/l) 5.8 (1.0) 5.4 (1.0) 5.7 (1.2) 
All values (except N total and % men) were represented as mean (SD).  
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Table 2. Observational and causal associations between BMI and metabolites across the combined sample (N=3,610) of ULSAM, PIVUS and TwinGene and causal WHRadjBMI and metabolomics signatures 
among women in the combined sample (N=1,158) of PIVUS and TwinGene. Validation of BMI-associated metabolites in the KORA/TwinsUK cohorts (N=7,373), the CHARGE consortium (N= 8,631),the 
DIRECT consortium (N= 3,029) and FHS cohort (N=2,076). 

  Observational analysis  Mendelian randomization  
  ULSAM and PIVUS TwinGene Swedish cohorts KORA/TwinsUK CHARGE consortium DIRECT consortium FHS cohort 
Metabolites Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P 
Dodecanedioic acid -0.04 (-0.05, -0.02) 4.1E-10 -0.02 (-0.04, -0.01) 3.8E-06 -0.35 (-0.57, -0.12) 2.0E-03 -0.03 (-0.06, 0.004) 0.25 NA  NA  NA  
Lysophosphatidylcholine(P-16:0) -0.05 (-0.07, -0.04) 3.2E-09 -0.04 (-0.05, -0.03) 3.4E-11 -0.29 (-0.52, -0.05) 0.02 NA  NA  NA  NA  

Arachidonic acid 0.02 (0.01, 0.03) 4.4E-03 0.02 (0.01, 0.04) 1.3E-04 -0.26 (-0.48, -0.04) 0.02 -0.01 (-0.03, 0.01) 0.48 -0.25 (-0.51, 0.003) 0.05 -0.03 (-0.16, 0.20) 0.60 NA  
Creatine 0.02 (0.01, 0.03) 6.0E-03 0.02 (0.01, 0.03) 5.9E-03 0.25 (0.01, 0.50) 0.04 0.02 (-0.01, 0.05) 0.13 NA    0.07 (-0.06, 0.09) 0.30 -0.21 (-0.49, 0.08) 0.16 
WHRadjBMI associated 
Metabolites (Females) Beta (95% CIs) P Beta (95% CIs) P Beta (95% CIs) P         

Sphingomyelin(32:2) -2.46 (-3.78, -1.14) 3.0E-04 -0.71 (-1.30, -0.12) 0.02 -0.51 (-0.90, -0.13) 8.0E-03  NA   NA   NA    NA    

Mendelian randomization estimates were retrieved using the inverse variance weighted method. Units of metabolites are not similar in discovery and replication cohorts. For the SNP-metabolites association analysis, in the Swedish 
cohorts log2 and then SD transformation was applied. In the KORA/TwinsUK cohorts for GWAS-metabolites analysis, log10-unit change in metabolite levels were used. In the CHARGE consortium, GWAS results for SNP 
association with arachidonic acid expressed as percentage of total fatty acids. In the DIRECT consortium, GWAS-metabolites association analysis were residualised after removing technical covariates using a linear mixed model. 
In the FHS cohort, GWAS-creatine analyses were performed using normalized residuals of creatine levels, adjusted for age and sex. NA – not available.  

 

 


