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Abstract

Formalin-fixed, paraffin-embedded (FFPE) specimens are an underutilized resource in

medical research, particularly in the setting of transcriptome sequencing, as RNA from

these samples is often degraded. We took advantage of an exome capture-based

RNA-sequencing protocol to explore global gene expression in paired fresh–frozen

(FF) and FFPE samples from 16 diffuse large B-cell lymphoma (DLBCL) patients.

While FFPE samples generated fewer mapped reads compared to their FF counter-

parts, these reads captured the same library complexity and had a similar number of

genes expressed on average. Furthermore, gene expression demonstrated a high cor-

relation when comparing housekeeping genes only or across the entire transcriptome

(r = 0.99 for both comparisons). Differences in gene expression were primarily seen

in lowly expressed genes and genes with small or large coding sequences. Using cell-

of-origin classifiers and clinically relevant gene expression signatures for DLBCL, FF,

and FFPE samples from the same biopsy paired nearly perfectly in clustering analysis.

This was further confirmed in a validation cohort of 50 FFPE DLBCL samples. In sum-

mary, we found the biological differences between tumors to be far greater than arti-

facts created as a result of degraded RNA. We conclude that exome capture

transcriptome sequencing data from archival samples can confidently be used for

cell-of-origin classification of DLBCL samples.
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1 | INTRODUCTION

Biopsies taken for morphological assessment and molecular investi-

gation in clinical diagnostics are commonly stored as formalin-fixed,

paraffin-embedded (FFPE) tissue. It is estimated that across

governmental biobanks, universities, and hospitals, there exist over

one billion FFPE samples worldwide.1 These samples offer well-

documented retrospective cohorts, often with lifetime follow-up

data, and constitute a potentially invaluable resource in medical

research where sample availability is often a major limitation. That

said, several factors including handling and processing, preservation

conditions, and duration of storage affect sample nucleic acid integ-

rity. This typically results in poor-quality RNA, which has limited the

usage of FFPE samples, especially in transcriptome sequencing set-

tings. Recently, a novel RNA capture approach was developed for

profiling samples from degraded tissue using next-generation

sequencing.2 This method takes advantage of exon-targeting probes

to enrich for coding RNA fragments and covers as much as 97% of

the coding genome with high read mappability (94%–96%) from

degraded RNA,3 providing an attractive option for investigating

FFPE samples.

Diffuse large B-cell lymphoma (DLBCL) is the most common lym-

phoid malignancy in adults and accounts for about 35% of all non-

Hodgkin lymphomas.4 The disease originates from mature B-cells and,

based on gene expression profiling (GEP), is subclassified in to clini-

cally relevant subtypes, that is, germinal center B-cell (GC), activated

B-cell (ABC), and an unclassified subtype, with distinct outcomes.5–9

In clinical settings, various alternative approaches have been devel-

oped that are primarily based on immunohistochemistry to subclassify

DLBCL patients as defined by GEP. Among these, one of the most

commonly employed algorithms, proposed by Hans et al., uses

staining of CD10, BCL6, and MUM1 and subsequently subgroups the

patients into GC or non-GC (NGC) subgroups.10 More recently, the

lymphoma/leukemia molecular profiling project (LLMPP) developed a

digital 20 gene expression-based test, the Lymph2Cx assay using

NanoString technology, which has been shown to assign robustly

DLBCL subtypes in FFPE tissue.11,12

Although a number of studies have investigated different RNA-

sequencing (RNA-seq) protocols for degraded and low-quantity

samples,3,13–20 there is none that, to the best of our knowledge, has

applied the coding RNA enrichment assay and investigated clinically

relevant gene expression signatures to assess performance in paired

FFPE/fresh–frozen (FF) routine samples. Therefore, in this study, we

used DLBCL as a model disorder to evaluate the Illumina TruSeq RNA

Exome (formerly TruSeq RNA Access, Illumina, San Diego, CA) proto-

col which is specifically designed for degraded RNA, in paired archival

samples from the same biopsy to evaluate the feasibility and validity

of FFPE RNA-seq.

2 | MATERIALS AND METHODS

2.1 | Patient samples

Paired FF and FFPE samples (stored at room temperature) from the

same excisional biopsy were collected prior to treatment from 16 DLBCL

patients (9 GC and 7 NGC based on the Hans classification10) from the

biobank at the Department of Pathology, Uppsala University Hospital,

Sweden. Median time from sampling to RNA extraction was 6.0 years

(range, 1–11 years). A second independent cohort of FFPE samples

(stored at room temperature) from 50 Swedish DLBCL patients, mainly

from Sahlgrenska University Hospital, Gothenburg, Sweden, was also

used for validation. All samples were evaluated by experienced hemato-

pathologists (MA, SBE, and RMA) both at diagnosis and upon inclusion

in the study according to the WHO classification.21 The study was con-

ducted according to the guidelines of the Declaration of Helsinki, and

approved by the local Ethics Review Committee.

2.2 | RNA extraction and quality assessment

Extraction of total RNA was performed on FF samples using the Allprep

DNA/RNA/miRNA Universal Kit (Qiagen, Valencia, CA), and FFPE sam-

ples from ≥ three 10-μm tissue sections using the AllPrep DNA/RNA

FFPE Kit (Qiagen). For all samples, on-column DNase digestion (Qiagen)

was carried out to remove genomic DNA. Total RNA was eluted in

30 μL RNase-free water. RNA quantity was measured by fluorometric

quantitation using the Qubit RNA HS assay kit (ThermoFisher Scientific,

Waltham, MA) while RNA integrity was assessed with the 4200 Tap-

eStation System (Agilent Technologies, Waldbronn, Germany) using the

DV200 metric (the percentage of fragments > 200 nucleotides). Samples

were stored in �80�C directly after extraction.

2.3 | Library construction and sequencing

The Illumina TruSeq RNA Exome protocol (Illumina) was employed to

prepare RNA-seq libraries for both FF and FFPE samples according to

manufacturer's protocol. For samples with DV200 values of < 50%,

100 ng input RNA was used for library construction, while for samples

with DV200 values of 50%–70% or > 70%, 40 and 20 ng input RNA

was used, respectively, as indicated by the manufacturer's protocol.

For the paired FF/FFPE samples, libraries were constructed in four

separate batches and sequenced in pools of eight samples, each run in

one lane of a HiSeq Flow Cell v4 and using HiSeq SBS Kit v4 chemis-

try on a HiSeq 2500 instrument in paired-end 2 � 125 bp mode. For

the validation cohort, the libraries were constructed in two separate

batches and sequenced using the same protocol.
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2.4 | Bioinformatics

Raw sequencing reads were aligned using the nf-core/RNA-seq (1.0),

a pipeline written in Nextflow.22 Briefly, raw reads were adapter

trimmed with the help of Trim Galore (0.5.0)23 using standard parame-

ters and aligned to the reference genome (hg19) using STAR (2.6.1).24

Duplicate reads were estimated with Picard's MarkDuplicates

(2.18.14)25 and Dupradar (1.8.0).26 Quality of reads was determined

using FastQC (0.11.7)27 and RSeQC (2.6.4)28 and quality metrics were

summarized with the help of MultiQC (1.6).29 Counts were retrieved

with FeatureCounts30 and counts for protein-coding genes were nor-

malized with DESeq.31 Counts were transformed using variance stabi-

lizing transformation32 or regularized logarithmic transformation31 for

visual representation. Transcript lengths were retrieved from the

Ensembl database.33 Downstream statistical analysis was performed,

and all images were generated, in R (3.4.4).

2.5 | Assessing cell-of-origin using gene expression
signatures and the NanoString assay

We used three different published signatures to assess our dataset.

The RNA-seq-based classifier (RNA-seq classification) initially devel-

oped by Wright et al. and applied in Reddy et al. was used for cell-of-

origin (COO) classification in paired FF and FFPE samples

(Table 1S).6,34 A DLBCL automatic classifier developed by Barrans

et al. and based on published data from the LLMPP, consisting of

20 classifier genes combined with ABC/GC signature genes and total-

ing 143 genes (133 genes in our dataset, Tables 1S and 2S) was used

to compare gene expression patterns in paired FF and FFPE sam-

ples.6,8,11 In addition, a B-cell–associated gene set defined by Dybkær

et al. based on subset-specific B-cell-associated gene signatures

(BAGS) for naive, centrocyte, centroblast, memory, and plasmablast B

cells comprising 223 genes (180 genes in our dataset, Table 3S) was

employed for the same purpose.35

In addition to these signatures, the Lymph2Cx assay and Research

Use Only version of the NanoString Lymphoma Subtyping Test

(NanoString Technologies, Seattle, WA, USA) was utilized to classify

COO subtype for all FFPE samples according to manufacturer's proto-

col.11,36 Briefly, gene expression data from five housekeeping genes

were initially analyzed to assess input RNA quality, while gene expres-

sion results from the gene panel included in the Lymphoma Subtyping

Test were applied to create a linear predictor score to classify cases as

ABC, GC, or unclassified subtypes (Supporting Information Table 1S).

3 | RESULTS

3.1 | RNA isolation and integrity

To evaluate the performance of the Illumina TruSeq RNA Exome pro-

tocol in degraded samples, we performed RNA-seq on matched FF

and FFPE samples from the same biopsy in 16 DLBCL cases. Sample

integrity was assessed prior to library preparation using the DV200

metric. We confirmed that FFPE samples displayed significantly lower

RNA integrity compared to their FF counterparts (median DV200 value

of 39% vs. 83%, p < 0.001, Figure 1A and Table 4S). Furthermore, we

found no correlation between storage time and RNA integrity for the

FFPE samples (Figure 1B). For two cases, the FFPE samples did not

meet the recommended RNA quality measurements for the RNA

Exome protocol (DV200 ≥ 30%); these cases had instead DV200 values

of 21% (sample FFPE_15) and 27% (sample FFPE_4). Post alignment

quality control assessment did, however, indicate sufficient quality for

further downstream analysis and these samples were included in the

study for comparative purposes and are highlighted in the analyses

and further discussed below. All samples for the validation cohort dis-

played a DV200 value > 30%.

3.2 | Sequencing of RNA-seq libraries

The RNA libraries were sequenced on an Illumina HiSeq 2500 instru-

ment in paired-end 2 � 125 bp mode. The runs generated an average

of 32.1 M mapped reads (range, 17.1–67.5 M) with average insert

read lengths of 247 and 233 bases for the FF and FFPE samples,

respectively (p < 0.001, Figure 2A and Table 4S). We observed differ-

ences in proportion of all mapped reads (97.4% ± 0.5 vs. 96.7% ± 0.6,

average ± SD, p < 0.01) and in reads mapping to coding exon

sequences (96.6% ± 0.7 vs. 94.7% ± 0.8, average ± SD, p < 0.001)

when comparing FF to FFPE tissue, respectively (Figures 2B, C),

values highly similar to previously published data.3 All samples dis-

played high base sequence quality indicated by the Phred quality

score with no difference between FF and FFPE samples (Figure 1S).

The sequencing runs achieved highly comparable library complexity

estimated as the percentage of non-duplicate (unique) reads among all

counted fragments (84.1% ± 4.0 vs. 84.4% ± 2.1, average ± SD) for FF

F IGURE 1 Assessment of RNA integrity. (A) Boxplot indicating
median and inte-quartile DV200 values for paired fresh–frozen and
formalin-fixed, paraffin-embedded (FFPE) samples included for
Illumina TruSeq RNA Access protocol. (B) DV200 values versus time
from sampling to RNA isolation for FFPE samples. Red dots represent
samples with DV200 < 30%. FF indicates fresh–frozen tissue.
***p < 0.001
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and FFPE tissue (Figure 2D). Although the two aforementioned sam-

ples with RNA integrity values lower than recommended (marked in

red in Figure 2) displayed less than the average percent mapped reads

as well as percent reads mapping to coding sequences (Figures 2B, C),

they were not found to deviate from other FFPE samples when calcu-

lating the proportion of uniquely mapped reads (Figure 2D) and were

thus included for further analyses. The sequencing read metrics are

summarized in Table 3S. Finally, in order to investigate potential batch

effects among the different batches of library preparations and

sequencing runs, we evaluated all samples using principal component

analysis and noted no difference in global expression from the differ-

ent sequencing runs (Figure 2S).

3.3 | Transcript coverage and expression

We compared the variation in gene body coverage in FF versus FFPE

tissue measured as number of reads for each coding base along the

length of each gene in 50–30 direction. We detected a highly similar

F IGURE 2 Sequencing reads metrics for paired fresh–frozen and
formalin-fixed, paraffin-embedded (FFPE) tissue. (A) Average insert
read length, (B) % mapped reads, (C) % reads mapping to exon coding
sequence, and (D) average library complexity defined as uniquely
mapped reads to coding RNA sequences in FF and FFPE samples. Red
dots represent samples with DV200 < 30%. Boxplots indicate median
and interquartile values. **p < 0.01 while ***p < 0.001

F IGURE 3 Gene expression analysis in paired fresh–frozen and formalin-fixed, paraffin-embedded (FFPE) samples. (A) Relative read density
along mapped transcripts in 50–30 direction. Green and blue lines represent FF and FFPE samples, respectively. (B) Boxplot indicating median and
interquartile number of detected genes in the two tissue types. (C) Number of detected genes exclusively found in FFPE tissue as a function of
RNA DV200 value. The blue line represents their mean expression per sample using locally weighted smoothing and shaded areas 95% confidence
interval. (D) Boxplot indicating median and interquartile number of detected genes excluding genes with less than 10 mapped reads. Red dots
represent samples with DV200 < 30%. FF indicates fresh–frozen tissue while ns indicates not significant
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pattern in read distribution with both tissue types showing a bias

towards coding bases in the second and third quartiles along the

length of all transcripts when compared to either 50 or 30 regions

(Figure 3A). We then investigated the number of annotated coding

genes expressed in our datasets. In order to get an unbiased view of

the data, we included all uniquely mapped transcripts. This resulted in

an average of 15.2 K (range, 14.4–16.0 K) expressed genes in FF tis-

sue and 15.6 K (range, 12.2–18.4 K) expressed genes for FFPE sam-

ples (Figure 3B).

We next explored potential differences in genes expressed and

their expression levels when comparing FF and FFPE tissue. In our

dataset, 17 937 genes were detected to be co-expressed in at least

one patient and both tissue types. These genes had an average

expression of 1307 counts across all samples. In addition, a total of

143 genes were found exclusively expressed in FF tissue, while in

contrast, 1097 genes were only detected in FFPE samples. However,

these tissue-specific genes were expressed at far lower levels; on

average 0.5 counts per gene and sample exclusively expressed in FF

tissue, and 2.4 counts per gene and sample expressed only in FFPE

tissue. The majority of genes in the latter category were detected in

samples displaying the lowest DV200 values, including the two cases

with DV200 values < 30% (Figure 3C). Excluding these two cases, the

average counts per gene and sample expressed only in FFPE tissue

was instead 1.4 indicating that these transcripts might represent arti-

facts in the dataset. To explore further the potential effect of these

lowly expressed genes in the dataset, we employed an absolute cutoff

of at least 10 mapped reads per gene. This resulted in a significantly

reduced number of expressed genes in both FF and FFPE tissues and,

more importantly, greatly reduced the inter-tissue variability among

the FFPE samples (Figure 3D).

In order to get a view of gene size distribution in our sequencing

libraries, we plotted the gene density of all expressed genes as a

function of gene length. Among these genes, 95% displayed a length

of 750–4250 coding bases with the most frequent gene length found

around 1600 bases (Figure 4A). We then plotted mean normalized

expression of uniquely mapped coding transcripts for both FF and

FFPE samples as a function of gene length. Here, genes within the

mentioned range had uniformly high expression and displayed the low

relative differences in expression when comparing tissue types and

low variance within each tissue type (Figure 4A). In contrast, we

observed notable differences for small and large genes in gene expres-

sion when comparing FF and FFPE samples outside the mentioned

size range. Based on these findings, we excluded low expressing

genes defined as having fewer than 10 mapped reads on average for

the dataset or genes having extremely small or large size as described

above and found a notable reduction in variability in the number of

genes expressed when comparing FF (11.7 K, range 11.0–12.5 K) and

FFPE (12.0 K, range 10.3–13.6 K) samples (statistically not significant,

Figure 4B).

Regardless, Pearson's product–moment correlation analysis of

expressed genes in all samples plotted as FFPE versus FF tissue rev-

ealed a very high correlation when looking at reference genes37 only

(Figure 5A, r = 0.99, p < 0.0001) or when including all uniquely

mapped coding transcripts, including those having low expression or

the ones exclusively expressed in one tissue type (Figure 5B, r = 0.99,

p < 0.0001).

3.4 | Evaluation of COO and gene signatures

In order to evaluate the feasibility of RNA-seq in FFPE tissue, we

first applied the RNA-seq-based classifier developed by Reddy

et al.34 (RNA-seq classification) for COO classification. Using this

algorithm, both the FF and the FFPE sample within each sample

F IGURE 4 Assessing similarities in gene expression in paired fresh–frozen and formalin-fixed, paraffin-embedded (FFPE) samples (A) Gene
expression in relation to gene length in paired fresh–frozen and FFPE tissue. The black line represents relative gene density versus gene length.
Green and blue lines show average expression displayed using variance stabilizing transformation (VST) for FF and FFPE tissue, respectively, while
the shaded areas indicate 95% confidence interval. Dotted vertical lines represent the lower (750 bp) and the upper (4250 bp) limits for the 95%
most common gene lengths in the dataset. (B) Boxplot indicating median and interquartile number of detected genes in the two tissue types
filtered for minimum 10 average counts and gene length. FF indicates fresh–frozen tissue
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pair were classified as having identical COO without exception

(Figure 6A). For the most part, subtype classification based on

RNA-seq data confirmed the results from the Hans algorithm

except for three cases. Samples 2 and 8, which were classified as

GC subtype samples using the Hans algorithm, were instead cate-

gorized as ABC and unclassified subtypes with the RNA-seq classi-

fication, while Sample 15, an NGC subtype sample using the Hans

algorithm, was instead categorized as GC using the RNA-seq clas-

sifier (Table 1).

Next, we applied hierarchical clustering and previously published

gene signatures that have been shown to classify DLBCL samples into

biologically and clinically relevant subgroups to investigate similarity

in expression within paired samples and across patients.8,35 We first

employed a gene set published by Barrans et al. based on data from

the LLMPP.8,11 Here, all FFPE samples paired together with their FF

counterparts from the same biopsy (Figure 6A). We repeated the

same exercise, this time using the B-cell–associated gene signature

defined by Dybkær et al.35 (Figure 6B). Similar to the Barrans et al.

F IGURE 5 Gene expression correlation for all samples comparing paired fresh–frozen (FF) and formalin-fixed, paraffin-embedded (FFPE)
tissue. (A) Housekeeping genes (C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3, VCP, and VPS29)37 only and (B), all
mapped coding reads. Rlog transformed expression values are displayed

F IGURE 6 Hierarchical clustering of all samples based on the gene lists defined by (A) Barrans et al.8 and (B) Dybkaer et al.35 The RNA-seq
classification based on the Reddy et al.34 and the nanostring classification11,36 are also provided
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gene set, most FFPE samples paired together with their FF counter-

parts with two exceptions (Samples 2 and 8) where the sample pairs

instead clustered closely within the same branch (Figure 6B).

3.5 | NanoString assay

All samples were analyzed using the Lymph2Cx assay to determine

COO. One sample (FFPE_15, DV200 value of 21%) returned a border-

line quality score but was included in the analysis. Altogether, data

from the NanoString assay correlated very strongly with the findings

from RNA-seq analysis using the Reddy et al. algorithm for COO clas-

sification34 (Table 1), with the only exception being Sample 3 which

was classified as a GC subtype using RNA-seq data, while the

NanoString assay identified the same sample as belonging to the

unclassified subtype.

Finally, we also investigated COO in a validation cohort consisting

of 50 FFPE DLBCL samples using the Hans, RNA-seq (Reddy et al.),

and NanoString algorithms. Overall, the results correlated well when

comparing the different methods. Interestingly, the highest concor-

dance was found between the RNA-seq and Hans algorithms where

21/21 ABC samples and 44/50 samples (88%) were classified as hav-

ing the same COO (Table 5S). This was followed by the comparison

between RNA-seq and the NanoString assay, which showed 44/50

(88%) concordance, while the Hans and NanoString algorithms dis-

played 41/50 (82%) concordance (Table 5S).

4 | DISCUSSION

The primary objective of this study was to assess the performance of

the Illumina Truseq RNA Exome protocol for the analysis of global

gene expression from degraded RNA in archival samples. To this end,

we performed RNA-seq on paired FF and FFPE samples from the

same biopsy in 16 DLBCL samples. As expected, RNA extracted from

FFPE tissue displayed significantly lower sample integrity when com-

pared to RNA isolated from FF tissue. However, there was no correla-

tion between storage time and FFPE sample RNA integrity. The latter

observation is also in line with previous findings that for FFPE samples

stored at room temperature, there is a significant and rapid decline in

RNA quality within the first 6 months after which time the samples

become stable.38 The median time to sample isolation for our FFPE

cohort in this study was 6 years (ranging up to 11 years) implying that

sample age is not necessarily a limiting factor when choosing cases for

analysis.

Mapped read metrics for the paired samples revealed that FF

samples had longer average read lengths after adapter trimming and

more frequently mapped to coding sequences. In addition, for several

samples, sequencing data from FF tissue generated significantly higher

number of total reads (Table 4S). Having said that, the FFPE tissue

samples averaged 27.5 million mapped reads with 94.7% mappability

to coding sequence and showed high base quality. Given that RNA-

seq experiments using intact RNA to study global gene expression

often make use of ribosomal RNA depletion protocols with far lower

TABLE 1 Cell-of-origin subtype classification of the formalin-fixed, paraffin-embedded (FFPE) diffuse large B-cell lymphoma (DLBCL) samples
using the Hans,10 Reddy et al.34 (RNA-seq classification) and NanoString algorithms11,36

Sample

Hans

classification

RNA-seq

classification

RNA-seq subtype

score

NanoString

classification

NanoString quality

score

Nanostring

LPS

FFPE_9 GC GC �2.249 GC Pass �227

FFPE_6 GC GC �1.932 GC Pass 333

FFPE_1 GC GC �1.886 GC Pass 334

FFPE_4a GC GC �1.78 GC Pass 146

FFPE_5 GC GC �1.582 GC Pass 352

FFPE_7 GC GC �1.131 GC Pass 657

FFPE_15b NGC GC �0.388 GC Borderline 1247

FFPE_3 GC GC �0.255 Unclassified Pass 1921

FFPE_8 GC Unclassified 0.048 Unclassified Pass 2270

FFPE_13 NGC ABC 0.324 ABC Pass 2507

FFPE_10 NGC ABC 0.748 ABC Pass 3063

FFPE_16 NGC ABC 1.153 ABC Pass 3006

FFPE_2 GC ABC 1.283 ABC Pass 3157

FFPE_14 NGC ABC 1.623 ABC Pass 3511

FFPE_11 NGC ABC 1.869 ABC Pass 3669

FFPE_12 NGC ABC 2.397 ABC Pass 3877

Note: FFPE samples with poor RNA integrity. Samples have been sorted in ascending order based on the RNA-seq subtype score.

Abbreviations: ABC, activated B-cell; GC, germinal center B-cell; LPS, linear predictor score; NGC, non-GC.
aDV200 = 27%.
bDV200 = 21%.

SKAFTASON ET AL. 33



mappability to the coding exome (commonly around 60% of reads)

and a typical targeted sequencing depth of around 30–40 million

reads, the sequencing depth obtained in our experiments with FFPE

RNA appears at the very least to be on a comparable level. Addition-

ally, in our experiments, among the reads that did map to coding

sequences, no difference was detected in the proportion of uniquely

mapped reads when comparing the two tissue types, suggesting that

library complexity is not diminished in FFPE tissue. This was also true

for the two samples having RNA integrity values below the rec-

ommended threshold for the protocol (DV200 > 30%). We next

explored the read distribution along the length of all expressed genes

in our dataset and found a striking similarity in the two tissue types.

We also noted that mapped reads were predominantly distributed in

the second and third quartiles when compared to the 50 or 30 regions

(Figure 3A) as previously reported.3,15,18

We detected on average a similar number of expressed genes for

both tissue types (15.2 K for FF vs. 15.6 K for FFPE), which again is in

line with what previously has been reported.3 However, the FFPE

samples displayed a much greater spread with the two samples with

the lowest RNA integrity values having the highest number of

expressed genes. Based on this finding, we investigated differences in

tissue-specific gene expression both in terms of number of expressed

genes and levels of gene expression. Genes that were found

expressed in both tissue types in at least one patient (17 937 genes)

had significantly higher expression (on average 1307 reads) compared

to those found exclusively in FF (143 genes with an average of 0.5

read/gene) or FFPE (1097 genes with an average of 2.4 reads/gene)

tissue. The latter finding appears to be directly related to input RNA

quality as the majority of these genes were found in samples dis-

playing the poorest RNA integrity values and are most likely sequenc-

ing artifacts and should be excluded from downstream analysis. As it

is difficult to estimate confidently actual gene expression levels in

genes with few reads in relative expression estimates, many studies

commonly enforce an absolute cutoff of at least 10 mapped reads for

global expression analysis. Applying this strategy here would also effi-

ciently remove false-positive data due to degraded RNA. This is evi-

dent when comparing the number of detected genes in paired

samples before and after implementing the mentioned 10 read cutoff

(Figure 3D and Table 4S).

In order to explore further differences in gene expression

between the tissue types, we first investigated the frequency at which

expressed genes of various lengths are detected. In our dataset, 95%

of all expressed genes displayed a length of 750–4250 coding bases.

Within this range, we noted only marginal inter- and intra-tissue vari-

ability in gene expression while genes on either side of this size inter-

val instead showed significant differences both within and across

tissue types. It could be argued that genes with extremely large coding

sequences might be more prone to, and that small genes with rela-

tively low expression are more sensitive to, degradation, in particular

in FFPE tissue. Interestingly, in both these instances, we noted a

higher expression in FFPE samples compared to FF counterparts,

which points towards technical artifacts as the main reason for the

variation seen in the dataset. However, to explore fully the underlying

cause of the observed variation for these genes would be beyond the

scope of this study. Regardless and based on our data, it is difficult to

estimate accurately true expression for genes that are either very

small or large in their coding sequence and these genes should there-

fore be either removed from subsequent analysis or at the very least

be interpreted with caution. Nonetheless and despite these apparent

differences between tissue types, we found in unfiltered data a near-

perfect correlation in expression levels when comparing housekeeping

genes alone or investigating all expressed transcripts indicating that

global similarities in expression greatly outweigh the tissue-specific

differences.

Ultimately, the best measure of FFPE RNA-seq performance is

how well the data generated can identify known biological differences

in samples in comparison to data obtained from FF tissue. This is one

area in which previous research evaluating RNA-seq in FFPE tissue is

lacking.3,13–20 In the present study, we first applied the classifier

developed by Reddy et al.34 in our RNA-seq DLBCL dataset to sub-

classify the tumors based on COO (RNA-seq classification) and found

the results to be highly concordant with data obtained using the Hans

algorithm (Table 1). We next applied previously published gene signa-

tures that have been shown to classify DLBCL samples into biologi-

cally and clinically relevant subgroups to investigate biological

similarities within paired samples and across patients. In a study by

Barrans et al.,8 the authors developed a DLBCL classifier gene signa-

ture based on previous work by the LLMPP to assess routinely

processed clinical biopsies stored as FFPE tissue. They performed

GEP using the Illumina WG-DASL assay and used their DLBCL classi-

fier to evaluate the samples. However, they found an overall poor cor-

relation between their GEP and the GC/NGC classification by the

Hans algorithm. As no FF tissue was analyzed, the authors instead

attempted to validate their findings by correlating their results with

clinical characteristics and outcome.5 Using the DLBCL classifier by

Barrans et al.,8 our analysis revealed distinct patterns of gene expres-

sion which correlated very well with data obtained for COO using the

Reddy and the Hans algorithms. In addition, these results were in

agreement and highly concordant with data from the NanoString

Lymph2Cx assay to determine COO validating our RNA-seq data

(Table 1 and Figure 6A). Most notably, all FFPE samples paired with

their FF counterparts underscoring that the biological differences

between samples appear to be far greater than artifacts created as a

result of RNA degradation (Figure 6A). We also used our dataset to

test a refined DLBCL classification system, recently proposed by

Dybkaer et al.35 which is based on subset-specific BAGS for naive,

centrocyte, centroblast, memory, and plasmablast B cells. The authors

found that BAGS assignment was significantly associated with overall

survival and progression-free survival within the GC subclass, where

the centrocyte subtype had a superior prognosis compared with the

centroblast subtype.35 Here, samples within four pairs classified dif-

ferently when comparing FF to FFPE tissue. However, in clustering

analysis, three of the four FFPE samples paired correctly with their

corresponding FF counterpart, while the final sample was found in the

nearest branch. All FFPE cases displayed a highly similar gene expres-

sion pattern compared to their FF counterparts and, although

34 SKAFTASON ET AL.



classified differently, did not cluster with other samples of the same

BAGS classification. This is an indication that the paired samples are

still biologically highly similar, and that the classification mismatch is

more likely due to the algorithm which in our study only contains

180 genes from the original list of 223 genes (Figure 6B). Finally, we

also investigated a validation cohort of 50 FFPE DLBCL samples

where we compared COO classification using the Hans, RNA-seq, and

Nanostring algorithms. Overall, the three different methods were

highly concordant again confirming the feasibility of using capture-

based RNA-sequencing for gene expression analysis.

In conclusion, our data suggest that archived routine FFPE sam-

ples can reliably be used for differential expression analysis using the

Illumina Truseq RNA Exome protocol and RNA-seq. In addition, we

recommend gene expression data to be filtered for both lowly

expressed genes as well as those having extremely low or high num-

ber of coding bases as it may be difficult to accurately estimate true

expression for these genes. Having said that, these recommendations

do not solely apply for RNA-seq data generated from FFPE tissue but

are also true for FF samples.
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