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Abstract 
Alanazi, S. 2022. The Impact of Tryptase and Epigenetic Mechanisms on Mast Cells. Digital 
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1802. 
67 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1380-1. 

Mast cells have a large influence on multiple immune-mediated responses, including allergic 
conditions, and they have been implicated in various diseases such as arthritis and cancer. 
Mastocytosis is characterized by abnormal mast cell proliferation induced by mutations in KIT, 
the stem cell factor (SCF) receptor. Mast cell leukemia is the most aggressive form of systemic 
mastocytosis, with no curative treatment options. Therefore, a therapy or study that help finding 
a cure for this disease is urgently needed. 

In paper I, we studied the effect of histone modification inhibition on mast cells. Our 
findings showed for the first time that mast cell leukemia cells are highly sensitive to histone 
methyltransferase inhibition. In paper II, we further investigated mast cell function, examining 
whether DNA can substitute heparin in stabilizing tryptase enzymatic activity. The mechanism 
by which tryptase retains its enzymatic activity in the nuclear environment is unknown. Our 
study demonstrated that double-stranded DNA maintained the enzymatic activity of human β-
tryptase and identified that tryptase is located within the nucleus of primary human skin mast 
cells. The interaction of tryptase with DNA is further investigated in paper III, with the aim of 
determining whether tryptase can affect the formation of neutrophil extracellular traps (NETs). 
This study showed for the first time that tryptase of mast cells binds to DNA and it has a 
significant potentiating effect on the formation of NETs in reaction to neutrophil triggering 
stimuli. Furthermore, the study showed that DNA-stabilized tryptase has a high capacity for 
proteolytic modification of a variety of cytokines, implying a regulatory role for NET-bound 
tryptase in inflammatory processes. Finally, in paper IV, we examined the effect of mast cell 
apoptosis on histone processing, and the extent to which these processes are reliant on tryptase. 
The findings demonstrated that using a granule-mediated approach to induce mast cell death 
resulted in substantial processing of core histones. Additionally, they showed that tryptase is 
highly required for the processing and that tryptase regulates the amplitude of epigenetic core 
histone modifications during the process of cell death. 

Taken together, the findings provide a basis for investigating histone modification inhibition 
as a potential therapeutic strategy for the disease. Furthermore, they reveal a previously 
unknown way of mediating mast cell tryptase stabilization and indicate that tryptase plays a 
role in the regulation of mast cell death, having the potential to influence our experience and 
understanding of how tryptase affects nuclear processes. 
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Abbreviations 

MC Mast cell 
BMMC Bone marrow mast cell 
NK Natural killer cell 
CTL Cytotoxic T lymphocyte 
MMPs Matrix metalloproteases 
MMC Mucosal type mast cell 
CTMC Connective tissue type mast cell 
TNF Tumour necrosis factor 
CPA3 Carboxypeptidase A3 
MCP Mast cell protease 
MRGPRX2 MAS-related G protein-coupled receptor-X2 
IL Interleukin 
GAG Glycosaminoglycan 
MCT Mast cell tryptase type 
MCTC Mast cell tryptase & chymase type 
c-KIT Receptor tyrosine kinase 
SCF Stem cell factor 
HDC Histidine decarboxylase 
ECC Enterochromaffin cell 
PAR-2 Protease activated receptor 2 
SM Systemic mastocytosis 
PTM Posttransitional modification 
HMC-1 Human mast cell line-1 
PRR Pattern recognition receptor 
TLR Toll-like receptor 
LPS Lipopolysaccharide 
TGF Transforming growth factor 
TMT transmembrane tryptase 
PAF Platelet activating factor 
AHR Airway hyperresponsiveness 
VIP Vasoactive intestinal peptide 
HDAC Histone deacetylase 
HTMi Histone methyltransferase inhibitor 
LLME H-Leu-Leu-OMe 



 

  

 

          
      

              
       

       
     
        
     

          
      

     
         

  

       
    

        
       

    
     

      
     

         
      

            
     

  
      

           
           
              

     
            
      

Introduction 

The immune system is an exceptional system that supports the growth of life 
and helps us to overcome hostile threats. In general, the immune system is 
made up of two parts, known as the innate and adaptive immune systems. Each 
has its unique set of characteristics that combine to generate a complicated 
network of reactions. Innate immunity is a general phrase that refers to the 
host’s nonadaptive responses, which include structural and physical barriers 
such as the skin, tears, and mucosal layers. This system is comprised of a va-
riety of leukocytes, notably phagocytic cells (neutrophils, dendritic cells, and 
macrophages), basophils, eosinophils, and natural killer (NK) cells. In the 
event of an infection, they offer immediate protection. However, when a mi-
croorganism crosses the initial line of defense, these cells collectively engage, 
typically resulting in measures to eliminate the body of the invader, displayed 
as an inflammatory reaction. 

Adaptive immunity is the second part of the immune system. Adaptive immun-
ity’s elements enable the immune system to identify infections precisely as 
well as remember them and hence launch a robust full response. Here, the leu-
kocytes are classified as B-cell and T-cell lymphocytes. B cells are engaged 
in humoral immune responses, whereas T cells are engaged in cell-mediated 
immunological responses. The adaptive strategy entails B cells producing an-
tibodies that specifically target the invading pathogens. T cells are classified 
as adaptive immune response orchestrators comprising T-helper cells, or cy-
totoxic T cells. Collectively, the innate and adaptive systems contribute to the 
development of an effective defense against potentially dangerous pathogens. 

Mast cells (MCs) are generally recognized as a component of the innate im-
mune system. MCs are a type of leukocyte that presents throughout the body, 
and they are found in abundance in the areas where the body encounters the 
external environment: the skin, lungs, and digestive system. Once MCs iden-
tify a microbe or virus, they initiate an inflammatory reaction via releasing a 
wide range of mediators defending the body against pathogens and illnesses. 
One major type of mediators is a large family of proteins known as serine 
proteases (e.g., tryptases and chymases), which are prevalent in secre-
tory granules of MCs as well as other immune cells (e.g., neutrophils, NK 
cells, and cytotoxic T lymphocytes [CTLs]). 
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Background 

Mast cells 
MCs are connective-tissue resident cells that contain abundant granules. They 
arise from hematopoietic pluripotent progenitors in the bone marrow and cir-
culate in the blood vessels as immature MC progenitors [1-3]. MCs do not 
normally mature before they exit the bone marrow; instead, they travel 
through the vascular system as immature MC progenitors that complete their 
development and maturation after arriving in peripheral tissues, such as con-
nective or mucosal tissues, in a process that may be regulated by a variety of 
local environmental factors. MCs are found in most tissues, typically around 
blood vessels and nerves, and are particularly abundant in the interfaces be-
tween the external and internal environments, such as the skin, lungs, and di-
gestive system mucosa, as well as the mouth, conjunctiva, and nose [4-6]. 

MCs are known to be involved in a wide variety of physiological and patho-
logical processes. For instance, MCs play a significant role in allergic disor-
ders and contribute to the pathogenesis of a range of other pathological con-
ditions, including rheumatoid arthritis, cardiovascular problems, bone disease, 
fibrosis, and a variety of inflammatory skin conditions [7-12]. However, it is 
well established that MCs also have positive functions, including a critical 
involvement in the degradation of a variety of toxins and in the host defense 
against parasite and bacterial infections [13, 14]. When MCs grow and mature 
in the tissue environments, an abundance of secretory granules is generated. 
These are densely stuffed with a variety of premade inflammatory mediators 
that are immediately secreted onceMCs are stimulated in a manner that results 
in their degranulation. Various different chemicals are contained in the pre-
made mediators, comprising biogenic amines (histamine, dopamine, and ser-
otonin), premade cytokines, different lysosomal enzymes (e.g., -hexosamini-
dase), proteoglycans of serglycin-type, and vast amounts of MC-restricted 
proteases. Chymase, tryptase, and carboxypeptidase A3 (CPA3) are examples 
of the MC-restricted proteases [15-18]. Moreover, it has been demonstrated 
that MC granules host a variety of additional proteases that are not exclusive 
to MCs. For example, MC granules contain various aspartic-acid and cysteine 
cathepsins as well as renin, cathepsin G, and matrix metalloproteases (MMPs) 
[19]. 
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Mast cell activation 
MCs can be activated by different mechanisms due to their ability to express 
numerous activating receptors on their surface (figure 1). Because of MC ac-
tivation, a wide range of preformed mediators, as well as cytokines and chem-
okines, are released. In addition, it is possible that the degranulatory mecha-
nism does not play a role in this process at all. It is worth noting that MCs do 
not behave similarly to all stimulating signals, and the nature and severity of 
the MC response may vary based on the phenotype of MCs and the intensity 
and specific type of received stimuli [3, 20]. Moreover, the degree of this re-
sponse is regulated by a balance of positive and negative intracellular molec-
ular events [21]. These mechanisms are typically divided into two groups: 
IgE-dependent and IgE-independent activation pathways. 

Figure 1. Different mechanism of mast cell activation. 

IgE-dependent activation 
The IgE-dependent pathway is a well-studied mechanism of MC activation. 
When an antigen binds to immunoglobulin E (IgE) bound to high-affinity IgE-
receptor (FcεRI), it stimulates clustering of FcεRI, which in turn initiates 
downstream signaling pathways. These signaling pathways include phosphor-
ylation of several signaling proteins, as well as lipid metabolism, transcription 
factor activation, and intracellular Ca2+ mobilization. Subsequently, this will 
result in secretion of MC mediators [3, 22]. MCs express and exhibit three 
subunits of FcεRI (FcεRIα, FcεRIβ, and two FcεRIγ), and they are arranged 
in a tetrameric organization (αβγ2). The α-chain binds to the Fc portion of IgE, 
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causing IgE to adhere to the cell surface [23-25]. The β-chain interacts with 
Lyn kinase via Syk activation or interacts through a Fyn-dependent route, 
which will result in signal enhancement and phosphorylation of the β- and γ-
chains [26, 28]. In rodents, the FcεRI tetrameric organization is required for 
cell surface presentation, but in humans, a variant without the β-chain is pre-
sent. Apart from MCs and basophils, other cells, including eosinophils, den-
dritic cells, and monocytes, also produce α- and γ-chains in their trimeric form 
in humans [29-31]. MC activation via this pathway is usually observed in 
acute allergic reactions such as anaphylaxis, and it plays a role in the host’s 
response to several helminth parasites as well [14, 21, 32]. 

IgE-independent activation 
MCs can also be activated by pathways that are independent of IgE/FceRI. 
MCs are highly effective at alerting the host defense mechanisms to the de-
tection of pathogens. This is effectively done by directly identifying pathogens 
utilizing pattern recognition receptors (PRRs), such as toll-like receptors 
(TLRs), which are triggered by certain molecules from pathogenic organisms 
that have preserved molecular patterns, known as pathogen-associated molec-
ular patterns [34]. MCs can express TLR-2, TLR-3, TLR-4, TLR-6, TLR- 7, 
TLR-8, and TLR-9 [35, 36]. The PRRs also include Nod-like receptors and C-
type lectins such as Dectin-1. The selective PRR involvement is considered 
an important mechanism in regulating this kind of MC response. For example, 
peptidoglycan stimulation of MCs through TLR2 results in cytokine release 
and degranulation, whereas lipopolysaccharide (LPS) activation via TLR4 re-
sults in cytokine release alone [37, 38]. Moreover, the binding of Dectin-1 to 
fungal β-glucan causes MC release of LTC4, while binding of CD48 to the 
Escherichia coli adhesion FimH causes TNF-α release [39]. As compared to 
IgE-mediated activation, TLR-mediated MC activation is often independent 
of degranulation. 

The activation of MCs can also be induced by IgG receptors that are present 
on their surface. FcRIII IgG receptor is expressed only in mouse connective 
tissue-type MCs (CTMCs), whereas human MCs display both the FcγRI and 
FcγRIII (activating) as well as FcγRIIB (inhibitory) IgG receptors [40-42]. 
FcγRI may interact with IgG1 in humans, leading to degranulation and the 
release of cytokines [43]. Although the FcεRI and FcγRI receptors share γ-
subunits [44], their activation processes are different. The FcγRIIB inhibitory 
effect on MCs leads to the downregulation of secretory responses [45, 46]. 
Because MCs produce FcγRI on their surface and degranulate in response to 
IgG cross-linking, they are an excellent contributor in TH1 type immune re-
actions. There, the Fc receptors (FcεR and FcγR) bind microbe-specific anti-
bodies, facilitating the detection of pathogens by MCs and the subsequent in-
duction of an appropriate TH1 or TH2 immune response. Moreover, it has also 
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been shown that complement components C3a, C4a, and C5a can cause MC 
degranulation, which leads to anaphylactic reactions, via particular receptors 
in vivo [47, 48]. Although in humans, complement compounds C3a and C5a, 
which are expressed on the skin, have been demonstrated to be able to activate 
MCs, they have no effect on MCs in the lungs [49, 50]. C5a receptors are not 
normally present in normal physiological situations; the C3a receptors 
are only expressed in systemic mastocytosis; and in mice only, CTMCs have 
complement receptors [51-53]. In addition, MAS-related G protein-coupled 
receptor-X2 (MRGPRX2) as well as its mouse ortholog MRGPRB2 are two 
receptors that can induce IgE-independent MC activation [54]. 

Other than the pathways described above, MCs can also be activated by cyto-
kines, peptides, and physical stimuli. For example, histamine can be released 
in varying amounts by cytokines such as Interleukin-1 (IL-1), IL-3, IL-8, and 
GM-CSF [55-57]. Stem cell factor (SCF) has been shown to degranulate MCs 
in vivo and in vitro [58]. MIP-1α has the ability to induce MC degranulation 
in vivo [59]. Moreover, several peptides have been reported to cause hista-
mine release, MC degranulation, or both. Neuropeptides such as substance P 
and neurotensin are capable of affecting neighbouring MCs, causing 
their degranulation [60]. Additionally, there are compounds that directly pro-
voke MC degranulation. Calcium ionophores, adenosine, and endothelin are a 
few examples [47]. Degranulation can also be triggered by external stimulants, 
such as venom, following specific pathogen invasions that penetrate the skin 
surface [61]. Furthermore, physical stimuli such as osmolarity and pressure 
alterations can trigger degranulation. Further, cell-to-cell interactions can 
drive MC activation; evidence shows that activated T cells can activate MCs 
to secrete mediators and cytokines via ICAM-1 and LFA-1 [62, 63]. Indeed, 
MC activation via IgE-independent pathways is considered critical in the path-
ogenesis of numerous nonallergic inflammatory disorders in which MCs are 
involved [64, 65]. 

Heterogeneity of mast cells 
MCs are known as a heterogeneous cell population with two distinct kinds of 
mature MCs that have been characterized in mice and humans. The character-
ization is based on their anatomical location, biochemical characteristics, or 
protease expression profile [3, 4, 5, 15]. Mouse MC populations are classified 
according to their anatomical location, which comprise CTMCs and mucosal 
MCs (MMC; Table 1) [66]. CTMCs contain glycosaminoglycans (GAGs) of 
the heparin type and they are found in the skin, peritoneum, gut, and submu-
cosa of the stomach. On the other hand, MMCs contain chondroitin sulfate 
instead of heparin and they are present in the respiratory and gastrointestinal 
tracts [4, 5]. Human MCs contain both heparin and chondroitin sulfate 
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proteoglycans [67], and they are divided into two populations based on their 
protease content: those with just tryptase (MCT) and those with both tryptase 
and chymase (MCTC) [68]. The human MCTCs are most comparable to 
mouse CTMCs with respect to protease content and tissue localization, both 
expressing tryptase and chymase and being found in the skin, gastrointestinal, 
and bronchial submucosa [5]. Human MCT, on the other hand, expresses tryp-
tase but lacks chymase and they are mostly present in the gut, bronchial mu-
cosa, and the bronchial epithelium, generally equivalent to MMCs [5, 69, 66]. 
In mice, MC progenitors are c-kit+, Thy-1lo cells that contain granules and 
express mRNA for MC-specific proteases [70]; nevertheless, when it comes 
to humans, MC progenitors are nongranulated cells. They are CD34+, CD13+, 
and CD117+ (c-kit+) [71]. SCF, also denoted c-kit ligand, is the major cyto-
kine implicated in the differentiation and proliferation of MCs [72]. In vitro, 
bone marrow-derived MCs (BMMCs) can be induced with a variety of cyto-
kines to develop into either MMCs with the addition of transforming growth 
factor-beta (TGF-β) and IL-9, or CTMCs with the addition of SCF and IL-3 
[73, 74]. 

Table 1. Mast cell Heterogeneity in human and mouse. 
Human Mouse 

MCT MCTC CTMCs MMCs 
Tryptase + + mMCP-6 & 

mMCP-7 
Chymase - + mMCP-4 & 

mMCP-5 
mMCP-1 & mMCP-

2 
CPA - + + -
Proteoglycan Heparin &

chondroitin 
sulfate 

Heparin &
chondroitin 
sulfate 

Heparin Chondroitin sulfate 

Abbreviation: MC, mast cell; CPA, carboxypeptidase A; mMCP, mouse mast cell protease; 
CTMC, connective tissue-type MCs; MMC, mucosal-type MCs 

Mast cell granules 

A distinctive morphological characteristic of MCs is their abundance of elec-
tron dense secretory granules that fill a large portion of the cytoplasm. The 
presence of these granules was crucial in Paul Ehrlich’s discovery of MCs in 
1878, when he discovered connective tissue cells that appeared “well fed” 
(“mastung” in German), a term that referred to the presence of loaded secre-
tory granules [75, 76]. Since then, the presence of secretory granules has been 
used as the main indicator for identifying MCs, which can be easily viewed 
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using various cationic dyes that generate the classic metachromatic staining 
of MCs. MC granules contain a large variety of preformed mediators. These 
are released into the extracellular environment when MCs are activated and 
degranulated, and they can have a significant effect on many physiological or 
pathophysiological events. 

MC degranulation could happen in response to a variety of external stimuli, 
as mentioned above most notably by IgE receptor cross-linking, but also in 
response to neuropeptides, complement activation, and certain toxins [77, 78]. 
However, it is crucial to highlight that in addition to causing the secretion of 
preformed granule components, MC activation can also result in the de novo 
synthesis of many bioactive compounds, which include lipid mediators and 
platelet activating factor, as well as various cytokines and chemokines [77, 
78]. In addition, it is worth noting that activation of MCs does not always 
result in degranulation. MC exposure to lipopolysaccharide, for example, can 
result in the release of cytokines without visible degranulation [78]. Generally, 
these MC mediators can be classified into three categories: preformed media-
tors, newly synthesized mediators, or a variety of cytokines and chemokines. 
These mediators are generally released in one of two ways: continuously or in 
response to MC activation. 

Preformed mediators in mast cell granules 
TheMC granules are filled with preformed mediators such as biogenic amines 
(e.g., histamine), proteases, and proteoglycans. 

Biogenic amines 
Histamine is likely the most important biogenic amine produced by MCs. 
It has been associated with a wide range of physiological and pathological 
conditions [79], ranging from initiating the inflammatory response in tissues 
to modulating gut physiology and serving as a neurotransmitter. Histamine is 
retained within cells in the secretory granules, under an acidic pH condi-
tion, via an ionic connection to the carboxyl groups of proteoglycans and pep-
tides. MCs are the main producers of histamine, which is the most well-exam-
ined mediator in MCs with regard to its bioactivity and mechanism of func-
tion. Histamine is made when the enzyme L-histidine decarboxylase (HDC) 
reacts with the amino acid histidine. HDC-deficient mice exhibit lower MC 
counts and lower protease and proteoglycan levels [80]. Histamine, for in-
stance, facilitates inflammation, raises vascular permeability, and promotes 
stomach acid production in the gastrointestinal system [81]. It acts via the his-
tamine receptors (Histamine 1, Histamine 2, Histamine 3, and Histamine 4 
receptors), which are members of the G–protein-coupled receptor family [82, 
83]. Histamine receptor antagonist drugs have previously been effectively 
used. Smooth muscle cells and endothelial cells have H1 receptors, as do a 
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variety of other cells. The primary role of H2 receptors is to increase stomach 
acid production. The neurological system is the primary site of H3 receptor 
expression. Several types of hematopoietic cells have H4 receptors, including 
MCs. Additionally, MCs produce H1 and H2 receptors, and stimulation of 
these two types of receptors influences the release of MC mediators [84]. 

Another biogenic amine is serotonin, which is primarily a neurotransmitter in 
the central nervous system. However, it is also found in a wide variety of pe-
ripheral tissues and other cells, which include most of the immune cells such 
as monocytes, macrophages, lymphocytes, MCs, platelets, and entero-
chromaffin cells (ECCs) [85]. According to publications, ECCs and brain cells 
produce the majority of serotonin, which is subsequently absorbed and pack-
aged by other cells [86]. Serotonin’s key activities in the immune system are 
well-studied and comprise T-cell and natural killer cell activation, delayed-
type hypersensitivity reactions, and the generation of chemotactic mediators 
(e.g., by macrophages) [87]. 

Mast cell proteases 
MC proteases are abundantly stored in MC granules, contributing up to 25% 
of the total protein of an MC [16, 17, 88]. As a result, when MCs degranulate, 
huge quantities of proteases are released into the surrounding tissue, and they 
are likely to have a significant effect on any condition in which MC degranu-
lation occurs. Notably, unlike most other proteases, the MC proteases are all 
found in an active form in the granules. This is why, when degranulation oc-
curs, the proteases released into the extracellular environment have the ability 
to execute their actions rapidly in the tissue [16]. Proteases that are expressed 
exclusively by MCs are commonly denoted “MC proteases” and they encom-
pass chymases, tryptases, and CPA3. However, it should be noted that MCs 
also express a variety of non–MC-specific proteases, including lysosomal ca-
thepsins, granzymes, neurolysin, and cathepsin G [17]. 

Chymase 
Chymases are monomeric serine proteases that have chymotrypsin-like cleav-
age specificity; they cleave after aromatic amino acid residues. Chymases are 
produced as inactive forms, and therefore they are activated by the elimination 
of the acidic N-terminal dipeptide via dipeptidyl peptidase I [89, 90]. Subse-
quently, the active form is stored in granules, where chymase is firmly linked 
to heparin within the acidic granules, which is considered to hinder autolysis. 
Following MC degranulation, chymase remains in association with heparin 
proteoglycan, which improves enzymatic activity and protects chymase from 
extracellular inhibitors [91, 92]. Humans express just one chymase, belonging 
to the family of α-chymases [93-95]. In mice, the MMCs express two β-chy-
mases, including mouse MC protease 1 (mMCP-1) and mMCP-2, but mMCP-

17 

http:�-chymases[93-95].In


 

  

     
     

       
         

  
  

     
      

        
      
   

    
            
       
     

       
       

     
       
        
            

     

 
          

           
      

    
      

   
     

    
         

        
       

     

          
     
    

      
        
  

2 does not have proteolytic activity [96-99]. CTMCs mostly express mMCP-
4 (a β-chymase) and mMCP-5 (an α-chymase) [98, 101], whereas mMCP-5 
appears to show more elastase-like cleavage selectivity [102 -106]. mMCP-9 
is produced mainly via MCs in the mouse uterine tissue [107]. mMCP-5 is 
probably the closest sequence homolog to human chymase, and the only α-
chymase synthesized by murine MCs. However, the human α-chymase 
(CMA1) has the same cleavage specificity and distribution as mMCP-4 [107]. 
According to this, mMCP-4 might be the human chymase’s functional homo-
log [108]. One α-chymase (rMCP5) and four β-chymases (rMCP-1, 2, 3, and 
4) are expressed in rat MCs [109-111]. One α-chymase is expressed by canine 
MCs [112]. 

MC carboxypeptidase A 
CPA3 is a monomeric exopeptidase that catalyzes the cleavage of amino acids 
from the C-terminal end of proteins and peptides [113]. CPA3, in mice and 
humans, has a comparable tissue distribution and other features [114]. Alt-
hough the specific mechanism by which pro-CPA3 is converted to its active 
form is unknown, evidence seems to suggest that cathepsin E may contribute 
to this mechanism [115]. Further, additional data demonstrate the important 
role of serglycin and its heparin-linked side chains during pro-CPA3 conver-
sion [116,117]. When being converted, CPA3 is retained in its active state 
within the granules. The low pH of about 5.5 within the granules ensures that 
protease activities are kept to a minimal level [117]. 

Tryptase 
Tryptase is an MC serine protease that cleaves after Lys/Arg residues, appar-
ently similar to trypsin. It is remarkable in that it is tetrameric, with all of its 
active sites facing a narrow central pore [17, 118]. Tryptase is insensitive to 
all known physiological protease antagonists and exhibits a relatively re-
stricted substrate cleavage characteristic as a result of its organization 
[88,118,119]. Serglycin, that is, proteoglycans with strongly negatively 
charged GAG side chains of the heparin (or chondroitin sulfate) type con-
nected to the serglycin core protein, has been demonstrated to be crucial for 
the storage of tryptase within the granules [120, 121]. Heparin is known to be 
required for the assembly of enzymatically active tryptase tetramers in addi-
tion to enhancing tryptase storage [122, 123]. Furthermore, it has been 
demonstrated that heparin is required for the tetrameric, active organization of 
tryptase to stay stable, and therefore the absence of stabilizing heparin results 
in fast monomerization and loss of enzymatic activity [124]. Recently, the 
long-held belief that tryptase is restricted to secretory granules was challenged 
by the finding that tryptase could also be found in the nucleus of MCs and in 
tumor cells challenged with tryptase. In the cell nucleus, tryptase has been 
found to degrade many nuclear substances, including lamin B1, and histone 
proteins, and tryptase was also found to regulate gene expression and 
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proliferation [125-127]. Thus, these findings reveal that tryptase is capable of 
becoming enzymatically active inside the nucleus and exerting functional ef-
fects on nuclear events. However, because heparin is unlikely to be found 
within the nucleus, it is unknown how tryptase maintains enzymatic activity 
within the nuclear compartment. 

Tryptases are maintained as active enzymes within the MC granules as a com-
plex with serglycin proteoglycan [123, 124]. Human MCs mainly express two 
kinds of tryptases, known as α- and β-tryptases. The β-tryptases are classified 
into three subsets that include β-I, β-II, and β-III, and they are the predominant 
types identified in MCs with the most catalytic activity [127, 129]. The α-
tryptases are divided into subtypes I and II. It is possible to detect α-tryptase 
subtype I in the bloodstream even when the MC is not degranulated, suggest-
ing it is released on a constant basis [130]. An additional tryptase type was 
also identified, based on structural analysis, and was named gamma tryptase 
(γ-tryptase) or human transmembrane tryptase (hTMT). This type of tryptase 
is exposed to the cell surface during MC degranulation, and it is clearly dis-
tinct from the other forms [131, 132]. The δ-tryptase form of tryptase has also 
been found in human MCs, but its biological relevance has yet to be estab-
lished [131]. Nearly 29% of people are genetically deficient in α-tryptase, ex-
hibiting considerable differences among ethnicities [133]. In mice, mMCP-6 
and mMCP-7, as well as a transmembrane γ-tryptase (known as mTMT), are 
expressed by MCs [131]. mMCP-6 is considered the most homologous to hu-
man β-tryptases and is expressed by CTMCs [2]. Additionally, tryptase 
mMCP-11 is also expressed by mouse MCs in the initial phases of develop-
ment. In rat, MC tryptases have nearly identical expression profiles to their 
mouse equivalents, encompassing rMCP-6 and rMCP-7. Additionally, 
in sheep and bovine, two tryptases, as well as one tryptase in canine and one 
in porcine, have been discovered [134-137]. 

It has been suggested that tryptase degrades a variety of extracellular matrix 
components, such as fibrinogen, fibronectin, and type VI collagen, as well as 
activating pro-MMP-3 [138-141]. Moreover, it has been reported that tryptase 
activates the protease-activated receptor 2 (PAR-2), which could result in in-
flammatory responses [142]. Various studies have shown that MC tryptase 
can have a role in asthma and allergies. Tryptase has been shown to enhance 
smooth muscle cell-, fibroblast-, and epithelial cell proliferation, which may 
contribute to airway hyperresponsiveness (AHR) and airway remodeling 
events in asthma [143, 144]. Furthermore, tryptase is capable of degrading 
vasoactive intestinal peptide (VIP), which serves to ease bronchial smooth 
muscle in the lungs [145]. Studies in which tryptase inhibitors prevented air-
way inflammation and AHR in allergic sheep have added credence to the hy-
pothesis that tryptase has a pathogenic function in asthma [146]. Moreover, 
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incubating human-derived bronchi with tryptase enhances histamine release 
and subsequent in vitro bronchial responsiveness to histamine [147]. 

Proteoglycans 
Proteoglycans are widely expressed and very abundant in the body, and they 
have a wide range of activities. For example, proteoglycans are implicated in 
embryological growth and function in the majority of the body’s organ sys-
tems, including the immune system [148, 149]. Proteoglycans are made up of 
a core protein and GAG chains that are covalently connected. Proteoglycans 
are generally classified into three groups: those present on the cell surface 
(syndecans and glypicans), those that are connected with the extracellular ma-
trix (e.g., versican, aggrecan, decorin, agrin, and perlecan), and those that are 
intracellular (serglycin). Serglycin is formed by a variety of hematopoietic 
cells, comprising macrophages, MCs, lymphocytes, NK cells, and platelets 
[150]. Serglycin proteoglycan is made up of a 17.6 kDa core protein with an 
extended serine/glycine (Ser/Gly) amino acid repeat, with the Ser residues 
serving as GAG adhesion sites [151]. Heparin, heparan sulfate, and chon-
droitin sulfate are the major GAGs associated with serglycin proteoglycans 
[152]. Serglycin proteoglycan’s diverse biological activities are generally due 
to its highly sulfated GAG chains. 

In CTMCs, heparin is coupled to serglycin; heparin is a well-known GAG and 
one of the body’s most negatively charged molecules [153]. Heparin can in-
teract with a variety of proteins due to its high negative charge, particularly 
the prestored MC proteases. MMC serglycin, as opposed to CTMCs, contains 
GAGs of the chondroitin sulfate type that are less negatively charged [154]. 
Both heparin and chondroitin sulfate GAG chains can bind to the serglycin 
core protein in human MCs. Serglycin proteoglycan has been shown, by as-
sessing mutant mice, to function as storage meshes for various proteases in 
the MC granules [41]. CTMCs lacking serglycin proteoglycan show poor cat-
ionic dye staining and impaired storage of a variety of granule components, 
which include CPA3, mMCP-4, mMCP-5, mMCP-6, histamine, and seroto-
nin [41, 155, 156]. Due to a deficiency of highly negatively charged heparin, 
MCs lacking N-deactylase/N-sulfotransferase 2, an enzyme involved in the 
early phase of heparin sulfation, exhibit altered secretory granule protease re-
tention [40, 157]. Altogether, serglycin proteoglycan and negatively charged 
heparin are essential for storing of a variety of positively charged MC-granule 
components. 

Serglycin is exocytosed in association with molecules that rely on serglycin 
for storage as well as mediators that do not rely on serglycin for storage [158]. 
Histamine storage is also dependent on serglycin but dissociates from ser-
glycin during secretion due to the increase in pH outside the granules. How-
ever, certain proteases stay in combination with serglycin-proteoglycan after 
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release, which could enhance protease activity by allowing the enzymes to be 
in close proximity to their heparin-binding targets [159]. CPA3 and chymase, 
for example, stay attached to the serglycin-proteoglycan following degranula-
tion and may work synergistically to perform biological tasks at the site after 
MC activation. Apart from the biological activity of serglycin-dependent pro-
teases, serglycin acts as a ligand for CD44, which is a transmembrane glyco-
protein implicated in a number of cellular activities, such as differentiation, 
growth, and survival [160]. Serglycin may also have additional biological ac-
tivities such as helping to protect serglycin-interacting proteins from proteol-
ysis, binding inflammatory substances such as immune response regulators, 
and transporting molecules to target cells. The latter hypothesis was advanced 
in cytotoxic T lymphocytes, where granzyme B is secreted in association with 
serglycin-proteoglycan and transported to target cells, therefore facilitating 
eventual death (apoptosis) [161]. 

Newly synthesized lipid mediators 
Several lipid mediators can be newly synthesized by activated MCs. Eico-
sanoids are arachidonic acid-derived lipid mediators that are newly generated 
and released directly from activated cells without being stored. Upon activa-
tion, MCs can release enormous quantities of arachidonic acid metabolites, 
including prostaglandin D2, leukotriene C4, and platelet activating factor 
(PAF) [162-164]. These mediators exhibit broncho-constricting and vasodila-
tory capabilities as well as contribute to host immunity, inflammatory pro-
cesses, and allergic pathologies through various activities including effector 
cell transportation, immune cell activation, and antigen presentation [165-
167]. 

Cytokines and chemokines 
Cytokines are immunomodulatory compounds expressed by certain immune 
cells that act as messengers between cells and even impose the intended effect 
on certain cells. Both cytokines and chemokines exhibit a wide range of bio-
logical activities, having important roles in inflammatory processes, infection, 
immune responses, cell survival, and growth. MCs synthesize a diverse num-
ber of cytokines, both anti- and pro-inflammatory cytokines, and MCs are im-
plicated in the storage and secretion of TNF-α, which is a pro-inflammatory 
cytokine [68, 168]. MCs are also able to make a variety of other cytokines, 
including IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, b-FGF-2, TGF-β1, and GM-
CSF [168-175]. IL-3 is highly critical in the growth and development of MCs 
[176] and can cause bone marrow cell differentiation, in vivo, into func-
tional MCs. Moreover, MCs express several chemokines. They can re-
lease MCP-1 and RANTES, which attract monocytes and macrophages to the 
target-tissue sites, as well as IL-8, which attracts neutrophils [177, 178]. 
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Human MCs are also known to synthesize IL-16 and lymphotactin, both of 
which have been shown to recruit lymphocytes to areas of MC degranulation 
[179, 180]. Although cytokine release is often triggered by receptor clustering 
followed by degranulation, it can also be induced without degranulation (e.g., 
by SCF and LPS). 

Apoptosis 
Apoptosis is the process through which cells are instructed to die, and it is 
commonly called programmed cell death [181]. During apoptosis, biochemi-
cal processes result in distinctive cell alterations and death of cells. These al-
terations include membrane blebbing, cell shrinkage, nuclear fragmentation, 
chromatin condensation, DNA degradation, and mRNA fragmentation [182]. 
Each day, the normal adult person loses on average about 60 billion cells un-
dergoing apoptosis [183]. In contrast to necrosis, which is a type of cata-
strophic cell death caused by acute cellular damage, apoptosis is a carefully 
controlled and regulated mechanism. Apoptosis causes the formation of cell 
fragments known as apoptotic bodies, which phagocytic cells can engulf and 
clear before the remnants of the cells can cause damage to nearby cells [184]. 
Apoptosis is strictly controlled and regulated by several pathways, because 
once initiated, it always results in cell death [185, 186]. The intrinsic pathway, 
which is known as the mitochondrial pathway, and the extrinsic pathway are 
the two main activation mechanisms of apoptosis [187, 191]. The intrinsic 
pathway is induced by intracellular signals produced upon cell stress and it 
depends on the release of proteins from the mitochondrial intermembrane 
space [188]. Cytotoxic drugs, DNA damage, and cytokine depletion can all 
activate the intrinsic route. For example, MCs have been demonstrated to suf-
fer apoptotic cell death through the intrinsic route when SCF is depleted [193]. 
The Bcl-2 family of pro-apoptotic proteins, such as Bcl-xs, Bax, Bad, and Bik, 
and anti-apoptotic proteins, such as Bcl-XL, Bcl-2, Mcl-1 and A1, are in-
volved in the intrinsic route’s downstream signaling [193]. The Bcl-2 family 
members regulate the release of apoptotic mediators upon mitochondrial 
membrane permeabilization. Moreover, weak signals from external stimuli 
might also activate the intrinsic apoptotic route [189]. However, the extrinsic 
pathway is induced when external ligands connect to death receptors on the 
surface of cells, resulting in the development of the death-inducing signaling 
complex [190]. 

Both mechanisms result in cell death via activation of caspases, which are 
proteases (protein-degrading enzymes) [192]. These mechanisms activate in-
itiator caspases, which subsequently induce executioner caspase activation 
that then destroys the cell by degrading proteins. Many disorders have been 
linked to defective apoptosis, including cancer, heart disease, and Parkinson’s 
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disease [194, 195, 196]. Excessive apoptosis results in atrophy, whereas inad-
equate apoptosis causes abnormal cell proliferation, which potentially 
can lead to cancer. Certain factors, such as Fas-receptors and caspases, induce 
apoptosis, whereas others, such as members of the Bcl-2 protein family, block 
apoptosis [193]. SCF, the agonist for the c-kit receptor, is crucially important 
for MC viability in vivo and in vitro [197]. During normal circumstances, the 
number of tissue MCs does not change. Mastocytosis can be caused by an 
imbalance in the apoptosis of MCs, which can lead to an excessive MC accu-
mulation. As a result, inducing MC apoptosis might be an effective treatment 
for MC-related pathologies. 

Mastocytosis 
Mastocytosis is a disorder characterized by aberrant MC proliferation in one 
or more tissues [300]. In the majority of cases, abnormal MC expansion is 
driven by mutations in KIT (mainly KITD816V), the receptor for SCF (the 
main growth factor for MCs), which causes the MCs to become self-sufficient 
in terms of growth. Mastocytosis subtypes range clinically from cutaneous to 
systemic, with the second being classified as indolent, smoldering, or aggres-
sive, as well as MC leukemia [300-302]. The most serious form of systemic 
mastocytosis (SM) is MC leukemia, which is defined by bone marrow in-
volvement [300-302]. Organ damage is also present in SM, and the average 
survival period for individuals with aggressive SM variants is generally less 
than 6 months. At the moment, there are just a few treatment choices for SM, 
and allogeneic stem cell transplantation is appearing as a relatively promising 
therapeutic approach [303]. Nevertheless, a considerable number of aggres-
sive SM patients are elderly, and these individuals are often ineligible for stem 
cell transplantation. As a result, treatment choices are generally restricted to 
symptomatic relief, and there is no known cure [300-303] 

Mast cells and the immune system 
Mature MCs have a lengthy half-life and are located in many sites in the body. 
They are especially common at body-environment interfaces, which provide 
entrance routes for infections and hazardous chemicals, and at nerve endings 
and blood vessels [3]. MCs’ development, phenotype, and functionality are 
regulated by the surrounding microenvironment factors in the tissues. Thus, 
these factors modulate MCs’ capacity to identify and respond precisely to a 
range of diverse stimuli via the production of a variety of powerful mediators 
[3]. Because of these characteristics, MCs can function as the first layer of 
protection against pathogens. Besides that, MCs can transmit signals to other 
immune cells across the body to encourage the recruitment of various immune 
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cells to the damaged tissues in response to such assaults (e.g., infections, al-
lergens, toxins, and so forth) [3]. It is clear that MCs perform a crucial role in 
starting inflammation and mediating innate or adaptive immune responses 
[267]. 

Actually, MCs can play both beneficial and detrimental roles for the organism. 
It has been indicated that MCs can play an important function in protecting 
the body against animal venoms and some parasitic helminth diseases [268-
270]. As an example of a beneficial role of MCs, they can directly eliminate 
microbes by phagocytosis and the generation of reactive oxygen species [271]. 
They can also synthesize antimicrobial peptides such as cathelicidins, both 
constitutively and in response to lipoteichoic acid or LPS exposure [272]. In 
vitro and in vivo, these peptides were determined to facilitate the killing of 
Group A streptococci (GAS) [272]. Furthermore, MCs, similar to neutrophils, 
have been shown in vitro to generate extracellular traps that enclose and elim-
inate microbes such as GAS [273]. 

Through the release of granular and secretory mediators, MCs can influence 
the host’s innate immunological responses [274, 275]. Histamine and other 
vasodilators can enhance vascular permeability and local blood circulation, 
and they can act on smooth muscle cells to promote parasite ejection. Further-
more, histamine causes the production of mucus by epithelial cells, which 
could also assist in pathogen neutralization and cell protection. Additionally, 
MC-derived chemotactic substances can facilitate the attraction of a variety of 
inflammatory cells, such as NK cells (IL-8), eosinophils (eotaxin), and neu-
trophils (TNF-α and IL-8) [268, 274]. 

MC mediators are also essential in adaptive immune response modulation 
[268, 274]. For example, dendritic cells (through CCL20 and TNF-α) and ef-
fector T cells (through RANTES and CXCL10) can be recruited to the infec-
tion site and to draining lymphatic nodes by cytokines and chemokines gen-
erated by MCs. In addition, MCs, particularly for CD8+ T cells, can serve as 
antigen-presenting cells directly. MC products can further promote dendritic 
cell maturation, antigen presentation, and co-stimulatory molecule produc-
tion. While MC histamine has been shown to promote Th2 polarization of 
naïve T cells by decreasing dendritic cell IL-12 synthesis and boosting IL-10 
secretion in response to LPS [275], direct MC interaction could also prime 
dendritic cells, in vitro, to enhance Th1 and Th17 polarization [276]. 

MC responses, although enhancing host defense at the infected area, may also 
exacerbate the outcome of some infections by causing further damage to host 
tissues. MCs are unquestionably best recognized for their adverse effects on 
allergies, especially potentially deadly anaphylaxis, and other associated dis-
orders such as asthma and atopic dermatitis [22, 277]. Multiple lines of 
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evidence indicate MCs’ essential involvement in the pathophysiology of al-
lergic disorders. For instance, asthmatic patients exhibit an increased quantity 
of lung MCs, particularly in the smooth muscle layer of the airway, the lung 
mucosa, and the alveoli [278, 280]. 

Additionally, accumulating evidence indicates that MCs are involved in the 
development of various other diseases. MCs have been shown to be overrepre-
sented and activated at inflammatory sites in a variety of diseases. These in-
clude several autoimmune disorders and mastocytosis, many types of cancer, 
and atherosclerosis [3, 281-286]. Indeed, the continuous activation of MCs 
and release of different pro-inflammatory mediators such as certain proteo-
lytic enzymes, growth factors, cytokines, and chemokines can lead to serious 
inflammatory responses [3, 287, 288]. For example, previous research has 
demonstrated that even though intraperitoneal MCs were shown to protect 
against experimental intra-abdominal sepsis, extraperitoneal MCs caused 
higher mortality, associated with pro-inflammatory IL-6 release [289]. In ad-
dition, increased levels of histamine in the blood were also shown to be related 
to a higher death rate, indicating that both sepsis-induced systemic MC 
degranulation and an overproduction of pro-inflammatory mediators were re-
sponsible. Generally, an unregulated rise in the number and activation of MCs, 
as well as changes in the location of MCs throughout the body, might have 
negative effects for the organism. 

Mast cells against microorganisms 
Recent studies have demonstrated that MCs can protect against a wide range 
of diseases. Even though remarkable progress has been made using MC-defi-
cient animals, the fundamental mechanisms by which MCs repress many of 
these microorganisms remain mostly unclear. Initial evidence for a role of 
MCs in protection against microbes arose from investigations of parasitic ill-
nesses such as those elicited by protozoa and helminths [268, 274]. Studies 
withMC-lacking mice revealed that MCs promote hook-worm expulsion from 
the intestine by expressing mMCP-2. Related findings from Strongyloides and 
Trichinella-spiralis infection approaches have revealed that MCs drive nema-
tode gut expulsion and restrict the effect of the parasite on tissues. Further, 
MC-deficient mice had raised parasitic load and larger lesions when infected 
with Leishmania, as well as a decrease in inflammatory responses and IL-12 
generation at the infection site. Finally, reconstitutingMC-deficient mice with 
wild-type MCs and TNF-a-lacking mice revealed a significant function for 
MC-produced TNF-a in reducing parasitemia, the quantitative content of par-
asites in the blood, in a mouse model for malaria [290]. 
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MCs’ involvement in antibacterial defense has been demonstrated more re-
cently, notably in relation to gram-negative bacteria [268, 274]. MCs have 
been shown to protect against experimental pulmonary infection caused by 
many pathogens, includingMycoplasma pneumoniae, Klebsiella pneumoniae, 
GAS skin infection, Pseudomonas aeruginosa, and Hemophilus influenzae 
otitis media as well as urinary infections and peritoneal E. coli infection [291]. 
In contrast, there is less evidence that MCs influence antiviral immunity. By 
activating MCs using synthesized viral dsRNA, CD8+ T cells were recruited 
to the infection site, which was not seen in mice lacking MCs [292]. MC-de-
ficient mice exposed to dengue virus showed an elevated viral load in draining 
lymph nodes caused by an absence of NK and NK T-cell recruitment towards 
the infected area [293]. MCs, on the other hand, might have a role as a viral 
reservoir in the case of HIV infection, particularly during the latent phase 
[294]. 

Even less is known about the involvement of MCs in the pathogenesis of fun-
gal infection. MCs secreted LTC4 in vitro in response to zymosan, a S. cere-
visiae cell-wall component [38]. In one study, it was shown that Aspergillus 
fumigatus hyphae caused MC degranulation via an IgE-independent pathway 
[295]. Extending these investigations to the in vivo setting is essential for un-
derstanding the involvement of MCs in fungal infections because there may 
be considerable differences in how MCs defend against fungi versus other eu-
karyotic microbes and parasites. While inducing a MC-associated Th2 re-
sponse is often beneficial during parasite infection, a Th2 response is typically 
unfavorable during fungal infection [296]. 

MCs could also be both pro- and antitumorigenic, dependent on the type of 
cancer and on the stage of the disease [297]. Even thoughMC activity is linked 
to the recruitment of immune cells that can limit tumor growth, MCs may also 
promote tumor progression in some malignancies, such as prostate cancer 
[298]. The latter is accomplished by the release of angiogenesis-promoting 
growth factors such as VEGF and FGF-2. Additionally, tumor-derived pep-
tides can attract and stimulate MCs in the tumor, favoring tumor development 
[299]. As a result, MCs have been identified as potential targets for cancer 
treatment [297]. Furthermore, MCs can contribute to wound healing processes 
by inducing inflammation and healing of injured tissue. MCs can become ac-
tivated to respond to damage and secrete VEGF, FGF-2, PDGF, and NGF, in 
addition to tryptase and histamine, which assist in wound healing [299]. 

Epigenetics 
Epigenetics is defined as the study of effects on gene expression that occur 
without changing DNA sequence. It includes a variety of mechanisms such as 
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DNA methylation, posttranslational modification (PTM) of core histone pro-
teins, and the effects of non-coding RNAs [198, 199]. In a nucleosome, which 
is the basic unit of chromatin structure, 147 bases of DNA are wrapped around 
an octamer of histone proteins (H3, H4, H2, A, and B) (Figure 2) [258-260]. 
The N-terminal ends of core histones can be modified by a variety of post-
translational modifications (PTMs), including methylation, acetylation, phos-
phorylation, and ubiquitination [200-203]. Such epigenetic modifications, it is 
thought, alter the transcriptional processes and the structural organization of 
chromatin, which consequently have an impact on expression of genes, either 
in combination with other modifications or on their own [201]. Epigenetic 
changes, such as DNA methylation and histone PTMs, are frequently altered 
in myeloid malignant disorders, including myelodysplastic syndromes and 
myeloproliferative neoplasms [204]. Numerous genes are mutated in these 
diseases, and a number of point mutations in genes encoding epigenetic regu-
lators (e.g., DNMT3A, EZH2, and TET2) have been identified in these malig-
nancies, with implications for disease development, etiology, and prognosis 
[205, 206]. Similar patterns of these mutations are also detected in SM [207, 
208] and increasing evidence shows that more understanding of these issues 
can help in prediction of development towards aggressive disease phenotypes 
[209-212]. 

Figure 2. Chromatin structure, comprising histones and DNA, that become 
exposed to epigenetic marks is represented in this figure. Epigenetic Modifi-
cations. (2019). [Graph]. https://scienceofhealthy.com/wp-content/up-
loads/2019/04/Epigenetics.jpg 

Posttranslational modification 
PTM refers to generally enzymatic and covalent processes that alter the char-
acteristics of a protein via proteolytic cleavage or the addition of a modifying 
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group to one or more amino acid, such as acetyl, phosphoryl, glycosyl, or me-
thyl groups [213]. PTMs are important in a wide range of biological activities 
because they have a profound influence on the structure and activity of pro-
teins [214, 215]. PTMs may be reversible or irreversible [216]. Covalent mod-
ifications are reversible processes, whereas proteolytic modifications are irre-
versible [213]. PTMs can takes place in one or multiple types of amino acids, 
and they can cause alterations in the chemical characteristics of the sites that 
have been modified [218]. PTMs are typically found in proteins that have im-
portant structural and functional properties, including membrane proteins, se-
cretory proteins, and histones [219]. These alterations have an effect on a va-
riety of protein activities and properties, such as enzymatic activity and syn-
thesis, lifespan of the protein, protein–protein communication, cellular inter-
actions, molecular trafficking, protein folding, and solubility or localization 
[219-228]. As a result, these modifications have a role in a number of biolog-
ical processes, including signal transmission, gene expression, regulation of 
activity, DNA maintenance, and cell cycle regulation [229-231]. PTMs are 
found in a variety of sites of the cell, such as the cell nucleus, the cytoplasm, 
Golgi apparatus, and endoplasmic reticulum [217]. In the following subsec-
tions, three of the most studied PTMs are described. However, other PTMs 
also exist, including ubiquitylation, myristylation, sulfation, prenylation, 
SUMOylation, palmitoylation, and glycosylation. 

Phosphorylation 
Phosphorylation is an important reversible regulatory process that is required 
for the activity of a large number of enzymes, membrane channels, and nu-
merous other different proteins in eukaryotic and prokaryotic cells [232-233]. 
The target sites for phosphorylation include Tyr, Arg, His, Ser, Thr, Pro, Cys, 
and Asp residues [218], but such modifications occur most frequently on 
Thr, Ser, His, and Try residues [234]. These PTMs are introduced by kinase 
enzymes, by adding a phosphate group from ATP onto the acceptor residues. 
Phosphatases are responsible for the dephosphorylation of such residues 
[235]. Phosphorylation is by far the most known PTM among the various 
types of PTMs, occurring often on target proteins in the cytosol or nucleus 
[236]. This alteration has the potential to modify the protein function signifi-
cantly in a relatively short period through binding to interaction domains or 
binding an effector molecule to a site other than the active site of the enzyme 
[237]. Phosphorylation is essential for several cellular activities, including 
replication, transcription, response to stress, metabolic functions, immune re-
sponses, and apoptosis [224, 238, 239]. Moreover, the disruption of phosphor-
ylation pathways has been linked to a wide range of disorders, including can-
cer, Alzheimer’s disease, Parkinson’s disease, and heart diseases [239- 241]. 

28 



 

  

 
         

       
    
        

     
               

    
    

    
       

      
   

     

  
            
        

            
           

       
          
     

         
        

        
       

    
         
   
      

      
      
       

     
       
     
        

   
      
      

 
 

Acetylation 
Acetylation is a type of PTM that is mediated by histone acetyltransferases 
and lysine acetyltransferases. In this type of modification, Acetyl CoA is used 
as a cofactor by acetyltransferases to add an acetyl group to the ε-amino group 
of lysine side chains, whereas acetyl groups can be erased from lysine side 
chains by deacetylases [242]. Acetylation can occur at varying frequency on 
Lys, Ala, Asp, Arg, Cys, Gly, Met, Glu, Pro, Val, Thr, and Ser residues, with 
acetylation being most common on lysine residues. (218) Acetylation is im-
portant for several biological activities, including chromatin integrity, cell cy-
cle regulation, protein–protein associations, cellular metabolism, actin for-
mation, and nuclear trafficking [243-245]. Based on previous studies, acety-
lated lysine is essential for cell growth, therefore its disruption could result in, 
for example, cancers, immunological disorders, cardiovascular diseases, 
and neurological diseases [243, 246-248]. 

Methylation 
Methylation is a reversible PTM that frequently occurs in the cell nucleus and 
on nuclear proteins such as histones [213, 250]. In target proteins, methylation 
generally occurs on Arg, Lys, Asn, Ala, Asp, Gly, Cys, Glu, Gln, Leu, His, 
Phe, Pro, or Met residues [6]. Nevertheless, at least in eukaryotic cells, Lys 
and Arg are the major target residues for methylation [251, 252]. Among the 
most important biological functions of methylation is the modification of his-
tone proteins. Following their synthesis, histone proteins may become meth-
ylated at Arg, Lys, His, Asn, or Ala residues [253]. Nε-lysine methylation is 
generally the most frequently occurring histone modification in eukaryotic 
chromatin, and it involves the transfer of methyl groups from S-adenosylme-
thionine to histone proteins by methyltransferase enzymes. Methylated Arg 
has also been reported in histone and nonhistone proteins in eukaryotes [254]. 
Lys can undergo either mono-, di- or trimethylation, whereas Arg can be either 
mono- or dimethylated [262]. According to the methylated residue and modi-
fication state, histone methylation can activate or repress transcription [263]. 
For instance, transcriptional activity is related with methylation of the Lys 
residues on H3K4, H3K36, and H3K79. On the other hand, gene suppression 
is associated with H3K9, H3K27, and H4K20 methylation [264]. The pro-
cesses behind active and suppressive actions, as well as why they operate in 
such a tightly regulated fashion, remain unclear [201-203]. Recent research 
has demonstrated that methylation plays a role in a variety of cellular pro-
cesses, from transcriptional regulation to epigenetic suppression mediated by 
heterochromatin formation [255]. A dysregulation in this modification can 
therefore result in a variety of illnesses, including diabetes, cancers, occlusive 
disease, and mental disorders [242, 256, 257]. 

29 

http:acetyltransferases.In


 

  

 

30 



 

  

  

 
              

    
   

      
 

  
             

 

   
            

 

   
    

 

  
           

      
  

 
 
 
 

Present investigations 

Aims 
The aim of the studies in the thesis was to investigate MC function, with a 
particular emphasis on the role of tryptase and histone modifications. The 
group has previously demonstrated that MC tryptase can influence the core 
histone processing, and a part of the present work builds on those earlier re-
search findings. Specifically, the aims of each study was as follows: 

Paper I 
The purpose of this study was to determine the effect of histone modification 
inhibitors on MCs, with a particular focus on MC leukemia cells. 

Paper II 
To extend the focus on MCs by investigating whether tryptase can be regu-
lated by DNA 

Paper III 
To investigate whether tryptase can influence the formation of neutrophil ex-
tracellular traps (NETs). 

Paper IV 
To determine the impact of MC tryptase on apoptosis, histone processing and 
epigenetic modification, as well as to investigate whether such activities are 
dependent on tryptase. 
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Results and Discussion 
This section contains a summary of the most important findings from each 
paper. 

Paper I 
Histone Methyltransferase Inhibition Has a Cytotoxic Impact on Trans-
formed Mast Cells: Implications for Mastocytosis. 
Mastocytosis represents an abnormal growth of MCs. Systemic mastocytosis 
can progress to MC leukemia, which is an uncommon and severe condition 
with limited treatment options. Transformed MCs are sensitive to core his-
tone-modifying enzyme suppression, which has implications for mastocytosis 
treatment. Previously, these effects were restricted to histone deacetylase 
(HDAC) inhibitors. Therefore, in Paper 1, the aim was to investigate whether 
other histone-modifying enzyme inhibitors could affect the growth and viabil-
ity of transformed MCs. To test this possibility, we examined the influence of 
posttranslational modification (PTM) inhibitors, beyond HDAC inhibitors, on 
the growth and viability of transformed MCs (HMC-1 cells). Hence, HMC-1 
cells were preincubated with or without the relevant inhibitors at varying con-
centrations and times, followed by an assessment of cytotoxicity and cell 
counts. The results show that HMC-1 cells are sensitive to both histone me-
thyltransferase (HMT) inhibitors and HDAC inhibitors. We also examined 
these chemicals on LUVA MCs, another transformed MC population. This 
showed that histone methyltransferase inhibition also affects the growth and 
viability of LUVA MCs and that the LUVA MCs were HDAC-sensitive. 

Next, we examined the mechanism by which histone methyl transferase inhi-
bition causes cell death. Using flow cytometry, we found that blocking histone 
methyltransferase in HMC-1 cells increases caspase-3 activation. The activa-
tion of caspase-3 by HMT inhibition indicates apoptotic cell death. However, 
although caspase-dependent DNAase fragmentation is a typical event occur-
ring in classical apoptosis, inhibition of histone methyltransferase did not re-
sult in DNA fragmentation in the HMC-1 cells. The cells were then labeled 
with Annexin V and DRAQ7 to improve the understanding of how HMT in-
hibition causes cell death. In HMC-1 cells treated with histone methyltrans-
ferase inhibitors, cells double positive for Annexin V and DRAQ7 predomi-
nated, indicating cell death with signs of necrosis (i.e., with membrane per-
meabilization). Moreover, a small number of Annexin V+/DRAQ7 cells were 
also observed, indicating minor classical apoptosis. Next, we used western 
blot analysis to assess the inhibitors’ capacity to inhibit histone methylation, 
focusing on H3K4me1, H3K9me2, and H3K27me3 methylation. Both inhib-
itors decreased H3K9me2 levels in HMC-1 cells. 
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Previously, it was not known whether inhibition of histone-modifying en-
zymes other than HDAC could limit transformed MC growth and/or viability. 
Here, our findings show that transformedMCs are sensitive to histone methyl-
transferase inhibitors, suggesting that adequate histone methylation (e.g., at 
H3K9 or H3K27) is important for their survival. Our findings open the door 
to further exploration into histone modification inhibition as a potential ther-
apeutic option for the disease. 

Paper II 
MC β-Tryptase Is Enzymatically Stabilized by DNA. 
In Paper 2, we expanded our focus on MCs to examine whether tryptase ac-
tivity might be influenced by DNA. Previously, the group has revealed that 
MC tryptase can be located in the MC nucleus in addition to its conventional 
location within secretory granules. Additionally, our group’s findings also 
showed that tryptase maintains enzymatic activity in the nuclear environment. 
Importantly, tryptase’s enzyme activity depends on anionic proteoglycans. 
Because proteoglycans are not typically found in the nucleus, we hypothesized 
that DNA, a polyanion, may potentially replace heparin in maintaining tryp-
tase activity. This study’s major aim was to determine whether DNA could 
stabilize tryptase’s enzymatic activity. To address this, we used recombinant 
human ß-tryptase and double-stranded DNA isolated from bone marrow-de-
rived MCs to study tryptase stabilization. Tryptase was tested at 37°C and at 
room temperature with or without DNA, heparin, or cDNA in neutral pH 
buffer. The incubations were carried out for set periods. Then, the residual 
tryptase enzyme activity was determined by measuring the absorbance at 405 
nm immediately after adding a chromogenic substrate for tryptase (S-2288). 
Moreover, to determine the presence of tryptase in the cell nucleus of human 
MCs, we stained MCs from human eyelid skin with tryptase and a nuclear 
marker, followed by confocal microscopy examination. 

The findings indicate for the first time that tryptase interacts with DNA and 
that the interaction stabilizes its enzymatic activity. Our findings further reveal 
that DNA-stabilized tryptase has a strong ability to degrade core histones, sug-
gesting that tryptase is involved in the regulation of epigenetic processes me-
diated by core histone modification. Finally, the study shows that tryptase is 
present in the nucleus of human MCs. 

Paper III 
MC Tryptase Potentiates Neutrophil Extracellular Trap Formation. 
In Paper 3, we further studied the interaction of tryptase with DNA. Activated 
neutrophils are recognized for their release of extracellular DNA-containing 
traps (NETs) and based on the recognized potential of tryptase to interact with 
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negatively charged polymers, we hypothesized that tryptase may interact with 
DNA contained within NETs and thus regulate NET formation. To study this, 
neutrophils were purified from human peripheral blood, and NET formation 
was induced by treating the neutrophils with phorbol myristate acetate (PMA). 
To assess whether tryptase can affect NET formation, we conducted experi-
ments in which NETs were induced in the absence or presence of recombinant 
human β-tryptase. Tryptase alone did not induce NET formation, but when it 
was added together with PMA, NET formation was more pronounced in com-
parison with PMA treatment only. Moreover, neutrophils treated with PMA + 
tryptase displayed a completely disintegrated nuclear architecture in compar-
ison with PMA treatment only. These results suggest that tryptase has a strong 
potentiating effect on NET formation induced by PMA treatment of human 
neutrophils. 

After that, we investigated the mechanism underlying the effect of tryptase on 
NET formation. To this end, we assessed whether tryptase could interact with 
NETs by labeling tryptase with Alexa-488 and then introducing it to PMA-
activated human neutrophils, followed by confocal microscopy analysis. In-
deed, the labeled tryptase largely overlapped with NETs in the neutrophil pop-
ulation, implying that tryptase binds to NETs efficiently. We furthermore ex-
amined whether tryptase may cause proteolysis of core histones in PMA-
treated neutrophils. The tryptase + PMA treatment resulted in a significant 
core histone truncation with distinct proteolytic fragments of H2B, H3, and 
H4. Moreover, the levels of citrullinated H3 (H3cit), which is a hallmark event 
during NET formation, were significantly decreased following tryptase treat-
ment, indicating that tryptase can cleave these modifications from the H3 N-
terminal tail. Next, we tested whether DNA influences tryptase function. First, 
we investigated whether DNA could preserve the tetramerization of tryptase 
and, indeed, these experiments revealed that the tryptase tetramer was main-
tained in the presence of DNA (and as expected, by heparin as well). We then 
tested whether DNA-stabilized tryptase can degrade cytokines and other pro-
inflammatory substances to examine if tryptase interaction with DNA can af-
fect its proteolytic action on macromolecular targets. Only eight proteins (IL-
20, Gal7-His, TSLP, IFNg, TRAIL, KGF-2, OSM, and IL-2) out of more than 
70 showed proteolytic susceptibility to tryptase, with different effects on tryp-
tase catalytic activity between DNA and heparin. 

Finally, we assessed the role of tryptase in NET formation in vivo using tu-
mors from tryptase-deficient mice. It is known that melanomas are linked to 
significant inflammatory infiltrates, including MCs and neutrophils, and MCs 
in melanomas can secrete tryptase into the tumor environment. In this way, 
tryptase from tumor-associated MCs might interact with NETs formed in the 
tumor’s inflammatory environment. Gr1 (Ly-6G/6C) staining revealed a high 
number of neutrophils in the tumor stroma, and extracellular DNA structures 
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appearing as NET-like filaments were commonly seen in association with the 
tumors. However, tryptase-deficient mice displayed markedly fewer NETs 
than did wild-type mice. In fact, no NET formation was found in tumor sec-
tions examined from tryptase-deficient mice. These results imply that tryptase 
in vivo can interact with NETs and has a profound effect on NET formation 
in melanoma. 

In conclusion, the findings of this paper show for the first time that MC tryp-
tase binds to NET-contained DNA and that tryptase has a considerable poten-
tiating effect on the production of NETs in response to neutrophil-activating 
triggers. Moreover, the findings show that DNA-stabilized tryptase has a 
strong ability to modify different cytokines proteolytically, indicating that 
NET-bound tryptase is involved in the regulation of inflammatory processes. 

Paper IV 
Tryptase Regulates the Epigenetic Modification of Core Histones in MC 
Leukemia Cells. 
In Paper 4, we studied the effect of MC (HMC-1) apoptosis on histone pro-
cessing and modification and, in addition, whether such processes are depend-
ent on tryptase. To investigate this issue, we first assessed how various cyto-
toxic agents affect HMC-1 cells. HMC-1 cells were treated with H-Leu-Leu-
OMe (LLME), staurosporine, or histone methyltransferase inhibitors (HMTi). 
All these compounds were shown to be cytotoxic to HMC-1 cells, and all of 
them caused mixed apoptotic and necrotic cell death. Notably, LLME induced 
predominantly apoptotic cell death, in line with prior observations in primary 
mouse MCs. We then utilized western blot analysis to assess the influence of 
cell death on core histone processing in HMC-1 cells. A general decrease in 
the respective core histone (H3, H2B, H4, and H2A) levels during cell death 
was observed in response to HMTi. Intriguingly, H3 cleavage was observed 
in response to HMTi, indicating that histone processing may accompany cell 
death. Staurosporine caused limited H3 cleavage, whereas LLME caused pro-
found H3 cleavage. Overall, these findings show that multiple cytotoxic 
agents cause HMC-1 cell death accompanied by histone cleavage. LLME 
showed the most substantial effect on core histone cleavage in HMC-1 cells. 

On the basis that apoptosis is associated with significant histone modifica-
tions, we evaluated whether cell death in HMC-1 cells affects the levels of 
epigenetic histone marks. The effects of these compounds on H3K4me1, 
H3K9me2, and H3K27me3 were studied. Both HMT inhibitors induced sub-
stantial reductions of the levels of H3K4me1, H3K27me3, and H3K9me2. 
LLME also caused reduced H3K4me1 and H3K9me2 levels. Staurosporin 
caused a limited reduction in H3K4me1 and H3K9me2 levels, whereas neither 
staurosporin nor LLME caused a decrease of H3K27me3. As shown above, 
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cell death in HMC-1 cells is followed by substantial core histone processing 
and effects on the levels of epigenetic histone mark. Tryptase has been found 
to influence these mechanisms in primary murine MCs. The effects on core 
histone processing/epigenetic modification in HMC-1 cells may thus be tryp-
tase-dependent. To investigate this, we tested whether inhibiting tryptase by 
Pefabloc or nafamostat can affect the cell death process in HMC-1 cells. Since 
LLME was the cytotoxic agent that caused the greatest core histone cleavage 
and epigenetic change, we focused on LLME in the following experiments. In 
HMC-1 cells, LLME caused apoptotic cell death, but in the presence of either 
Pefabloc or nafamostat, the proportion of apoptotic cells decreased markedly, 
and the number of late apoptotic/necrotic cells increased. Nafamostat and, to 
some extent, Pefabloc were not cytotoxic to HMC-1 cells. Thus, tryptase af-
fects the mechanism of cell death in HMC-1 cells in response to LLME. 

Further, we tested whether LLME-induced H3 cleavage involved tryptase. 
LLME treatment was associated with significant cleavage of H3, but the H3 
processing was eliminated when cells were treated with Pefabloc or nafa-
mostat. This was not the case when assessing broad-spectrum inhibitors of 
cysteine proteases (E-64d), aspartic acid proteases (Pepstatin A), or metallo-
proteases (EDTA). Thus, tryptase has a major role in H3 cleavage during cell 
death in HMC-1 cells. The observed effect of tryptase on nuclear histones in-
dicates that it is physically associated with these proteins, either at baseline or 
during apoptosis. To address this, we stained HMC-1 cells for tryptase before 
and after LLME treatment. HMC-1 cells stained strongly for tryptase in the 
cytoplasm, consistent with the abundance of tryptase in secretory granules. 
Tryptase positivity was also found after LLME-induced cell death. However, 
after inducing cell death, tryptase staining decreased, most likely due to tryp-
tase release or degradation. The nuclear compartment also showed tryptase 
staining. This was seen both before and after LLME-induced cell death. Fur-
ther, the LLME treatment caused substantial disintegration of the HMC-1 nu-
clear compartment, but the levels and distribution of nuclear tryptase were 
similar at baseline and cell death conditions. 

In conclusion, our findings show that induction of MC apoptosis by a granule-
mediated pathway results in extensive processing of core histones, and that 
such processing is dependent on tryptase. Furthermore, tryptase was found to 
regulate the extent of epigenetic modification of core histones throughout the 
cell death process. Tryptase was also found in the nucleus of both dying and 
viable MC leukemia cells, and we show that its blockade results in enhanced 
MC leukemia cell proliferation. These findings are highly novel and show that 
tryptase has a role in the regulation of MC death. 
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Concluding remarks and continuation of 
studies 

MCs are implicated to have detrimental functions in various pathologies, such 
as asthma and other allergic conditions. MC leukemia is the most aggressive 
form of the systemic mastocytosis, for which therapeutic options are limited 
to dampening the symptoms, and there is still no curative therapy. Thus, there 
is an urgent need for novel insight that may pave the way for finding a curative 
therapy for this disease. In this context, it is noteworthy that our studies have 
established that tryptase can be detected in the cell nucleus in an active form 
in MC leukemia cells. Possibly, this finding may have the potential to be ex-
ploited for therapeutic strategies, but extensive further work will be needed to 
elaborate this possibility. 

The studies presented in this thesis demonstrate previously unknown effects 
of histone modifying enzymes on MC leukemia cells and introduce a novel 
mechanism of maintaining tryptase enzymatic activity. In addition, the studies 
reveal a new perspective of tryptase function during cell death and in the reg-
ulation of inflammatory processes. The first study provides a valuable input 
regarding histone-modifying enzymes' effects on transformed MCs. Except 
for histone deacetylase (HDAC), almost nothing was known about the inhib-
itory effects of other histone-modifying enzymes on the viability and growth 
of transformed MCs prior to this work. Here, we demonstrate for the first time 
that the inhibition of histone methyltransferases (HMT) is cytotoxic to MC 
leukemia cells. This implies that HMT inhibitors may have a therapeutic po-
tential in the treatment of MC transformation-related diseases and opens the 
way for potential utilization of these inhibitors in the treatment of mastocyto-
sis. Additionally, we can consider the application of methyltransferase inhibi-
tion in malignant and other diseases where MCs may be harmful. 

In studies 2, 3, and 4, we further investigated MC’s function by focusing on 
tryptase. We examined the effects of tryptase on the epigenetic modification 
of core histones in human MC leukemia cells. Our findings show that DNA 
preserves the enzymatic activity of human β-tryptase with a similar efficiency 
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as heparin, and that DNA-stabilized-tryptase is capable of degrading core his-
tones. Further, we show that tryptase is located within the nucleus of primary 
human skin MCs. In fact, these findings reveal a novel mechanism of stabiliz-
ing enzymatic activity of MC tryptase and provides a reasonable explanation 
for how tryptase enzymatic activity is maintained in the nucleus of various 
types of cells. Together, these findings have an important impact on our un-
derstanding of how tryptase regulates nuclear events. 

Moreover, the studies show that MC tryptase can regulate NET formation, 
introducing a novel mechanism of interaction between neutrophils and MCs. 
Our findings reveal that, using a granule-mediated strategy to trigger MC 
death, substantial modification of core histones is seen. Moreover, tryptase 
was shown to be responsible for this, indicating that tryptase modulates the 
amplitude of epigenetic core histone changes during the process of cell death. 
Indeed, the significant capacity of DNA-stabilized tryptase to conduct cyto-
kine proteolysis indicates that its action on NETs could potentially result in a 
wide range of consequences. Consequently, it is plausible that NET-associated 
tryptase is able of modifying the cytokine profiles under pathological situa-
tions where both neutrophils and MCs are implicated. However, the latter sce-
nario will need to be addressed experimentally. 

Based on our findings, we speculate that tryptase may have the capacity to 
stimulate the secretion of neutrophil granule components into the external en-
vironment, which may exert an influence on the inflammatory or immune -
mediated processes. For example, since tryptase has the capacity to promote 
NET formation, we may speculate that tryptase thereby has the ability to en-
hance bacterial clearance. However, this hypothesis will need to be tested sys-
tematically. 

In the studies of this thesis, our findings reveal hitherto unknown effects of 
histone modifying enzymes on MC leukemia cells and introduce a unique ap-
proach for maintaining tryptase enzymatic activity, both of which were previ-
ously unidentified. Furthermore, we show a potentially important role of tryp-
tase in both cell death and inflammatory responses. Although we identified a 
previously unknown mechanism of how tryptase enzymatic activity is main-
tained in the nucleus, it is still unknown how tryptase enters the nucleus? This 
would be a main area of investigations in the continuation of this project. Ad-
ditionally, we show here that MC tryptase can regulate NET formation, and 
this led us to ask if tryptase is also capable of influencing the formation of 
MC-derived extracellular traps. Clearly, this would also be an important focus 
of upcoming investigations. 
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