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Spin pumping at terahertz nutation resonances
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We investigate spin pumping current injected by the nutation resonances of a ferromagnet (FM) or an
antiferromagnet (AFM) into an adjacent metal. Comparing the dc spin pumping current between the normal
precession and the nutation resonances, we find that the ratio of spin pumping current at the nutation resonance
to the precession resonance is more pronounced in AFMs. We further show that the spin pumping current injected
by the nutation resonance is opposite in sign as compared with the normal precession mode. This could offer a
useful experimental signature for identifying such nutation resonances. Analyzing the nature of the nutational
eigenmodes, we show that the sign change in spin current is rooted in a reversal of the precession sense for the
nutation mode(s). Furthermore, the nutational modes in AFMs are found to be dominated by precession of one
of the two sublattices only.

DOI: 10.1103/PhysRevB.104.214426

I. INTRODUCTION

The ultrafast manipulation of spins at the terahertz frequen-
cies has paramount scientific and technological interest. Most
spin dynamics experiments have been explained so far by
the traditional Landau-Lifshitz-Gilbert (LLG) phenomenol-
ogy [1–7], which describes a precessional motion of spins
around an effective field and an energy dissipation via a vis-
cous damping term [8,9]. However, at ultrafast time scales, the
LLG equation has been found to be insufficient [10,11].

To address this shortcoming, the LLG phenomenology has
been extended to account for magnetization dynamics in the
inertial regime [12,13]. Essentially, the inclusion of magnetic
inertia leads to a spin nutation at the ultrashort time scales
and can be incorporated via a double-time derivative of the
magnetization, i.e., M × M̈ [14,15]. The inertial LLG (ILLG)
equation of motion for two sublattice systems has the form

Ṁ i = −γi
(
Mi × Heff

i

) + Mi

Mi0
× [αiṀi + ηiM̈i], (1)

with the gyromagnetic ratio γ , the effective field Heff , the
ground-state magnetic moment M0, the Gilbert damping pa-
rameter α, and the inertial relaxation time η. The index “i”
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denotes the sublattice. In general, Gilbert damping in a two
sublattice and the inertial relaxation time are tensors [16–20].
Here we treat them as scalars for simplicity and in an attempt
to capture the leading-order effects. The emergence of spin
nutation has been attributed to several proposed mechanisms
[21–28]. The characteristic time scales of the nutation η have
been predicted to be in a range of 1−100 fs [29,30]. Ex-
perimentally inertial relaxation time η is found to be about
hundreds fs in two sublattice FMs [31].

The spin nutation additionally introduces a second res-
onance in the FM resonance (FMR) spectrum, however,
at a higher frequency in THz range. Such a resonance is
called FM nutation resonance (FMNR) [32,33]. Moreover,
the precession resonance frequencies are decreased due to
the spin nutation [30,32,34]. In a more recent experiment,
several higher-order nutation resonances have been observed
[35]. With rapid recent progress, new pathways for the
role of nutation in practical devices have already started to
emerge [36].

Despite several signatures in ultrafast spin dynamics ex-
periments attributed to nutation modes [29,31,35], further
smoking gun validations are needed. Complementary to a
time-resolved tracking of the magnetization dynamics, the
spin pumping current [37,38] injected by the latter into an
adjacent metal has emerged as a powerful probe. It has already
been employed in investigating a broad range of phenom-
ena from the spin Seebeck effect [39–44] to AFM resonance
[45–47] and over a broad range of time scales. With the
anticipation that spin pumping current driven by the nuta-
tion mode might be very different from the conventional
resonance modes, we theoretically investigate this hypothesis
in both FMs and AFMs here finding valuable results and
insights.
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In this article, we theoretically investigate the dc spin
pumping current injected by a magnet driven by an oscillating
magnetic field into an adjacent metal. We consider both FMs
and AFMs and focus on their nutation modes. We find that
the spin current at the nutation resonance is negative, while
the spin current at the precession resonance is positive. Our
results also show that the spin current at the nutation reso-
nance increases with increasing inertial relaxation time η in
FM and AFM. The computed ratio of spin currents at the
nutation to the precession resonance shows that the nutation
spin current is more pronounced in AFM. We delineate the
nutation eigenmodes finding the FM nutation to entail magne-
tization precession in the opposite sense compared with the
normal precession mode. In AFM, the nutation modes are
characterized by a larger precession cone for one of the two
sublattice magnetizations, thereby departing from the nearly
collinear dynamics in the conventional AFM resonance. These
features may enable a clear distinction of the nutation modes
in experiments.

We now comment on the potential significance of higher-
order spin torques in describing spin dynamics. In comparison
to Eq. (1), the third- and fourth-order spin torques have the
following forms ζ (M × ˙̇Ṁ) and δ(M × ˙̇ ˙̇M ), respectively (the
sublattice index i has been omitted). Such perturbative ex-
pansion entails a progressive smallness of the higher-order
terms making them relevant at increasingly higher frequen-
cies. Presently, estimates for the corresponding coefficients ζ

and δ are not known. At THz frequencies, the second-order
spin torque term is enough to describe the spin dynamics
and be fully consistent with the experimental observations.
Therefore we restrict ourselves to Eq. (1) and analyze the
precession and nutation resonances within the linear-response
theory.

II. SPIN PUMPING IN FMs

We consider a FM with a single sublattice as M = M0ẑ
at the ground state that is under the influence of an exter-
nal Zeeman field H = H0ẑ. Such a FM can be described
by the following free-energy F (M) = −H0Mz − KM2

z /M2
0 ,

where K is the uniaxial anisotropy energy and M0 is the
ground-state magnetic moment. The effective field that enters
into the ILLG equation can thus be calculated using Heff =
−∂F/∂M.

When a small oscillating transversal field h(t ) =
hx(t )x̂ + hy(t )ŷ is applied, the small magnetization
oscillations are induced such that time-dependent
magnetization is M(t ) = mx(t )x̂ + my(t )ŷ + Mz(t )ẑ,

where Mz(t ) =
√

M2
0 − m2

x (t ) − m2
y (t ) ≈ M0. Within the

linear-response theory in the circular basis described by
h± = hx ± ihy = he±iωt and m± = mx ± imy = me±iωt , the
calculated susceptibility expression is [48]

m± = γ M0

	0 − ηω2 − ω ± iωα
h± = χ±h±, (2)

where 	0 = γ

M0
[H0M0 + 2K]. The poles of the susceptibility

determine the resonance frequencies. Without the nutation
term η, only a FMR frequency is obtained. However, the spin
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FIG. 1. The calculated spin pumping dc current for inertial relax-
ation times η = 0 s and η = 10−13 s. The used parameters are M0 =
2μB, K = 10−23 J, γ = 1.76 × 1011 T−1·s−1, α = 0.05, H0 = 1 T,
|h| = 10−3 T, g↑↓

r = 1019 m−2.

nutation additionally introduces a second resonance FMNR
frequency. These two frequencies are [48]

ωFMR =
√

1 + 4η	0 − 1

2η
, (3)

ωFMNR = −
√

1 + 4η	0 + 1

2η
. (4)

The negative frequency in the nutation resonance dictates
the fact that the nutation resonance has opposite handedness
of rotation compared with the FMR [48,49]. This has been
further corroborated by an analysis of the nutation eigenmode
presented in Appendix A.

The dc component of a generated spin current density can
be expressed as [37,50]

js = ω

2π

∫ 2π/ω

0

h̄

4π
g↑↓

r

1

M2
0

[M(t ) × Ṁ(t )]z dt . (5)

We calculate the spin current in the circular basis and [M(t ) ×
Ṁ(t )]z = i

2 [m+ṁ− − m−ṁ+]. Using Eq. (2), the calculated
spin current has the expression

js = h̄

4π
g↑↓

r

[
ωγ 2

(	0 − ηω2 − ω)2 + α2ω2
|h|2

]
. (6)

Figure 1 displays the spin current computation results ob-
tained without and with inertial relaxation time η = 10−13 s.
We denote the calculated spin current at FMR frequencies
as jFMR

s and at nutation frequencies as jFMNR
s . Note that the

spin current at the FMR frequencies has a positive sign;
however, the calculated spin current at the nutation resonance
frequencies has the opposite sign. The reason is that while
the precession mode rotates anticlockwise, the nutation mode
rotates clockwise.

Nonetheless, we calculate the ratio of spin currents calcu-
lated at several inertial relaxation times η in Fig. 2. Note that
the ratio of spin currents is independent of several parameters
including spin mixing conductance g↑↓

r , small field h, etc.
We emphasize that the spin current at the nutation resonance
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FIG. 2. The ratio of spin current for FMs at the nutation reso-
nance to the precession resonance vs inertial relaxation time η. The
used parameters are M0 = 2μB, γ = 1.76 × 1011 T−1·s−1, α = 0.05,
K = 10−23 J, and H0 = 0 T.

increases linearly with η, while the current at the precession
resonance stays almost constant. Such an observation can
easily be understood from Eq. (6). The FMR frequency lies
in the GHz regime and its shift due to nutation is small
in FMs. Therefore, the calculated spin current at the FMR

is roughly proportional to ω−1
FMR ≈ 1/	0 + η. However, the

dominant spin current contribution at the FMNR is ω−1
FMNR ≈

−η. Therefore, at smaller η, the ratio of spin currents is linear
in η; however, the ratio deviates from linearity at larger η.

III. SPIN PUMPING IN AFM

We consider an AFM having two sublattices, namely, A and
B. The ground state of such AFM is MA = MA0ẑ and MB =
−MB0ẑ under an influence of external applied Zeeman field
H = H0ẑ. The free energy of the system [18,48]

F (MA, MB) = −H0(MAz + MBz )

− KA

M2
A0

M2
Az − KB

M2
B0

M2
Bz + J

MA0MB0
MA · MB,

(7)

containing the Zeeman field, uniaxial anisotropy energies for
individual sublattices in terms of KA and KB, and the inter-
sublattice magnetic exchange energy J . The effective field in
the ILLG equation can be calculated using the following defi-
nition: Heff

A = −∂F/∂MA and Heff
B = −∂F/∂MB. Similar to

our consideration of FM, we calculate the AFM susceptibility
assuming hA = hB and MA(t ) = MA0ẑ + mA(t ) and MB(t ) =
−MB0ẑ + mB(t ). In the circular basis, the inverse susceptibil-
ity expression for AFM is obtained as [48]

(
hA±
hB±

)
=

⎛
⎜⎝

1

γAMA0
(	A ± iωαA − ηAω2 − ω)

J

MA0MB0
J

MA0MB0

1

γBMB0
(	B ± iωαB − ηBω2 + ω)

⎞
⎟⎠

(
mA±
mB±

)
, (8)

with the following definitions 	A = γA

MA0
(J + 2KA + H0MA0),

	B = γB

MB0
(J + 2KB − H0MB0). For an AFM, we consider,

γA = γB = γ , MA0 = MB0 = M0, KA = KB = K , αA = αB =
α, ηA = ηB = η. With the assumption that J � H0M0 and
J � K , we have 	A ≈ 	B ≈ γ J/M0. Therefore, the obtained
approximate frequencies of the antiferromagnetic precession
resonance (AFMR) and antiferromagnetic nutation resonance
(AFMNR) are [48,51]

ωAFMR ≈ ± γ

M0

√√√√√
4JK

1 + 2ηγ J

M0

, (9)

ωAFMNR ≈ ±

√
1 + 2ηγ J

M0

η
. (10)

Note that unlike FM, the AFM has two sublattices mean-
ing there are two precession resonance frequencies and
corresponding two nutation frequencies. However, we also
mention that in a two sublattice FM there are two of
each precession and nutation resonance frequencies, e.g.,
CoFeB [31,34].

First we examine and compare the conventional and
nutational eigenmodes in an AFM. To this end, we set

hA± = hB± = 0 and α = 0 in Eq. (8) and obtain two following
equation for mA+ and mB+:

(	A − ηω2 − ω)mA+ + γ J

M0
mB+ = 0, (11)

(	B − ηω2 + ω)mB+ + γ J

M0
mA+ = 0. (12)

Two of such similar equation can also be obtained for mA−
and mB−. At AFMR, we drop the nutation term and the ratio
between mA+ and mB+ is obtained as

mA+
mB+

= −
γ J

M0

	A − ωAFMR
≈ − 1

1 − ωAFMRM0
γ J

. (13)

One can easily calculate that ωAFMRM0
γ J � 1 and can be ne-

glected. Therefore, we obtain mA+ ≈ −mB+ implying that
the two sublattice magnetizations remain nearly antiparallel
subtending almost equal cone angles θA ≈ θB in AFMR, as
depicted in Fig. 3 (left panel).

For nutation mode, we similarly obtain the ratio with the
leading term in AFMNR frequency as ωAFMNR ≈ 1/η as

mA+
mB+

= −
γ J

M0

	A − ηω2
AFMNR − ωAFMNR

= 1
2M0
ηγ J − 1

. (14)
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FIG. 3. The precession and nutation modes in AFMs. The pre-
cession modes behave as normal AFMs, but for the nutation mode,
the spins are not antiparallel giving rise to faster dynamics in
one sublattice, while the dynamics is not experienced by the other
sublattice.

Employing M0
ηγ J � 1, we find mA+ � mB+. This means at the

AFMNR, the two sublattices do not align exactly antiparallel,
giving rise to large cone angle in one sublattice, while the
other sublattice precesses with a much smaller cone angle.
These characteristics of the nutation eigenmodes have been
shown in Fig. 3 (right panel).

Next we calculate the spin pumping current following
Refs. [52,53]. To this end, we consider the effects of intra-
sublattice and also cross-sublattice terms in the spin pumping
current. The spin mixing conductance for an AFM interfaces
with a metal is a 2 × 2 tensor and depends sensitively on
the interface [52,54]. A disordered interface (expected to
be common) effectively behaves as an uncompensated in-
terface [52,54]. Here we report the contributions due to the
intra-sublattice and cross-sublattice spin pumping separately,
keeping in mind that the final result is a weighted sum of the
two where the weight depends on the interface [52,54]. The
intra-sublattice contributions can be calculated as MA(t ) ×
ṀA(t ) + MB(t ) × ṀB(t ) = ω(mA+mA− + mB+mB−) and the
cross-sublattice contributions as MA(t ) × ṀB(t ) + MB(t ) ×

ṀA(t ) = ω(mA+mB− + mB+mA−). The computed spin current
due to intra- and cross-sublattice contributions become

js,Intra = h̄

4π
g↑↓

r × ω

(
mA−mA+

M2
A0

+ mB−mB+
M2

B0

)
(15)

js,Cross = h̄

4π
g↑↓

r × ω
(mA−mB+

MA0MB0
+ mB−mA+

MB0MA0

)
. (16)

The total spin current is calculated from both the intra- and
cross-sublattice contributions as

js,Total = js,Intra + js,Cross. (17)

The computed spin currents are shown for intra-, cross-, and
total sublattice terms at the inertial relaxation time η = 100 fs
in Fig. 4. Without the application of a static magnetic field,
the two AFM precession resonance modes have exactly the
same frequency, however, opposite in sign. Therefore,
the spin currents appear at the resonance frequencies. Due
to the nutation resonance, additional spin current contribu-
tions can be observed at the higher THz nutation frequencies.
Following the results of FM case, the sign of nutation spin cur-
rents will be opposite to the corresponding spin current at the
precession resonance mode for intra-sublattice contributions.

As observed, the magnitude of spin currents at the nutation
resonances is small compared with the spin currents at the
precession resonance at the lower η, e.g., 1 fs. However, it
increases rapidly for higher η and surpasses the spin currents
at the precession resonance already at η ∼ 10 fs. Such obser-
vation in AFMs is in contrast to the FM, where the nutation
spin current is smaller even at η = 1 ps. Note that the AFM
precession resonance is suppressed and thus the spin current
at the precession resonance is smaller compared with that of
the FM resonance.

For intra-sublattice contributions, the nutation spin current
has opposite sign to the precession spin current, consistent
with our findings for FMs [see Fig. 4(a)]. However, for
the cross-sublattice contributions, the precession spin current
changes sign, while the nutation spin current does not change
sign compared with the intra-sublattice contributions [see
Fig. 4(b)]. This is due to the fact that the two sublattices in
the AFM precession mode remain almost antiparallel to each
other. On the other hand, for the nutation modes in AFM,
the two sublattices do not align antiparallel to each other and
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FIG. 4. The spin current contributions for (a) intra-sublattice terms: MA(t ) × ṀA(t ) + MB(t ) × ṀB(t ), (b) cross-sublattice terms: MA(t ) ×
ṀB(t ) + MB(t ) × ṀA(t ), and (c) total with both intra- and cross-sublattice terms calculated without and with the inertial relaxation time i.e.,
η = 0 and η = 10−13 s. The used parameters are: MA0 = MB0 = M0 = 2μB, γA = γB = γ = 1.76 × 1011 T−1·s−1, h̄ = 1.05 × 10−34 m2·kg·s−1,
g↑↓

r = 10−19 m−2, H0 = 0 T, hA = hB = 10−3 T, KA = KB = K = 10−23 J, J = 10−21 J, αA = αB = α = 0.05, and ηA = ηB = η.

214426-4



SPIN PUMPING AT TERAHERTZ NUTATION RESONANCES PHYSICAL REVIEW B 104, 214426 (2021)

10−16 10−15 10−14 10−13 10−12

η (s)

10−4

10−2

100

102

104

(j
A

F
M

N
R

s
/j

A
F

M
R

s
)

Intra ×(−1)

Cross ×(+1)

Total ×(−1)

FIG. 5. The ratio of spin current for AFMs at the nutation
resonance to the precession resonance vs inertial relaxation time.
The used parameters are: MA0 = MB0 = M0 = 2μB, γA = γB =
γ = 1.76 × 1011 T−1·s−1, H0 = 0 T, KA = KB = K = 10−23 J, J =
10−21 J, αA = αB = α = 0.05, and ηA = ηB = η.

hence the nutation spin current does not change sign for intra-
and cross-sublattice contribution. Due to such properties, the
total spin currents at the precession resonance almost cancel
with each other; however, the total nutation spin currents add
up [see Fig. 4(c)], assuming equal intra- and cross-sublattice
spin mixing conductances. Therefore, the total spin currents
are enhanced at the nutation resonances, while those are sup-
pressed at the precession resonances.

To understand such enhancement of spin currents, we com-
pute the ratio of spin currents at the nutation resonance to the
precession resonance in Fig. 5. By doing so, the results are
independent of several parameters used in obtaining Fig. 4.
For example, the ratio of spin currents is independent of spin
mixing conductance g↑↓

r , small field h, etc. Compared with
the FM spin current in Fig. 1, such ratio already crosses unity
within η = 10 fs for AFM. As explained earlier, due to the
cancellation of the spin current at the precession resonance,
the ratio for total contribution increases rapidly. In fact, the
total spin current at the nutation resonance is already higher
even below η = 1 fs.

IV. CONCLUSIONS

To conclude, we present a theoretical investigation of spin
pumping with the magnetic inertial dynamics for one and two
sublattice systems. The magnetic inertial dynamics addition-
ally introduces a spin pumping current at the THz nutation
resonance frequencies. However, due to the opposite sense of
rotation in precession and nutation modes, the spin pumping
current has an opposite sign at the nutation resonance com-
pared with the one at precession resonance. Such scenario
remains the same for intra-sublattice spin current in AFM,
while the cross-sublattice spin current only changes sign at
the precession resonance. Thus the spin current ratio is neg-
ative and positive for AFM intra- and cross-sublattice terms,
respectively. While the two sublattices remain almost antipar-
allel in AFM at the precessional resonance, the antiparallel
alignment is broken at the nutational resonance resulting in a
large cone angle in one of the sublattices. Our obtained results

should motivate the experimental search of magnetic inertial
dynamics in magnets via detection of spin pumping currents.
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APPENDIX: THE CHARACTERISTICS OF NUTATION
RESONANCE IN FM

Here we investigate the characteristics of precession and
nutation resonance modes in FM. Following Ref. [48], we
write the equation for inverse susceptibility as in Eq. (B6) of
Ref. [48],

(
hx

hy

)
= 1

γ M0

⎛
⎜⎝	0 + α

∂

∂t
+ η

∂2

∂t2
− ∂

∂t
∂

∂t
	0 + α

∂

∂t
+ η

∂2

∂t2

⎞
⎟⎠

×
(

mx

my

)
. (A1)

We replace mx = my ∝ eiωt such that ∂
∂t → iω and ∂2

∂t2 →
−ω2. Therefore, Eq. (A1) can be recast as

(
hx

hy

)
= 1

γ M0

(
	0 + iαω − ηω2 −iω

iω 	0 + iαω − ηω2

)(
mx

my

)
.

(A2)

Now we employ hx = hy = 0 and α = 0 in order to examine
the nature of the eigenmodes, finding a relation between mx

and my. We obtain two following equations:

(	0 − ηω2)mx − iωmy = 0 (A3)

iωmx + (	0 − ηω2)my = 0. (A4)

The Eqs. (A3) and (A4) can be written in concise forms as

mx = iω

	0 − ηω2
my (A5)

my = − iω

	0 − ηω2
mx. (A6)

The precession and nutation resonance frequencies that were
obtained previously in Ref. [48] are:

ωFMR =
√

1 + 4η	0 − 1

2η
≈ 	0 − η	2

0 (A7)

ωFMNR = −
√

1 + 4η	0 + 1

2η
≈ −1

η
− 	0(1 − η	0). (A8)

We replace the leading order precession resonance term i.e.
ωFMR ≈ 	0 in Eqs. (A5) and (A6). Therefore, at the preces-
sion resonance we find the relation between mx and my as
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FIG. 6. The precession and nutation mode in FM. Notice that the
precession and nutation modes have opposite sense of rotation.

follows

mx = i	0

	0
my = imy (A9)

my = − i	0

	0
mx = −imx. (A10)

However, the obtained mx and my are complex quantities.
In order to obtain the real and time-dependent parts at the
precession resonance, we compute:

mx = Re[mxeiωt ] = Re[mxei	0t ] = mx cos 	0t (A11)

my = Re[myeiωt ] = Re[−imxei	0t ] = mx sin 	0t . (A12)

At the nutation resonance, however, we replace the leading-
order frequency term, i.e., ωFMNR ≈ −1/η and find

mx = i(−1/η)

	0 − 1/η
my = − i

η	0 − 1
my = imy (A13)

my = − i(−1/η)

	0 − 1/η
mx = i

η	0 − 1
mx = −imx. (A14)

We again calculate the real and time-dependent parts at the
nutation resonance as

mx = Re[mxeiωt ] = Re

⎡
⎢⎣mxe

−i
t

η

⎤
⎥⎦ = mx cos

t

η
(A15)

my = Re[myeiωt ] = Re

⎡
⎢⎣−imxe

−i
t

η

⎤
⎥⎦ = −mx sin

t

η
. (A16)

Such characteristics of precession and nutation resonance
have been shown in Fig. 6.
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