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A B S T R A C T   

Near-equiatomic, multi-component alloys with disordered solid solution phase (DSSP) are associated with 
outstanding performance in phase stability, mechanical properties and irradiation resistance, and may provide a 
feasible solution for developing novel uranium-based alloys with better fuel capacity. In this work, we build a 
machine learning (ML) model of disordered solid solution alloys (DSSAs) based on about 6000 known multi- 
component alloys and several materials descriptors to efficiently predict the DSSAs formation ability. To fully 
optimize the ML model, we develop a multi-algorithm cross-verification approach in combination with the 
SHapley Additive exPlanations value (SHAP value). We find that the ΔSC, Λ, Φs, γ and 1∕Ω, corresponding to the 
former two Hume − Rothery (H − R) rules, are the most important materials descriptors affecting DSSAs for
mation ability. When the ML model is applied to the 375 uranium-bearing DSSAs, 190 of them are predicted to be 
the DSSAs never known before. 20 of these alloys were randomly synthesized and characterized. Our predictions 
are in-line with experiments with 3 inconsistent cases, suggesting that our strategy offers a fast and accurate way 
to predict novel multi-component alloys with high DSSAs formation ability. These findings shed considerable 
light on the mapping between the material descriptors and DSSAs formation ability.   

1. Introduction 

Uranium alloys are considered as the primary nuclear fuel material 
for research and future commercial reactors owing to a combination of 
attractive properties, e.g., high thermal conductivity and fission atomic 
density, easy fabrication, and good compatibility with fuel cladding [1, 
2]. However, anisotropic growth and irradiation-induced swelling 
occurring in these alloys are still unresolved issues [1,3]. Considerable 
efforts on U-based alloys have been devoted to finding optimal compo
sitions that possess body-centered cubic (bcc) structure (γ-phase) and 
improved mechanical and thermodynamic stability under the extreme 
environment of reactors [1–8]. 

Traditionally, the total weight of alloying elements added to the 
uranium matrix (abundance of 235U~5 at%) is limited to less than 10 wt 

%. This means that uranium is the only principal element. Recently, a 
commercial U-50 wt%Zr alloy (abundance of 235U~20 at%) was 
developed, which exhibits higher radiation-induced swelling resistance 
than U-10 wt%Zr [9]. Swelling of the U-50 wt%Zr fuel is expected to be 
around one volume percent per atom percent burn, approximately 15 
times less than that of U-10 wt%Zr (~15 vol percent per one atom 
percent burn). Inspired by this, we bring forth the concept of disordered 
solid solution alloys (DSSAs) with multi-principal elements into the 
design of new uranium alloys. It is well known that DSSAs with four or 
more principal elements (not containing uranium), firstly proposed by 
Yeh et al. [10] and Cantor et al. [11], have drawn much attention due to 
their outstanding performance in phase stability [12,13], mechanical 
properties [14,15], and irradiation resistance [16,17]. As the perfor
mance of DSSAs satisfy the demands of fuel materials, the development 
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of uranium-bearing DSSAs may provide a feasible solution for improving 
fuel performance. 

It is worth noting that a proper method for designing uranium- 
bearing DSSAs should consider a large number of element combina
tions and broad compositional space before sample fabrication. An 
operative approach is filtering out the multi-component uranium alloys 
with low DSSAs formation ability and retaining those with high DSSAs 
formation ability through machine leaning (ML). As a data-driven 
method, ML has been extensively and successively applied to predict 
phase formation ability [18–20] and other desired properties [21–23] in 
various alloy systems. During the prediction process, the correlation and 
importance of features related to phase stability or other targeted 
properties are easily captured [20–22], which is very useful in order to 
clarify ambiguous or controversial issues, and unravel crucial parame
ters affecting the performance of materials. 

To date, several empirical rules based on fundamental atomic and 
thermodynamic properties have been proposed [24–27–30] to distin
guish or predict multi-component alloys with or without concentrated 
DSSP (i.e. DSSP or N(not)DSSP). These rules were generally obtained 
from the distribution of a certain amount of phase data on a 
two-dimensional parameter space. The combination of parameters and 
their ranges underlying these rules are very different and strongly 
dependent on the selected datasets. For example, Guo et al. [26] selected 
a narrow range of ΔHmix ([− 5, 5] kJ/mol) for DSSAs formation in 
multi-component alloys. Yang and Zhang [25] and Zhang et al. [28] 
proposed the combinations (Ω, δr) and (ΔHmix, δr), respectively, to 
determine DSSP and NDSSP. The suggested δr ranges for solid-solution 
formation in these works are [0, 6.6] and [1,6], respectively. Further
more, δr, ΔSc, and ΔHmix were suggested to determine DSSP and NDSSP 
by Guo et al. [24] and Zhang et al. [27]. Although the same parameters 
were selected in these two works, the ranges for DSSAs formation are 
very different, i.e., δr ≤ 8.5, 11 ≤ ΔSc≤ 19.5 J∕(K ⋅ mol), − 22 ≤ ΔHmix≤

7kJ∕mol from Guo et al. [24] and δr < 4, 13.38 J∕(K ⋅ mol) < ΔSc, − 10 <
ΔHmix < 5kJ∕mol from Zhang et al. [27]. Recent results [29,30] from a 
two-dimensional parameter space analysis showed that the predict
ability of some parameter pairs for DSSP formation are quite similar, for 

instance, (δd, γ) and (
̅̅̅̅̅̅̅̅̅̅̅̅

δH0
mix

√

, 
̅̅̅̅̅̅̅̅̅̅̅̅
δHmix

√
). This may indicate that certain 

parameter pairs are strongly correlated. However, a quantitative 
description of the importance of each parameter and possible correla
tions among these is still lacking. A signature of this deficiency is the 
failure of these empirical rules, typically obtained from about one 
hundred experimental data, to predict new DSSAs [31]. 

The purpose of this paper is to build ML models to extract materials 
informatics of known DSSAs hitherto reported, and develop a fast and 
accurate ML model to screen new uranium-bearing, equiatomic alloys 
never known before (see Table S1 of supplementary material), thereby 
narrowing down the phase space for experimental and/or theoretical 
investigations. To test accuracy and reliability of the interpretable ML 
models, 20 uranium alloys were synthesized and characterized. 

The paper is organized as follows. Section 2 presents our machine 
learning technique for building the DSSP formation ability models and 
the experimental details of alloy fabrication and characterization; sec
tion 3 is for results and discussion, and a summary is presented in section 
4. 

2. Methodology 

2.1. Property database and material descriptors 

In this work, we compiled ∽ 1000 DSSAs, which contains metals, 
alloys, intermetallic compounds (IM), metallic glasses (MG) (see 
Table S2 in supplementary material). We also used the MG database 
(6836 entries) built by L. Ward [18]. Possibly inconsistent phase struc
ture information on an alloy across different publications was consid
ered here; two rules for choosing data were established: (1) the phase 

structure information were taken from XRD, (2) the structure informa
tion consistent with the majority of previous studies on that alloy was 
preferred. Finally, our database contains almost all the DSSAs hitherto 
reported, constituted by 47 different elements. After purifying ∽ 8000 
entries of this database, 5979 non-replicate records are retained to form 
our property database for building the ML DSSAs model. We classify 
these multi-component alloys into two classes, namely DSSP and NDSSP. 

To train a DSSAs model by ML, a set of physically motivated but 
easily obtained descriptors is required. So far, many empirical rules 
based on fundamental atomic and thermodynamic properties have been 
proposed to predict the DSSAs as aforementioned. In this work, we 
choose 22 initial parameters [24,25,32–35] as material descriptors. 
These 22 descriptors are related to composition (ci) and basic physical 
properties (pi) of the constituent elements, such as their atomic radius 
(r), melting temperature (Tm), entropy (S), enthalpy (H), cohesive en
ergy (Ec), valence electron concentration (vec), and electronegativity 
(χ). Their physical meaning is briefly described in Table 1. 

2.2. Machine learning model 

The procedure for predicting the DSSAs formation ability of multi- 
component alloys by ML is illustrated in Fig. 1. First, we need to 
address the sample bias in this database (NDSSP: 93.18%, DSSP: 6.82%). 
We randomly sample 500 NDSSP alloys 10 times and combine these data 
with DSSP alloys to construct 10 subdatasets (NDSSP: 55.07%, DSSP: 
44.93%). Then, to address the issue of the algorithm bias, we use the 
random forest (RF), logistic regression (LR), support vector machine 
(SVM), neural network and ada boost classifier (Ada) algorithms, 
implemented in the Artificial Learning and Knowledge Enhanced Ma
terials Informatics Engineering (ALKEMIE) [36], to evaluate the sub
datasets. The 10-fold cross-validations with a splitting data of 80% 
training set and 20% testing set are applied to assess the effectiveness of 
each model and avoid over-fitting. We find that these subdatasets show 
better performance than the original dataset, as shown in Fig.S1. All 
these subdatasets show a little lower recall values (0.82–0.94) than that 
of original dataset (0.96–0.98). However, the Jaccard value (JValue) 
[37], JValue = (True Positive)/(True Negative + True Positive + False 
Positive), of 10 subdatasets are all significantly higher (> 0.8) than that 
of original dataset (0.58–0.67). These results reveal that our strategy 
address the sample bias and algorithm bias, thereby significantly 
improving the prediction ability of these 5 models. 

To screen out the most important descriptors, for each subdataset, we 
evaluate all the descriptors using the RF, extreme gradient goosting 
(Xgboost), extra trees classifier (ET) and gradient boosting classifier 
(GBC) model in combination with the SHapley Additive exPlanations 
value, nameyly SHAP value [38], which is implemented in PyCaret [39]. 
In contrast to the feature importance, the SHAP value take the de
scriptors contribution into consideration, which is one of the 
state-of-the-art algorithms to screen descriptors. The details explanation 
can be found in ref [38]. Then, we average these SHAP values for each 
material descriptor, as shown in Fig. 2. Obviously, the ΔSc is the most 
important descriptors, followed by Λ, Φs, γ, Ω− 1, δr, Dr, ΔHij max

mix , Tm and 
Ec. 

Furthermore, to evaluate the effect of the material descriptor on the 
models, we use these 4 ML models above again with 3, 5 and 10 most 
important descriptors. These 4 supervised ML models learn these esti
mated descriptors, and phase type (yi) of the 908 alloys in each sub
dataset. In terms of JValue,the prediction accuracy of 4 ML models with 
3, 5 and 10 descriptors is comparable to their counterparts with original 
descriptors (within ± 5% errors), as shown in Fig.S2. For some sub
datasets, the new models show even better performance than the orig
inal models. Finally, taking the time cost and model complexity into 
consideration, we choose 5 most important descriptors, namely ΔSc, Λ, 
Φs, γ and Ω− 1 through the whole paper. 
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2.3. Experimental processing 

Alloys were fabricated by vacuum arc-melting. The purity of ura
nium and all the other elements were 99.96 wt% and ≥ 99.8 wt%, 
respectively. Prior to melting, the furnace chamber was evacuated to 
10− 3 Pa and subsequently pressurized with Ar gas (purity, 99.999 vol%) 
to 0.5 Pa. All the alloys were remelted 4 times for homogeneity in the arc 
furnace equipped with a water-cooling copper mold. 

Next, the cast ingots were cut into rectangular shape and polished for 
XRD measurement using SiC papers. The XRD patterns were acquired on 
an Empyrean diffractometer operated at 40 kV and 40 mA with Cu Kα 
radiation (λ = 0.15406 nm) and a diffracted beam monochromator. 
Data treatments including background and instrumental half width 
correction, Kα2 stripping, and peak identification, were carried out using 
the Jade software package. 

Table 1 
The initially selected 22 features [24,25,32–35] for identifying DSSP and NDSSP 
of multi-component alloys.  

Number Parameter Formula Description  

1 δr 
100×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
ci(1 −

ri

r
)
2

√ Difference of single 
atomic radius  

2 δd ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑n

j>1
cicj(1 −

ri + rj

2r
)
2

√ Difference of pair atomic 
radius  

3 Dr ∑n

i=1

∑n

j>1
cicj

⃒
⃒
⃒
⃒
⃒
ri − rj

⃒
⃒
⃒
⃒
⃒

Mismath of single atomic 
radius  

4 γ 
(1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(rmin + r)2

− r2

(rmin + r)2

√

)

(1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(rmax + r)2 − r2

(rmax + r)2

√

)

Mismath of atomic 
packing  

5 Tm ∑n

i=1
ciTi

m  
Average melting 
temperature  

6 ΔSc -R
∑n

i=1
cilnci  

Configuration entropy  

7 Φ* ΔSc − SH

|SE|

Dimensionless 
thermodynamic 
parameter  

8 Ω− 1** ΔHmix

TmΔSc  

Ratio of Gibbs free 
energy  

9 Ec ∑n

i=1
ciEc,i  

Average cohesive energy  

10 ΔHmix ∑n

i=1

∑n

j>1
4cicjHij

mix  
Mixing enthalpy  

11 ΔHij max
mix  max(ΔHij

mix) Largest ΔHij
mix   

12 ΔHij min
mix  min(ΔHij

mix) Smallest ΔHij
mix   

13 ̅̅̅̅̅̅̅̅̅̅̅̅
δHmix

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑n

j>i
cicj(Hij

mix − ΔHmix)

√ 2

kBTm

√
√
√
√
√
√

Dimensionless mixing 
enthalpy  

14 ̅̅̅̅̅̅̅̅̅̅̅̅

δH0
mix

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑n

j>i
cicj(Hij

mix − 0)
2

√

kBTm

√
√
√
√
√
√

Dimensionless mixing 
enthalpy  

15 ̅̅̅̅̅̅̅̅̅̅̅̅

δH0+
mix

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑n

j>i
cicj(Hij+

mix − 0)
2

√

kBTm

√
√
√
√
√
√

Dimensionless mixing 
enthalpy  

16 ̅̅̅̅̅̅̅̅̅̅̅̅

δH0−
mix

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

∑n

j>i
cicj(Hij−

mix − 0)
2

√

kBTm

√
√
√
√
√
√

Dimensionless mixing 
enthalpy  

17 vec ∑n

i=1
civeci  

Average valence electron 
concentration  

18 Δvec ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
ci(veci − vec)2

√ Difference of valence 
electron concentration  

19 Dvec ∑n

i=1

∑n

j>1
cicj

⃒
⃒
⃒
⃒
⃒
veci − vecj

⃒
⃒
⃒
⃒
⃒

Mismatch of valence 
electron concentration  

20 Δχ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
ci(χi − χ)2

√ Difference of 
electronegativity  

21 Dχ ∑n

i=1

∑n

j>1
cicj

⃒
⃒
⃒
⃒
⃒
χi − χj

⃒
⃒
⃒
⃒
⃒

Mismatch of 
electronegativity  

22 Λ*** ΔSc

δr2  
Effective configuration 
entropy  

* The expressions for SH and SE are given in Refs. [32,34,35]. 
** The reciprocal of Ω is defined in order to avoid divergence when ΔHmix 

= 0 (occurs for some alloys). 
*** Singh et al. [33] originally proposed Λ as a geometrical parameter. Here, 

we interpret it as effective configuration entropy. 

Fig. 1. Schematic for the ML prediction. First, the phase structure information 
for 5979 alloys and 22 initial material descriptors affecting DSSAs formation 
are collected from previous works. This database is divided into 10 subdatasets 
with 500 NDSSP and 408 DSSP alloys in each subdataset. Second, material 
descriptors are scored based on the analyses of SHAP values. Third, the DSSAs 
probability of uranium alloys is predicted by the ML models. Fourth, the ura
nium alloys with high DSSAs formation ability are selected as a guide to 
experiments. 

Fig. 2. Average SHAP values for descriptors. The descriptors enumerated from 
1 to 22 correspond to that explained in the Table 1. 
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3. Results and discussions 

Using these models trained by the four ML algorithms as discussed 
above, we predict DSSAs formation ability for 375 uranium-bearing 
equiatomic alloys. This set of alloys contains 45 ternary, 120 quater
nary, and 210 quinary alloys, as shown in Table S1. We predict 190 
novel uranium-bearing equiatomic alloys out of 375 candidates. For the 
experimental verification, 20 equiatomic alloys were randomly selected, 
fabricated by arc-melting and characterized by XRD. The phase infor
mation of these selected uranium alloys as-predicted and experimentally 
determined are listed in Table 2. The detailed XRD results for these al
loys are shown in Fig.S3. The agreement is excellent with only three 
inconsistent cases. 

It is very interesting to learn how the ML algorithms pick the can
didates listed in Table S1 by investigating the physical descriptors. In 
Fig.S4 of the supplementary material, we plot the typical SHAP values of 
a subdataset for 5 most important descriptors. It clearly shows that ΔSc, 
Λ and Φs present a positive effect on the model output, while the γ and 
1∕Ω show a negative effect. The positive effect means the larger the 

value, the higher DSSAs formation ability. In Fig. 3, we plot the ΔSc, Λ, 
Φs, 1∕Ω against γ of uranium-bearing DSSAs, together with those from 
our property database. For the predicted candidates, they show a similar 
ΔSC as the DSSAs in the property database. Such a distribution is also 
observed on the Λ, Φs and 1∕Ω. The ML indeed picks candidates, which 
have a higher ΔSC, Λ and Φs, but a smaller γ and 1∕Ω. In other words, the 
known high DSSAs formation ability in the property database are 
dominated by materials, which have a higher entropy contribution. 
Clearly, the ML picks candidates from the learned material information 
of the DSSAs in the property database. 

It is interesting to observe in what way the informatics discovered 
from this property database can be related to the current understanding 
of solid solution formation mechanism. The design of DSSAs can date 
back to the Hume − Rothery (H − R) rules in physical metallurgy, which 
provide the key guidance to evaluating whether a binary solid solution 
can be formed [40]. These rules include: (i) the relative atomic size 
difference between the solute and solvent elements should be less than 
15%; (ii) the formation of stable intermediate compounds should be 
restricted by carefully choosing the combination of metallic elements; 
and (iii) the electron concentration of the constituent elements should be 
tuned in favor of the formation of solid solutions. 

As for the ΔSc value, a positive effect feature, it helps to stabilize the 
solid solution phase over others, such as IM phase. For U-bearing DSSAs, 
it is only three values, corresponding to the values of ternary, quaternary 
and quinary alloys, respectively. In contrast, most of the NDSSP alloys 
show a lower ΔSc value ( < 10 J∕(K ⋅ mol)). It has been pointed out that 
attaining high entropy in an alloy is not only compositionally depen
dent, as originally proposed, but also related to the atomic size/packing 
and formation enthalpy [41]. This explains why there are several atomic 
size difference factors, e.g. Λ and γ present in the 5 most important 
descriptors. 

Considering the Λ = ΔSc
δr2 , we here interpret this parameter as effective 

configuration entropy (it was firstly proposed by Singh et al. [33] as a 
geometrical parameter). This interpretation intrinsically reveals the 
competition between misfit entropy and configuration entropy [42]. It is 
known that the effect of atomic size differences δr2 on DSSAs formation 
is approximately proportional to the misfit entropy [42]. Thus, δr2 could 
strengthen or weaken the effect of the configuration entropy ΔSc. The 
new interpretation better distinguishes amorphous multi-principal 
element alloys from DSSAs characterized by an equal number of ele
ments and the same set of chemical concentrations {ci} (but different 
chemical constituents), since solid solution and amorphous phases 
typically occur in different (though not disjoint) regions of atomic size 
difference [24]. Moreover, it is more obvious why DSSAs could be ob
tained by adjusting the composition or reducing the number of elements. 

In terms of γ, a negative effect feature, most of the predicted U- 
bearing DSSAs show a lower value (1.0–1.25), in-line with that of DSSP 
alloys in our property database. From the viewpoint of physical foun
dation, the atomic packing parameter, γ, has a more distinct meaning, 
referring to the topological instability [40]. It presents the normalized 
packing density discrepancy between the smallest and largest atoms 
which predominantly determine the atomic packing instability. The 
smaller this value, the more stable is the alloy. Otherwise, IM phase may 
form. 

Regarding Φs [41], a single dimensionless thermodynamic param
eter, is related to the configurational entropy of mixing for an ideal gas 
(SC), the excessive entropy of mixing (SE), which is a function of atomic 
packing and atom size, and the complementary entropy (SH) derived 
from the enthalpy of alloy. This parameter refers to the high entropy 
effect, namely the increase of Φs will maximize the entropy parameter, 
thus favoring the formation of DSSAs. This explains the positive effect of 
Φs as mentioned. In contrast, the negative Φs parameters indicate a 
diminishing entropy effect on the phase formation in these alloys. In our 
database, most of the MG present a negative value or near-zero value, 
which is consistent with previous findings [41]. 

Table 2 
Phase information of 20 randomly selected uranium based equiatomic alloys 
obtained from prediction and experiment. The corresponding predicted DSSP 
probability and phase type of these alloys are also listed.  

No. Alloy Predicted 
phase type 

Experimental 
structure 

Whether 
prediction agrees 
with experiment  

1 UTiNbMoTa DSSP BCC1 +BCC2 Yes  
2 UTiNbTa DSSP BCC1 +BCC2 Yes  
3 UTiMoTa DSSP BCC1 +BCC2 Yes  
4 UMoTa DSSP BCC1 +BCC2 Yes  
5 UVNbMo DSSP BCC1 +BCC2 Yes  
6 UTiVNbMo DSSP BCC1 +BCC2 Yes  
7 UVNb DSSP BCC1 +BCC2 Yes  
8 UTiCrNbMo DSSP BCC1 +BCC2 +IM No  
9 UNbMoHfTa DSSP BCC Yes  
10 UTiZrNbMo DSSP BCC Yes  
11 UNbMoHf DSSP BCC Yes  
12 UTiZrHf DSSP BCC+IM No  
13 UZrNbHf DSSP BCC Yes  
14 UTiCoNiMo DSSP Complex phases No  
15 UNbHf DSSP BCC Yes  
16 UTiCrZrNb NDSSP BCC+IM Yes  
17 UTiCrZrMo NDSSP Complex phases Yes  
18 UCrZrNbMo NDSSP Complex phases Yes  
19 UTiCoZrNb NDSSP Complex phases Yes  
20 UTiCoNiZr NDSSP Complex phases Yes  

Fig. 3. ΔSc, Λ, Φs, 1∕Ω and γ of uranium-bearing DSSAs, together with those 
from our property database. 
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Here it should be noted that these parameters are the necessary 
conditions for determining the solubility of multi-component alloys but 
not sufficient ones. These 5 important desriptors focus on the entropy 
contribution (SC,SE and SH), which is related to the atomic size difference 
and atomic packing, corresponding to the H − R rules (i) and (ii). These 
results also evidence that the DSSAs formation ability is a synergy effect 
of these material descriptors. 

Interestingly, we find that the predicted candidates can also form a 
dual-bcc phase, (e.g. UTiNbMoTa and UTiNbTa), besides single-bcc 
phase, e.g. UNbHf, as show in Table 2. We also interest in the forma
tion mechanism of dual-phase and single-phase DSSAs. Previous in
vestigations reveal that Φs [41], Λ [33] and vec [24] are three important 
descriptors, which can distinguish the single phase and multi-phase 
DSSAs. In Fig.S5, we plot the electronic concentration related parame
ters and Φs against Λ, we find that these three rules seem to have failed 
to distinguish these two classes when the data in database becomes 
larger. As for vec, there seems to be two groups for single-phase (SP) and 
multi-phase (MP) subdatasets with a “gap", as shown in top panel in Fig. 
S4. Regarding Φs, it cannot distinguish the SP (Φs > 20) and MP DSSAs 
(Φs < 20), as suggested in ref [40]. Interestingly, the Λ value of 0.24 J∕ 
()K⋅mol almost classify most of alloys to be the DSSAs, not the value 
0.95, as suggested by Singh [33]. For clarity, we only plot the experi
mental results in Fig. 4. Surprisingly, we find that the Φs criterion, 
namely Φs=25, and Λ criterion, namely Λ=0.7 J∕(K ⋅ mol), can distin
guish the U-bearing dual-phase (UDP) from the U-bearing SP (USP) 
DSSAs with only one inconsistent case, as shown in Fig. 4. Here we note 
that this inconsistent case is UMoNbTiCr, which shows a 
BCC1 +BCC2 +IM phase. 

It is necessary to explain how the Φs affect the formation of USP and 
UDP. As mentioned before, Φs is calculated by three terms, namely SC, SE 
and SH. The former two are related to the configuration entropy and 
excess entropy, respectively, while the third term is related to the en
tropy from enthalpy, which is formulated as SH = ∣Ha∣∕Tm [40]. The Ha is 
calculated using the Miedema model, and the Tm is the average melting 
point, which can be estimated through the rule of mixing. This way, the 
higher the average melting point, the smaller is the SH. In terms of USP 
and UDP equiatomic alloys in this work, they have similar ΔSC and Ha, 
but different Tm. Accordingly, the higher the Tm, the lower is the SH, 
thereby resulting in a larger numerator. However, we note that the SE 
contribution is much stronger than the SH due to the fact that the SE 
value, as denominator, is at least one order lower than the numerator 
value (see details in Table S3). Our explanation points out that the Φs 

play a key role through the physical parameter Tm, which can be further 
explained as follows. 

From the view point of solidification process, the as-cast micro
structure is determined by synergy and competitive effect of thermal 
undercooling and consititutional undercooling. The effect of thermal 
undercooling on solidification is similar due to the same arc-melting 
casting method. The other is constitutional undercooling, caused by 
chemical composition, which leads to the formation of dendritic struc
tures [43]. The stronger the constitutional undercooling effect, the 
larger the primary dendrite, and also the formation of dendrite branch. 
Therefore, the change of undercooling effect through tailing chemical 
composition is an important method to tune the microstructure, which is 
the main factors in this work. 

In general, there exists element segregation in as-cast DSSAs with 
heavy element rich in dendrite arms and lighter elements rich in inter
dendritic regions. The difference in melting temperature between con
stituents encourages elements with higher Tm,such as Ta and Nb, to 
solidify first in the dendrite cores, ultimately forcing lighter elements 
with lower Tm, such as U, into the interdendritic region. The observed 
micro-segregation of the constituents is a manifestation of a non- 
equilibrium solidification of the alloys within the temperature range 
between the liquidus and solidus temperatures, so that homogeneous 
distribution of the alloying elements in the growing solid phases is 
kinetically restricted. The level of micro-segregation of the alloying el
ements is quantitatively described by a partition coefficient [44], 
k = Cda∕Cidr, where Cda is the average concentrations in the centers of 
dendrite arms and Cidr is the average concentrations in interdendritic 
regions. The level of the element segregation increases with an expan
sion of the liquidus-solidus temperature range, which is generally 
associated with an increase in the difference in the melting temperature 
of the constituent elements, and an increase in the solidification rate. It 
has been evidenced that the segregation of an element i increases with 
an increase in the difference between the melting temperature and 
average melting temperature [44,45]. The U-rich interdendrite region 
(kU < 1.0) and Ta- and Nb-rich dendrite arm (kTa > 1.0, and kNb > 1.0) in 
UMoNbTaTi have been confirmed [46]. Also, the lattice parameters can 
be estimated using the mixture rule of elements with errors within 5% 
[46]. Following this scenario, when the difference in lattice parameters 
of idr and da is small enough, resulting from the micro-segregation, it 
will still be single phase, however, when the discrepancy is large 
enough, the dual-phase will appear. 

Although it seems that vec cannot distinguish the SP and MP, in fact 
vec do have contributions to the formation of USP and UDP. It has been 
suggested that the value of vec between 6.87 and 8.0 favors the forma
tion of FCC and BCC duplex structures [24], which is evidenced in 
Fe-Co-Ni-Al system, while the vec value between 6.88 and 7.84 promotes 
the formation of σ phase for Cr- and/or V-containing high-entropy alloys 
[47]. Most recently, Li et al. [48] also confirms the effect of vec on the 
phase structures (see Fig. 3 in ref [48]): lower vec (2.8 ± 0.2) promote 
the hexagonal-closed packed (HCP) phase, while the larger value will 
make BCC (vec=5) and FCC (vec=8.5) phase more stable. These rules can 
be explained due to the fact that most of the FCC-based high-entropy 
alloys often use the elements with higher vec values, such as Fe, Co and 
Ni, while the BCC-based high-entropy alloys often use the elements with 
lower vec values, such as Ti, Nb and Mo. In Fig. 4, it shows that the vec 
has weak effect on the USP and UDP with no clearly boundary. This 
trend is also observed in other electron concentration related 
parameters. 

There are several reasons for these inconsistent findings with pre
vious results. First and foremost, we do not distinguish the HCP, BCC and 
FCC phases, and the BCC- and FCC-based phase are all denoted as SP 
phase. We also designate both the BCC1 +BCC2 phase and BCC+FCC 
phase as MP. Second, most of the elements used in our work are in re
gions of IV B, V B and VI B regions, which have similar vec. For USP and 
UDP alloys, they have a value between 5.0 and 6.0. These results clearly 
evidence that the third H − R rule, namely the electron concentration 

Fig. 4. vec, Dvec, Δvec and Φs against Λ of uranium-bearing DSSP (UDSSP). The 
USP and UDP denote the U-bearing single-phase and U-bearing dual-phase, 
respectively. Here it should be noted that we denote BCC+IM and 
BCC1 +BCC2 +IM as USP and UDP, respectively. 
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rule, has weak effect on the formation of USP and UDP, but the Φs and Λ 
have a stronger effect. In contrast to previous findings [40], the UDP 
alloys show stronger entropy effect than USP alloys. 

4. Conclusions 

In this work, we have carried out a materials informatics investiga
tion based on nearly 6000 multi-component alloys and 22 initial mate
rial descriptors to screen novel U-bearing DSSAs from 375 equiatomic 
multi-component alloys never known before. The 5 most important 
parameters, ΔSc, Λ, Φs, γ, and 1∕Ω, affecting DSSP formation are 
determined through the analyses of SHAP values. 190 out of 375 U- 
bearing alloys are predicted to be DSSAs. The experimental character
ization of 20 randomly selected DSSAs show that (1) the predicted 
DSSAs alloys are in-line with the experimental findings with only three 
inconsistencies, (2) 5 most important features have stronger effect on 
the DSSAs formation ability, corresponding to the former two H − R 
rules, (3) a dual-phase microstructure with two BCC phases was pre
dominantly found with a higher Φs (Φs > 25) and λ value (Λ > 0.7), 
while a single BCC phase appeared with a lower Φs and λ value, (4) vec, 
the third H − R rule, has weak effect on the USP and UDP alloys. 
Moreover, we also substantiate how the ML models pick the candidate 
and in what way the material informatics can be related to the current 
understanding of formation mechanism of solid solution. We believe 
that the data-driven approach, such as that presented in this work, to 
screen material candidates, shed new light on the importance of entropy 
to the discovery of U-bearing DSSAs. A systematic experimental char
acterization on mechanical properties and microstructure of these 
DSSAs will be presented in the future. 
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