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1. Introduction 

String theory aims to unite the two biggest successes of twentieth century 
physics, general relativity and quantum mechanics, into a unified theory of 
quantum gravity. 
This unification has proved to be a difficult problem, which is not just tech-

nical but also conceptual. The foundation of general relativity [1] is that space-
time is malleable and reacts to the presence of matter, while quantum mechan-
ics has particles living on a fixed spacetime, but in which the position of such 
particles is ambiguously defined [2–4]. In fact, even merging special relativity 
with quantum mechanics was a Herculean task that eventually lead to quantum 
field theory (see Ch. 1 of Weinberg [5] and references therein), whose mathe-
matical foundation is still lacking (see, however, [6–12] and references therein 
for a sample of mathematically rigourous approaches). Despite this lack of 
foundations, quantum field theory as represented by the Standard Model has 
unprecedented success in predicting experimental results. 
General relativity is to special relativity as a smooth manifold is to a tangent 

space: indeed, symmetries of general relativity are the manifold diffeomor-
phisms, while the symmetries of special relativity form the Lorentz group, the 
tangent group of a Lorentzian manifold. 
In this sense, given the technical and conceptual difficulties combining the 

special relativistic and quantum mechanical world, an endeavor which lead 
to the theory of quantum fields, it is not so surprising that a quantum theory 
incorporating general relativity has been difficult to construct. 
Superstring theories attempt to solve the problem by replacing “particles” 

with microscopic strings, (we will rely on the standard texts, [13–16], for the 
elementary string theoretic results cited here). Consistency puts strong con-
straints on the possibilities, leading to the five known theories.1 One such 
constraint leads to the conclusion that the spacetime described by string theory 
is ten dimensional, a prediction valid in all five string theories. This is in stark 
contrast with the observation that we live in four spacetime dimensions. 
One popular method of attacking this problem is a so-called dimensional 

reduction [19–21]. Indeed, it turns out that although there are only five string 
theories, they possess a large2 number of vacua. One can find vacua in which 

1We are ignoring the evidence that points towards a unifying non-perturbative theory which 
has the five possible string theories as perturbative expansions in different corners of moduli 
space, [17, 18]. 
2Long believed, however, to be finite [22], the modern approach to understanding this space is 
related to the swampland program [23]. 
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some of the ten dimensional spacetime dimensions are rolled up, or “compact-
ified”, whilst leaving some directions extended. At certain energy scales, the 
compact directions are essentially invisible, but leave a signature in the spec-
trum and couplings of the effective theory on the remaining spacetime. General 
reviews of different aspects of this huge topic include [24–26] as well as the 
standard string theory texts. A more precise, though still concise, review is also 
in Chapter 2 of this thesis. The shadow of the compact geometry is encoded in 
a certain moduli space; in the settings of interest for this thesis it corresponds 
to the moduli of a globally supersymmetric effective theory, but its higher di-
mensional origins reveal that it is described as the moduli of certain geometric 
features of the compact manifold. 
This thesis is concerned with the study of these, and closely related, moduli 

problems and the concommitant effective theories. 

Thesis outline 
The thesis begins in Chapter 2 with a review of the compactification problems 
that are studied: heterotic string compactifications. 
In Chapter 3, the mathematics behind a major component of the geometric 

moduli problem, that of G structures and their connections, is reviewed. 
Chapter 4 is a summary of Paper II. In this paper, we investigated certain 

refinements that are present whenever one studies a supersymmetric compact-
ification on seven manifolds. The focus of this chapter is on the space of the 
“maximal” guaranteed refinement that exists. We explain what is meant by 
this statement, and review some of the novel results of that paper. 
Chapter 5 summarises another paper on supersymmetric, seven dimensional 

compactifications, Paper I. In that paper, a superpotential is found, whose crit-
ical locus describes the moduli space of such compactifications. We review 
the reasoning behind this and demonstrate the claimed behaviour. 
The final chapter of substance is Chapter 6, reviewing Paper III. In this pa-

per, we investigated the Yukawa couplings of an extremely popular class of 
compactifications that lead to effective four dimensional physics, Calabi-Yau 
compactifications. We utilised homological algebra to find vanishing theo-
rems that control these couplings. Here, we briefly review the mathematical 
background needed for the statement and proof of these theorems, and work 
our way up to a streamlined proof. 
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2. Moduli and dimensional reduction 

String theory demands a ten dimensional spacetime.1 This appears to be at 
odds with basic observations and therefore needs to be addressed. Dimensional 
reduction is one such attempt. The putative solution is the assertion that, al-
though spacetime is ten dimensional, six of those dimensions are very small. 
As a consequence, all measurements at a sufficiently low energy will probe the 
wrapped up directions in only the most rudimentary fashion. Although mak-
ing contact with measurement is probably the most important motivation for 
introducing this procedure, it has also been fruitful to study the theories ob-
tained by compactifying to different dimensions. In particular, compactifying 
allows one to probe different sectors of the moduli space and a number of the 
interesting dualities that link the various string theories to each other and their 
non-perturbative cousins, M- and F-theory. For a small sample of such results, 
see [17, 18, 27–35]. 
A dimensional reduction occurs in two steps. Firstly, one compactifies the 

theory, by placing it on a vacuum that takes a product form, with one compact 
factor. Secondly, one scales out the modes that propagate along the compact 
factor by going to low enough energies that such excitations are essentially 
irrelevant. This results in an effective theory on the large directions and, so 
long as the compact volume is small enough, it is valid at energy scales that 
cover particle experiments for the foreseeable future. In string theory models, 
the internal manifold must also have length scale much longer than the string, 
to avoid modes coming from string wrapping modes. 
In a little more detail, the starting point is a ten dimensional supergravity 

that approximates a string theory at low energies, with fields the massless ex-
citations of the string [16]. Next, we need to find a vacuum of this theory. 
In full generality, this is a difficult problem, but asking that the solution be 
supersymmetric simplifies things. The models that one obtains had promis-
ing phenomenological properties, for instance an explanation of the hierarchy 
problem and naturally appearing GUT groups, right from their inception in [20] 
as discussed in [16]. 
By elementary supersymmetry arguments, reviewed in Section 2.1, a state 

that is annihilated by the fermionic supercharges is necessarily a vacuum state 
and it is generally easier to find a state annihilated by a supercharge in con-
trast to a general ground state. In the compactification setting, this advantage 
extends further. We will further restrict the problem of looking for supersym-
metric vacua by looking for vacua that factorize into a product of a maximally 

1The standard texts [13–16] provide excellent reviews of these basic string theoretic facts. 
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symmetric space and a compact space, see Section 2.3. In that case, the pre-
served supercharges assemble into a full fermionic symmetry on the symmetric 
space, provided that the compact geometry solves equations derived from the 
supersymmetry variation. The ten dimensional variations are described in Sec-
tion 2.2, and the induced six and seven dimensional equations are presented in 
Section 2.4. The space of solutions to these equations form a geometric moduli 
space which, by construction, describes the moduli space of the supersymmet-
ric field theory on the maximally symmetric space. Again, the foundations of 
supersymmetry ensure that the associated formal moduli problem encodes the 
effective theory around a given vacuum. The problems that the papers around 
which this thesis is built are concerned with determining different aspects of 
this moduli problem. This chapter is intended as a review of the basic logic 
underlying the constructions that are studied in this thesis; see the relevant 
Chapters 4, 5 and 6 for more details regarding these studies. 

2.1 Supersymmetry 
A supersymmetric field theory is a theory whose symmetry algebra contains a 
fermionic generator. It thereby evades the Coleman-Mandula theorem, [36], 
and defines a nontrivial extension of the Poincaré algebra. Supersymmetry 
leads to sufficiently tight constraints that field theories possessing it are com-
paratively well understood, even in the strongly coupled regime (for instance, 
[37]), and at a greater depth of mathematical rigour than can usually be achieved. 
It is, consequentially, a subject about which much has been written and many 

good introductions exist, for instance [38–40]. In this section, we will content 
ourselves with the very minimum needed for the thesis, in particular, the fact 
that a state preserved by supercharges is necessarily a vacuum. 
Mathematically, a supersymmetry algebra is, in particular, a Z2-graded Lie 

algebra, L = L0 ⊕ L1. The supercharges form a basis of the degree 1 compo-
nent, L1 and the degree 0 component, L0 is an ordinary Lie algebra that acts 
on L1. In particular, the span of the bosonic generators contain the Poincaré 
algebra2 as a subalgebra and the supercharges must therefore be in a represen-
tation of this algebra. As a consequence of spin-statistics, this must be a spin 
representation, [41]. We will use the convention that the amount of supersym-
metry is counted by the number of minimal spinors in any given dimension. 
In particular, N = 1 in four dimensions means that there is a single Majorana 
or Weyl generator, which corresponds to four real supercharges. In dimension 
three, N = 1 means there is one Majorana spinor generator, so two real su-
percharges. In dimension ten, there is a Majorana-Weyl spinor representation, 
2This is slightly imprecise; the local supersymmetry that we are interested in will have a copy 
of the Poincaré algebra fibrewise, but we will in fact have vacua with an AdS geometry and 
therefore the global superalgebra of such a case will be an extension of the isometries of AdS 
geometry, rather than the Poincaré algebra 
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which means that N = 1 has 16 real supercharges. Appendix B of Polchin-
ski, [14], records many explicit calculations and results. 
A theory which possesses any global symmetry has the property that the 

states of the theory come in representations of the algebra underlying the sym-
metry. In the case of supersymmetry, the generators have non-trivial Poincaré 
charge which means that the representations contain particles in different spin 
representations. These representations form the so-called supermultiplets. 
As a graded Lie algebra, we know that the bracket preserves degree, i.e. 

[Li, Lj ] ⊂ Li+j , and is graded antisymmetric, [Li, Lj ] = (−1)ij+1[Lj , Li]. In 
particular, the bracket of two supercharges must be bosonic. In fact, it can be 
shown that it commutes with the generators of the translation subalgebra, [40] 
so is necessarily a linear combination of momenta and internal symmetry gen-
erators. As an example, the minimal super extension of the Poincaré algebra 
in dimension three has a Majorana fermion supergenerator, (Qα)

† = Qα. The 
only nontrivial bracket that is not immediately determined by the Poincaré al-
gebra and its spinor representation is [39] 

{Qα, Qβ } = 2(ΓµΓ0)αβ Pµ . (2.1) 

Since, in particular, P0 is the Hamiltonian and P0 = Q1
2 + Q2

2 , we know 
that for any state, |Ω⟩, we have: ∑ ∑ 

||Qα|Ω⟩||2 = ⟨Ω|Qα 
2 |Ω⟩ 

α=1,2 

= ⟨Ω|H|Ω⟩, 
so the Hilbert space is bounded below and states of minimal energy preserve 
supersymmetry. The general form of such an argument leads to the BPS in-
equalities that bound the masses of particles in terms of central charges. States 
that saturate the bound are known as BPS states and are necessarily annihi-
lated by some combination of supercharges. They are thus absolute minima 
and must solve the equations of motion. For this thesis, it suffices to observe 
that states annihilated by one (or more) supercharge solve the equations of 
motion, [39]. These kind of arguments have been used to great effect in many 
different settings, including from Witten’s supersymmetry approach to Morse 
theory, [42], understanding electric-magnetic duality, [37] and so on. 
We will be interested in configurations in supergravity preserving some su-

persymmetry and, consequentially, annihilated by some supercharges. This 
implies that the configuration space locally factorises into directions with the 
preserved symmetry, and the transverse, symmetry breaking directions. By a 
supersymmetric analogue of the Higgs mechanism, the transverse directions 
become massive, while the supersymmetry preserving directions are massless. 
In the cases relevant to this thesis, this space of supersymmetric vacua will 
have a direct correspondence with a space of geometric structures on certain 
manifolds. Thus, the infinitesimal neighbourhood around a point in that mod-
uli space will correspond to massless directions of an effective field theory. 
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2.2 Heterotic supergravity 
In this section we review the theory of supergravity that is relevant to this the-
sis. A theory of supergravity is to global supersymmetry as a gauge theory 
is to a theory with global symmetry. In particular, rather than having a finite 
family of constant supercharges, a supergravity has local supersymmetry so 
there are infinitely many supercharges corresponding, roughly, to k spinors at 
each spacetime point in the case of N = k supergravity. From the basic su-
peralgebra, local supersymmetry implies that the space of vector fields forms 
part of the bosonic algebra and since this algebra is the Lie algebra of the dif-
feomorphism group this implies it must be a gravity theory. 
This thesis is concerned with dimensional reductions of the ten dimensional 

heterotic supergravity, specifically with gauge group E8 × E8. We will begin 
by recalling the field content and then give an explicit action. 
The field content consists of the massless fields of the heterotic string. From 

string worldsheet computations (see for instance [13–15]), the massless sector 
of the heterotic string on flat spacetime R1,9 consists of: 
1 x Yang-Mills supermultiplet The multiplet containing the gauge boson con-

sists of (A, χ), where A is the local, adjoint-valued one form describ-
ing a connection and χ is an adjoint-valued, left-handed Majorana-Weyl 
fermion. 

1 x Supergravity supermultiplet The gravity multiplet consists of bosonic 
fields (g, B, ϕ), corresponding to the graviton, antisymmetric B-field 
and scalar dilaton, along with their superpartners, (Ψ, λ), the gravitino 
and dilatino respectively. More precisely, Ψ is a left-handed Majorana-
Weyl spinor valued in the tangent bundle, λ a right-handed Majorana-
Weyl spinor. 

The action contains both super Yang-Mills and supergravity actions, derived 
from symmetry considerations in [43–46] and we use the explicit conventions 
from the presentation of [47]: 

L = Lbos + Lferm 

Lbos =
1 
e −2ϕ(R + 4dϕ ∧ ∗dϕ +

1 
H ∧ ∗H)

2κ2 2(1 −2ϕ Ψ̄ 
M Γ

MNP DN ΨP +Lferm = − e 
2κ2 

1 ( ) )
Ψ̄ 

M Γ
MNP QRΨR + 6Ψ̄ N ΓP ΨQ− HNPQ + · · · (2.2)

24 

where κ2 is the ten dimensional Newton’s constant. This is the effective la-
grangian for the heterotic string at next-to-leading order in α ′ , missing terms 
with four fermions. These α ′ corrections are all hidden in the field strength H: 

α ′ 

H = dB + (ωL − ωYM ) (2.3)4 
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where ωL, ωYM is the Chern-Simons forms for the spin connection and the 
Yang-Mills connection respectively, e.g. 

ωYM = tr(A ∧ dA − 2 
3A

3) . (2.4) 

The ten dimensional action is used explicitly in Paper I. 
The supersymmetry variations of the fermionic fields are [48]: 

= (∇LC 
M HM ·)ϵ + (fermi)2 (2.5)+ 1 

4δϵΨM 

ϵ + (fermi)2 (2.6)1 1− dΦ · +δϵλ = H · 2 2

)
2 .· ϵ + (fermi) (2.7)

(
δϵχ = −1 

2F 

The action of a differential form on the spinor, ϵ, is induced by Clifford mul-
tiplication, e.g. F · ϵ = 1 

2FMN Γ
MN ϵ and the three form, H defines a one 

:= 1 
2HMNP dx

N ∧ dxP . We will consider form-valued two form via HM 

vacua in which all Fermi condensates vanish so that the (fermi)2- terms can be 
safely neglected (see [49], for one place they are included). The symbol ∇LC 

denotes the spin connection lifting the Levi-Civita connection. 
Only the supersymmetry variations of the fermionic fields are presented be-

cause it is only these that will be needed for the purposes of this thesis. Since 
a supersymmetric variation of a bosonic field is fermionic, these variations au-
tomatically vanish in vacuum so are irrelevant to our purposes. Therefore, a 
vacuum configuration is supersymmetric only if the variations (2.5), (2.6) and 
(2.7) vanish. These conditions must be supplemented by the Bianchi identities: 

[DA, F ] = 0 (2.8) 

dH = 
α ′ 

(tr(R2) − tr(F 2)) ,
4 

(2.9) 

which ensure that the differential forms F, H are not arbitrary, but are field 
strengths of the appropriate geometric object. 

2.3 Product vacua 
In the above, Section 2.1, we sketched out the definition of a BPS state of 
a general superalgebra and roughly argued that a configuration of fields that 
preserve some number of supersymmetries must in fact be a solution to the 
equations of motion. In this section, we will continue to narrow in on the 
configurations of most relevance to the papers in this thesis. In particular, we 
will consider product geometries, involving a maximally symmetric factor and 
a compact factor. This will ensure that the supercharges that annihilate the state 
can be assembled into a full spinor on the maximally symmetric space. 
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Suppose that the ten dimensional geometry is of the form Md×Y , where Md 

is a maximally symmetric d-dimensional space, either Minkowski or AdS.3 

The condition that Md be maximally symmetric is motivated in two ways: 
firstly, the dimension of the space of Killing spinors is equal to the appropri-
ate spinor representation, [51], which will eventually mean that the effective 
theory on Md will have unbroken supersymmetry and, therefore, unbroken 
Poincaré symmetry4; secondly, maximally symmetric spaces are precisely the 
local models of solutions to Einstein’s equations in the absence of matter or 
gravitational radiation, and consequentially are good models for relativistic 
vacua, [52]. The effective theories that we obtain can, therefore, be sensibly 
interpreted as vacua in a conventional sense. 
In order to preserve these properties, we will need to constrain the back-

ground values of all fields, not just the metric. This means that we will need 
homogeneous and isotropic background values for all fields on Md and the 
product structure must be preserved. To be more concrete, we introduce the 
following convention that will be followed throughout: coordinates on the full 
ten dimensional spacetime are denoted by (XM ), with indices, M, N, P, . . .; 
coordinates on the maximally symmetric space, Md will be denoted (xµ), with 
indices µ, ν, κ, . . .; coordinates on the internal geometry will be denoted by 
(yi), with indices i, j, k, . . .. 
Isotropy means that the only non-trivial background values on Md must be 

in the trivial representation of the tangent group SO(1, d−1), and homogeneity 
implies they must be independent of spacetime point, i.e. constant. This means 

1that, unless d = 3, we must have H(x, y) = Hijk(y)dy
i ∧ dyj ∧ dyk ,3! 

while in dimension three we are also allowed to turn on a constant, h, such that 
Hµνκ ∼ ∗ 3h. We will similarly turn off any background values for the gauge 
field strength, Fµν . 
Observe that we can not demand that fluctuations about the vacuum pre-

serve these structures. Nevertheless, we can always expand a fluctuation into 
a sum of fields that have definite spin with respect to the SO(1, d − 1) tangent 
group and with separated variables. As an example, a gauge field (of a trivial 
gauge bundle for simplicity), transforms in the vector representation of of the 
full spacetime tangent group, SO(1, 9). Under the product group embedding 
SO(1, d − 1) × SO(10 − d) ,→ SO(1, 9), this irreducible representation splits 
into a sum of vector representations of the relevant groups. This expresses the 
fact that we can write AM (X)dXM = Aµ(x, y)dxµ + Ai(x, y)dyi . We can 

3We restrict to these cases because they are the only possibilities that the constructions that we 
use support. The question of whether or not string theory supports dS solutions is currently a 
very active field, see [50] and references therein. 
4Analogous to footnote 2, this is the fibrewise statement, the global group may be the isometry 
group of AdS space. 
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further separate the spacetime dependence and expand: ∑ 
Aµ(x, y) = (Aµ(x))m αm(y) (2.10) 

m∑ 
Ai(x, y) = βm(x)(Ai(y))m (2.11) 

m 

where neither expansion need be a finite sum. The functions αm(y), βm(x) 
are smooth real-valued functions on Y and X respectively. 
Similar expansions exist for all of the fields in the supermultiplets, see [16] 

for instance. We can, in particular view each of the fields (Aµ(x))m as a gauge 
field on Md, so that a single field on the ten dimensional theory will naively 
contribute infinitely many fields (labelled by m here) to an effective theory 
on Md. We are saved from this unpleasantness by using that the spectra of 
the relevant differential operators on Y are gapped and there exist only a finite 
number of modes that contribute at a given energy scale (see for instance [53]). 
In particular, so long as the manifold, Y , has characteristic length scale suffi-
ciently small, we can restrict to the zero modes since the first excited states will 
be extremely heavy. Note that supersymmetry arguments imply that the zero 
modes will be precisely the tangent space to the supersymmetric moduli space 
at the vacuum. We will now interpret this moduli problem purely in terms of 
the internal manifold. 
This is possible precisely because of the fact that Md is maximally sym-

metric. We can revisit the supersymmetry variations, (2.5)-(2.7), in the con-
text of the product ansatz. Analogous to the expansion of the vector repre-
sentation, the spinor representation decomposes as a tensor product, that is 
S1,9 → S1,d−1 ⊗ S10−d. This can be checked directly, though we should be 
careful to identify the correct minimal spin representations, see [16] for a de-
tailed discussion in d = 4, and [54] for details in the case of d = 3, the cases 
of interest for this thesis. 
With this in mind, one rewrites the spinor parametrising the supersymmetry 

generator ϵ = σ ⊗ η. Letting σa denote a basis of the Killing spinors on Md, 
it is relatively straightforward to confirm that the terms in the supersymme-
try variations that depend on σ drop out and one is left with equations on the 
internal manifold, schematically written: 

= ∇LC !
δσΨi η − 1 HY · η = 0 (2.12)i 4 i 

!1 1δσλ = (−dY ϕ · + HY ·)η = 0 (2.13)2 2 

F Y !
δσχ = − 

1 · η = 0 . (2.14)
2 

The solution space of these Killing spinor equations is rich and interesting, 
both physically and mathematically, see for instance [20, 21, 48, 55–68] 
It might be worth observing that the condition induced from the gaugino 

variation, (2.14), depends on the metric through the Clifford multiplication. In 
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particular, it means that the geometric and gauge theoretic moduli are neces-
sarily intertwined. 

2.4 Examples 
In this section we will introduce examples of supersymmetry-preserving com-
pactification geometries that are directly relevant to this thesis. 

2.4.1 Calabi-Yau manifolds 
We will consider a dimensional reduction down to four dimensions, which 
means the internal manifold is six dimensional. 
The original examples of heterotic compactifications are those on Calabi-

Yau manifolds, [20] (in Subsection 3.5.3 of this thesis we will review the math-
ematical definition of a Calabi-Yau manifold). They are still, more than 35 
years later, being studied and are a necessary ingredient of Paper III. 
Dimensionally reducing on a Calabi-Yau manifold demands a constant dila-

ton and vanishing flux, dY ϕ = HY = 0. These conditions are not strictly nec-
essary for a six dimensional compactification, but they simplify the problem. 
The study of the general problem was independently initiated in [19] and [21] 
(see [26], and references therein, for a recent discussion). 
Focusing on the Calabi-Yau case, vanishing of the gravitino supersymme-

try transformation (2.12) reduces to the statement that η is covariantly con-
stant with respect to the spin connection, implying the manifold has special 
holonomy SU(3). G structures and holonomy are reviewed in Chapter 3. It 
can be shown that the gauge bundle must be a polystable holomorphic bundle, 
as a consequence of the Donaldson-Uhlenbeck-Yau theorem, [69, 70]. These 
results were shown for a specific choice of bundle, the so-called standard em-
bedding, in [20] and are reviewed in the standard string theory texts. More 
general choices of bundle are reviewed in [26]. 
The infinitesimal moduli are classes in the bundle cohomology group H1(Y, Q), 

[26,71–73] (see also [74,75] for a similar discussion in the setting of the Stro-
minger system) where Q is defined as an extension bundle: 

0 → End0(V ) → Q → TY → 0 . (2.15) 

This exact sequence is known as the Atiyah sequence. The cohomology group 
H1(Y, Q) includes both bundle deformations and geometric deformations. This 
is really just the first order deformations of the moduli problem, meaning that 
these directions may not be precisely flat and there may exist higher order ob-
structions. 
Another approach to this moduli problem utilises a superpotential, studied in 

a more general setting in [76]. In a Taylor expansion of a superpotential, the co-
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homology group is identified with the directions that have vanishing quadratic 
terms, but there may still exist terms of higher order. 

2.4.2 G2 structure manifolds 
We will now consider dimensionally reducing down to three dimensions, with a 
seven dimensional internal space. A particular novelty arises in such scenarios, 
which is that the effective spacetime supports a nontrivial vacuum expectation 
value for the three form H , whilst remaining homogeneous and isotropic. As 
was mentioned earlier, this is because a three form on an oriented three man-
ifold is a scalar. A nontrivial expectation value for this three form, or more 
precisely its dual zero form, gives the space a constant, negative curvature. 
We will also allow for a dilaton that varies and a nontrivial three form in the 
internal space, analogous to the Strominger-Hull system. 
Demanding the vanishing of the supersymmetry variations (2.5)-(2.7) leads 

to the Killing spinor equations [47, 48, 60, 61, 66] 

1 ∇LC ϵ + · ϵ =0i HijkΓ
jk 

8 
(2.16) 

1 
(∂iϕΓ

i + HijkΓ
ijk)ϵ =0 

12 
(2.17) 

Γij Fij ϵ =0 (2.18) 

which, as always, must be supplemented by the Bianchi identity: 

α ′ 

dH = (trF 2 − trR2) .4 (2.19) 

The dilatino and gravitino equations will be geometrically interpreted in the 
context of G structures in Chapter 3. 
The first order deformations of a solution to these equations are, similar to 

the Calabi-Yau case, encoded in a cohomology group [77, 78], H1(Y, Q) (or 
see [79] for another approach). In contrast to the Calabi-Yau case, the bundle 
with connection, Q, is not an extension. 
A superpotential that reproduces these first order deformations is derived 

from the ten dimensional theory in Paper I and reviewed in Chapter 5. 
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3. G structures 

The condition that a compactification be supersymmetric imposes conditions 
on the tangent bundle of the internal manifold [48, 59–61]. These conditions 
come from requiring the existence of a non-vanishing spinor that satisfies a 
partial differential equation coming from the ten dimensional supersymmetry 
variations as we discussed in Chapter 2. In particular, the Killing spinor equa-
tions (2.5)-(2.7) can be rephrased in terms of a reduced structure group of the 
tangent bundle: a G structure. Therefore, in this chapter we will review the 
basics of these structures. 
Note that a manifold that admits a non-vanishing spinor is a candidate com-

pactification manifold - then one must choose a spinor satisfying the equa-
tion and this choice is part of the data defining the vacuum. The fact that this 
choice exists and is non-trivial is a statement about the non-triviality of the 
moduli of such structures. In Chapter 2 the relationship between the moduli 
of a supersymmetric internal manifold and the low energy physics on the non-
compact manifold was highlighted. This explains the relevance of the moduli 
of G structures to compactifications. To clarify: the supersymmetric moduli 
problem that we consider will not be precisely the moduli of G structures - it 
will interweave with gauge theoretic moduli - nevertheless, it is important to 
understand all the ingredients, including these geometric ones. 
In this chapter we will review elementary notions revolving around G struc-

tures. All results and a more leisurely discussion can be found in [80] or [81], 
for instance. 

3.1 Reduced structure group 
In this thesis, we will be particularly interested in manifolds that admit a nowhere 
vanishing spinor, for reasons reviewed in the previous chapter, Chapter 2. The 
existence of such a spinor indicates that the manifold has a reduced structure 
group. In this section, we will explain what this means and how it relates to 
the geometry of the manifold. This classical material can be found in [80,81]. 
A first attempt at a definition of a manifold with a reduced structure group, 

say G, is that the tangent bundle admits a covering by local trivialisations such 
that the transition functions take values in the group G. This gets at the right 
intuition, but is not very practical. With this definition, it can be hard to de-
termine when such structures exist, and whether two given presentations are 
really the same G structure or not. 
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We will work up to a more covariant formulation for this notion, and see via 
examples that the notion of a reduced structure group is generally encoded as a 
geometric structure that is easier to work with. In the general formulation that 
we work with, the reduction of the structure group is phrased as the existence 
of a G principal subbundle of the frame bundle. In this way, the tangent bundle 
becomes a vector bundle associated to this G bundle. Since associated vector 
bundles can be locally trivialised over any cover that locally trivialises the 
principal bundle, with transition functions deduced from the principal bundle 
and the defining representation, the earlier “definition” is subsumed by this 
one. 
We begin by recalling the definition of the frame bundle of a smooth man-

ifold. Let (M, g) an arbitrary n dimensional, smooth, oriented Riemannian 
manifold, and π : TM → M denote the tangent bundle. 
The frame bundle is defined to be a principal GL(n) bundle, F → M , 

whose fibre over a point x is given by the space of all bases of TxM . Linear 
algebra shows that any basis can be obtained by a unique GL(n) transforma-
tion from any given initial basis, which is how the fibre is identified with the 
group GL(n). Given a local coordinate chart, one can construct a local frame 
by pulling back the obvious basis on Rn and this shows that the construction is 
a locally trivialisable bundle. Further, given a coordinate atlas on M and the 
associated local frames, the transition functions are given by left multiplication 
with the Jacobian matrix, demonstrating that it is a principal GL(n) bundle. 
Notice, however, that this only uses the data of a smooth structure on M . It 

is assumed, however, that there was extra geometric data, namely an orienta-
tion and metric, and these can be used to give the first examples of a reduced 
structure group. 
Recall, firstly, that a manifold is orientable if and only if one can choose 

a coordinate atlas such that the determinants of the Jacobian of the transition 
functions are positive. An orientation of an orientable manifold is a maximal 
atlas such that the coordinate charts satisfy this property. The manifold, M , 
has been assumed to have an orientation and yet the construction of the frame 
bundle did not use this geometric information at all. 
This situation can be improved upon. Recall that a local frame is an ordered 

basis and consequentially defines an orientation on each tangent space. A prin-
cipal bundle can be constructed whose fibres are all the bases over the point 
whose orientation agrees with the global orientation over the manifold. Note 
that once a single basis is chosen, all the other oriented bases can be uniquely 
obtained by acting with the group of invertible matrices whose determinant 
is larger than zero, GL+(n). By choosing any subatlas of the maximal atlas 
corresponding to the orientation, it is guaranteed that the transition functions 
preserve the orientation and, consequentially, the logic of the general frame 
bundle goes through and a principal GL+(n) bundle is obtained. The total 
space of this bundle shall be denoted F+ . 
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This still neglects the Riemannian structure, so the next task is to include this 
geometry into the oriented frame bundle. This is achieved by further restricting 
the allowed frames to those orthonormal frames whose orientation agrees with 
the manifold’s global orientation. This construction leads to a principal SO(n) 
bundle, FSO . There is a slight subtlety here, which is that the argument for 
the frame and oriented frame bundle used local coordinates as a starting point. 
In the case at hand, it may not be possible to find any local coordinates that 
produce an orthonormal frame. The construction is easily saved by applying 
the Gram-Schmidt procedure to a coordinate frame, but the fact that local co-
ordinate frames tend to be absent from the SO(n) structure is an indication 
of something geometric. We will be particularly interested in the interplay 
between G structures and geometry as reviewed in Section 3.4.1. 
The first lesson we learn, then, is that (some) geometric structures give a nat-

ural restriction to the kind of frames considered and thereby a restriction to the 
group of the principal bundle. Each of the groups that appeared have a canon-
ical representation on the vector space, Rn . Indeed, by the very construction 
there is a group morphism ιG : G → GL(n). Using this representation, there 
are associated vector bundles and unravelling definitions immediately shows 
that 

Rn ∼= F+ Rn ∼= FSO RnTM =∼ F ×ιGL(n) ×ιGL+(n) 
×ιSO(n) . (3.1) 

For completeness, recall that the vector bundles associated to a G-principal 
bundle, P , and representation ρ : G → GL(n) has total space P × Rn/ ∼, 
where (pg, v) ∼ (p, ρ(g−1)v). In other words, it is the quotient of P × Rn 

by the diagonal action. A more hands on definition, using a covering by local 
trivialisations (Ui, τi) of P , with transition functions gij : Ui ∩Uj → G, is that 
the associated bundle is also trivial over Ui, with transition functions ρ(gij ). 
With this motivation out of the way, let us now recall the definition of a G 

structure on manifold, M . 

Definition 1. Let M be a manifold of dimension n. A G structure on M is a 
principal G subbundle of the principal frame bundle, F . 

In other words, a G structure consists of 
• A principal G bundle, P → M ; and 
• A faithful representation ρ : G ,→ GL(n); 

with the property that P ×ρ Rn =∼ TM . 
In this definition, a G structure is a subbundle and the group G is a subgroup 

of the general linear group. This agrees with the definition used by Joyce in 
[80], but observe that a spin structure is not a G structure under this definition. 
Now is a good time to consider when different G structures are the same. 

The correct notion of an equivalence of G structures is that the principal sub-
bundles of the frame bundles are isomorphic as subbundles. 
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′Definition 2. Let M be a smooth manifold and PG, P two principal G-G 
′bundles encoding a G structure on M . Then PG is equivalent to P if there G 

exists a G-bundle isomorphism, ϕ, such that the diagram commutes: 

ϕ ′ PG PG 
(3.2) 

F 
′The arrows PG → F and P → F are part of the data defining the G structure.G 

3.2 Examples of G structures 
In this section we will introduce several examples of G structures that will 
be relevant to this thesis. The examples that are of most relevance will be as-
sumed to be oriented and Riemannian and the groups will have an injection into 
SO(n), so in most cases it is most practical to start with the SO(n) structure, 
as opposed to GL(n). 

3.2.1 Almost complex structures 
In this section, the notion of an almost complex structure will be introduced 
and interpreted as a G structure. Good sources for this material are plentiful, 
see for instance [80, 82, 83]. 
The starting point is the notion of a complex structure on a vector space, Rk 

for some k. Recall that a complex structure is given by J : Rk → Rk such that 
J2 = −Id. If J were diagonalisable, its eigenvalues would also square to -1 
which means that the best we can do in the world of real numbers is to find a 
block diagonal form with blocks: ( )

γ =
0 −1 (3.3)
1 0 

Note that this implies that k = 2n. In essence, we will want to consider the 
subspace of R2n frames given by those that preserve this form of J . That 
is, bases that are like (e1, Je1, · · · , en, Jen). The group that preserve such 
bases is the subgroup of GL(2n, R) that commutes with J . This defines an 
embedding of GL(n, C) ,→ GL(2n, R), the group of n×n invertible matrices 
with complex coefficients. 
A more convenient presentation, which is most often encountered in com-

plex geometry, is to complexify Rk , i.e. Rk ⊗R C = Ck . Extend J complex 
linearly to this larger vector space. We are now able to diagonalize J , to get 
a diagonal matrix with ±i on the diagonal. Note that since J has real coeffi-
cients, its eigenvalues must come in conjugate pairs, so the dimension of the +i 
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eigenspace is equal to that of the −i eigenspace. Decompose the complexified 
space into eigenspaces, C2n = Λ+ ⊕ Λ−, where dimC Λ± = n and observe 
that complex conjugation maps Λ± → Λ . In terms of this splitting, consider 
the inclusion GL(n, C) → GL(2n, C) given by ( )

g 0 
g ∈ GL(n, C) 7→ (3.4)∗0 g 

By construction, under the obvious inclusion GL(2n, R) ⊂ GL(2n, C), the 
copy of GL(n, C) ⊂ GL(2n, R) defined above is precisely equal to the image 
of GL(n, C) just defined. In particular, we have a commutative diagram: 

GL(2n, C) 
(3.5) 

GL(n, C) GL(2n, R) 

In terms of the complexified tangent space, a GL(n, C) structure is encoded 
by a complex basis of Λ+, say. We now have sufficient background linear alge-
bra to consider the situation on a manifold. We start with a smooth manifold, 
M , equipped with a fibrewise linear endomorphism J : TM → TM satis-
fying J2 = −Id. The complexified tangent bundle, TMC decomposes into a 
direct sum of eigenspaces, T + ⊕T − . A local frame of T + complex conjugates 
to a local frame of T − and such a frame can be seen as arising from TM . The 
collection of all local frames of T + is, once a starting point is chosen, isomor-
phic to GL(n, C). This gives, by the same yoga as previously, a commutative 
diagram of frame bundles: 

FC 

(3.6) 

C F 

where FC is a principal GL(2n, C) bundle comprising of frames in the com-
plexified tangent bundle and C is the collection of bases of T + . 

3.2.2 Almost hermitian structures 
We now want to include metrics in this structure. The appropriate notion 
of metric in complex linear algebra is Hermitian, as opposed to Riemannian. 
Since we will be interested in Riemannian manifolds, we will start with a Rie-
mannian metric and use an almost complex structure to construct an hermitian 
metric in a standard fashion. 
First, working linearly, let g an inner product on R2n and J a complex 

structure. An hermitian metric is not symmetric, instead h(x, y) = h(y, x), 
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where (−) indicates complex conjugation. Since J and g were chosen arbi-
trarily, they may not be compatible in the sense that g(J−, J−) ̸= g(−, −). 
But, there is a brute-force way to construct a metric with this property, i.e. 
′ 1 g = (g + g(J−, J−)), so we assume this has been done. There is, now, a2 
two-form that we can construct that will be used in constructing the hermitian 
form, h: ω(x, y) := g(Jx, y). This is indeed antisymmetric since J2 = −Id. 
We now pass to the complexification, C2n and extend all structures C-linearly. 
The hermitian metric is defined to be: 

h := g − iω . (3.7) 

It can be checked that this is indeed an hermitian structure, and that J is anti-
hermitian with respect to h, such that its eigenspaces are orthogonal. 
We can then add the condition that the bases considered in the previous 

section should be orthonormal, analogous to the SO structures, to obtain a 
U(n)-structure, FU . 

3.2.3 SU(n) structure 
Suppose that M is endowed with a U(n) structure, FU → M . By the inclusion 
SU(n) → U(n), we can try to define an SU(n) structure. Observe that if 
there exists an SU(n) structure, then the transition functions can be chosen to 
be U(n) transformations with the extra condition that the determinant is +1. 
This implies that the bundle det T + = ΛnT + is trivial. In the case that this 
condition is satisfied, we can choose a unit section of this hermitian bundle, say 
χ+ and define an SU(n) structure to consist of those frames of (e1, · · · , en) : 
Rn → T +M which satisfy e1 ∧ · · · ∧ en = χ+ .1 

x 

3.2.4 Almost quaternionic structures 
We saw above that a GL(n, C) structure enabled us to the think of the tangent 
fibres as copies of Cn, rather than R2n . In this section, we will consider a sim-
ilar story, but now with the quaternions. Again, we will start by understanding 
the fibrewise story in linear algebra. We will follow Joyce [80], Chapter 7.1 
and, in particular, include the notion of a metric from the beginning so the story 
is more closely analogous to that of U(n) structures. 
The algebra of quaternions is the third of the four possible normed division 

algebras over R, after R and C. The fourth will be important in the next subsec-
tion. The quaternions will be denoted H and is the algebra generated by i, j, k 
satisfying ij = k = −ji, i2 = j2 = k2 = −1. A general element in H is of 
the form x = x01+ x1i + x2j + x3k with each xi ∈ R, so choosing generators 

1It is more to common to impose this condition in terms of the cotangent bundle and a holomor-
phic top form, but using the metric, the notions are equivalent. 
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i, j, k induces an isomorphism R4 ∼= H. The algebra is noncommutative, but 
associative. Given an element x ∈ H, define x̄ = x01 − x1i − x2j − x3k, 
defining an anti-homomorphism of the algebra: xy = ȳx̄. The inner product 
is defined by ⟨x, y⟩ := x̄y. 

1We can consider Hm to have coordinates (w , · · · , wm) where each coordi-
a a a a anate is of the form w = x0 +x1i+x2j +x3k. In this basis Hm has a naturally 

induced quadruple of structures, the metric g and two-forms ωi, i = 1, 2, 3 that 
can be extracted from the expression: 

m∑ 
g + iω1 + jω2 + kω3 = dw̄a ⊗ dwa (3.8) 

a=1 

We can also define three complex structures induced by left-multiplication 
with the three generators J1 = Li, J2 = Lj , J3 = Lk. In fact, more generally 
there is an S2 worth of complex structures induced by Jx := xiLi for any 

ixix = 1 in R3 . Furthermore it can be checked that Jx and ωx := xiωi are 
compatible in the sense of section 3.2.2. By the same argument that we saw 
there, each triple (g, Jx, ωx) is overdetermined and it suffices to specify two-
out-of-three structures. 
Define the group Sp(m) to be the subgroup of GL(4m, R) that preserves 

(g, ω1, ω2, ω3). It can be more explicitly presented as 

Sp(m) ∼= {A ∈ Mm(H) : AĀt = I} . (3.9) 

An almost quaternionic structure on a manifold M4m will be defined by 
the sub-frame bundle induced by the sub-collection H bases, analogous to the 
way that almost complex structures were defined. Evidently, this defines an 
Sp(m)-structure on M . 

3.2.5 G2 structures 
We will now turn to examples of G structures, important to this thesis: G2 

structures. Good sources on the definition of G2 structures include [80,84,85]. 
The group G2 is an exceptional Lie group that can be described as the group 

of automorphisms of the octonions. Recall that the octonions are the fourth and 
final example of a normed division algebra over R. It might be worth beginning 
with a comment on the similarities and differences of a G2 structure with the 
almost-complex and -quaternionic cases. 
In complex, respectively quaternionic structures, the tangent space is identi-

fied with modules of a matrix algebra with values in C or H respectively. Such 
a strategy will not work on the octonions because of the nonassociativity: in 
particular, the one-by-one octonionic matrix algebra should just be the octo-
nions, but it is not a module over itself, by the failure of associativity. Roughly 
speaking, a G2 structure will circumvent this problem by identifying the tan-
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gent space of a manifold with the algebra itself. We will now make this more 
precise. 
We begin with a very brief reminder of the algebraic structure of the octo-

nions, following Baez [86]. The octonionic algebra is unital, non-commutative 
and also non-associative. It is eight dimensional over the reals and for a given 
choice of generators, {1, e1, · · · , e7} has the multiplication table: 

e1 e2 e3 e4 e5 e6 e7 

e1 −1 e7 e5 −e6 −e3 e4 −e2 

e2 −e7 −1 −e6 −e5 e4 e3 e1 

e3 −e5 e6 −1 e7 e1 −e2 −e4 

e4 e6 e5 −e7 −1 −e2 −e1 e3 

e5 e3 −e4 −e1 e2 −1 e7 −e6 

e6 −e4 −e3 e2 e1 −e7 −1 e5 

e7 e2 −e1 e4 −e3 e6 −e5 −1 

(3.10) 

The group of automorphisms of this algebra, identified as G2, is simply 
connected and fourteen dimensional. 
By construction, G2 has an action on the octonions, O ∼= R8 . However, 

since G2 respects the algebra structure, it must also respect the unit, which 
means 1 ∈ O is G2 invariant and the orthogonal complement, (1·R)⊥ = Im O, 
also forms a G2 representation. It can be checked that this is irreducible; it is 
in fact the smallest non-trivial representation of G2. 
Separately, observe that a map of the octonions that preserves the algebraic 

structure must also preserve the inner product as this is defined with the mul-
tiplication: ⟨x, y⟩ = Re(x̄y). As a consequence, G2 ⊂ O(8). In fact, using 
without proof that G2 is connected, G2 ⊂ SO(8). Combining with the ear-
lier observation that the eight dimensional representation decomposes as a sum 
(1 · R)⊥ ⊕ Im O, with the first summand trivial, it follows that G2 ⊂ SO(7). 
This is the inclusion that will be of most relevance for this thesis. In particular, 
G2 structure manifolds must be seven dimensional. There is another repre-
sentation that will be used and discussed later, namely G2 ⊂ Spin(7). This 
is the unique lift of the SO(7) embedding, which exists because G2 is simply 
connected. This viewpoint will be used in Subsection 3.6.6. 
Returning to the representation on the imaginary octonions, we will char-

acterize the algebraic structure induced from the octonionic operation in terms 
of a three form 

ϕ(a, b, c) = ⟨a, bc⟩ ; a, b, c ∈ Im O . (3.11) 
Evidently, G2 preserves this structure and, in fact, any SO(7) transformation 
that preserves ϕ must preserve the full structure of the octonions, so that the 
subgroup of SO(7) that preserves ϕ is precisely G2. 
Consulting the table for the octonionic multiplication, (3.10), we can deduce 

the explicit form: 
127 347 567 135 − e 146 − e 236 − e 245ϕ = e + e + e + e . (3.12) 
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To construct a G2 structure entails defining a G2 orbit in the space of frames. 
A convenient way to encode a basis on a 7d vector space, V , is an isomorphism 
e : R7 → V . Given a three form on V , we can consider the collection of 
isomorphisms that preserve this three form. By construction, this forms a G2 

subgroup of GL(7, R). So, analogous to the almost complex case, for instance, 
where we had to choose an endomorphism J and consider the group that com-
mutes with it, in the G2 case we have to choose a three form that takes the form 
(3.12) in some frame and then consider the G2 orbit, considered pointwise as 
the isomorphisms R7 → TxM that preserve the given three forms. 
Passing to the global situation, a G2 structure on a seven manifold, Y , is 

encoded in a three form φ ∈ Ω3(Y ), for which there exists local frames 
(e1 , · · · , e7) in which it takes the form 

127 347 567 135 − e 146 − e 236 − e 245φ = e + e + e + e . (3.13) 

Such a three form is called positive, [80]. One should note that the precise 
presentation is convention dependent. This convention conforms with that of 
Paper II, which was itself chosen to conform with [65]. There exist other con-
ventions in the literature notably that used by Joyce in his constructions [87,88] 
and, perhaps most commonly, that used by Bryant [89]. 
The principal subbundle of frames in which φ takes the indicated form ex-

hibits the G2 principal bundle as a subbundle of the full frame bundle. 
We now address the question of when a G2 structure exists. The easiest way 

to answer this question [84], involves the second presentation of the group G2 

that was alluded to above. 
Begin by observing that, since a G2 structure is a refinement of an SO(7) 

structure, the manifold must be orientable. It follows that a G2 structure carries 
with it a choice of orientation. 
Next, use that, since G2 is simply connected, it has a unique lift to the 

Spin(7) cover of SO(7), so a manifold that admits a G2 structure must also 
be spinnable. 
Seeing that these are the only obstructions is where the second presentation 

is preferred: The group G2 is the subgroup of Spin(7) that leaves invariant a 
given non-zero element in the spinor representation (a good explanation of this 
fact can be found in Baez’ notes, [86]). Consequentially, a G2 structure on a 
spin seven manifold is specified by a choice of nowhere vanishing spinor. The 
spin representation of Spin(7) is eight dimensional, while the base manifold is 
only seven dimensional, and therefore, a generic section will not intersect the 
zero section (see e.g. [90] for a discussion of these transversality arguments) 
and there must exist a G2 structure. 
This perspective makes it extremely plausible that a G2 structure is nec-

essary for supersymmetric compactifications on seven manifolds. Recalling 
from Chapter 2, demanding supersymmetry preservation forced the internal 
manifold to possess a nowhere vanishing spinor (parametrizing the supercharge) 
that further satisfies differential equations, e.g. equations (2.5)-(2.7). To deal 
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with this differential condition and interpret it as a condition on the G2 struc-
ture we need to look closer at the differential geometry of G structures, which 
is the subject of the next section. 

3.3 Connections 
In this section we introduce the notion of a connection on a principal bundle. A 
connection is necessary to express the Killing spinor equations in the geometric 
language of G structures. 
A connection on a vector bundle is a familiar notion in modern physics, 

while the notion of a connection on a principal bundle may be less familiar 
to some readers. This notion is important, at least for conceptual clarity, for 
the way G structures are used in this thesis, and therefore this section is dedi-
cated to these elementary notions. A principal bundle connection also induces 
a connection on associated vector bundles, and this construction is also re-
called. Both Joyce [80] and Kobayashi-Nomizu [81], are good examples of 
texts covering this material. 
Roughly speaking, a principal bundle connection gives a notion of parallel 

transport, i.e. a distinguished way of lifting paths from the base to the total 
space of the bundle. We will ask that these lifts be equivariant with respect to 
the group action on the total space. 

Definition 3. Let π : P → M a G-principal bundle on a manifold Y . A 
principal bundle connection on P is a smooth splitting of the tangent bundle 
TP ∼= H ⊕ V , where V = ker(π∗) and where H is preserved by the right 
G action, i.e. (Rg)∗ : Hp → Hpg for each p ∈ P and g ∈ G. We call the 
subbundle, V the vertical subbundle and its complement, H , the horizontal 
subbundle. 

Notice that the vertical subbundle is completely canonical, unlike its com-
plement, so the real content of a principal bundle connection is in the horizontal 
subbundle. Further, the kernel of π∗, at any point p is, by definition, the tan-
gent to the fibre of the principal bundle. Since the right G-action is free and 
transitive on fibres, this gives a natural isomorphism of Vp with the Lie algebra 
of G, denoted g. The data of this complement can also be captured by a one 
form with values in G’s Lie algebra, g, satisfying conditions that are extracted 
from the invariance of H . 
By definition, the differential of the projection at each p ∈ P induces an 

isomorphism π∗ : Hp → Tπ(p)M . In fact, the horizontal subbundle, H , is 
naturally isomorphic to the pullback of the base tangent bundle H ∼= π∗TM 
and, consequentially, having chosen a connection, vector fields on the base can 
be canonically lifted to a vector field in H . This lift of X ∈ ΓM (TM) will be 
denoted λ(X). In the language of principal bundle connections, the curvature 

27 



can be defined by: 

F (X, Y ) = [λ(X), λ(Y )] − λ[X, Y ] . (3.14) 

That is, the curvature can be seen as a measure of the difference between the 
Lie bracket in the base and in the horizontal distribution. F takes values in the 
vertical distribution and, therefore, is naturally viewed as g-valued. 
It is probably no surprise that any principal bundle admits a connection, a 

fact whose proof will not be reviewed here but is contained in standard refer-
ences, including [80, 81]. We will now review how connections interact with 
G structures, in particular recalling the definition of the holonomy of a con-
nection, and the relationship between a covariant derivative and a connection. 

Definition 4. Let π : P → M a principal G bundle, H a principal bundle 
connection on P and γ : [0, 1] → M a smooth curve. Choose a point in the 
fibre p ∈ π−1(γ(0)). A horizontal lift of γ at p is a path, γ̃ : [0, 1] → P such 
that 

• γ̃ starts at p: γ̃(0) = p; 
• γ̃ is a lift of γ: π ◦ γ̃ = γ; 

γ(t)• The tangent vectors are horizontal: d˜ ∈ Hγ̃(t) for all t ∈ [0, 1].dt 

Proposition 1 ( [81], Vol. 1, Prop 3.1). Let π : P → M a principal G bundle, 
H a principal bundle connection on P and γ : [0, 1] → M a piecewise-smooth 
curve. For any point p in the fibre of γ(0), there exists a unique horizontal lift. 

A horizontal lift is used to define the holonomy of the connection. Observe 
that a closed loop in the base need not lift to a closed lift in the total space, 
although the end point of the lift will be in the same fibre. In particular, looking 
at the horizontal lift of a curve that starts at p, the endpoint will necessarily be 
′ p = p · g for a unique g ∈ G. The holonomy group of the connection, H , 
based at p, is a subgroup of G consisting of those elements obtained through 
the horizontal lift of a curve. We will denote this group by Holp(P, H). 
The holonomy group is an obstruction to reducing the principal bundle with 

connection. Indeed, if Q ⊂ P is a principal subbundle with group G ′ ⊂ G, 
with the property that the connection restricts, then a horizontal lift of a curve 
in the base must surely stay in Q and, consequentially, the holonomy subgroup 
of q ∈ Q must satisfy Holq(P, H) = Holq(Q, H ′ ) ⊂ G ′ ⊂ G. In fact, it is 
the only obstruction, as the next theorem demonstrates: 

Theorem 1 ( [80] Thm 2.3.6). Let π : P → M be a principal G bundle, 
H a principal bundle connection on P . Fix an element p ∈ P and define 
G ′ = Holp(P, H). Let Q be the subspace of P whose points are those that 
are connected to p by a horizontal path, i.e. q ∈ Q if and only if there exists 
γ : [0, 1] → M , γ(0) = π(p) whose unique horizontal lift, γ̃ has endpoint 
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equal to q, γ̃(1) = q. Then, Q is a G ′-principal subbundle of P and H restricts 
to Q. 

As a consequence, a principal G bundle with connection and holonomy, H , 
can be restricted to a principal G ′ bundle, only if H ⊂ G ′ . As a converse 
statement, we have [80, 81]: 

Theorem 2. Let M a manifold with dimension n ≥ 2, P a principal bundle 
over M with fibre G. Then, for each connected Lie subgroup G ′ ⊂ G there 
exists a connection, H , on P with holonomy group Hol(P, H) if and only if 
P reduces to a principal G ′ bundle. 

In particular, if a manifold has a G structure, encoded in a principal sub-
bundle P ⊂ F , then a connection on F can be found that also has holonomy 
P . We will next want to understand the relation between the principal bundle 
connections we have been dealing with and the more familiar covariant deriva-
tives of vector bundles. We briefly review this story, relying on Joyce [80] or 
Kobayashi-Nomizu [81] for proofs. 
Let us fix a group, G and a linear representation ρ : G → GL(W ). Given 

a principal G bundle, P , we can therefore define an associated vector bundle 
E = P ×ρW . Recall that the elements of the associated bundle are equivalence 
classes of pairs [p, v] where [pg, v] = [p, ρ(g)v]. Recall further that for any 
connection on π : P → M , the subbundle H is isomorphic to the pullback 
π∗TM . The extra data that the connection gives is an inclusion π∗TM → TP . 
These observations lead to a means of endowing E with a covariant derivative. 
Before reproducing the construction, we recall the definition of a covariant 
derivative of a vector bundle. 

Definition 5. Let E → M be a smooth vector bundle over a smooth manifold. 
A covariant derivative, ∇ is a map ∇ : ΓM (E) → ΓM (T ∗M ⊗ E) which is 
R-linear and satisfies the Leibniz rule: 

∇(fe) = df ⊗ e + f ∇e . (3.15) 

Restrict to the case that E is the associated bundle, E = P ×ρ W . Let 
e ∈ ΓM (E), a smooth section, and consider the projection p : P × W → E. 
The section, e, can be pulled back along this map to give a G-invariant section 
of P × W , considered as a trivial vector bundle over P . Indeed, we must have 

′ ex = [p, v] and observe p∗ e(p) = (p, v). For p = gp, then ex = [pg, ρ(g)v] so 
that p∗ e(p ′ ) = (pg, ρ(g)v). In this way, we have a bijection between smooth 
sections of the associated bundle, E, and smooth, G-invariant sections of the 
trivial bundle P × W → P . Consider the pullback as a map p ∗ e : P → W 
and take its differential, (p ∗ e)∗,p : TpP → V . This is interpreted as a smooth 
section of the vector bundle W ⊗ T ∗P → P . By dualising the connection, 
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we have that T ∗P ∼= V ∗ ⊕ H∗ . Using the natural isomorphism Vp =∼ g and 
Hp =∼ π∗(Tπ(p)M), we have the natural splitting 

W ⊗ T ∗ P ∼= W ⊗ g ∗ ⊕ W ⊗ π ∗ (T ∗ M) . (3.16) 

It is now sensible to project the section (p ∗ e)∗ to the horizontal component, 
W ⊗ π∗(T ∗M). Borrowing some of Joyce’s notation, we write this section 
as πH (p ∗ e∗) ∈ ΓP (W ⊗ π∗T ∗M). By construction, this is G-invariant and 
consequentially is equivalent to a section of E ⊗ T ∗M over M . Then define 
∇e ∈ ΓM (E ⊗ T ∗M) to be the section uniquely defined by πH (p ∗ e∗). It can 
be checked using the definition that this is indeed R-linear and satisfies the 
Leibniz rule with respect to multiplication by smooth functions. The following 
definition records this construction. 

Definition 6. Let π : P → M a principal G-bundle, ρ : G → GL(W ) 
a representation and E := P ×ρ W the associated bundle. Let H ⊂ P a 
principal bundle connection. Define the associated connection to be the map 
∇E : ΓM (E) → ΓM (E ⊗ T ∗M): 

∇E : e 7→ [πH (p ∗ e∗)] . (3.17) 

This gives a map of sets 

{ } { }Principal bundle connections covariant derivative on 
on P 

→ an associated bundle . 

In general, this map need not be a bijection, but it is for G = GL(k, R) and ρ 
the fundamental representation, [80]. 
In particular, a covariant derivative is equivalent to a connection on the prin-

cipal frame bundle. If the connection on the principal bundle has holonomy 
contained in some group, G, and the manifold admits a G structure, then the 
given covariant derivative induces a connection on the G structure. 

Example 1. Recall that an SO(n) structure on M is equivalent to an isometry 
class of metric and an orientation. A covariant derivative on TM will restrict 
to connection on FSO only if the covariant derivative is metric. 

In this context, Theorem 2 expresses the fact that there always exists a non-
empty family of metric connections. The famous Levi-Civita connection is a 
metric connection that satisfies an extra condition: it is “torsion-free”. As is 
well known, the Levi-Civita connection is the unique connection that is torsion-
free and metric. We will be interested in analogous problems: given a G struc-
ture, we will need to look for connections that reduce to the G structure and 
satisfy some constraint on their torsion. All the groups, G, that we will be in-
terested in are in fact subgroups of SO(n), not just GL(n), so the connections 
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will be metric. In general, demanding that the torsion also vanishes will be too 
strong a constraint - it imposes that the Levi-Civita connection restricts to the 
G structure. Manifolds whose Levi-Civita connection has restricted holonomy 
in this sense are quite special, but are not the main focus of this thesis. 

3.4 Torsion 
In this section we review the definition of the torsion of a connection. Ulti-
mately, the existence of spinor satisfying the Killing spinor equations, specifi-
cally the gravitino equations (2.12), can be rephrased in terms of the existence 
of a G structure connection with specific torsion and this relationship is re-
viewed in this section. 

3.4.1 Intrinsic torsion of a G structure 
Let M be a smooth manifold. Recall that a covariant derivative on a tangent 
bundle can be thought of as a map of sections ΓM (TM ⊗ TM) → ΓM (TM), 
cf. Definition 5. The torsion of such a covariant derivative is a tensor that 
gives a measure of how symmetric this map is in the inputs. 

Definition 7. Let M a smooth manifold and ∇ a covariant derivative on TM . 
The torsion of ∇ to defined to be the tensor, T (∇) ∈ ΓM (TM ⊗ Λ2T ∗M) by: 

T (∇)(v, w) := ∇vw −∇wv − [v, w] ∈ ΓM (TM) , (3.18) 
for all v, w ∈ ΓM (TM). 

Our aim will be to understand whether a given G structure will admit a 
compatible connection satisfying a constraint on its torsion. We will therefore 
need to understand both how torsion behaves with a change of connection and 
to what extent the intrinsic G bundle constrains the torsion. 
Towards the first goal, suppose that ∇, ∇ ′ are distinct G-connections on 

TM . Recall that the difference between any two covariant derivatives is a 
globally defined one form valued in the endomorphism bundle, in this case: 

∇−∇ ′ ∈ Ω1(M, End(TM)) . (3.19) 
cWe can therefore regard this difference as a three index tensor αab. Further: 

[T (∇) − T (∇ ′ )](v, w) = ∇vw −∇wv −∇ ′ w + ∇ ′ vv w 

= α(v, w) − α(w, v) ∈ ΓM (TM) . (3.20) 

Thus, T (∇) will have the required torsion, say τ , only if any other connection 
satisfies 

T (∇ ′ ) = τ + α(v, w) − α(w, v) . (3.21) 
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To make systematic use of this formula, we recall the notion of intrinsic 
torsion, [80]. 
Let W ∼= Rn a faithful representation of a group, G, with induced inclusion 

G ⊂ GL(n). Since gl(n) = W ⊗ W ∗, we can embed G’s Lie algebra into this 
space of endomorphisms, g ⊂ W ⊗ W ∗ . 
Use this embedding to define a linear map σ : g ⊗ W ∗ → W ⊗ Λ2W ∗, by: 

σ(αbc
a ) = αa

bc − αa (3.22)cb . 

We get a four-term exact sequence: 

0 → ker σ → g ⊗ V ∗ → V ⊗ Λ2V ∗ → (V ⊗ Λ2V ∗ )/Im σ → 0 . (3.23) 

In the notation of Joyce, [80], let W1 := W ⊗Λ2W ∗ and consider the spaces 
W2 = Im σ, W3 = W1/W2 and W4 = ker σ. Each of these has an induced G 
representation, ρi : G → GL(Wi) and, consequentially, given a G structure 
we can form the associated bundle to each representation, say Ei. 
Evidently, the torsion of any G structure connection forms a section of 

E1 while the equivalence class of the torsion of any given connection, i.e. 
[T (∇)] ∈ ΓM (E3) is independent of the connection. 

Definition 8. Let M a smooth manifold, P → M a G structure on M , H 
a connection on P and ∇ the associated covariant derivative on TM . The 
intrinsic torsion of P is defined to be the section [T (∇)] ∈ ΓM (E3). The 
intrinsic torsion depends only on the G structure. 

Note that sections of the bundle associated with the kernel, E4 can be re-
garded as deformations of any given connection that preserve the torsion. That 
is, if ∇ a connection and α ∈ ΓM (E4), then ∇ + α is a new connection and 
T (∇ + α) = T (∇). 
We will now specialise to the case that G ⊂ SO(n), and take up the story 

using Bryant’s notes [84]. The Lie algebra of SO(n), denoted so(n) has the 
property that 

σ : so(n) ⊗ W ∗ → W ⊗ Λ2W ∗ (3.24) 
is an isomorphism. The above machinery then tells us that there is a unique 
torsion-free metric connection and, more generally, the triviality of the kernel 
implies that the torsion of a metric connection uniquely specifies the connec-
tion itself. 
Since g ⊂ so(n), the triviality of the kernel is inherited by σG, but it gen-

erally fails to be surjective. A convenient means of measuring this failure is 
to recall that so(n) has an essentially unique inner product which induces a 
canonical splitting 

⊥ so(n) = g ⊕ g . (3.25) 
Evidently, the quotient W2 is simply isomorphic to g ⊗ W ∗, while the quotient 
W3 =∼ g⊥ ⊗ W ∗, both isomorphisms as G-spaces. We will therefore interpret 
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the intrinsic torsion of a G structure, P , for G ⊂ SO(n), as a section of the 
associated bundle E3 

∼= P ×ρ (g
⊥ ⊗ Rn). 

Still following Bryant, consider the Levi-Civita connection on TM , distin-
guished as the unique torsion-free metric connection. We can think of this con-
nection as a globally defined one-form on the orthonormal frame bundle, FSO , 
e.g. Ψ ∈ Ω1(FSO , so(n)). The connection restricts to a given G structure, P , 
if pulling-back along P → FSO gives a one-form with values in g ⊂ so(n). 
More generally, after pulling back, there is a unique decomposition Ψ = Θ+τ 

⊥where Θ takes values in g and τ has values in g . 
Then, τ represents the intrinsic torsion of the G structure, P . 
It can be observed that the connection specified by Θ need not be unique. 

In fact, the space of G-equivariant homomorphisms, 

HomG(g ⊥ ⊗ W ∗ , g ⊗ W ∗ ) 

describes the modifications on Θ, first order in the torsion functions, such that 
the modification defines a connection on M that is compatible with the G struc-
ture. 

3.5 Examples of G structures and torsion constraints 
We will now use these formal deliberations to consider some examples of in-
teresting geometries, relevant to this thesis, that are encoded in terms of a G 
structure with constrained torsion. 

3.5.1 Complex structure 
Recall from Section 3.2.1 that an almost complex structure on a 2n dimen-
sional manifold is a GL(n, C) structure. A complex structure is a torsion-free 
GL(n, C) structure. 
By the Newlander-Nirenberg theorem, [91], this is equivalent to the state-

ment that the manifold has a holomorphic atlas compatible with the endomor-
phism J . Complex geometry is a rich and interesting topic, with many intro-
ductory accounts that deal with this theorem, including [80, 82, 83]. 

3.5.2 Kähler structure 
In Subsection 3.2.2 we saw that an hermitian metric on an almost complex 
structure induced a U(n) structure and that the metric and almost complex 
structure combined define a two form, ω. A torsion-free U(n) structure is a 
Kähler structure. In this case, the two form is closed and defines a symplectic 
structure. 
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3.5.3 Calabi-Yau manifold 
In Subsection 3.2.3, the notion of an SU(n) structure was defined. A torsion-
free SU(n) structure is a Calabi-Yau manifold. By the Calabi conjecture [92, 
93], famously proven by Yau, [94], a compact Kähler manifold with vanishing 
first Chern class admits a unique metric with two form in the same cohomol-
ogy class that is Ricci-flat. This ensures that many manifolds that admit a 
Calabi-Yau structure have been found, though explicitly computing the metric 
is almost always out of reach (though see e.g. [95, 96] and references therein 
for recent work in the area). This fact plays a background in the discussion of 
Paper III. 
Calabi-Yau manifolds are of great interest in the physics community, be-

ing one of the first semi-realistic compactifications [20].2 They continue to 
play a distinguished role in the physics literature, with numerous interesting 
applications, including mirror symmetry and topological strings, for instance. 

3.5.4 G2 manifolds 
A manifold with torsion-free G2 structure is often called a G2 manifold. In this 
case, the three form that describes the G2 structure is closed and co-closed. 
Similar to the Calabi-Yau case, explicit metrics are difficult to come by, but 
there exist several compact constructions, firstly the orbifold constructions of 
Joyce [87, 88], and more recently the twisted (and extra twisted) connected 
sum (TCS) constructions due initially to Kovalev [98] and elaborated upon 
in [99–101]. 
G2 manifolds continue to arouse a great deal of interest in the physics liter-

ature, see for instance [33–35, 102–105] for a small sample. 
Despite their importance and interest, G2 manifolds do not play a significant 

role in this thesis. The G2 structure manifolds that are of most relevance to this 
thesis are those considered in the next subsection. 

3.5.5 Integrable G2 structures 
The main focus for the G2 structures considered in this thesis are those G2 

structure manifolds whose torsion is not necessarily vanishing, but is totally 
antisymmetric. In this section, we will recall the constraints on the intrinsic 
torsion imposed by this requirement, following Bryant [84]. Given the results 
of the previous section, this basically amounts to a little G2 representation 
theory. These results can be found in many sources, including the standard 
sources for this chapter, [84] and [80]. Alternatively, one can use a computer 
package e.g. LieART [106] and replicate the computations. 
We have already implicitly encountered two irreducible representations of 

the group G2, namely the seven dimensional vector representation inherited 

2For a physics-aimed introduction, see for instance [97]. 
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from so(7) and the Lie algebra g2, which is fourteen dimensional. The irre-
ducible representations that are relevant for us are characterised by their di-
mension, so this how we will label them. We will be particularly interested 
in decomposing the representations arising from the decomposition of tensor 
products of the 7, especially the endomorphism representation, End(7) and 
the exterior powers Λk7. It is important to note that the fundamental repre-
sentation, 7, is self-dual, i.e. 7∗ ∼= 7. Therefore, there is an isomorphism 
End(7) ∼= 7 ⊗ 7. The 7 ⊗ 7 contains all the representations that are relevant to 
us: in particular: 

7 ⊗ 7 ∼= (1 ⊕ 27) ⊕ (7 ⊕ 14) . (3.26) 
The parentheses group the summands into the symmetric and antisymmetric 
parts, respectively. In particular, the 27 is the traceless symmetric part and the 
1 is the trace. The antisymmetric part is isomorphic to so(7) and the further 
decomposition corresponds to the splitting so(7) = g⊥ ⊕ g of (3.25). 
The antisymmetric powers decompose as: 

Λ07 1 
Λ17 7 
Λ27 7 ⊕ 14 
Λ37 1 ⊕ 7 ⊕ 27 
Λ47 1 ⊕ 7 ⊕ 27 
Λ57 7 ⊕ 14 
Λ67 7 
Λ77 1 

In particular, for a manifold with G2 structure, Y , differential forms have 
a comparable fibrewise decomposition, e.g. Ω2(Y ) = Ω7

2(Y ) ⊕ Ω2 
14(Y ). 

Importantly, the space of sections depends only on the representation so that 
Ω3
1(Y ) =∼ Ω0

1(Y ) and so on. The final tensor decomposition required is given 
by 14 ⊗ 7 ∼= 7 ⊕ 27 ⊕ 64. It will not be necessary to know anything about the 
64 dimensional representation. 
Using these decompositions, we can investigate the class of connections that 

were singled out at the end of Subsection 3.4.1. Recall that, starting from the 
Levi-Civita connection, the family of connections that can be obtained at first 
order in the torsion functions is [84]: 

⊥HomG2 (g2 ⊗W ∗ , g2 ⊗W ∗ ) =∼ HomG2 (1⊕27⊕7⊕14, 7⊕27⊕64) . (3.27) 

Since there are no equivariant morphisms between non-isomorphic irreducible 
representations, it follows that there is an isomorphism: 

⊥HomG2 (g2 ⊗W ∗ , g2 ⊗W ∗ ) =∼ HomG2 (27, 27)⊕HomG2 (7, 7) ∼= R2 . (3.28) 

Note that by construction, the deformations that are parametrized by these fam-
ilies are proportional to the torsion, τ , defined in terms of the Levi-Civita con-
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nection. Consequentially, if the 7 and 27 part of τ vanishes then the family 
collapses, [84]. 
We will need our torsion to be totally antisymmetric, which means that it 

must be valued in the 1 ⊕ 7 ⊕ 27. Since we can not remove the 14, at least 
at first order, that means that we must have the 14 part of τ vanishes. This 
is called an integrable G2 structure by Fernández and Ugarte [107] where it 
used to construct a canonical chain complex associated to the G2 structure. A 
more explicit proof that the 14 part of the torsion must vanish in order to find 
antisymmetric torsion is given in [48, 78]. 

3.6 Constant tensors 
We will conclude this review chapter on G structures by giving another char-
acterization in terms of differential forms. The appeal of this approach is that it 
is very concrete and, from the physics perspective, quite natural. The essential 
idea is contained in the following Proposition: 

Proposition 2 ( [80] Proposition 2.5.2). Let M be a manifold and ∇ a connec-
tion on M . Fix x ∈ M and define H = Holx(∇), so H ⊂ GL(TxM). Let E⊗k ⊗lbe a tensor bundle on M , i.e. E = TM ⊗ T ∗M for some k, l ∈ Z≥0. 
Then, the connection, ∇ induces a connection on E, ∇E , and H has a natural 
representation on the fibre Ex of E at x. 
Suppose that S ∈ ΓM (E) is covariantly constant, i.e. ∇E S = 0. Then 

S|x is fixed by the action of H on Ex. Conversely, if Sx ∈ Ex is fixed by the 
action of H , then there exists a unique tensor S ∈ ΓM (E) such that ∇ES = 0 
and S|x = Sx. 

Recall that if H = Holx(∇) and M admits a G structure, then the connec-
tion only restricts to G if H ⊂ G. The above proposition tells us that at any 
given point in M , the H invariants of any tensor are equivalent to covariantly 
constant sections. 
In many circumstances, this proposition expresses ideas that we are already 

familiar with. We will have a look at the invariants characterising a subset of 
the collection of G structures that we have studied thus far. 

3.6.1 SO(n) structure 
The invariant of an SO(n) structure is the metric g ∈ ΓM (S

2TM). We have 
observed earlier, in Example 1, that a connection has holonomy in SO(n) if 
and only if it preserves the metric. 
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3.6.2 U(n) structure 
Recall from 3.2.2 that U(n) structures are redundantly described by a triple of 
tensors (J, h, ω), where any two out of the three fixes the third. These invari-
ants are tensors with the following structure 

h ∈ ΓM ((T + ⊗ T −) ∗ ) ⊂ Γ(S2T ∗ MC) 

J ∈ ΓM ((T + ⊗ (T +) ∗ ⊕ (T − ⊗ (T −) ∗ )) 

ω ∈ ΓM ((T − ⊗ T +)) ⊂ Ω2(M)C , . 

As a consequence of Proposition 2, any covariant derivative on TM that pre-
serves the U(n) structure must have the property that each of these are covari-
antly constant. 

3.6.3 SU(n)-structure 
An SU(n) structure has the same invariants as a U(n) structure, in addition 
to the top-form Ω+ ∈ ΓM (Λ

nT +) ⊂ Ωn(M)C . A U(n) connection will only 
restrict to the SU(n) structure if the new form, Ω is also covariantly constant. 

3.6.4 Quaternionic structures 
As we saw in Subsection 3.2.4, a quaternionic structure is characterized by 
a triple of non-degenerate two-forms, ω1, ω2, ω3, and a Riemannian metric, 
g. By construction, these are invariants of the structure group, so a tangent 
bundle connection will respect the reduction only if these defining forms are 
covariantly constant. 

3.6.5 G2 structure 
We have already seen that a G2 structure is characterised by a three form, φ 
from which we can extract a metric and a four form ψ = ∗φ. These are all 
invariants so are covariantly closed by Proposition 2. Since this class of man-
ifolds is deeply relevant to two-out-of-three presented papers, we will here 
explore this in a little more depth. We aim to review the relationship between 
the intrinsic torsion of a G2 structure, as defined in Subsection 3.4.1, and a 
conceptually simpler invariant of the G2 structure. In the next example, we 
will relate this to the spinor defining a G2 structure, which will provide a con-
ceptually crucial piece in relating the geometric considerations of this chapter 
with supersymmetric compactifications. 
The starting point is to consider the exterior derivatives of φ and ψ, giving 

a four- and five- form respectively. This can be decomposed into components 
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in the irreducible representations: 

dφ = τ0ψ + 3τ1 ∧ φ + ∗τ3 (3.29) 
dψ = 4τ1 ∧ ψ + ∗τ2 . (3.30) 

Here, τ0 ∈ Ω0(Y ), τ1 ∈ Ω7
1(Y ), τ2 ∈ Ω14

2 (Y ) and τ3 ∈ Ω3 The only 27(Y ). 
remarkable aspect of equations (3.29) and (3.30) are that the same τ1 appears 
twice. This is the content of Proposition 1 in [84]. 
That there is a relation to the intrinsic torsion that we met previously is hinted 

at by the fact that the degrees of freedom match, i.e. the intrinsic torsion was 
valued in the 7 ⊗ 7 ∼= 1 ⊕ 7 ⊕ 14⊕ 27. If it weren’t for the fact that the 7 part of 
dφ and dψ agree (up to constant factor and under the isomorphism Ω4 ∼= Ω5),7 7 
this assertion would fail. 
The correspondence can be checked explicitly, by following through the 

logic of Bryant [84] as reviewed in 3.4.1, and explicit computations along these 
lines are in [48]. A different presentation of a related approach can be found 
in [85]. The explicit relationship can be found in [48, 78] where the τ classes 
are combined into a three-form 

H =
1 
τ0φ − τ1⌟ψ − τ3 . (3.31)

6 

In the case that τ2 = 0, then the authors of [48, 78] show there is a unique G2 

connection with torsion T = H . Explicitly, the G2 connection has connection 
symbol: 

c c cΓ = (ΓLC ) +
1 
H (3.32)ab ab ab2 

3.6.6 G2 structure via a spinor 
Recall that an alternative description of a G2 structure on Y was a choice of 
spin structure on Y along with a non-zero spinor. In the choice of spin structure 
there is implicitly a fixed metric and orientation, so the G2 invariants are now 
a spinor, λ, and the metric. A G2 connection on the tangent bundle induces a 
spin connection on the spin structure, but Proposition 2 does not immediately 
imply that the spinor is covariantly constant, because it was stated only for 
tensor bundles. The fact that the spinor is indeed covariantly constant can be 
seen via the following reasoning. 
Let λ a unit spinor defining a G2 structure. Then, the corresponding positive 

three form, φ has an explicit, local expression as a spinor bilinear [77, 108]: 

φabc = −iλT Γabcλ, (3.33) 

where Γa indicates a Clifford matrix, taken to be purely imaginary, and Γabc is 
the antisymmetrized product. 
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We will again restrict to an integrable G2 structure and the compatible con-
nection with totally antisymmetric torsion, whose connection symbol is explic-
itly given by (3.32). The corresponding spin connection is given by 

1 
= DLCDG2 − HijkΓ

jk, (3.34)i i 8 

where DLC is the spin connection associated to the Levi-Civita connection. 
It can then be directly computed (a package like GAMMA, [109], is very 

helpful) that λ is covariantly constant with respect to DG2 , [48, 61, 108]. 
This fact lies at the crux of the relationship between supersymmetric com-

pactifications and the geometry of G structures: it corresponds precisely to the 
vanishing of the gravitino equation, (2.12). 
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4. Almost contact (3-) structures 

In Chapter 3 we reviewed the fundamental notions of G structures and saw in 
Example 3.6.6 how these are related to the Killing spinor equations derived 
from supersymmetry preservation of a supergravity vacuum. It is clear, then, 
that it would be desirable to have as complete an understanding of the space of 
G structures and connections as is possible. 
In Paper II, we investigated possible tools that may aid in this understanding 

in the case of G2 structure manifolds. The basic premise is that G2 structure 
manifolds always admit a further refinement of structure group [108,110–114], 
or more precisely, it always admits an infinite dimensional family of refine-
ments. 
These further reduction of structure groups can be captured by an almost 

contact metric structure (ACMS) [115,116], which reduces the group to SU(3), 
and almost contact metric 3-structures [114], which further reduce the struc-
ture group to SU(2). These are related to complex and quaternionic structures, 
but not precisely in the sense of Subsection 3.2.3 respectively 3.2.4, due to the 
mismatch in dimensions: complex structures must be even dimensional and 
quaternionic require a multiple of four; seven dimensions satisfies neither of 
these requirements. More details will be given below, but essentially these 
structures trivialise part of the tangent bundle and the remaining, non-trivial 
part will have the correct rank for an almost complex, resp. quaternionic struc-
ture. 
Although these structures always exist and always admit connections that 

preserve the restricted group, by Theorem 2 a given G2 connection will restrict 
to an SU(3), resp. SU(2) structure, if and only if its holonomy is already a 
subgroup of the relevant group. Nevertheless, we can use the refined G struc-
ture to express elements of the geometry, for instance the G2 torsion, into irre-
ducible representations of the reduced structure group. For the case of ACMS, 
this was carried out for the G2 connection with totally antisymmetric torsion 
that is relevant for heterotic compactifications. In fact, we decomposed the 
entire system of Killing spinor equations of the heterotic string. This enabled 
us to recognise that a certain solution from the literature in fact had enhanced, 
N = 2 supersymmetry, [65]. 
For more details on this side of things, the reader is referred to Paper II. In 

this summary, we will focus on the ACM3S story, i.e. the reduction from G2 

to SU(2) structures. Whilst it is, in principle, possible to carry out the same 
computations here as we did for the ACMS case, the number of terms makes it 
impractical [117]. The study focused instead on the space of ACM3S, i.e. all 
the possible reductions of the G2 structure to an SU(2) structure group. 
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4.1 Definitions 
We begin by recalling the precise definitions of an almost contact (metric) 
structure [115, 116] and almost contact (metric) 3-structure, [114]. 

Definition 9. An almost contact structure (ACS) on an odd dimensional Rie-
mannian manifold is a triple (R, J, σ) ∈ ΓY (TY ⊕ End TY ⊕ T ∗Y ), such 
that 

1. |R|2 = 1; 
2. σ(R) = 1; 
3. J2 = −1 + R ⊗ σ. 

An almost contact metric structure (ACMS) is an ACS that satisfies, in addi-
tion: 

g(Ju, Jv) = g(u, v) − σ(u)σ(v) , ∀ u, v ∈ ΓY (TY ) . (4.1) 

We can remark that, in general, a choice of a nowhere vanishing vector 
field can be regarded as defining a reduction of structure from GL(n, R) to 
GL(n − 1, R). In case the manifold was oriented and metric, then this can 
instead be regarded as reducing SO(n) to SO(n − 1). In our case, n = 7 and, 
having fixed R, the rest of the structure can be seen as endowing the trans-
verse bundle, defined to be the kernel of σ, with an almost complex structure, 
see Section 3.2.1. The metric condition ensures that it is, in fact, an almost 
hermitian structure as reviewed in Section 3.2.2. 
The fact that we end up with structure group SU(3) instead of U(3) is a 

consequence of the fact that we started with a G2 structure, [110–112]. 

Definition 10. An almost contact three-structure (AC3S) on a Riemannian 
manifold, M , of dimension 4k +3 is given by a triple of almost contact struc-
tures, (Ri, Ji, σi) ∈ ΓY (TY ⊕ End TY ⊕ T ∗Y ), satisfying (in addition to the 
conditions of Definition 9) 

1. σi(Rj) = δij ; 
2. σi ◦ Jj = −σj ◦ Ji = σk; 
3. Ji ◦ Jj − Ri ⊗ σj = −Jj ◦ Ji − Rj ⊗ σi = Jk; 

for (i, j, k) a cyclic permutation of (1, 2, 3). 
An almost contact metric 3-structure (ACM3S) is an AC3S that satisfies, in 

addition: 

g(Jiv, Jiw) = g(v, w) − σi(v)σi(w) , ∀ i ∈ {1, 2, 3} . (4.2) 

Similar to the comment on ACS structures, we can regard an ACM3S struc-
ture as inducing an almost quaternionic structure (see Subsection 3.2.4) on the 
rank-4 bundle that is transverse to the trivial bundle spanned by (R1 , R2, R3).1 

1Since we only dealt with metric quaternionic structures in Subsection 3.2.4, we need the metric-
ity condition to compare these notions. 
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In fact, part of the stated condition of being metric is redundant: it suffices 
to check the metric condition on any two of the three almost contact structures. 
Todd [110, Thm 5.1], shows that a G2 structure, along with an orthonormal 

pair vector fields, allows one to construct an ACM3S. We will now review this 
construction. Let R1, R2 denote the vector fields and σ1, σ2 denote their duals 
with respect to the given G2 metric. Define Ji by the property that 

gφ(Ji(X), Y ) = φ(Ri, X, Y ) . (4.3) 

The results of Todd show that these pair satisfy the necessary conditions σi ◦ 
Jj = −σj ◦ Ji and Ji ◦ Jj − Ri ⊗ σj = −Jj ◦ Ji − Rj ⊗ σi and are metric, 
thus defining an ACM3S. 

4.2 Space of G2-ACM3S 
Given the above construction, it is natural to ask: On which G2 structure man-
ifolds can we find a pair of vector fields, from which we can can construct an 
ACM3S? and secondly, what is the space of such structures? 
The first question was implicitly answered by Thomas in 1969 [113], where 

he showed that on any spinnable seven manifold, there exists such a pair of 
everywhere linearly independent vector fields. A seven manifold admits a G2 

structure if and only if it is spinnable, as reviewed in Subsection 3.2.5, and 
consequentially every G2 structure manifold admits an ACM3S. 
To the best of the author’s knowledge, the second question was not answered 

until Paper II, although the argument is not a new one and closely related to the 
obstruction theoretic arguments of Thomas [113]. We notice that an ACM3S 
that is constructed in this fashion is uniquely specified by an orthonormal pair 
of vector fields. At each point on the seven manifold, the space of orthonor-
mal pairs is a Stiefel manifold, which has a convenient presentation as a G2 

homogeneous space due to [118] 

V2 = G2/SU(2) . (4.4) 

This just means that SU(2) is the subgroup of G2 that preserves a pair of vec-
tors. 
Therefore, one can define the fibre bundle associated to the principal G2 

frame bundle whose fibre is G2, call it V2, say. The sections of this bundle 
is precisely the space of orthonormal two-frames on our original space, which 
is bijective with the space of ACM3S of the form constructed above. That is, 
ΓY (V2) is the space of interest to us. 
There is a fibrewise-action of SO(3) on this space. Indeed, using the G2 

cross product, we have the orthonormal triple (R1, R2, R3 := R1 ×φ R
2), and 

SO(3) acts by rotation. 
We can view the data of (R1, R2, R3) as a trivialised rank three subbundle 

of TY , and quotienting by the above SO(3) action has the effect of forgetting 
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the trivialisation, which means the resulting space is the space of trivial rank 
three subbundles. We can, therefore, view the space of 3-structures as a bundle, 
whose fibre is Maps(Y, SO(3)). It turns out that this need not be trivial, which 
was shown in an example in subsection 5.4.3 of Paper II. 

4.3 Integrability 
The discussion thus far has been quite topological, while any physics applica-
tions will have to include more differential geometric information, as encoded 
in a connection, for instance. However, the brute force decomposition into 
SU(2) irreducible components has too many pieces to be practical or, pre-
sumably, enlightening [117]. 
We would therefore like to find some other means of accessing at least some 

differential geometric information. The fact the ACM3S that we are interested 
in are specified by the vector fields and the G2 structure suggests that we in-
vestigate the Lie bracket of these vector fields. 
There is certainly no reason to expect that the Lie algebra will close, but we 

want to understand what happens when it does. The generic answer is given 
by Frobenius theorem [119–122], and says that closure of the Lie algebra is 
equivalent to integrability of the distribution they span. We will consider two 
distributions: that spanned by (R1, R2, R3), say T ⊂ TY , and the rank four 
orthogonal complement T ⊥ ⊂ TY . Frobenius’ theorem tells us that a distri-
bution is tangent to a foliation if and only if it is closed under the Lie bracket. 
A weaker condition is that there exists a cycle such that the distribution is tan-
gent to this cycle. This is possible only if the distribution is closed under the 
Lie bracket at each point in the cycle. Note that, crucially, we can choose an 
arbitrary local frame for the distribution and check on this basis, the results are 
independent of the frame. That means, for instance, that involutivity is inde-
pendent of the specific framing (R1, R2, R3) and depends only on the spanned 
vector space. In other words, it is invariant under the Maps(Y, SO(3))-action 
identified above. 
The above discussion is standard and goes for an arbitrary distribution. What 

is interesting about the distributions that arise in the ACM3S context, is the fol-
lowing. 
Suppose that X ⊂ Y is a three-cycle with the property that TX = T |X . 

Then, the volume form of X is the three form σ1 ∧ σ2 ∧ σ3. On the other hand, 
σ3 = ιR2 ιR3 φ, which implies that this volume form is φ|X . In the context of 
G2 geometry, a three cycle whose volume form is the G2 structure three form 
is called associative. These are particularly interesting when the three form is 
closed, in which case they are calibrated geometries and, for instance, volume 
minimising in their class. More generally, these cycles are energy minima of 
wrapped branes in the presence of flux [60, 123, 124]. 
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Similarly, one can show that a four cycle, W ⊂ Y has TW = T ⊥|W 

has volume form given by the four form, ψ. In that case, one says that W is 
coassociative and, in the case that ψ is closed, W is a calibrated cycle. 
In particular, when T , respectively T ⊥ are integrable, the manifold is fo-

liated by associative, respectively coassociative manifolds. Manifolds with 
these geometries have attracted interest from both physicists and mathemati-
cians, e.g. [34, 35, 105, 125, 126]. 

4.4 Examples 
4.4.1 Barely G2 holonomy 
We here consider a class of G2 manifolds that are built out of Calabi-Yau man-
ifolds. This construction gives a torsion free G2 structure, but its holonomy 
is not the full group G2, rather it is twisted product, SU(3) ⋊ Z2, whence the 
name “barely” G2. This class of examples is discussed in a physics context 
in [127], for instance, and a subset of these are classified in [128]. 
Let X a Calabi-Yau manifold that admits a fixed point free, antiholomorphic 

involution, σ : X → X . Not every Calabi-Yau admits such a map, but Grigo-
rian classifies all the complete intersection Calabi-Yaus (CICYs) that do, [128]. 
Consider the product X × S1, equipped with the involution 

σ ×−1 : X × S1 → X × S1 . 

This is fixed point free, because σ is, so the quotient is a smooth manifold, 
Y = (X × S1)/Z2, with the induced metric. It is not hard to check that this 
has the claimed structure group. What about ACM3S? 
To make things a little more concrete, let us restrict to the case that the 

Calabi-Yau manifold admits a vector field. This is true if and only if the Euler 
number vanishes and there are two CICYs in Grigorian’s list which have this 
property, [128]. 
Since the Euler characteristic X/σ is also zero, there exists at least one unit 

vector field which is invariant under this involution. Choose one such vector 
field, i.e. v ∈ ΓX (S(TX)) satisfying σ∗v = v. 
Using the complex structure on X , denoted by I say, we can define a new 

vector field, w := Iv, that is everywhere linearly independent of v. This does 
not descend to the quotient, since σ is antiholomorphic and therefore anticom-
mutes with the complex structure. Similarly, the circle factor admits a vector 
field that anticommutes with the symmetry action and we will be able to use 
this to construct a triple on the resulting barely G2 manifold, Y . 
We will construct a pair of vector fields; the third is then fixed by the G2 

structure. The first vector field is the image of the invariant vector field as-
sumed above, R1 := v. 
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The second can be constructed out of w and ∂t: 

R2 = cos(2πt)w − sin(2πt)∂t . (4.5) 

We need to show that this is invariant under the Z2 action which sends the 
2πit ∈ S1 to −e 1point e 2πit, i.e. t 7→ t + . Since both w and ∂t acquire a sign 2 

under the Z2 action, this cancels out the sign picked up by the trigonometric 
prefactors and R2 is invariant. 
It remains to understand the G2 structure three form. This is constructed out 

of the Calabi-Yau invariants ω ∈ Ω1,1(X) and Ω ∈ Ω(3,0)(X) by 

φ := dt ∧ ω + Re Ω . (4.6) 

Note that, since σ is anti-holomorphic it acts by Ω ↔ Ω and thus leaves the 
real part of Ω invariant. Similarly, since σ is an isometry but acts with a sign 
on the complex structure, the Kahler form ω(−, −) = g(J−, −) is acted on 
by a sign. This is cancelled by the sign of dt, so φ is indeed an invariant. 
We can then concretely compute that the natural guess, 

R3 = − sin(2πt)w + cos(2πt)∂t (4.7) 

is indeed the third component of our triple of vectors. 
As we have highlighted in the above, this is by no means unique. It would 

be interesting to understanding if it is unique up to homotopy, which means 
understanding the connected components of the space of sections ΓY (V2). 

4.4.2 A class of examples modelled on associative cycles 
The example considered in this section is inspired by the relation between as-
sociatives and integrability of the tangent subbundle, T . The motivating ques-
tion is: if X is an associative cycle in a compact G2 manifold, Y , can we find 
an ACM3S which is tangent to X? Recall from Subsection 3.5.4 that a G2 

manifold is a G2 structure manifold such that the Levi-Civita connection has 
holonomy contained in G2. It is not strictly necessary to restrict to this class 
of G2 structures, but doing so offers one advantage in terms of the ease of 
semi-explicitly constructing an ACM3S. In this section, it will be argued that 
there may exist global obstructions to extending an ACM3S off an associative 
cycle. It would be interesting to understand how these obstructions relate to 
topological features on the manifold Y . 
The argument is essentially as follows: first, we show that we can extend 

a trivialisation of the associative submanifold’s tangent bundle to an ACM3S 
on a small neighbourhood of the submanifold. This is achieved by direct con-
struction. Next, we imagine that we fix an ACM3S on the boundary of a small 
neighbourhood as well as a trivialisation of the associative submanifold’s tan-
gent bundle. We ask if there will always exist an ACM3S that exists on the full 
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open neighbourhood, that restricts to the given structures. We find that this is 
not true by studying the disconnected components of the space of ACM3S that 
we described above in Section 4.2. 
As a preliminary step, recall that a compact, smooth submanifold of a Rie-

mannian manifold, X ⊂ Y admits a tubular neighborhood T (X) ⊂ Y , which 
is open in Y and diffeomorphic to the normal bundle of X in Y , via the ex-
ponential map, see for instance [122]. Of course, a tubular neighbourhood is 
not unique, we can always shrink it, but for our purposes we will simply fix a 
choice. We will regard the tubular neighbourhood of X as a fibre bundle with 
finite radius disk fibres and express a point in the tubular neighbourhood with 
a normal vector via the exponential map. That is, a point y ∈ T (X) ⊂ Y is 
uniquely expressible as exp (nx) for some x ∈ X and nx ∈ (TxX)⊥ ⊂ TxY .x 
Now we will show that we can extend a framing of the associative subman-

ifold, X to a tubular neighbourhood in Y . 
Let (R1 , R2 ) an orthonormal two-framing of X; by construction, the vec-X X 

tor field RX 
1 × RX 

2 =: R3 is orthonormal to this two-frame and tangent to X ,X 
so this triple defines a trivialisation of X , which will be called an associative 
framing. This three-frame needs to be extended over the disk bundle, whilst 
preserving that R3 = R1 ×φ R

2 . Since the value of the three form at a given 
point in the disk bundle is given by parallel transporting along a geodesic from 
the base of the fibre (this is the only part where we use that Y is a G2 mani-
fold), we can simply parallel transport the three frame. That is, if P denotes 
parallel transport, then 

Ri 
) := Pexp )R

i (4.8)(x,nx x(nx X,x . 

As an aside: this will not preserve closure of the Lie bracket, generically, 
which can be checked by direct computation (see Eqn 5.39 of Paper II, for 
instance). 
We have thus shown that an associative trivialisation of X extends to an 

ACM3S on a neighbourhood of X in Y . If we now choose an ACM3S on the 
rest of Y , we can ask if it restricts to the one just constructed at the boundary. 
We will view this as a trial-and-error problem, i.e. imagining that an arbitrary 
ACM3S is chosen on Y \ T (X), an arbitrary ACM3S is chosen on T (X) 
extending a framing on X , and ask if they glue together smoothly at the mutual 
boundary. If not, can we smoothly perturb them so that they do patch together? 
In other words, are their restrictions to the common boundary homotopic in the 
space of ACM3S? 
Unfortunately, we do not have such good control of the space of ACM3S 

on Y \ T (X) and not know which boundary values can be so obtained. We 
therefore simply ask if there are any boundary conditions on T (X) that are not 
connected to a trivialisation on X and, indeed, even in the simplest case, there 
are. 
In this setup, the tubular neighbourhood, regarded as a disk bundle, is trivial, 

T (X) ∼= D4 ×X . One can use this to see that the tangent bundle of the tubular 
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neighbourhood is also trivialisable and we will assume that a trivialisation is 
chosen once and for all. Everything we do will be relative to this trivialisation. 
We can now regard an ACM3S on T (X) as a section of a trivial fibre bundle, 

G2/SU(2) × T (X) → T (X), and the space of these sections is given by 
Maps(T (X), G2/SU(2)). The space of sections that have the right behaviour 
at the boundary is just the space of maps relative to a fixed map at the boundary 
and over X . 
Using the expression of the tubular neighbourhood as X × D4 , we can 

choose polar coordinates on the disk to write X × S3 × [0, 1]. Our bound-
ary conditions are encoded in 

R∂ : X × S3 × {1} → G2/SU(2) (4.9) 
RX : X × S3 × {0} → G2/SU(2) . (4.10) 

Thus, our question is neatly wrapped up in determining the connected com-
ponents of Maps(X × S3, G2/SU(2)). 
That there are, in fact, disconnected components for X = S3 is determined 

using elementary techniques from algebraic topology [129, 130], combined 
with the known structure of the homotopy groups of G2 and SU(2) ∼= S3 

[131–133]. 

4.5 Summary 
In this chapter, we have reviewed some of the new results that were obtained in 
Paper II. Some of the results of that paper that were not presented here include 
a study of how heterotic supergravity interacts with a further refinement to an 
almost contact metric structure. In doing so, one recovers equations in terms of 
SU(3) structures and so, in a certain sense, interpretable in terms of the more 
familiar four dimensional systems. We also used this perspective to find that a 
specific model of G2 heterotic system, [65], possessed an extra supersymmetry. 
It would be interesting to also explore such aspects of the ACM3S, espe-

cially with respect to their interesting relationship to associative and coasso-
ciative cycles. We reviewed here some of the results concerning the space of 
such 3-structures, but a good understanding of how its topological and geomet-
rical features translate into physics is still missing. This would be something 
interesting to explore further. 
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5. Superpotential 

In this chapter we will summarise the results of Paper I. This paper grew out 
of attempts to understand the finite moduli of heterotic systems, i.e. the seven 
dimensional configurations that preserve a single supersymmetry on a three 
dimensional, maximally symmetric spacetime. The background in Chapter 2 
emphasised that this moduli space corresponds to the moduli of a supersym-
metric theory, specifically in three dimensions. This means that the first order 
moduli, i.e. the tangent space, parametrized the effective field content and that 
higher order obstructions appear as couplings in the effective theory. 
Since our spacetime is four dimensional, not three, a reader may question 

the physical relevance of such a construction. The interest in such models 
comes from particular supersymmetry breaking structures in four dimensions: 
domain walls (see [54, 66] and references for a discussion in the heterotic set-
ting). A domain wall in the four dimensional space breaks translation invari-
ance in the directions parallel to the wall, so must also break supersymmetry. 
By including the direction transverse to the domain wall in the internal man-
ifold, one obtains a ten dimensional space of the form M3 × Y , where Y is 
a non-compact seven manifold. Assuming that the effective theory far from 
the domain wall is obtained by compactifying on an SU(3) structure manifold 
and asking that the four dimensional N = 1/2 supersymmetry is preserved, 
one must conclude that Y is a noncompact G2 structure manifold with two 
(possibly different) SU(3) structure manifolds at its boundary. In this way, 
aspects of four dimensional theories get mapped to the moduli of, albeit non-
compact, G2 structures. On the other hand, we can imagine stretching some 
specific compact G2 structure manifold into a domain wall solution so that the 
four dimensional effective theory is presumably realised at infinite distance 
in the G2 structure moduli space. It is therefore interesting to ask about how 
physics at this boundary relates to the genuinely three dimensional physics. 
When looking at the dimensionally reduced theories we are unable to connect 
these regions of moduli space directly, because we must leave the domain of 
validity of our approximations, but if we can achieve a full understanding of 
a perturbative neighbourhood in each region then comparisons could perhaps 
be made. 
The first order deformations of this moduli space were studied in [78, 79]. 

In both papers, it was found that the space of first order deformations was finite 
dimensional (when the G2 structure manifold is compact), using ellipticity of 
certain operators. 
In Paper I, a different approach was taken. There, a functional was extracted 

from the ten dimensional action (2.2), whose critical locus is exactly the space 
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of solutions to the BPS equations. In the SU(3) case, where the effective the-
ory is four dimensional, a superpotential was similarly constructed and used 
to show that the all-order expansion truncates at order three in a given choice 
of coordinates on the configuration space, [76]. The choice of “good” coor-
dinates was motivated by supersymmetry considerations, in particular the fa-
mous holomorphy of 4d N = 1 theories. This is not a property that is shared by 
the three dimensional theories that arise from G2 heterotic systems. Neverthe-
less, the functional that we construct captures, in principle, the full perturbation 
expansion and therefore the full perturbative effective action, to first order in 
α ′, in the large volume, weak coupling region of the stringy moduli space. 
In this chapter, we will very briefly review the strategy taken in deriving the 

superpotential and the computations that prove its locus reproduces the Killing 
spinor equations. More details can be found in Paper I. 

5.1 The background fields 
We will be looking for compact seven manifolds equipped with fields whose 
background values solve the Killing spinor equations (2.12)-(2.14) as well as 
the Bianchi identities. In particular, the geometric backgrounds that we are 
interested in will be comprised of: 

(Y, φ, (V, A), (T Y, Θ),H) (5.1) 

where: 
• Y is a seven manifold; 
• φ is a positive three form on Y , which is taken to define a G2 structure; 
• A is a connection on the gauge bundle, V ; the curvature will be denoted 
F ; 

• Θ is a metric connection on the tangent bundle, TY ; the curvature will 
be denoted R̃; 

• H is a three form that satisfies the Bianchi identity: 

α ′ 
dH = (trR̃2 − trF 2) . (5.2)

4 

Ignoring the H field for the moment, the data consists of an arbitrary G2 

structure, an arbitrary gauge bundle and an arbitrary metric connection on the 
bundle TY . The H field restricts the possible isomorphic class of gauge bundle 
as well as instating a relation between Θ and A. The Killing spinor equations 
can then be regarded as defining a subspace of this background data. 
We saw in Example 3.6.6 that a spinor defines an integrable G2 structure 

if it satisfies the gravitino’s Killing spinor equation and the torsion of the G2 

structure is identified with the three form, H . 
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In terms of the three form, φ and its dual four form, ψ, the Killing spinor 
equations can be re-expressed as [48, 57, 61, 66]: 

7d(e −2ϕφ) = − ∗ H + hψ (5.3)2 

d(e −2ϕψ) = 0 (5.4) 
2H ∧ ψ = hφ ∧ ψ (5.5) 

F ∧ ψ = 0 = R̃ ∧ ψ . (5.6) 

These are the form of the supersymmetry-preserving equations that we will 
require the superpotential to reproduce. 

5.2 Deriving the functional 
Our aim in Paper I was to find a functional - the superpotential - whose locus 
is explicitly the configurations that have unbroken N = 1 supersymmetry in 
three dimensions. This was achieved using the explicit ten dimensional action 
(2.2). Since this action is already an approximation, neglecting terms of order 
(α ′ )2 and above, the superpotential that is obtained is also only approximate. 
Specifically, our results only hold true in the large volume, weak coupling limit. 
Motivated by [47, 56], the proposed functional will come from the mass 

term of the three dimensional gravitino. This is sensible, because the space of 
vacua we are interested in is precisely the locus of unbroken supersymmetry 
and the gravitino is massless if and only if the corresponding supersymmetry 
is unbroken. 
It is also efficient, because it is relatively simple to read off the terms that will 

contribute to the mass term, after which it is simply a matter of being careful 
with conventions and numerical factors in the explicit dimensional reduction. 
A three dimensional gravitino has action functional (κ2 is the three dimen-3 

sional Newton’s constant): ∫ 
1 ( )

¯ ΓµνκDν ψκ + m ̄ ΓµκψκS = dvol ψµ ψµ (5.7)
2κ2 

3 

so the only relevant terms from the 10d action (2.2) are of the form ∫ √1 
d10 −2ϕ(Ψ̄ 

M Γ
MNP DN ΨP +Srel = − x −ge (5.8)

2κ2 
10 ( )

Ψ̄ 
M Γ

MNP QRΨR + 6ψ ΓP ΨQ− 
1 N 

HNPQ . (5.9)
24 

The single Γ-matrix term is kept because it is dual to a two Γ-matrix term in 
three dimensions, see [14] for instance. Therefore, the presence of this term is 
something unique to three dimensions. 
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A related peculiarity that three dimensions offers is the possibility of a non-
trivial three form flux on the maximally symmetric space, which, as mentioned 
above, sources a constant negative scalar curvature on the effective spacetime. 
This means that the Killing spinors are not annihilated by the spin connection, 
but are instead eigenspinors of the spin connection with eigenvalue propor-
tional to the square of the curvature. One can define a shifted spin connection 
by absorbing this constant term so that the Killing spinors are indeed annihi-
lated by this operator. Thus, the correct meaning of “massless” in this context 
is the zero modes of this shifted connection, not the naive spin connection. 
This is discussed in [39], for instance, and we apply this reasoning in Paper I. 
To be a little more precise, the scalar curvature of the AdS3 space in a back-

1ground with three form H(3) := Hµνκdx
µ ∧ dxν ∧ dxκ is given by, [134]: 3! 

(∗3H(3)) ,Λ = − 
1 

(5.10)
2 

where ∗3 is the Hodge star of the three dimensional metric. Define the operator: 

= ∇LCDµ + 
1
ΛΓµ , (5.11) µ 2 

then by explicit computation, the Killing spinors are annihilated by Dµ. If one 
does not take into account this shift, than the gravitational mass term would be 
shifted relative to the result that we will find, and this causes inconsistencies.1 

Observe that the operator Dµ can be directly obtained from the ten dimen-
sional gravitino Killing spinor equation, (2.5), with index M ∈ {0, 1, 2}. Us-
ing that a single Γ matrix is dual to an antisymmetrised pair in two dimensions 
(see e.g. App. B of [14]), we deduce the relationship between Λ and Hµνκ 

shown in (5.10). This duality between single Γ matrices and antisymmetrised 
pairs is important in the interpretation of Dµ as a shifted spin connection. In 
dimensions other than three, it would not be true. This is because, a priori, a 
term like Γµ is not in the algebra spin(1, 2), so D−∇LC is not, naively, a one 
form valued in spin(1, 2) and we would erroneously conclude that D is not a 
spin connection. However, since spin(1, 2) is identifiable with the subspace 
of antisymmetrized products of two Γ matrices (see [135] for instance), this 
conclusion is incorrect in dimension three. In other dimensions, the correct 
interpretation is that the operator D comes from a connection on the metric 
cone, where the spinor is in fact parallel, [136–138]. 

1Since it is the superpotential’s critical locus that is relevant, this may be surprising. The reason 
is that the dilaton’s equations of motion will always set the functional to zero on the critical 
locus and this fact is also true for the “shifted” superpotential, but the quantities set to zero are 
manifestly different. A component of the geometric variations are comprised of the same terms 
as the dilaton’s, but with different proportionalities. By demanding that these are consistent one 
will get the dilatino BPS equation (2.6) in our case, but not in the unshifted case. 
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Explicitly reducing the action on a compact manifold Y leads to: ∫ ( )
−2ϕW = e (H + hφ) ∧ ψ − 

1 
dφ ∧ φ (5.12)

2Y 

where: 
• H is the three form flux restricted to the internal manifold, 

1 
H = Hijkdy

i ∧ dyj ∧ dyk . (5.13)
3! 

Recall that H is first order in α ′, due to the Chern-Simons-like terms. 
• ϕ = ϕ(y) is the dilaton; 
• φ is the three form that defines a G2 structure, related to the spinor that 
solves the Killing spinor equations, η, by: 

φijk = −iηT Γijkη ; (5.14) 

• ψ is the Hodge dual of φ, i.e. ψ = ∗φ; 
• h is a convenient scaling of the AdS3 curvature, defined by: 

h = −2 
7 ∗3 H

(3) . (5.15) 

5.3 Verifying the critical locus 
Having obtained a proposal for the superpotential, it is important to verify that 
its critical locus reproduces the expected moduli space. The means of comput-
ing the critical locus is logically the same as deriving the equations of motion 
of an ordinary action functional. The full presentation is in Paper I using the 
efficient notation of [78]. The techniques involved are standard in both math-
ematics and physics, so we will not linger too long over it here. Before be-
ginning, however, it is best to be sure that one knows the tangent directions of 
the parameter space, so we begin by reviewing this. This is slightly nontrivial 
in our current setting because of the B-field and its nontrivial gauge depen-
dency deriving from the Green-Schwarz mechanism, as well as nonlinearities 
inherent in the description of G2 structures. 
Recall that anomaly cancellation leads to the Bianchi identity: 

α ′ 

dH = (trR̃2 − trF 2) , (5.16)4 

where the equality is one of differential forms. It implies an equality in co-
homology of certain characteristic classes, but is much more rigid. The three 
form, H , is not a fundamental field of the supergravity theory, but is instead 
analogous to the field strength of a gauge field. The variations that we con-
sider are over the local two form, B. Since B is itself not globally defined, one 
might expect these variations to also be over some space of locally defined two 
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forms. Fortunately, this is not true. Using the inherent gauge freedom of the 
B field, one can choose a representative of a deformation of the B field that is 
a globally defined two form, see [78, 139, 140] for instance. 
We can therefore identify the relevant independent field variations that we 

must compute: 
Gauge fields A variation of the gauge field is a globally defined one form 

valued in the associated adjoint bundle α ∈ Ω1(Y, End(V )). The same 
can be said for the tangent bundle connection that appears in ωL; 

B field As discussed above, the B field variations are globally defined two 
forms, B ∈ Ω2(Y ). The B field also depends on the gauge field varia-
tions, in a combination that cancels out the exact terms in δAωCS (A) in 
H (and similar in terms of Θ); 

Dilaton The dilaton is a smooth, R-valued function, so it can be deformed by 
any smooth, R-valued function; 

G2 three form A variation of the three form that defines the G2 structure must 
be such that the positivity condition remains satisfied. However, this 
is an open condition, [80, 84], so any infinitesimal three form variation 
preserves the G2 condition. 

For convenience we state the general expression for a variation of the three 
form: ( )

α ′ 

δα,ζ,BH = dB + tr(F ∧ α) − tr(R̃ ∧ ζ) (5.17)4 

where α is a variation of the gauge field, ζ a variation of the tangent bundle 
gauge field, and B a globally defined two form. 
This covers all the fundamental fields, but we will also need to know how 

the four form, ψ = ∗φ varies with φ. This is subtle because the metric, and 
thus Hodge star, also depends on φ. Fortunately, at first order this is simplified, 
[77, 78]. In these articles, a variation is written in terms of a tangent bundle 
valued one form, M ∈ Ω1(Y, T Y ), by contracting the indices: 

1 
δφ = ιM φ = Ma ∧ φa = Mi

aφajkdy
i ∧ dyj ∧ dyk . (5.18)

2! 

At first order the variation in the four form can also be written using M : 

1 
δψ = ιM ψ = M aψajkldy

i ∧ dyj ∧ dyk ∧ dyl . (5.19)i3! 

With these ingredients in hand, one can perform the variation of the super-
potential. The aim is to make contact with the set of equations (5.3)-(5.6). 
We will start with the easy variations, which are those corresponding to the 

dilaton, B-field and gauge connection. Since the appearance of A and Θ in the 
functional is completely symmetric, we will only explicitly deal with A. 
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Dilaton variation 
The dilaton is an overall factor, so demanding that its variations vanish implies: 

(H + hφ) ∧ ψ − 
1 
dφ ∧ φ = 0 . (5.20)

2 

B-field variation 
By the above argument, the pure B field variation is a global two form, and 
therefore: ∫ 

!
δBW = e −2ϕdB ∧ ψ = 0 . (5.21) 

Y 

Integration by parts imposes that d(e−2ϕψ) = 0, in agreement with (5.4). 

Gauge variation 
The behaviour of the gauge connection and the connection on the tangent bun-
dle is identical with respect to this computation, so to avoid redundancy we 
only present the gauge computation. The gauge variations only appear in the 
H term, (5.17), so it follows that ∫ 

δAW = tr(F ∧ δA) ∧ ψ . (5.22) 
Y 

We immediately conclude that F ∧ ψ = 0, in agreement with (5.6). Recalling 
the principle that anything that we say for A goes through for ζ, we do recover 
both equations in (5.6). 

Geometric variations 
Now we come to the more involved calculation. Let us imagine, hypotheti-
cally, that the variation commutes with the Hodge star. We could then write 
an arbitrary geometric variation of the superpotential as ∫ ( ) !

δW = e −2ϕ(∗H + hψ − dφ + dϕ ∧ φ) ∧ δφ) = 0 (5.23) 
Y 

and, since δφ is an arbitrary three form, we would deduce that the factor in big 
brackets must vanish, and be done. 
Unfortunately, however, the geometric variation, which includes metric vari-

ations, does not commute with the star and we must take a longer path. We will 
split the variation into fibrewise G2 irreducible representations. By orthogo-
nality, a variation in some representation will pick out the corresponding piece 
of the equation of motion. We will then glue these back into the general equa-
tion. 
We continue to utilise the language of [77,78] to parametrise the variations 

in the three- and four- form, i.e. utilising a vector-valued one form. 
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Let M ∈ Ω1(Y, T Y ) be such a form and consider the variation 

δφ = ιM φ . (5.24) 

As noted above, this fixes the first order variation of ψ to be: 

δψ = ιM ψ . (5.25) 

We use irreducible G2 representations to analyse this further. To that end, 
let us now recall some representation theory; whenever necessary we use the 
package LieART, [106], though one can also consult [84], for instance, to check 
the relevant decompositions. In the range of dimensions that we are interested 
in, an irreducible G2 representation is uniquely specified by its dimension2. 
By construction of the G2 structure, the tangent space of Y has the induced 7 
dimensional G2 representation, so a fibre of TpY ⊗ T ∗Y is in the 7 ⊗ 7, which p 

decomposes as 1 ⊕ 7 ⊕ 14 ⊕ 27. The wedge product Λ3T ∗Y has the direct sum p

decomposition given by 1 ⊕ 7 ⊕ 27. Consequentially, the relevant variations 
will not depend on the 14 part of M and we may as well take it to be zero for 
the purposes of this computation. 
We will think of M as a matrix by lowering an index with the G2-invariant 

metric, and from there decompose it into irreducible SO(7)-representations, 
consisting of the trace, the symmetric-traceless and the antisymmetric pieces. 
Since G2 ⊂ SO(7) these are not-necessarily-irreducible representations of 
G2 and we can try to decompose further. In fact, the trace and symmetric 
representations are also irreducible represents of G2 and correspond to 1 ⊕ 27. 
The antisymmetric product Λ27 is not irreducible, but since we assume that M 
has no 14, only the 7 component of Λ27 will appear. In particular, we can write 

1M = (trM)Id + m + h, m is the antisymmetric 7 part and h is the traceless, 7 
symmetric 27. Note that the symmetric representation parametrises variations 
of the G2 structure that change the metric, while the 7 part leaves the metric 
invariant. This is checked explicitly in [77]. 
We these conventions we can explicitly compute the variation [78]: 

3δφ = ιM φ = 7 trMφ − (m⌟φ)⌟ψ + ιhφ (5.26) 
4δψ = ιM ψ = trMψ + (m⌟φ) ∧ φ + ιhψ . (5.27)7 

We can immediately see (by looking at the singlet part, for instance) that there 
is a difference: ∗δφ ≠ δψ. The symbol ⌟ denotes a contraction of differen-
tial forms, defined by dualising with a metric. More explicitly, on a seven 
manifold3 with arbitrary α ∈ Ωk(Y ) and β ∈ Ωp+k(Y ) 

1 
α⌟β = (−1)pk ∗ (α ∧∗β) = αi1 ···ik βi1 ···ik j1 ···jp dy

j1 ∧ · · · ∧ dyjp . (5.28)
k!p! 

2This stops being true when the dimensions are large enough, for instance there are two 77 
dimensional representations, [84]. 
3The dimension is only relevant for the middle expression; on a general d dimensional manifold 
the correct sign factor is (−1)p(d−p−k). 
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We will now use the expressions (5.26) and (5.27) to compute the relevant 
pieces of the superpotential variation. 
Let us start with the singlet, which immediately gives ∫ ( (4 

)
−2ϕδ1W = trM e H ∧ ψ + hφ ∧ ψ − 

3 
φ ∧ dφ) . (5.29)

7 7Y 

This is not independent from the equation obtained by varying the dilaton. 
Indeed, we have 
4 3 ! ! 1 
H ∧ ψ + hφ ∧ ψ − φ ∧ dφ = 0 = (H + hφ) ∧ ψ − dφ ∧ φ . (5.30)

7 7 2 

Consistency requires that: 

H ∧ ψ = 
h
φ ∧ ψ , (5.31)

2 

in agreement with the expected equation, (5.5). We can use this to rearrange: 

dφ ∧ φ = 2(H + hφ) ∧ ψ (5.32) 
⇐⇒ dφ ∧ φ = 3hφ ∧ ψ (5.33) 

⇐⇒ dφ ∧ φ =
7 
hφ ∧ ψ − ∗H ∧ φ (5.34)

2 

⇐⇒ (dφ)1 = 
7
(hψ)1 − (∗H)1 . (5.35)

2 

For the 7 part, we do have that δψ7 = ∗δφ7 and can use this to conclude: ∫ 
e −2ϕ(∗H − dφ + dϕ ∧ φ) ∧ δφ7 (5.36) 

Y 

leading to the equation (∗H +dϕ∧φ)7 = (dφ)7. Now, the exterior differential 
of the G2 structure constants, (φ, ψ) is related to the torsion and their 7 parts 
are related (see Subsection 3.5.5) 

(dψ)7 = 4τ1 ∧ ψ (5.37) 
(dφ)7 = 3τ1 ∧ φ . (5.38) 

Since we have already found that (dψ)7 = 2dϕ ∧ ψ, we must have that 
dϕ = 2τ1. On the other hand, we just found that (dφ)7 = dϕ ∧ φ + ∗H7. 
Writing H7 = λ ∧ φ, for a one form λ, we must have that 3(dϕ + λ) = 2dϕ, 
or after rearranging dϕ ∧ φ = 2 ∗ H7. We can therefore conveniently rewrite 
the equation of motion as 

(dφ)7 = 2dϕ ∧ φ − ∗H7 . (5.39) 

Since the 27 variation affects the metric, like that of the singlet, it is not true 
that ∗δφ27 = δψ27. However, it can be directly computed that 

H ∧ ιhψ = − ∗ H ∧ ιhφ . 
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We can therefore put all our variations onto φ and conclude that ∫ 
! 

e −2ϕ(−dφ − ∗H) ∧ ιhφ = 0 . (5.40) 
Y 

where we used that that (dϕ ∧ φ)27 = 0. 
This gives us that (dφ)27 = − ∗ H27 and comparing with the 7 part, we 

see that the our earlier manipulations conveniently fit together. Gathering the 
work, we have 

7(dφ)1 = (hψ)1 − (∗H)1 (5.41)2 

(dφ)7 = 2dϕ ∧ φ − ∗H7 (5.42) 
(dφ)27 = − ∗ H27 (5.43) 

7⇐⇒ dφ = 2dϕ ∧ φ − ∗H + hψ (5.44)2 

recovering the one remaining equation (5.3). 

5.4 Summary 
In this chapter we reviewed the core arguments from Paper I, in particular that 
there is a functional, naturally obtained by dimensional reduction, whose crit-
ical locus reproduces the Killing spinor equations in the form of (5.3)-(5.6). 
In principle, this ought to recover the full perturbative expansion around a su-
persymmetric vacuum. It should be noted, however, that the vacuum only 
preserves two real supercharges and therefore we do not have the nonrenor-
malisation theorems that are familiar from N = 1, d = 4. This means that the 
results are only trustworthy at first order in α ′ and in the large volume, weak 
coupling regime. 
In future work, it would be interesting to utilise the superpotential to express 

the finite deformations of the heterotic G2 systems, analogous to the superpo-
tential’s usage in the SU(3) case [76]. The lack of supersymmetry of G2 het-
erotic systems in comparison to SU(3) heterotic systems is problematic. In the 
SU(3) case, there is enough supersymmetry to guarantee holomorphy and this 
was utilised in [76] to find convenient coordinates for the expansion. In the 
G2 case, we do not have holomorphy and overcoming this lack is challenging. 
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6. Yukawa couplings 

The aim of this chapter is to motivate and summarise Paper III. We begin with 
physics motivation and then review the necessary mathematical background. 
We then state and give a streamlined proof of the main theorems that were 
obtained. Paper III was concerned with understanding the behaviour of cer-
tain couplings - the Yukawa couplings - in four dimensional effective theo-
ries obtained from dimensionally reducing heterotic supergravity on a com-
pact Calabi-Yau manifold (see subsections 2.4.1 and 3.5.3 for a review of these 
structures in compactification scenarios). In Calabi-Yau compactifications the 
internal flux associated to the B field must vanish, Hijk = 0, and the gauge 
bundle must be holomorphic and polystable, [16, 20].1 

6.1 Motivation 
In particle physics, Yukawa couplings describe an interaction between a scalar 
and two fermions, [141]. Such a coupling appears in the Standard model to 
give mass to the leptons and quarks via the Higgs mechanism, [142]; elemen-
tary discussions can be found in Srednicki, [143] or Weinberg [144], for in-
stance. The strength of the couplings have an interesting feature, a mass hi-
erarchy: a discrepancy in mass scale between the generations, as discussed 
in [145]. Since, in the Standard Model, the Yukawa couplings are free param-
eters that must be fitted to experiment, [146], there is no way to understand 
this behaviour purely within the standard model context and, although it may 
be conceptually unsettling, it can be accepted as a fact of life. Within string 
model building, this is no longer true and one can hope that the model-building 
process itself will explain the hierarchical structure. 
Work in computing Yukawa couplings has been on-going since almost the 

very beginning of compactification models [147–157]. There are interesting 
textures in the couplings of models coming from compactifying the heterotic 
string [155, 156, 158–160]: in many cases couplings that are allowed a priori 
are vanishing, at least perturbatively. Such zeros in the couplings may lead to 
the observed hierarchy after supersymmetry breaking, for instance. In some 
cases, particularly [155, 161], this has its origin in a symmetry that is present 
in a particular phase of the theory, while in other cases, e.g. [158,159], the four 

1For readers unfamiliar with polystability of a vector bundle, it will suffice to know that it admits 
a connection that solves the gaugino Killing spinor equation (2.14), by [69, 70] 
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dimensional explanation is lacking. There appears to be two alternatives, then. 
Either, there is an hitherto overlooked symmetry in such models, or the van-
ishing couplings can only be explained from a higher dimensional perspective. 
Given that the observed couplings exhibit such textures, both possibilities are 
interesting and it would be desirable to decide between them. 
In Paper III, we add to the list of constraints on the Yukawa couplings that 

have an explicit origin in the compactification construction. Our results are 
very similar to, and inspired by, [158, 159] but have a much wider domain of 
applicability. In principle, our results should extend to any Calabi-Yau that is 
constructed as an embedded submanifold of an ambient space and with any 
suitable gauge bundle. At present, the results are stated for a holomorphic 
SU(3) bundle to avoid complicated theorem statements, but there is no reason 
that they could not be extended. As such, these theorems can be useful as a 
testing ground for understanding genericness of textures in the couplings and 
looking for four dimensional explanations. 
The theorems that we derive apply to the so-called holomorphic Yukawa 

couplings, which correspond to cubic terms in the superpotential and depend 
holomorphically on the moduli space [150, 155]. These are not the physical 
Yukawa couplings, [157], since they are defined without properly normalising 
the fields. Nevertheless, if a given coupling vanishes, than the normalisation 
is clearly irrelevant and the zeros of this coupling are physically relevant. 
The physical Yukawa couplings are generally hard to get a hold of, as the 

Kähler potential is not explicitly known, [158], except for the case of the stan-
dard embedding [157]. As a consequence, many (but not all, see [145]) of the 
observed textures in Yukawa couplings, including [153, 158–160], utilise the 
holomorphic coupling. 

6.2 The holomorphic Yukawa couplings 
The quantity that we wish to constrain is the holomorphic Yukawa coupling, 
so we will begin by giving an explicit definition. These couplings correspond 
to cubic terms in the superpotential of the form ϕψψ with the fields ϕ and ψ 
being the Bose, respectively Fermi, components of a chiral field [16]. The 
coupling can be deduced from the ten dimensional theory, by first identifying 
the ten dimensional supermultiplet which descends to give a chiral supermul-
tiplet in the effective theory, and then looking for an appropriate term in the 
ten dimensional action. This is the approach carried out in [157] and followed 
in the text [16], which we now review. 
In particular, the origin for the fermionic ψ is in the gaugino, χ, and ϕ comes 

from the gauge field, A (see Section 2.2 where the ten dimensional supermul-
tiplets are reviewed). The single multiplet (A, χ) induces a family of chiral 
multiplets in the effective theory, parametrised by the moduli. More precisely, 
the scalar will be valued in a representation of the commutant of the structure 
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group of the holomorphic bundle, V . Focusing on one factor of the E8 × E8 

heterotic group, we let the structure group of V be G and H ⊂ E8 its commu-
tant. This induces an embedding H × G ⊂ E8. The commutant group is the 
gauge group of the effective theory in four dimensions. The ten dimensional 
gauge multiplet is valued in the adjoint of E8 and the embedding H × G ⊂ E8 

induces a decomposition of this representation into irreducible representations 
of H × G, i.e. ⊕ 

e8 = Ri ⊗ Ti . (6.1) 
i 

Just as the branching rules of the tangent group led to fields of different spin (cf. 
equation (2.10) and (2.11)), the gauge group branching rules induce multiplets 
valued in different representations. The scalar that we are interested in, ϕ(x) 
is, then, Ri valued for some Ri, and comes from A(x, y) → ϕ(x)Ri ATi (y). 
Its multiplicity comes from the zero modes in ATi . Of course, supersymmetry 
ensures similar statements can be made for the fermionic components. 
In principle, we can have couplings like ϕR1 ψR2 ψR3 so one has a represen-

tation theoretic problem of determining when this can be a scalar, i.e. when 
R1 ⊗ R2 ⊗ R3 = 1 ⊕ · · · . Similarly, we can have both left- and right-handed 
chiral multiplets in the four dimensional theory, which the Yukawa couplings 
can, in principle, mix. Determining if this occurs is again a question in rep-
resentation theory, now with respect to the tangent group. The results when 
the gauge bundle has structure group SU(3) can be found in [157] or any of 
the standard texts, [14–16]. For more general structure groups see [154], for 
instance. 
The theorems of Paper III are derived in the context of an SU(3) bundle, so 

we will focus on that case here. The commutant of SU(3) in E8 is E6. The 
adjoint of E8 decomposes as: 

e8 =∼ su(3) ⊗ 1 ⊕ 1 ⊗ e6 ⊕ 3 ⊗ 27 ⊕ 3̄ ⊗ 27 (6.2) 

where the non-adjoint representations are denoted by their dimension. 
This representation theoretic decomposition can be thought of as a fibre-

wise decomposition, which is promoted to a global decomposition using the 
background gauge bundle, V . In particular, if V is an SU(3) bundle, then 
a field valued in the 3 of SU(3) is precisely a section of this bundle; a field 
valued in the adjoint is valued in the endomorphism bundle of V . The trivial 
representation corresponds to an ordinary scalar without gauge indices. 
The interesting couplings correspond to the components in the 3 or 3̄ of 

SU(3) and since the only singlets that can be formed with any combination 
of three of these two representations is to take them all the same and antisym-
metrise, these will be the couplings of relevance to us. 
The zero modes corresponding to the 3 are [20] harmonic form (0, 1) forms 

valued in V and to the 3̄ are (0, 1) forms valued in V ∗ . 
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Since the structure of the antigenerations valued in V ∗ is completely anal-
ogous to that of the V -valued forms, we will only explicitly make statements 
concerning the latter. 
For any triple of such V -valued forms, ν1, ν2, ν3 the coupling is proportional 

to [16, 150, 157] ∫ 
λ(ν1, ν2, ν3) = Ω ∧ tr(ν1 ∧ ν2 ∧ ν3) (6.3) 

Y 

where Ω is the (3, 0) form that exists and is fixed as part of the SU(3) structure 
on the Calabi-Yau, Y . The symbol, tr denotes the fibrewise projection from 
3⊗3 → Λ33 = 1, inducing a bundle morphism V ⊗3 → C. 
Unfortunately, the coupling λ is defined as a functional on the set of har-

monic forms, which are difficult to obtain and depend on intricacies of the 
Calabi-Yau structure. Fortunately, none of this dependence appears in the cou-
pling λ [157]. Indeed, harmonic forms are in bijective correspondence with 
the Dolbeault cohomology and since W vanishes on Dolbeault exact forms, 
we can replace the precise moduli space with the equivalent Dolbeault coho-
mology vector space. That is, λ(ν1, ν2, ν3) = λ([ν1], [ν2], [ν3]). 
This is a vast improvement, because Dolbeault cohomology is relatively 

easy to access. However, the structure of the cubic superpotential depends on 
algebraic data of the cohomology that is much more refined than the simple 
structure of a vector space. 
Our aim is to push the above reasoning further: if harmonic forms can be 

replaced with Dolbeault cohomology, then perhaps we can replace this group 
with a different cohomology theory where the algebraic structure is more ac-
cessible. Indeed, it is well known that Dolbeault cohomology computes sheaf 
cohomology, [83, 162] just as de Rham cohomology computes singular coho-
mology with real coefficients and sheaf cohomology of the real-valued con-
stant sheaf. We will consider the Yukawa coupling as defined on sheaf coho-
mology classes, and therefore give a very brief review of this topic in the next 
section. 

6.3 Sheaf cohomology and its product 
In this section, we will review the definition of sheaf cohomology and its prod-
uct using the methods of Godement [163] in the form presented in [154]. The 
presentation will be brief. Good introductions to sheaves and their cohomol-
ogy can be found in [162–166], to name just a few. To aid brevity, we will 
appeal to some basic categorical constructions, which can be found in, for in-
stance, [167]. 
This section is intended as theoretical background to justify that the struc-

tures that appear in the Yukawa coupling can be reliably computed in sheaf 
cohomology, as opposed to Dolbeault cohomology. This will be used in the 
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next section, Section 6.4 where the main results of Paper III will be presented 
and justified. All discussion before Section 6.4, is review. 

6.3.1 Sheaves 
In this review subsection we will briefly introduce the notion of a sheaf. 

Definition 11 (Set-valued sheaf). Let X a topological space. Denote by CX 

the category that has as objects the open sets of X and morphism sets: { 
{∗} if U ⊂ V 

CX (U, V ) = . (6.4)∅ else 

A presheaf on X valued in sets, PX , is a contravariant functor from CX to the 
category of sets, P : Cop → Sets.X 
A map of presheaves is a natural transformation of functors. 

In other words, a set-valued presheaf on X consists of a set P (U) assigned 
to each open of X , along with a restriction map, ρUV : P (V ) → P (U) for 
each inclusion U ⊂ V and compatibility between the maps. The elements of 
P (U) are called local sections. 
A sheaf is a presheaf that possesses properties that make it possible to glue 

local data into global data. 

Definition 12 (Set-valued sheaf). Let X be a topological space. A set-valued 
presheaf on X , P , is a set-valued sheaf if for any open set, V ⊂ X , and any 
open cover of V , U = {Ui}i∈I , P satisfies: 
Identity If σ, τ ∈ P (V ) such that ρUiV σ = ρUiV τ , then σ = τ . 
Gluability If {σi ∈ Ui}i∈I is a collection of local sections in each set of the 

open cover, and ρ(Ui ∩Uj )Ui 
σi = ρ(Ui∩Uj )Uj 

σj for each i, j ∈ I , then 
there exists a section, σ ∈ V with ρUiV σ = σi for all i ∈ I . 

A map of sheaves is the same as a map of the underlying presheaves, i.e. a 
natural transformation. 

We will be interested in sheaves of commutative algebras and modules, 
rather than sets. Fortunately, these are just sets with extra structure, so the 
right notion of sheaf will just replace the target category. This means that each 
collection of local sections will give a commutative algebra, and the restriction 
maps are algebra morphisms. 

Definition 13 (Module of a sheaf). Let X be a topological space and OX 

an algebra-valued sheaf. An OX -module is a sheaf, P , such that P (U) is 
an OX (U) module for each open U ⊂ X and such that the restriction maps 
respect the module structure. That is, if U ⊂ V , σ ∈ P (V ) and f ∈ OX (V ), 
then ρUV 

P (fσ) = ρUV 
OX (f)ρP (σ) ∈ OX (U).UV 
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A map of OX -modules is a map of the underlying sheaves, whose compo-
nents are module morphisms. 

We will be interested in sheaves of algebras that describe the ring of func-
tions of a space, particularly holomorphic functions or the structure sheaf of a 
scheme and, at least initially, the modules will correspond to sections of bun-
dles. 

Example 2. Let X be a smooth manifold. The sheaf of smooth functions, 
X , assigns to each open set, U , a smooth, real valued function on U , i.e.∞C 

f ∈ C∞ 
X (U) is a smooth map f : U → R. To each inclusion U ⊂ V , the 

functor assigns the map C∞ 
X (V ) → C∞ 

X (U) given by restricting the domain. 
This is a sheaf of R-algebras. 

Example 3. Let X be a complex manifold. The sheaf of holomorphic func-
tions, OX , assigns to each open set, U , the holomorphic maps into C, i.e. 
f ∈ OX (U) implies f : U → C is holomorphic. As in the case of smooth 
functions, the restriction maps are given by restricting the domain. This is a 
sheaf of C-algebras. 

Example 4. Let X be a smooth manifold and V → X a vector bundle. Define 
the sheaf of sections of V , to be the sheaf, C∞ 

X (−, V ), that sends an open set, U , 

∞ 
to the set of smooth sections of V |U and any inclusion U ⊂ V to the restriction 
of domain of the sections. This is a CX -module. 
A special case is the trivial R-line bundle. Its sheaf of sections is identical 

with the sheaf of smooth functions. 

Example 5. Let X a complex manifold and V → X a holomorphic bundle. 
Define the sheaf of holomorphic sections of V to the be the sheaf Γ(−, V ) 
that sends an open set, U , to the set of holomorphic sections of V |U and any 
inclusion U ⊂ V to the restriction of domain of the sections. This is an OX -
module. 

Example 6. Another interesting class of sheaves are the locally constant sheaves. 
For a fixed abelian group, G, (or ring, or algebra), define a sheaf valued in 
groups (or rings, or algebras) to be the functor G that assigns to any open set 
the set of locally constant functions into G, along with the obvious restriction 
functors. 

A concept that it will be convenient to know is that of a stalk of a sheaf. 
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Definition 14. Let X be a topological space and F a sheaf on X . Fix a point 
in X , x ∈ X , and consider the collection of equivalence classes of pairs 

Fx := {(σ, U) : σ ∈ F(U)}/ ∼ 

where (σ, U) ∼ (σ ′ , V ) whenever there exists an open W ⊂ U ∩ V such that 
ρWU σ = ρWV σ ′ . Fx is the stalk of F at x. 

It can be explicitly checked that if F is a sheaf of groups, rings, etc. then 
the stalk has a natural structure of a group, ring, etc. Further, a morphism of 
sheaves induces a morphism of stalks. 

6.3.2 Sheaf cohomology 
We will now describe the basic definitions of sheaf cohomology, but will not 
attempt to justify the construction. Good sources that contain more details and 
discussion include [162,164, 165,168]. 

Definition 15 (Injective modules). Let X be a topological space and OX a 
sheaf of commutative rings. We say that an OX module, I, is injective if every 
inclusion of OX modules f : A ,→ B extends along any module morphism 
g : A → I, i.e. there always exists a dashed arrow such that the following 
diagram: 

f A B 
g 

h 
(6.5) 

I 

commutes. 

In other words, we can extend morphisms into I. 
Observe that all objects and arrows in the above definition are sheaves; in 

particular the injection A → B is a monomorphism in the category of OX -
modules, for a sheaf OX , which essentially means that each component of the 
natural transformation is an injective module morphism. 

Definition 16 (Complex of abelian groups). A complex of abelian groups is a 
collection of groups, {Ai}i∈Z, along with maps 

αi−1 αi · · · → Ai−1 → Ai → Ai+1 → · · · (6.6) 

such that each composition αi ◦ αi−1 = 0. 
A complex is said to be exact if ker αi = Im αi−1 ∀ i ∈ Z. 
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Definition 17 (Complex of sheaves). A complex of sheaves of abelian groups 
on X is a collection {Ai}i∈Z along with maps: 

αi−1 αi · · · → Ai−1 → Ai → Ai+1 → · · · (6.7) 

such that for every x ∈ X the diagram of abelian groups defined by passing to 
the stalk at x is a complex. 
A complex of sheaves is exact if the complex is exact at the level of stalks. 

A special example of an exact sequence is a “short exact sequence”, which 
is of the form: 

0 → A0 → A1 → A2 → 0 . (6.8) 

A functor is said to be exact if the image of any short exact sequence is short 
exact. 
The injective modules are useful because of the following lemma. 

Lemma 1 (Lemma 2.3.4 [168]). The functor Hom(−, I) is exact when I is 
injective. 

One says that a category has enough injectives when every object in the cat-
egory admits a monomorphism into an injective object. This is the categorical 
condition that one can resolve our objects using injectives. 
We will work in the abelian category of OX -modules and rely on the theo-

rem: 

Theorem 3 (Prop II.2.2 [165]). The category of OX -modules has enough in-
jectives. 

Definition 18. An injective resolution of a sheaf, F , is a complex of injective 
sheaves with support in nonnegative degrees, I•, along with a monomorphism 
F → I0 such that the resulting diagram 

0 → F → I0 → I1 → · · · (6.9) 

is exact. 

Since OX modules have enough injectives, every sheaf admits an injective 
resolution. 
In essence, we regard the injective resolution as an approximation to F , 

which behaves better with respect to the hom functor. We use it to define sheaf 
cohomology. 

Definition 19 (Sheaf cohomology). The sheaf cohomology of a sheaf, F , is a 
graded abelian group H•(X, F) which is obtained by taking the cohomology 
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of the chain complex of global sections, i.e. 

( ) ( )
ker Γ(X, Ii) → Γ(X, Ii+1) /Im Γ(X, Ii−1) → Γ(X, Ii) . (6.10) 

One checks that the choice of resolution does not affect the result. The main 
result of this section is: 

Proposition 3 (Corollary 4.38, [83]). The sheaf cohomology of the sheaf of 
sections of a holomorphic vector bundle is isomorphic to the Dolbeault coho-
mology of the bundle itself. 

As a consequence, the vector space H1(X, V ) can be computed using tech-
niques from sheaf cohomology. 

6.3.3 Long exact sequences 
In this section, we fix an arbitrary topological space, X , and sheaf of algebras 
OX . All sheaves will be OX -modules on X . 
A key property of a cohomology theory is that short exact sequences get 

converted to long exact sequences in cohomology. In sheaf cohomology, a 
short exact sequences of sheaves induces a long exact sequence of sheaf coho-
mology groups. 
In the case of interest, exact sequences of sheaves will yield a long exact 

sequence in sheaf cohomology: 

0 A B C 0 

=⇒ · · · H i(X, A) H i(X, B) H i(X, C) H i+1(X, A) · · · 

The coboundary map, i.e. δ : H i(X, C) → H i+1(X, A) will play an important 
role in the reasoning that leads to the theorems of Paper III, so we will briefly 
review this construction, then explain how the construction can be extended 
to longer sequences via slicing and splicing. These techniques are standard 
homological algebra, so this explication will be brief and skip some of the 
necessary consistency checks. All the details can be found in [168]. 
First, the coboundary map. In order to construct this map, one must en-

sure that it is possible to construct injective resolutions over the short exact 
sequence in a compatible fashion. That is, it must be possible to construct a 
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commuting diagram: 

. . . . . . . . . 

0 I2(A) I2(B) I2(C) 0 

0 I1(A) I1(B) I1(C) 0 
(6.11) 

0 I0(A) I0(B) I0(C) 0 

0 A B C 0 

0 0 0 

in which both columns and rows are exact. One can argue that this is pos-
sible by fixing a choice of resolution for A and C and then checking that 
Ij (B) := Ij (A) ⊕ Ij (C) works. This is essentially the only sensible con-
struction to make, because any exact sequence 0 → I → B → C → 0 in 
which I is injective, splits (see [169], for instance). The map from B to I0(C) 
can be constructed by composing the given maps, while the map to I0(A) is 
constructed using the universal property of injectives, and use induction for 
higher degrees. The argument in full can be found in [162], for instance. 
Now, utilise (6.11) to construct the coboundary as follows. Let the class 

[γ] ∈ Hk(X, C) be represented by γ ∈ Ik(C)(X). It admits a preimage by 
surjectivity (which uses that this is an injective object), which we can call β. 
Applying the vertical differential, we obtain something in the kernel of the ( )
horizontal map dβ ∈ ker Ik+1(B)(X) → Ik+1(C)(X) . By exactness, dβ is 
therefore in the image of an element α ∈ Ik+1(A)(X) and this represents the 
coboundary: [α] = δ[γ]. it is a straightforward extension of these arguments 
to verify that α is closed and the cohomology class is independent of choices 
made in the construction, so that the map is well-defined. 
We will also need to deal with longer exact sequences, e.g. 

α−l α−l+1 α10 A−l A−l+1 · · · A0 0 . (6.12) 
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The approach taken is to slice the exact sequence into (l − 2) short exact se-
quences: 

α−l β−l+1

0 A−l A−l+1 B−l+1 0 

γ−l+1 β−l+2

0 B−l+1 A−l+2 B−l+2 0 

(6.13) 

. . . . . . . . . 

γ−1 α−1

0 B−2 A−1 A0 0 . 

where each Bi is defined as a cokernel of αi−1 and thus injects into Ai+1 due 
to exactness of the original sequence. 
Now, suppose one has a class [ν] ∈ H i(A0). By the earlier construction, 

we have a sequence of maps:2 

H i+1(B−2)H i(A0) · · · H i+l−2(Al) . (6.14) 

Note that all of the intermediate stages take values in the auxilliary sheaves B, 
so only after applying all of the coboundary maps and arriving at the other end 
of the exact sequence does one get a cohomology class that lies in a sheaf in 
the original exact sequence A. 
However, it may happen that some class [ν] ∈ H i(A0) has the property that 

[δrν] ∈ H i+r(B−r−1) vanishes, while [δr−1ν] ≠ 0. In this case, we use the 
long exact sequence from the short exact sequence B−r−1 → A−r → B−r: 

δ · · · H i+r−1(A−r) H i+r−1(B−r) H i+r(B−r−1) · · · (6.15) 

and observe that, since [δr−1ν] is in the kernel of δ it is the image of a class 
in H i+r−1(A−r). More precisely, for any choice of class [µ] ∈ H i+r−1(A−r) 
we have that [µ] + γ−r+1,∗H

i+r−1(B−r−1) is a space of valid classes. 
This suffices to define a filtration of H i(A0) with F j H i(A0) being those 

classes, [ν] such that [δj ν] = 0. Thus we have: 

0 = F 0H i(A0) ⊂ F 1H i(A0) ⊂ · · · ⊂ F i+l−2H i(A0) = H i(A0) . (6.16) 

Let us now return to the precise setup for Yukawa couplings. We have 
a Calabi-Yau manifold, X , equipped with an (holomorphic and polystable) 
SU(3) bundle, V . The sheaf of sections, V , is equipped with a resolution: 

0 F−l F−l+1 · · · F0 V 0 . (6.17) 
2Since all cohomology groups are over the same space, we drop the explicit dependence for 
conciseness, i.e. Hi(A) := Hi(X, A) 
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In fact, we will assume that X is embedded in some ambient complex man-
ifold, ε : X ,→ Y . This is because our results will only give nontrivial condi-
tions in this case. We will abusively let V stand in for pushforward along the in-
clusion map. This abuse is not too bad, since H∗(X, V) = H∗(Y, ε∗V), [164]. 
The above construction gives a filtration on H1(X, V). Since this is the 

only instance that we apply the construction to, we give it a simplified notation 
F j H1(X, V) := F j . A class [ν] ∈ F 1 is in the kernel of the first cobound-
ary, i.e. δ[ν] = 0 ∈ H2(Y, B−1) (where B∗ denotes the relevant cokernels, 
as above) and, consequentially [ν] has a non-unique lift to H1(Y, F0). More 
generally, a class in F i that is not in F i−1 has the property that [δi−1ν] ̸= 0, 
while [δiν] does equal 0. 

Definition 20. A class, [ν] ∈ H1(X, V) is said to be of type a if it represents 
a non-zero class in the quotient [ν] ̸= 0 ∈ F a/F a−1, with a ≥ 1. 

The notion of type is essentially just a convenient terminology, borrowed 
from [158,159], which simplifies the statements of the results presented below. 

6.3.4 Cup products 
Twisted Dolbeault cohomology has an algebraic structure akin to the wedge 
product of differential forms, which featured in the Yukawa coupling (6.3). 
The main difference is that, in the twisted setting, the target of the product 
differs from the source. A concise introduction to the sheaf cup product can be 
found in the appendix of [154]. For the notion in Dolbeault cohomology, one 
can see Voisin [83] or Huybrechts [82], amongst others. 
The general form of the twisted Dolbeault product is of the form: 

Hp(X, E) ⊗ Hq(X, F ) → Hp+q(X, E ⊗ F ) (6.18)
∂ ∂ ∂ 

for holomorphic bundles E, F . The product is a combination of wedge product 
in the differential form indices, and tensor product in the bundle indices. 
Sheaf cohomology has a comparable product, which combines classes in 

the cohomology of two sheafs, E , F and outputs a class in the cohomology 
of E ⊗ F . Ultimately, these two products agree when they are both defined 
and this fact will allow us to use sheaf cohomology and its broader domain 
of applicability in place of Dolbeault cohomology to study the structure of 
Yukawa couplings. Thus, it is necessary to understand the product in sheaf 
cohomology. 
The approach used here and in Paper III utilises a very specific resolution, 

the so-called Godement resolution, in order to define the product. This res-
olution can always be constructed and is always locally free, but in the case 
that the structure sheaf, OX is an algebra over a field (as in our case), the con-
struction yields a resolution in which the objects are both injective and locally 
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free. Being locally free is crucial for the product: just as I being injective im-
plies the hom-functor into I is exact, being locally free ensures that the tensor 
product is exact. 

Definition 21 ( [154, 163]). Let F be an arbitrary OX -module. Define a new∏
sheaf under F as follows: For each open U ⊂ X , set G0(U) := Fx,x∈U 
where Fx is the stalk of F at x. It is straightforward to see that this is indeed a 
sheaf and it is injective. There is a canonical injection ι : F(U) ,→ G0(U) and 
direct computation shows that this commutes with the structure maps, therefore 
defining a map of sheafs. 

The Godement sheaf G0 is the first step in the Godement resolution, which 
is a functorially defined injective resolution. To continue, we take the cokernel 
of the map ι to obtain a short exact sequence: 

0 → F → G0 → K0 → 0 . (6.19) 

Taking the Godement sheaf of K0, we obtain G1, and iterating, we obtain the 
Godement resolution G•: 

F G0 K0 

G1 K1 

(6.20) 

G2 K2 

. . . 
It is vital for us that G• is functorial with respect to F , and it is an exact 

functor, [164]. Consequentially, given an exact sequence of sheaves, one can 
apply the Godement resolution degree-wise to obtain a bicomplex that is exact 
in both directions. 
In particular, a cohomology class, [ν] ∈ H i(X, F) is represented by a global 

section ν ∈ Gi(F)(X) that is closed under the map of global sections induced 
by Gi → Gi+1 . 
How to represent the cohomological product? Suppose that E , F are sheaves 

and let G•(E) and G•(F) denote their respective Godement resolution. A co-
homology class [µ] ∈ Hj (X, E) or [ν] ∈ Hk(X; F) will be represented by 
a global section µ ∈ Gj (E)(X), ν ∈ Gk(F)(X) respectively. The tensor 
product lands in Gj(E)(X) ⊗ Gk(F)(X), so does not yet represent a class in 
Hj+k(X, E ⊗ F). Fortunately, the Godement resolution does admit a map 
from the tensor product of the Godement resolution into an arbitrary injective 
resolution over the tensor product of sheaves [154] (for simplicity, we will take 
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the injective resolution of the tensor product to also be given by the Godement 
resolution): 

c : Tot•(G(E) ⊗ G(F)) → G•(E ⊗ F) . (6.21) 

Here, we have converted the tensor product bicomplex to the “total” com-
plex: Toti(G(E) ⊗G(F)) := 

⊕ 
(Gj (E) ⊗Gk(F)), with total differential j+k=i 

d := dE + (−1)j dF . 

Definition 22 ( [163]). The cup product of two sheaf cohomology classes, 
[ν] ∈ Hj (E), [µ] ∈ Hk(F) is defined to be the class 

[µ] ⌣ [ν] = [c(µ ⊗ ν)] (6.22) 

In order to relate this cup product with the Yukawa coupling, one must check 
that the isomorphism between sheaf cohomology and Dolbeault cohomology 
respects the multiplicative structure (at least up to signs and numerical prefac-
tors that can be safely ignored). Fortunately, this is true and is the content of 
Theorem 5.29 in [83], for instance. In essence, when the sheaf is given by the 
holomorphic sections of a holomorphic bundle (such that Dolbeault cohomol-
ogy is defined), one can use the same formula as for the Godement product, 
only now using the Dolbeault resolutions, so they are formally the same. 

6.4 Vanishing theorems for Yukawa couplings 
We now have a notion of cup product in sheaf cohomology, which does not rely 
on any intrinsic properties of the underlying sheaf. We will use this freedom 
to re-express the bundle over a Calabi-Yau in terms of an arbitrary, sheafy 
resolution and obtain the main theorems from Paper III. The presentation here 
is slightly streamlined. 
Let V denote the SU(3) bundle and V its sheaf of sections. Suppose that 

F• denotes a complex of sheaves, bounded below and such that 

F−k F−k+1 F00 · · · V 0 
(6.23) 

is an exact sequence of sheaves. To aid in the next steps, introduce notational 
convention that [V] denotes the complex of sheaves with V in degree zero and 
zeros elsewhere; likewise for any complex [F•] indicates adding zeros away 
from the F i-entries. Then, the exact sequence above can be written as a quasi-

∼isomorphism of chain complexes [F•] → [V]. 
The aim to construct the class [ν1 ∧ ν2 ∧ ν3] ∈ H3(Λ3V) in terms of classes 

in Gi+1(F−i) that represent the classes ν. Recall the filtration defined at the 
end of subsection 6.3.3: the ith level in the filtration, F i ⊂ H1(V) consists of 
the cohomology classes, [ν] such that [δiν] = 0. 
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Now, the F sheaves can not be assumed to be flat and consequentially, tak-
ing the tensor product does not preserve exactness. Therefore we will run into 
issues if we attempt to combine this filtration with the naive tensor product. In 
Paper III, we avoided this problem by sticking to a small portion of the complex 
that is exact, the truncated exterior power sequence exact [168]: 

F1 ⊗ Λ2F0 Λ3F0 Λ3V 0 (6.24) 

This suffices to give some control of low type classes. 

Case (type 1)3 

Consider three classes that are type 1, i.e. [ν1], [ν2], [ν3] ∈ F 1 . The aim is to 
show that the triple cup product of these objects also appears in the first non-
trivial stage of the analogous filtration of H3(Λ3V). To emphasise: the exact 
sequence (6.24) only gives the first two stages of a filtration, but it is enough 
to handle low types as considered here. 
Let K1 denote the sheaf kernel of Λ3F0 → Λ3V , so that there is an exact 

sequence: 

0 K1 Λ3F0 Λ3V 0 (6.25) 

along with the Godement resolution over it. 
Choose representatives νi ∈ G1(V)(X) of the class [νi] for each i = 1, 2, 3. 

Since each [νi] is in the first level of the filtration, F 1 , it is in the kernel of 
the first coboundary H1(Λ3V) → H2(K) and therefore each section νi admits 
a closed lift, say αi ∈ G1(F0). The aim is to show the same property holds 
for the class [ν1 ∧ ν2 ∧ ν3]. To see this, observe that this class is represented 
by a choice of section c(ν[1 ⊗ ν2 ⊗ ν3]) where the square brackets on indices 
indicates the antisymmetrization. Then, the choices, αi, can be used to make 
a choice of lift for the product: 

c(α[1 ⊗ α2 ⊗ α3]) , (6.26) 

and this is evidently closed. Consequentially, the class has a closed lift and 
thus a representative of the coboundary is the zero class. Since, however, the 
coboundary is independent of these choices, it follows that the class is in the 
kernel of the coboundary. The long exact sequence induced by the short exact 
sequence, (6.25), therefore shows that the class of the cup product is in the 
kernel, [ν1 ∧ ν2 ∧ ν3] ∈ ker(H3(Λ3V) → H4(K)), so is in the image of 
H3(Λ3F0). By constraining this group, and consequentially the image, one 
obtains a constraint on the coupling. 

Theorem 4. Assume there is a quasi-isomorphism [F•] → [V] such that the 
sheaf cohomology group vanishes: H3(Λ3F0) = 0. Let the three classes 
[ν1], [ν2], [ν3] ∈ H1(X, V) each be of type one Then, their product (and con-
sequentially the associated Yukawa coupling), [ν1 ∧ ν2 ∧ ν3] vanishes. 
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Case (type 1)2(type 2) 
It is natural to attempt to push this further, so suppose that [ν1], [ν2] ∈ F 1 , 
[ν3] ∈ F 2/F 1 and choose representatives νi ∈ G1(V)(X). 
Just as previously, the sections ν1, ν2 admit closed lifts that are again de-

noted by α1, α2 ∈ G2(F0)(Y ). The lift of the third class, however, will not be 
closed since it is assumed to have a non-trivial coboundary δ[ν3] ∈ H2(B−1). 
Since its second coboundary vanishes, this class admits a lift to H3(F−1). 
Running through the machinery, let α3 ∈ G1(F0)(X) a choice of section that 
lifts ν3, δν3 ∈ G2(B−1)(Y ) a representative of the non-trivial coboundary of 
ν3 and β3 ∈ G2(F−1)(Y ) a choice of closed section lifting δν3. Then, the pair 
of classes (α3, β) ∈ G1(F0)(Y ) ⊕ G2(F−1)(Y ) represents the class, [ν3] in 
the presentation determined by the exact sequence F•. These explicit choices 
can be used to make comparable choices for the cup product. 
Indeed, recall that the cup product of interest is represented by the section 

c(ν[1 ⊗ ν2 ⊗ ν3]) ∈ G3(Λ3V)(X). We can extract two short exact sequences 
of sheaves from (6.24): 

0 K1 Λ3F0 Λ3V 0 

0 K2 Λ2F0 ⊗ F−1 K1 0 

(6.27) 

and now a pair of sections represents the product class: ( )
c(α[1 ⊗α2 ⊗α3]), c(α[1 ⊗α2] ⊗β) ∈ G3(Λ3F0)⊕G4(Λ2F0 ⊗F−1) (6.28) 

and it is immediate that the second class c(α[1 ⊗ α2] ⊗ β) is closed. Suppose, 
then, that H4(Λ2F0 ⊗F−1) vanishes, from which it can be concluded that this 
section is exact. Let ξ ∈ G3(Λ2F0 ⊗F−1) such that dξ = dc(α[1 ⊗ α2] ⊗ β). 
By construction, dξ pushes forward to c(α[1 ⊗ α2] ⊗ β) and, by commutativity, 
it follows that: 

ξ − c(α[1 ⊗ α2 ⊗ α3]) ∈ G3(Λ3F0)closed . (6.29) 

Consequentially, in the case that H4(Λ2F0 ⊗ F−1) = 0, the cup product 
can be simplified and represented by [ξ − c(α[1 ⊗ α2 ⊗ α3])] ∈ H3(Λ3F0). In 
order to universally constrain this coupling, then, sequence chasing forces the 
assumption that H3(Λ3F0) = 0, in addition to the earlier assumption on H4 . 
This gives the theorem: 

Theorem 5. Assume there is a quasi-isomorphism [F•] → [V] such that the 
cohomology group H3(Λ3F0) vanishes and H4(F1⊗Λ2F0) = 0. Let the three 
cohomology classes [ν1], [ν2], [ν3] ∈ H1(X, V) be such that [ν1], [ν2] are type 
1 and [ν3] is type 2. Then, their product (and consequentially the associated 
Yukawa coupling) [ν1 ∧ ν2 ∧ ν3] vanishes. 
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These theorems are applied to several examples in Paper III and it is found 
that in some examples we find more constraints than other methods, e.g. sta-
bility walls [155, 161], and in others we find less. 

6.5 Summary 
In this chapter, we reviewed the arguments that lead to the new vanishing the-
orems of Paper III. 
The main idea behind Theorems 4 and 5 was that any resolution of the bun-

dle leads to a filtration of the cohomology and that this plays well with the 
operation of tensor product if the resolution itself plays well with the tensor 
product. The right language to extract information from such a filtration is 
that of spectral sequences, [162, 168, 170], specifically multiplicative spectral 
sequences. 
In order to get the generality that we wished for, we essentially dropped 

the assumption that the arbitrarily constructed resolution plays well with the 
tensor product. This introduced the main weakness of the paper, which is that 
it only tells us about very low levels in the filtration and it would be desirable 
to improve on that result. In fact, the world of homological algebra gives us 
tools to handle a tensor product that fails to be exact, but things quickly became 
unmanageable in the hands-on approach that was taken in this paper. These are 
the kind of problems that the machinery of spectral sequences is designed to 
deal with. For these reasons, it may be possible to extend the results of Paper 
III by making use of this heavier machinery. 
There is another weakness that could be addressed (and would also be im-

proved by extending the range of types that can be constrained): it is currently 
unclear how to quantify the number of couplings that are constrained. Indeed, 
in principle, any finite resolution will give the possibility of a constraint on 
the Yukawa couplings. It is straightforward to see that if two resolutions are 
chain homotopic then the filtrations are equivalent, so they contain the same 
constraints. On the other hand, by construction, any two resolutions will be 
quasi-isomorphic [168], but need not be chain homotopic and thus could give 
a different filtration and different constraints. This means that the effect that 
we rely on is visible in the homotopy category of chain complexes, but not the 
derived category (for the sake of this discussion, the difference between these 
two constructions is precisely that the quasi-isomorphisms are invertible in the 
latter and not the former, see [171] for precise definitions). It would be very 
interesting and important for the physics applications described in Section 6.1 
to follow this up and determine the maximum amount of constraints that our 
theorems can obtain for a given construction, as well the generic behaviour. 

74 



Acknowledgements 
I would like to thank my supervisors: Magdalena, Thomas and Jian. Thanks to 
Magdalena for everything you have taught me and letting me find my own way 
to research. The conversations with my cosupervisors, Thomas and Jian, have 
always been enlightening and always bolster my desire to better understand 
the interconnections between maths and physics. My work, both published 
and unpublished, has only been possible with the help of my collaborators, 
so thanks to Xenia, Eirik, Lara, James, Robin, Giulia and Lorenzo for all the 
illuminating discussions. 

The Uppsala theoretical physics department that has been my home for al-
most five years, is a nice and friendly environment, so thanks to everyone in 
the corridor for making it so. In that regard, special thanks should go to Kon-
stantina and Gregor for using their time here to make everyone feel welcome. 
Also, the frisbee games of the last year have been lots of fun so thanks to every-
one that kept that disc aloft, especially the regulars Paul, Luca, Joe, Rodolfo, 
Andrea, Maor, Lucille, Roman, Simon, Vladimir, Alexander and Martijn. 

The secret meetings were a great way of learning fun new things, so thanks 
to all the PhD students here (past and present) for contributing, particularly 
those that volunteered to organise us: Konstantina, Paolo and Simon. I am 
especially grateful to those un-nameable people that took part in the various top 
secret meetings. I also want to thank Nikos, Johan, Johan, Axel and Sebastian 
for inviting me to join them in learning cool things about symplectic geometry 
and Fukaya categories. 

During my time here, I’ve had the opportunity to learn a great deal of physics 
from everyone in the department, through journal clubs and discussions and so 
on. The discussions I’ve had with Paul and Luca particularly stick in my mind, 
so thanks for telling me so many interesting things that I want to understand: 
these conversations have always been very inspiring to me! 

Some people have my gratitude, not for anything in particular, or at least 
for too many things to even begin to think of. So, to my closest friends at the 
department, Giulia, Lorenzo and Robin, thanks for all the fun times and the 
bad times and generically making my time here better by existing. Outside of 
the division, I have Laura to thank for many of the best times of my life. The 
way I’ve approached my research has perhaps (just maybe...) sometimes left 
me a fairly suboptimal person to live with/be around. Sorry about that, Laura, 
but thanks for being there for me anyway. 

Outside my work, my taiji practice has been a little zone of peace, not to 
mention fun, so thanks to Yrjan, Saul and Pär for teaching and practicing with 
me. Also, in the last year or so, gymnastics has been a real source of pleasure 
to me, so thanks to every one in the group for supporting me and challenging 

75 



me and, in general keeping me going. Although I can’t list everyone there, 
I have to single out Emma for graciously translating the obligatory swedish 
summary for me. 

76 



Svensk Sammanfattning 
Under 1900-talet formulerade forskare teorier som noggrant förklarar univer-
sum både i mycket stora skalor och i mycket små skalor. Einsteins allmänna 
relativitetsteori förklarar gravitationens kraft mellan stora och tunga objekt, 
som planeter, stjärnor och galaxer. Å andra sidan förklarar kvantmekanik be-
teendet av små objekt som elektroner, fotoner och andra partiklar som inte går 
att se med blotta ögat. Båda teorier är verifierade i experiment med mycket 
hög precisionsnivå. Problemet är att teorierna är motstridiga. Detta innebär 
bland annat att särskilda platser i rumtiden, som inuti ett svart hål eller tidigt 
i universums existens, faller utanför teoriernas ramar. Följaktligen är utveck-
lingen av en teori för kvantgravitation, som fångar både relativitetsteori och 
kvantmekanik, en av dagens viktigaste frågor i teoretisk fysik. 
Strängteori är just en sådan, matematiskt motsägelsefri teori för kvantgrav-

itation. Dessvärre är en av de första slutsatserna som kan dras av strängteorin 
att universum har tio dimensioner. Att teorin motsäger praktiska experiment 
förklaras av det faktum att, trots att rumtiden har tio dimensioner, så är formen 
för dessa mindre uppenbar. I själva verket verkar det finnas många alterna-
tiva former för universum, inklusive rumtid där vissa dimensioner inte går att 
se med blotta ögat. Dessa småskaliga dimensioner lämnar efter sig en skugga 
som märks av vid låga energier; partiklarna och sättet de interagerar är relat-
erat till dimensionerna som de är kopplade till. I denna doktorsavhandling 
undersöks aspekter av relationen mellan dessa geometrier och den tillhörande 
fysiken. 
Doktorsavhandlingen består av tre artiklar. I artikel I tittar vi på univer-

sum med sju små dimensioner och tre utsträckta riktningar som återfinns i så 
kallade “heterotisk strängteori”. Vi introducerar en särskild funktional som 
kallas “superpotential” vilken visar att locus där funktionen når sitt maximala 
och minimala värde förklarar formerna för ett universum med denna dimen-
sionsstruktur. Typen av sju-dimensionella geometrier som beskrivs ovan har 
en särskild struktur gemensamt och kallas för en “G2-struktur”. I artikel II 
studeras matematiska egenskaper anknutna till dessa strukturer och hur de kan 
relatera till fysiken av dessa modeller. I artikel III är fokus istället på teorier 
med fyra utsträckta dimensioner, som är en möjlig modell för vårt universum. 
Vi tittar på sättet som geometrierna kontrollerar några specifika interaktioner 
mellan partiklar som ges av så kallade “Yukawa kopplingar”. I standardmod-
ellen är sådana kopplingar fria och måste fixeras med hjälp av experiment. 
Dessa kopplingar har en oförklarad inbördes hierarki som vore angeläget att 
förklara. Detta är teoretiskt sätt möjligt att åstadkomma med strängteorins 
modeller och vårt mål var att utforska hur sannolikt sådana hierarkier är i vissa 
typer av konstruktioner. Detta gjordes genom att studera mekanismer som för-
bjuder vissa kopplingar och etablerade därmed allmänt applicerbara teorem. 
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