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Objective: The genetic predisposition to ankylosing spondylitis (AS) has been most widely studied in cohorts with 
European ancestry. However, within Europe, disease prevalence is higher in Sweden. Given this, we aimed to 
characterize known AS susceptibility variants in a homogeneous Swedish data set, assessing reproducibility and 
direction of effect.
Method: The power to detect association within an existing Swedish targeted sequencing study (381 controls; 310 AS 
cases) was examined, and a set of published associations (n = 151) was intersected with available genotypes. 
Association to disease was calculated using logistic regression accounting for population structure, and HLA-B27 
status was determined with direct polymerase chain reaction genotyping.
Results: The cases were found to be 92.3% HLA-B27 positive, with the data set showing ≥ 80% predictive power to 
replicate associations, with odds ratios ≥ 1.6 over a range of allele frequencies (0.1–0.7). Thirty-four markers, 
representing 23 gene loci, were available for investigation. The replicated variants tagged MICA and IL23R loci 
(p < 1.47 × 10−3), with variable direction of effect noted for gene loci IL1R1 and MST1.
Conclusion: The Swedish data set successfully replicated both major histocompatibility complex (MHC) and non- 
MHC loci, and revealed a different replication pattern compared to discovery data sets. This was possibly due to 
population demographics, including HLA-B27 frequency and measured comorbidities. 

Ankylosing spondylitis (AS) is a highly heritable 
chronic inflammatory disease of the axial skeleton and 
sacroiliac joints, with unresolved aetiology and no cure. 
Apart from the unprovoked and painful axial inflamma
tion, AS is often accompanied by a combination of 
comorbidities, and is more prevalent in men than 
women (3:1 ratio) (1). Despite symptomatic treatment, 
advanced disease is characterized by new and irreversi
ble bone formation at the inflamed sites.

Much of the current insight into the genetic predisposi
tion to AS comes from large European ancestry-based 
genome-wide or tailored single-nucleotide polymorphism 
(SNP) scans, utilizing anywhere from 15 000 to over a 
million markers, and many thousands of cases and 
matched controls [e.g. (2–4)]. These studies and others 
have revealed more than 140 disease associate loci, which 

together explain in excess of 30% of the genetic heritabil
ity (3). The strongest association to disease comes from 
the human leucocyte antigen-B27 (HLA-B27) locus. This 
locus signal is consistently replicated across studies, and 
in concordance with this, AS is often more frequent in 
populations with high HLA-B27 occurrence. For popula
tions with European ancestry, the general frequency of 
HLA-B27 is 6–9% (5) and the standardized AS prevalence 
is 0.55% (6); Sweden is enriched for HLA-B27 frequency 
but reduced for AS prevalence [10–12% HLA-B27 (7), 
0.18% prevalence (8)].

In 2012, a targeted liquid capture, the ImmunoArray, 
was designed to cover a set of over 1800 genes and their 
regulatory regions. Selection was based on their invol
vement in known immune pathways and processes (9). 
This array was subsequently used to sequence multiple 
immunological disease sets, including AS. The goal of 
the current study was to assess the Swedish AS set’s 
ability to replicate European ancestry-derived AS asso
ciation signals, and by doing so, to place Swedish 
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disease and predisposition patterns in a broader popula
tion context.

Method

Sample collection and HLA-B27 typing

Genotyped HLA-B27 carrier status (10), positive or nega
tive, was used to select mainly HLA-B27-positive cases for 
inclusion in a set of 691 individuals with self-reported 
Swedish ancestry, comprising 381 healthy controls 
(mean ± sd age 63.2 ± 15.7 years; 66% male) and 310 AS 
cases diagnosed according to the New York criteria (mean 
age 51.9 ± 11.9 years; 73% male). Overlapping comorbid
ities were diagnosed in 215 cases: uveitis (n = 114), per
ipheral joint inflammation (n = 133), psoriasis (n = 23), and 
gut involvement (n = 40). All participants gave written 
informed consent, with ethical approval granted from the 
regional committee of Linköping and in accordance with 
the Declaration of Helsinki (Dnr 2010/182-32; 98110).

Literature mining for published associated variants

SNPs were considered for replication if they met the 
following criteria: (i) they were reported in peer- 
reviewed journal articles with a publication date before 
2018; (ii) the publication consisted of more than 2000 
markers in population cohorts of British or Han Chinese 
origin; and (iii) variants had p-value < 1.0 × 10−5 in the 
discovery set (Supplementary Table S1). Information 
was retrieved from the main text and supplementary 
texts. All genomic coordinates were reported in hg19.

Genetic analysis

The Swedish AS genotypes available for comparison were 
generated through the Illumina resequencing of a custom 
ImmunoArray (data, doi:10.17044/scilifelab.13027256). 
In brief, the ImmunoArray targeted the coding and non- 
coding regions [3ʹ- and 5ʹ-untranslated regions (UTRs), 
splice sites, promoters] of more than 1800 genes with 
known involvement in immune pathways (9). PLINK 
v1.9 (11) was used to extract and prune the variants 
common to both the Swedish and literature sets (call rate 
> 85% and minor allele frequency > 0.03).

Logistic regression with 10 eigenvectors [PLINK v1.9 
(11)] was used to assess associations, with a Bonferroni 
significance threshold (i.e. 0.05/markers common to 
both data sets; Supplementary Table S2). Linkage dise
quilibrium (LD; r2) between markers on the same chromo
some was also calculated [PLINK v1.9 (11); 
Supplementary Table S3].

The power to detect associations in the Swedish data set 
was set at 80%, and the range of detectable odds ratios 
(ORs) was calculated for 310 cases and 381 controls, allele 
frequency 0.1–0.7, with an additive model and Bonferroni 

significance threshold (1.47 × 10−3; genpwr package in 
R v.3.5.0).

The full method is given in the supplementary material.

Results

The intersection of the literature set and the Swedish data set 
revealed that 23% of the markers (34/151) were shared. 
These tagged 23 unique gene loci, including MICA, 
ERAP1, ERAP2, IL23R, and FCGR2A (Supplementary 
Table S2). The ImmunoArray (9) target space influenced 
marker availability, with 74% of the literature set located in 
untargeted and so unavailable regions, e.g. intronic ERAP2 
variant rs2910686 and gene desert variants rs2310173 in 
2q11.2 and rs6556416 in 5q33.3. Within the literature set, 
26 gene loci were represented by multiple variants (Supple
mentary Table S1), and so the unavailability of some mar
kers was not equivalent to loss of the locus, e.g. IL23R, 
ILR1, and ERAP1 (Supplementary Table S2). Eight variants 
were present in the target space but failed filtering quality 
control thresholds including deviation from Hardy–Wein
berg equilibrium, e.g. markers tagging gene loci HLA-B and 
FCGR2A.

The majority of the 34 markers available conferred small 
risk effect sizes (21 SNPs, OR = 1.09–1.57) over a range of 
risk allele frequencies (RAF = 0.08–0.77) (Supplementary 
Table S2). At 80% power, the Swedish data set would be 
able to identify SNPs with an OR ≥ 1.6 over an RAF range 
of 0.1–0.7 (Supplementary Figure S1). This equates to the 
known effect sizes of IL23R or major histocompatibility 
complex (MHC) loci (Supplementary Table S2). In prac
tice, for the Swedish data set (381 controls, 13.0% HLA- 
B27 positive; 310 AS cases, 92.3% HLA-B27 positive), 
three markers were found to be significantly associated 
with AS (risk: MICA rs9266825 and rs1051792; protective: 
IL23R rs11209026; p-value < 1.47 × 10−3, Table 1; LD 
matrix, Supplementary Table S3). This pattern matched the 
expectation for ORs and power.

We further examined the associated alleles that did not 
replicate, and noted that when comparing allele frequen
cies between Swedish and published case or control fre
quencies, all controls, and most cases (81%), were within 
a 5% frequency span (Supplementary Table S2). The 
largest allele frequency difference was noted for both 
MICA case variants (> 12%). For three variants (represent
ing genes IL1R1 and MST1; Figure 1, Supplementary 
Figure S2), the direction of SNP effect was reversed 
(measured as OR), with minor, if any, overlap in 95% 
confidence intervals. Here, the differences in case allele 
frequency differences were slight (1–4%).

Discussion

Through the replication of both MHC (MICA) and non- 
MHC loci (IL23R), and the dissection of disease- 
associated allele frequencies, the Swedish AS replication 
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study placed the genetic predisposition of this data set in the 
context of previously published populations of European 
origin. This analysis illustrated that while a smaller data set 
may have reduced power to detect published variants, it may 
still have the power to reveal disease association differences 
between different populations.

The replication success of this study was driven by sam
ple size, the number of available markers, and the contribu
tion of population demographics. The ImmunoArray was 
designed in 2012 (9) based on published immune-related 
loci for Sjögren’s syndrome, systemic lupus erythematosus, 
Addison’s disease, anti-neutrophil cytoplasmic antibody 
(ANCA)-associated vasculitis, myositis, and AS, as well 

as their extended associated gene pathways. For that reason, 
markers unique to AS identified after that date were unlikely 
to be covered by the design. Another issue was replication 
sample size. In selecting predominantly HLA-B27-positive 
AS cases (92.3%), the goal was to increase power by redu
cing background heterogeneity. This may yet prove suc
cessful for the identification of novel alleles given the 
inclusion of additional control individuals, such as those 
from the 1000 genomes of Sweden (12).

The IL23R and the ERAP1 loci were among the first 
non-MHC risk loci discovered for AS (2). While the 
former locus was replicated here, the latter was not, 
even though the extended ERAP1-ERAP2 block was 

IL1R1 rs2192752.d

rs2192752.s

IL1R1 rs871656.d

rs871656.s

MST1 rs3197999.d

rs3197999.s

0.6 0.9 1.2
Odds ratio

1.5

Figure 1. Discordant allele effect sizes (odds 
ratio and 95% confidence interval) between the 
published discovery (rsID.d) and the Swedish 
AS (rsID.s) data sets.

Table 1. Published associations replicated in the Swedish set.

Locus Marker Allele (R/NR)* p† OR (95% CI)‡

IL23R rs11209026 A/G 9.7 × 10−4 0.4 (0.2–0.7)
MICA rs1051795 G/A 8.2 × 10−32 12.7 (8.3–19.4)

rs9266825 C/A 3.1 × 10−32 12.6 (8.3–19.2)

*Risk (R) and non-risk (NR) allele. 
†Replication p-value. 
‡Odds ratio (OR) and 95% confidence interval (CI) for the risk allele. 
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represented by nine variants (Supplementary Table S2). 
This locus is generally well replicated in data sets of 
sufficient power (e.g. rs30187 = 3.4 × 10−10– 
1.3 × 10−41; OR across studies ~1.10–1.30; Supplemen
tary Table S2). The protein change conferred by 
rs30187-T, p.Lys528Arg, has been posited as a loss of 
function variant, slowing the aminopeptidase activity of 
this protein (13). A 2016 publication noted that the 
missense variant rs30187 had a larger effect in a set of 
AS cases also with acute anterior uveitis (OR = 1.46, 
95% CI 1.35–1.58), in contrast to AS cases lacking this 
comorbidity (14). The Swedish data set was not tem
poral, and given that such single comorbidities were 
infrequent (total cases, n = 310; AS only, n = 95; AS 
plus uveitis, n = 53), and that the frequency of uveitis 
increases with AS duration (15), a similar analysis was 
not possible. However, we noted that the direction of 
effect was similar between the published and Swedish 
data sets (Supplementary Table S2), but that the locus 
p-value ranking revealed that the 3ʹ-end of ERAP1 
(rs17482078 and rs10050860) was more associated 
with AS. In cases such as these, the value of the Swed
ish cohort may lie in the population enrichment of, as 
yet, unidentified alleles and the downstream dissection 
of haplotypes. This could indicate which part of the 
protein or regulatory locus influences disease in 
a given population background.

Conclusion

The Swedish data set described here had the power to 
replicate loci both within and outside the MHC region. 
An examination of allele frequencies indicated the 
potential of differential genetic architecture between 
European populations, and suggests that novel disease- 
associated variants may be found in additional data sets 
with varied demographics and HLA-B27 profiles.
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