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Abstract

The focus of this report is the derivation of the Bogoliubov-de Gennes equa-
tions for superconductors from a tight-binding model, restricting ourselves to
the case of s-wave superconductors.
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1 Introduction

In condensed matter physics, tight-binding models are commonly used to study dif-
ferent phenomena. One such phenomena is superconductivity, which can be modeled
microscopically using Bogoliubov-de Gennes (BdG) theory. The goal of this project
has been to gain a better theoretical understanding of BdG theory of superconduc-
tors. The first section of this report will attempt to give a brief overview of the basics
of superconductivity, while the second section will give a detalied derivation of the
BdG equations for an s-wave superconductor from a tight-binding model.

2 Superconductivity

Superconductivity was first discovered in mercury by H. Kamerlingh Onnes in 1911
[1]. Three years prior he had managed to liquify helium which made it possible to
reach the low temperatures necessary to observe superconductivity in elemental solids.
Later, superconductivity was also found in other elemental solids like lead and tin.
The two characteristic phenomenas of superconductivity [1] are perfect conductivity,
i.e. zero resistivity, and perfect diamagnetism, where any magnetic field is expelled
from the solid, also called the Meissner effect. In order for the material to exhibit
these properties it must be cooled down below a critical temperature Tc, specific to
the material.
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Figure 1: Left: Characteristic for superconductivity is that the electrical resistivity
drops to zero as the temperature goes below a critical temperature Tc. Right: As the
temperature goes below Tc a superconductor will expel magnetic fields, acting as a
perfect diamagnet. This is called the Meissner effect.

The Ginzburg-Landau theory for superconductors [1] provides a phenomenological ex-
planation of superconductivity. For a microscopic description of conventional super-
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conductivity one can turn to BCS [2] theory which was developed by John Bardeen,
Leon Cooper and John Schrieffer. It describes that electrons pair up in so called
Cooper pairs, which opens up a gap at the Fermi surface. The only way for all of the
electrons in a conventional superconductor to have a ”friend” to pair up with, is for the
two electrons pairing up to have opposite momentum, frequency, and spin. In a con-
ventional superconductor, the pairing mechanism is electron-phonon interaction, i.e.
the attractive interaction coupling the Cooper pairs is mediated by lattice vibrations,
phonons. Electrons on their own are fermions, but when they are bound together in
Cooper pairs they form bosonic quasiparticles, which are allowed to occupy the same
quantum state, thus leading to superconductivity. In order to break a Cooper pair
you have to overcome the quasiparticle excitation gap, or the superconducting gap, ∆.
This gap can have different symmetries and structures depending on the properties
of the material. A conventional superconductor has what is called s-wave symmetry,
meaning that the superconducting gap is uniform, see figure (2).
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Figure 2: Schematic of the superconducting gap. Left: s-wave pairing superconductor.
Right: d-wave pairing superconductor.

Unconventional superconductors are superconductors for which the electron-phonon
interaction is too weak to be able to explain the observed superconductivity, instead
some other mechanism is causing the attractive interaction in the Cooper pairs. One
such class is high Tc cuprate superconductors, which were discovered in 1986 by
Bednorz and Müller [3]. Superconductors in this class are d-wave superconductors,
meaning that the superconducting gap is not uniform, but instead have nodes, see
Figure (2). Another class of unconventional superconductors which were discovered
in 2008 [4] are Fe-based superconductors. The symmetry and structure of the su-
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perconducting gap in this class is still an open research question. One gap structure
that is commonly suggested is called s+− [5], but it might be that not all Fe-based
superconductors have the same one. As previously mentioned, the superconductivity
in unconventional superconductors can not be explained by just the electron-phonon
interaction, but require some different pairing mechanism. One common suggestion
for such a mechanism is spin fluctuation pairing [5].

3 Bogoliubov-de Gennes equations

In this section we will derive the Boboliubov-de Gennes equations for superconductors
from a tight-binding model. This section is largely based on the second chapter of
Bogoliubov-de Gennes Method and Its Applications [6] by J.-X. Zhu. We will restrict
ourselves to finding the BdG equations for an s-wave superconductor, starting from
the single-particle part of the Hamiltonian

H0 =

∫∫
drdr′ψ†

α(r)hαβ(r, r
′)ψβ(r

′) (1)

where non-local and spin-flip effects are included in hαβ(r,r’) and

ψα(r) =
∑
i

w(r−Ri)ciα,

ψ†
α(r) =

∑
i

w∗(r−Ri)c
†
iα

(2)

are the field operators in terms of the localized-state basis. The operators c†iα and
ciα creates and annihilates an electron at site i with spin α. The localized orbital
around the atomic site Ri is denoted w(r − Ri). One can think of these localized
orbitals w as δ-functions centered at the atomic site Ri. Substituting Eq. (2) into
the single-particle Hamiltonian we get

H0 =
∑
ij,σσ′

c†iσhiσ,jσ′cjσ

= −
∑

i ̸=j,σσ′

tiσ,jσ′c†iσcjσ′ +
∑
iσ

ϵic
†
iσciσ +

∑
i,σσ′

Ωi,σσ′c†iσciσ′

(3)

where the first term is the kinetic energy, the second term is the on-site single-particle
energy and the third term describes the effects of magnetic impurities. Similarly, the
extended Hubbard model can be expressed using the same basis, resulting in the
following Hamiltonian for superconductivity,
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H = H0 − µ
∑
iσ

c†iσciσ + U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− V

2

∑
i ̸=j

ninj

=
∑
ij,σσ′

c†iσ

[
hiσ,jσ′ −

(
µ+

U

2

)
δijδσσ′

]
cjσ′ + U

∑
i

ni↑ni↓ −
V

2

∑
i ̸=j

ninj

(4)

where the particle number operator is niσ = c†iσciσ and ni =
∑

σ niσ. U is the on-site
electron-electron interaction strength and V is the nearest neighbor electron-electron
interaction strength. Repulsive interactions are defined with positive values for U and
negative values for V . Subsequently, attractive interactions are defined using negative
values for U and positive values for V . For s-wave superconducting we will neglect
the electron-electron interactions between lattice sites and replace U by −U (U > 0),
to get attractive on-site electron-electron interactions. The Hamiltonian then looks
as follows,

H =
∑
ij,σσ′

c†iσ

[
hiσ,jσ′ − µδijδσσ′

]
cjσ′ − U

∑
i

ni↑ni↓ (5)

Since it is complicated to work with terms with four field operators, we want to sim-
plify the electron-electron interaction term so it becomes quadratic. We will therefore
rewrite it using the mean-field approximation,

c†i↑c
†
i↓ci↓ci↑ ≈ ⟨c†i↑c

†
i↓⟩ci↓ci↑ + c†i↑c

†
i↓⟨ci↓ci↑⟩ − ⟨c†i↑c

†
i↓⟩⟨ci↓ci↑⟩ (6)

One might recognize this from Hartree-Fock, where a similar thing is done. The
difference here is that we pair the annihilation operators with each other and the
creation operators with each other, instead of having pairs of one annihilation operator
and one creation operator, as one does in Hartree-Fock. Plugging eq. (6) into Eq.
(5) we get that

H =
∑
ij,σσ′

c†iσh̃iσ,jσ′cjσ′ − U
∑
i

c†i↑c
†
i↓ci↓ci↑

≈
∑
ij,σσ′

c†iσh̃iσ,jσ′cjσ′ − U
∑
i

(⟨c†i↑c
†
i↓⟩ci↓ci↑ + c†i↑c

†
i↓⟨ci↓ci↑⟩ − ⟨c†i↑c

†
i↓⟩⟨ci↓ci↑⟩)

(7)

where h̃iσ,jσ′ = hiσ,jσ′ − µδijδσσ′ . By writing the singlet-pairing potentials as

∆ii = U⟨ci↓ci↑⟩,
∆∗

ii = U⟨c†i↑c
†
i↓⟩,

(8)
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we get the effective mean-field Hamiltonian,

Heff =
∑
ij,σσ′

c†iσh̃iσ,jσ′cjσ′ −
∑
i

[
∆iic

†
i↑c

†
i↓ +∆∗

iici↓ci↑

]
+ Econst (9)

where Econst = U
∑

i⟨c
†
i↑c

†
i↓⟩⟨ci↓ci↑⟩. The commutation relation for the annihilation

operator ci↑ and the effective Hamiltonian can be obtained as

[ci↑,Heff ] = ci↑Heff − Heffci↑

=
∑
j,σ′

h̃i↑,jσ′cjσ′ +∆iic
†
i↓

(10)

Repeating the calculations for the remaining annihilation/creation operators we end
up with the following commutation relations,

[ci↑,Heff ] =
∑
j,σ′

h̃i↑,jσ′cjσ′ +∆iic
†
i↓,

[c†i↑,Heff ] = −
∑
jσ′

h̃jσ′,i↑c
†
jσ′ −∆∗

iici↓,

[ci↓,Heff ] =
∑
jσ′

h̃i↓,jσ′cjσ′ −∆iic
†
i↓,

[c†i↓,Heff ] = −
∑
jσ′

h̃jσ′,i↓c
†
jσ′ +∆∗

iici↑.

(11)

From this we can see that the electron field operators c†iσ and ciσ no longer constitute a
good basis. What we instead would like to do is to express the electron field operators
as linear combinations of electron- and hole-like quasiparticle excitations. This is done
by performing a Bogoliubov canonical transformation,

ciσ =

′∑
n

(uniσγn − σvn∗iσ γ
†
n), c†iσ =

′∑
n

(un∗iσ γ
† − σvniσγn). (12)

Here the up and down spin orientations are denoted as σ = ±1. The Bogoliubov
quasiparticle at state n is created and annihilated by γ†n and γn, respectively. The
quasiparticle operators anti-commute, i.e. {γn, γ†m} = δnm and {γn, γm} = {γ†n, γ†m} =
0. The prime sign over the summation indicates that we only count states which
have a positive energy. By using this canonical transformation the Hamiltonian is
diagonalized as

Heff =
∑
n

Enγ
†
nγn + E ′

const (13)
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By substituting eq.(12) into eq.(11), using the following commutation relations

[γ†n, Heff ] = −Enγ
†
n,

[γn, Heff ] = Enγn
(14)

and comparing the terms containing γn and γ†n we finally arrive at the BdG equa-
tions:

Enu
n
i↑ =

∑
jσ′

h̃i↑,jσ′unjσ′ + σiiv
n
i↓,

Enu
n
i↓ =

∑
jσ′

h̃i↓,jσ′ +∆iiv
n
i↑,

Env
n
i↑ = −

∑
jσ′

σ′h̃i↑,jσ′vnjσ′ +∆∗
iiu

n
i↓,

Env
n
i↓ =

∑
jσ′

σ′h̃jσ′,i↓v
n
jσ′ +∆∗

iiu
n
i↑

(15)

with the self-consistency condition:

∆ii =
U

2

′∑
n

(uni↑v
n∗
i↓ + uni↓v

n∗
i↑ ) tanh

( En

2kBT

)
. (16)

From the BdG equations in Eq. (15) one can show that if (uni↑, v
n
i↓, u

n
i↓, v

n
i↑) solves

the BdG equations for the eigenvalue En, then (−vn∗i↑ , un∗i↓ , vn∗i↓ ,−un∗i↑ ) is the solution
corresponding to the eigenvalue−En. This can be used to simplify the self-consistency
condition in Eq. (16) to

∆ii =
U

2

∑
n

uni↑v
n∗
i↓ tanh

( En

2kBT

)
. (17)

Good to remember here is that ∆ii is the order parameter which quantifies the su-
perconductivity. This means that above the critical temperature Tc, ∆ii will be zero.
When solving the self-consistency, one way of doing it is to first guess what ∆ii is and
using that guess to solve the BdG equations, then plugging the solution into Eq. (17),
comparing the new ∆ii with the old. If they differ, you calculate the BdG equations
again, but with the new ∆ii, repeating the procedure until the difference between the
new and old ∆ii is ”small enough”, i.e. within some tolerance.

If we do not have spin-orbit coupling and spin-flip scattering, i.e. h̃i↑,j↓ = h̃i↓,j↑ = 0,
then the BdG equations can be further simplified to the following to sets of equations,
making the BdG equations block-diagonalized,
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Eñ1u
ñ1
i↑ =

∑
j

h̃i↑,j↑u
ñ1
j↑ +∆iiv

ñ1
i↓ ,

Eñ1v
ñ1
i↓ = −

∑
j

h̃∗i↓,j↓v
ñ1
j↓ +∆∗

iiu
ñ1
i↑

(18)

and

Eñ2u
ñ2
i↓ =

∑
j

h̃i↓,j↓u
ñ2
j↓ +∆iiv

ñ2
i↑ ,

Eñ2v
ñ2
i↑ = −

∑
j

h̃∗i↑,j↑v
n
j↑ +∆∗

iiu
ñ2
i↓ .

(19)

Given the block-diagonalization and the symmetry we saw earlier for the solutions of
the BdG equations with eigenvalue En and −En respectively, it is enough to solve the
first set of equations, Eq. (18), with the following self-consistency condition

∆ii =
U

2

∑
ñ

uñ1i↑ v
ñ1∗
i↓ tanh

( Eñ1

2kBT

)
. (20)

This diagonalization takes us from a 4N by 4N matrix to a 2N by 2N matrix, which
of course improves the computational efficiency greatly.

Once one has solved the BdG equations and found a solution (uni↑, v
n
i↓, u

n
i↓, v

n
i↑) with

eigenvalue En, these can be used to calculate the charge density, the density of states
and the band structure. For example, the charge density is calculated as

ni↑ =
∑
n

|uni↑|2f(En),

ni↓ =
∑
n

|vi↓|2f(−En),
(21)

where f(E) is the Fermi-Dirac distribution, f(E) = 1/(exp(E/kBT ) + 1), and the
local density of states is calculated as

ρiσ(E) =

′∑
n

(|uniσ|2δ(En − E) + |viσ|2δ(En + E)). (22)

Now we have only looked at the case of s-wave superconductors, i.e. an on-site attrac-
tive interaction U , but the same procedure can be done for a d-wave superconductor.
Then one would instead pick a repulsive on-site interaction, and include an attractive
nearest-neighbour electron-electron interaction V in the Hamiltonian in Eq. (4).
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4 Conclusion

We have now seen how one can arrive at the BdG equations for an s-wave super-
conductor from a tight-binding model. These can then be applied when studying
superconductivity. In the case that spin-orbit coupling and/or spin-flip scattering are
present one will use the BdG equations in Eq. (15) and the self-consistency conditions
in Eq. (17). If spin-orbit coupling and spin-flip scattering are both absent, one can
instead just solve the BdG equations in Eq. (18) with the self-consistency condition
in Eq. (20).
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