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Cyanobacteria are natural photosynthetic microbes which can

be engineered for sustainable conversion of solar energy and

carbon dioxide into chemical products. Attempts to improve

target production often require an improved understanding of the

native cyanobacterial host system. Valuable insights into

cyanobacterial metabolism, biochemistry and physiology have

been steadily increasing in recent years, stimulating key

advancements of cyanobacteria as cell factories for biochemical,

including biofuel, production. In the present review, we

summarize the current progress in engineering cyanobacteria

and discuss the achieved and potential utilization of these

advances in cyanobacteria for the production of the bulk

chemical butanol, specifically isobutanol and 1-butanol.
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Introduction
Cyanobacteria, prokaryotic microorganisms with oxy-

genic photosynthesis, are able to convert solar energy,

CO2 and water into chemical energy [1,2]. They have

emerged as potential green cell factories for sustainable

generation of carbon neutral renewable chemicals and

fuels. Butanol is a four-carbon alcohol (C4H9OH), an

important bulk chemical and excellent blend-in fuel

produced from fossil resources [1,2]. Additionally, there

are biological routes for fermentative butanol production,

mainly to produce isobutanol or 1-butanol [2]. Natural

strains of cyanobacteria produce neither isobutanol nor 1-

butanol, indicating that the butanol biosynthetic path-

ways and necessary genes are absent. A native 1-butanol

forming pathway from the genus Clostridium, the
www.sciencedirect.com 
clostridial pathway, was introduced into Escherichia coli
for heterotrophic 1-butanol production [3]. Besides, an

artificial biosynthetic pathway, the 2-keto acid pathway,

was constructed in E. coli for isobutanol production [4].

The clostridial and 2-keto acid pathways resulted in 30 g

L�1 1-butanol titer and 22 g L�1 isobutanol titer in fer-

mentative system, respectively [3,4]. Following the suc-

cess of producing isobutanol and 1-butanol in E. coli, the

two corresponding pathways (hereafter isobutanol and 1-

butanol pathway, respectively) have been constructed

and assessed in cyanobacteria [5–14,15��] (Figure 1).

Including the two butanol pathways, most of biosynthetic

pathways introduced in cyanobacteria have previously

been constructed in heterotrophic microbial models (e.

g. E. coli and Saccharomyces cerevisiae). Therefore, most of

the metabolic engineering work in cyanobacteria is based

on straight-forward metabolic pathway information in E.
coli and S. cerevisiae. However, it is particularly important

to recognize that cyanobacterial metabolism differs from

other heterotrophic microbes in many aspects. Cyanobac-

teria have robust photoautotrophic systems and sophisti-

cated metabolism networks, making them more challeng-

ing production systems compared to other heterotrophic

microbes. Research efforts have been directed towards

engineering cyanobacteria in different fields, including

carbon metabolism, reducing equivalent, cell organiza-

tion, protein localization, chemicals transportation, pho-

tosynthesis, environmental stress, product tolerance, cul-

tivation system, cell division and growth. As the research

in engineering cyanobacteria has progressed, impressive

advances have emerged for designing the cell with

emphasis on products formation and increased carbon

partitioning to the biosynthetic products. Nevertheless,

the strategies of performing these advances for produc-

tion in cyanobacteria are complex, relying on the crucial

aspects of different biosynthetic pathways, such as sub-

strates, driving forces, carbon conservation, metabolites

toxicity and products secretion.

In this review, we summarize and discuss the current

advances in engineering cyanobacteria, focusing on their

achieved and prospective applications for photosynthetic

butanol production.

Optimizing biosynthetic pathway and editing
native carbon flux
A traditional metabolic engineering strategy developed in

heterotrophic microbial models, the ‘push–pull strategy’,

has been extended to chemical production in other
Current Opinion in Biotechnology 2022, 73:143–150
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Schematic diagram of engineered metabolic pathway for biosynthesis of isobutanol and 1-butanol from CO2 in cyanobacteria. Based on [5–

14,15��]. Metabolite abbreviations: G3P, glyceraldehyde-3-phosphate; F6P, fructose-6-phosphate; E4P, erythrose-4-phosphate; X5P, xylulose-5-

phosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; Acetyl-P, acetyl-phosphate; PHB, poly-3-hydroxybutyrate.
microbes, including cyanobacteria. This production strat-

egy, pushing the carbon flux towards the substrate(s) by

editing native carbon metabolism and pulling the sub-

strate(s) towards the product by optimizing the product

forming pathway, is extremely relevant to the biosyn-

thetic pathway design and carbon partitioning. The major

focus of engineering the two introduced butanol biosyn-

thetic pathways in cyanobacteria is based on this strategy

(Figure 1).

First, research towards engineering cyanobacteria for

butanol production has been mainly focused on two

unicellular model strains Synechocystis PCC 6803 (hereaf-

ter Synechocystis) and Synechococcus elongatus PCC 7942

(hereafter Synechococcus) [5–14,15��], which are more ame-

nable to genetic manipulation. To optimize the butanol

biosynthetic pathways, various butanol forming enzymes

were introduced, overexpressed and evaluated

[8–12,15��]. Because of the natural NADPH and ATP

abundance in oxygenic cyanobacteria, which are gener-

ated in photosynthesis, NADPH favored, ATP driven

and/or oxygen tolerant enzymes showed stable and higher

activity for butanol production [8,11,12,15��]. On the

other hand, the native metabolic flux was modified for

improved isobutanol and 1-butanol production via

increasing the formation of their precursors, which is

pyruvate and acetyl-CoA, respectively (Figure 1). The

competing pathways of isobutanol and 1-butanol biosyn-

thesis were knocked-out by homologous recombination to
Current Opinion in Biotechnology 2022, 73:143–150 
increase the pyruvate and acetyl-CoA content, respec-

tively [7,8,13,15��]. In another study, CRISPR interfer-

ence (CRISPRi) was employed to repress specific

enzymes which were predicted to compete metabolic

flux with 1-butanol biosynthesis in Synechocystis [14]. In

addition, the phosphoketolase (PK) pathway, one of the

native acetyl-CoA supporting pathways in Synechocystis
[16], was enhanced for 1-butanol production by over-

expressing a heterogenous PK [13,14,15��]. However,

for isobutanol production in cyanobacteria, enhancement

of direct pyruvate supporting pathways has not been

reported to date. Instead, overexpression of three

enzymes of the three native steps between the Calvin–

Benson–Bassham (CBB) cycle and pyruvate increased

total carbon yield by 1.8-fold and 2,3-butanediol produc-

tion by 2.4-fold in Synechococcus [17]. This approach has

potential to improve pyruvate pool for isobutanol

biosynthesis.

At present, the maximal reported isobutanol and 1-buta-

nol production achieved in Synechocystis during long-term

cultivation is 0.9 g L�1 in 46 days [10] and 4.8 g L�1 in

28 days [15��], respectively. Corresponding maximal rates

are 43.6 mg L�1 day�1 [10] and 302 mg L�1 day�1 [15��]
for isobutanol and 1-butanol, respectively. Recently,

600 mg 1-butanol L�1 day�1 was reported [1]. These

numbers for photosynthetic butanol are still low com-

pared to titers and rates obtained for heterotrophic buta-

nol [3,4]. However, cyanobacteria represent more
www.sciencedirect.com
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challenging production systems compared to heterotro-

phic microbes with, as discussed below, numerous poten-

tial engineering strategies still to be explored. Addition-

ally, photosynthetic butanol is derived directly from CO2

with a reported carbon partitioning of 60% from CO2 to 1-

butanol [1], while, in comparison, CO2 is converted to

sugars/biomass at a very low efficiency before being used

to generate heterotrophic butanol.

Rewriting central carbon metabolism and
redistributing reductive forces
Chemical production from cyanobacteria requires not

only optimizing the metabolic pathway for production

titer, but also minimizing the loss of fixed carbon for

productivity. The carbon loss in forming acetyl-CoA from

decarboxylation of pyruvate limits the maximum carbon

yield of photosynthesis. Drawing carbon flux away from

this natural process requires insertion of a non-native or

artificial pathway to bypass this enzymatic step to form

acetyl-CoA. This can be achieved by utilizing the PK

pathway, which is the best-developed rewriting pathway

for expansion of sugar catabolism in E. coli and S.
cerevisiae. PK catalyzes a direct and non-decarboxylating

conversion of sugar phosphate in the central carbon

metabolism to acetyl-P and further on to acetyl-CoA

[13,14,15��,16,18] (Figure 1). However, as discussed

above, PK is an endogenous enzyme in Synechocystis, with

contribution only to heterotrophic metabolism [16].

Thus, critically speaking, overexpressing the PK pathway

in Synechocystis may rewrite the photoautotrophic central

carbon metabolism in the photosynthetic environment.

Although PK was exploited in cyanobacteria to improve

the production of acetyl-CoA-derived chemicals

[13,14,15��,18], such as 1-butanol, acetone and fatty acid

ethyl esters, the glycolysis pathway is still natively

expressed. To address this issue, the glycolysis pathway

would be either knocked-out or knocked-down to lower

the carbon loss, coupling the PK pathway to overcome the

productivity limitation.

Recently, in a proof-of-principle study, the acetyl-CoA

concentration was successfully increased by designing

and implementing a synthetic malyl-CoA-glycerate

(MCG) pathway in Synechococcus [19]. This pathway con-

verts a three-carbon metabolite, phosphoenolpyruvate, to

two acetyl-CoA by an addition of CO2, or assimilates

glyoxylate, a photorespiration intermediate, to produce

acetyl-CoA without any carbon loss. In another recent

study, to reduce the effect(s) of native regulation and the

rate limitation of the pyruvate decarboxylation, a syn-

thetic acetate-acetyl-CoA/malonyl-CoA (AAM) bypass

was designed and examined in Synechococcus [20�]. This

pathway utilizes acetate assimilation and carbon rearran-

gements to enlarge the acetyl-CoA pool from pyruvate,

resulting in acetyl-CoA-derived acetone titer effectively

increased to 0.41 g L�1. The MCG and AAM pathways

constructed in cyanobacteria can also be applied to high-
www.sciencedirect.com 
level production of chemicals derived from acetyl-CoA,

such as 1-butanol.

Apart from carbon conservation, chemical production in

cyanobacteria is also limited by reducing cofactor ratios.

As discussed above, it has become apparent that coupling

steps to the major reducing power carrier NADPH in

cyanobacteria significantly enhances the products biosyn-

thesis [8,11,15��,21], whereas the NADH-specific reduc-

tase is still involved in some metabolic steps. The co-

expression of a soluble bidirectional NAD(P) transhydro-

genase, linking the pools of NADPH/NADP+ and

NADH/NAD+, has been demonstrated to increase titers

of lactate and 3-hydroxypropionic acid in cyanobacteria

[21]. Thus, modifying cofactors balance and supply

should also be considered when further improving buta-

nol biosynthesis in cyanobacteria.

Harnessing biosynthetic pathway in
subcellular compartments
Efforts to improve production in cyanobacteria have

mainly involved expression of enzymes in the cytoplasm

(Figure 2a). Instead, an avenue towards compartmental-

izing partial or complete biosynthetic pathway in mem-

brane-enclosed organelles has been explored to increase

chemical production in eukaryotes like yeast, fungi and

higher plants. For example, since yeast mitochondria has

an abundant source of 2-ketoisovalerate, which is the

precursor of last two steps of isobutanol pathway, re-

localizing the last two-step enzymes using a targeting

tag into mitochondria increased the isobutanol production

by 260% in S. cerevisiae [22]. This strategy possesses

desirable properties for production (Figure 2a): 1) Con-

centrating intermediates and enzymes in smaller volume

to favor faster reaction rates; 2) Reducing the loss of

intermediates to competing pathways, thereby signifi-

cantly decreasing accumulation of by-products; 3) Avoid-

ing repressive regulation and toxic effects of intermedi-

ates to cytoplasmic metabolism; and 4) Removing the

need to transport substrate out of organelles.

As prokaryotes, cyanobacteria contain diverse protein-

bound organelles, termed bacterial microcompartments

(BMCs), such as carboxysome and phycobilisome [23].

However, unlike eukaryotes, much smaller additional

efforts have been carried out in targeting signal study

of cyanobacterial BMCs. Maybe due to this limit, the first

study of expanding cyanobacterial BMC as a nanoreactor

for production appeared in 2020 [24��]. In this study, the

[FeFe]-hydrogenase was incorporated within an empty

carboxysome built in E. coli, leading to 5.5-fold higher

hydrogen production than that of cytosolic hydrogenase.

However, reprogramming BMCs for production in cya-

nobacteria is only suitable for the products with availabil-

ity of both substrates in particular BMCs and correspond-

ing targeting tag (Figure 2a).
Current Opinion in Biotechnology 2022, 73:143–150
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Figure 2
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Simplified schematics of (a) Harnessing biosynthetic pathway in subcellular compartments, (b) Photosynthetic light reaction, (c) Inorganic carbon

transportation, and (d) CO2 fixation. Metabolite abbreviations: Ru5P, ribulose-5-phosphate; RuBP, ribulose-1,5-bisphosphate; 3PGA, 3-

phosphoglycerate; G3P, glyceraldehyde-3-phosphate; F6P, fructose-6-phosphate; E4P, erythrose-4-phosphate; X5P, xylulose-5-phosphate.
In addition to the shell-based BMCs, cyanobacteria also

exhibit highly differentiated internal membrane system

like the thylakoid membrane [25,26]. For Synechocystis,
information regarding thylakoid-specific targeting is

available already [26]. This provides possibility for trans-

location of the biosynthetic enzymes from the cytosol to

the thylakoid membrane for improved butanol biosyn-

thesis (Figure 2a).

Improving photosynthetic light reaction
Unlike sugar fed heterotrophic production in E. coli or S.
cerevisiae, cyanobacterial systems are often limited by

energy or carbon. Unique solutions aiming to enhance

photosynthesis are required for improving production

titers. During the light phase of photosynthesis in cya-

nobacteria, the thylakoid-located photosystems capture

and transfer light energy to split water, with oxygen being

released and both ATP and NADPH generated [27]

(Figure 2b). These two energetic intermediates are
Current Opinion in Biotechnology 2022, 73:143–150 
subsequently utilized to power CO2 fixation. The capa-

bility of cyanobacterial photosynthetic light reaction is

limited by multiple factors, including selective capture of

visible range of solar radiation (400–700 nm), excessively

absorbing photons by cells in the surface layer of cultures

under high-intensity light, and inefficient electron trans-

port [27]. Consequently, three engineering strategies

have been carried out to increase the photosynthetic

efficiency of cyanobacteria: 1) Broadening the absorption

spectra to maximize light energy harvesting; 2) Down-

sizing the light-gathering antenna to penetrate excess

light deeper into the cultures; and 3) Optimizing the

electron transport chain to enhance electron flux [27].

Most recently, three studies have been shown to posi-

tively impact photosynthetic activity in cyanobacteria.

In one study, the NADPH supply was engineered by

integration a NADPH-dependent reductase into down-

stream of the photosynthetic electron transport in
www.sciencedirect.com
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Synechocystis [28]. Channeling of electrons toward the

heterologous reduction sink provided highly efficient

electron chain flux and cofactor regeneration via pho-

tosynthesis. In another study, two heterologous meta-

bolic pathways were co-expressed and acted as a pho-

tosynthetic sink in Synechococcus, exhibiting improved

photosynthetic capacity and photosystem I oxidation

[29�]. In the third study, adaptive laboratory evolution

of Synechocystis strains under high illumination led to

dramatically enhancements of photosynthesis and high

light tolerance, allowing cyanobacteria to cope with

altered light conditions [30�].

All above approaches will strengthen the photosynthetic

light reaction in cyanobacteria and may improve product

yields from nearly all biosynthetic pathways, including

the butanol pathways.

Enhancing inorganic carbon transportation
The role of inorganic carbon transportation is crucial for

supplying intracellular inorganic carbon (Ci; that is, CO2

and HCO3
�) for CO2 fixation (Figure 2c). Cyanobacteria

have evolved a carbon concentrating mechanism (CCM)

to accumulate internal Ci from low atmospheric CO2 level

in their native environments [27,31–35]. The CCM pro-

cess can be divided into two stages (Figure 2c). In the first

stage, the dissolved CO2, that is HCO3
�, is pumped

through plasma membrane into the cytoplasm by bicar-

bonate transporters, while the gaseous CO2 freely diffuses

into the cytoplasm and then is hydrated to HCO3
� by

CO2 uptake systems. All these steps create an increased

HCO3
� pool in the cytoplasm. In the second stage of

CCM, the cytoplasmic HCO3
� is imported to the car-

boxysome, and then dehydrated back to CO2 by carbox-

ysomal carbonic anhydrase (CA). The carboxysomal pro-

tein shell is permeable to HCO3
� and relevant

metabolites, but prevents CO2 to escape. All these opera-

tions allow a highly concentrated CO2 for fixation in the

carboxysome.

So far, there is only one study successfully enhancing the

cyanobacterial Ci uptake capacity by identifying and

overexpressing the operational components in CCM.

Overexpressing an endogenous bicarbonate transporter

BicA in Synechocystis almost doubled growth rate and

biomass as the wild-type strain under atmospheric CO2

pressure [31]. Additionally, in a heterologous expression

study, homologs of another bicarbonate transporter SbtA

from different cyanobacterium species were expressed in

E. coli, resulting in an increased HCO3
� transportation

rate and internal Ci pool [32]. Recently, several studies

advance our knowledge of structural mechanism and

functions of BicA and SbtA from Synechocystis
[33,34,36], as well as regulation of CCM [35], which

may guide further engineering towards enhancement of

Ci uptake process. We propose that the Ci uptake

enhancement may be employed for a production
www.sciencedirect.com 
increment of almost any biosynthetic pathway in cyano-

bacteria, which has so far not been explored for any

product, including butanol.

Improving CO2 fixation
Efficient CO2 fixation ensures maximized utilization

of photosystem-generated energy and is also a key

factor determining the production of cyanobacteria.

In light-independent phase of photosynthesis,

NADPH and ATP are used to fix CO2 into central

carbon metabolites through the Calvin–Benson–Bas-

sham (CBB) cycle [27,37–39] (Figure 2d). In CBB

cycle, ribulose-1,5-bisphophate carboxylase/oxyge-

nase (RuBisCO) catalyzes the CO2-fixating reaction

inside the carboxysome, which is considered as a rate-

limiting step. Then, a series of cytoplasmic enzymes

catalyze the remaining reactions of the CBB cycle to

re-generate the substrate of RuBisCO. Therefore,

improving expression levels of the enzymes responsi-

ble for CBB cycle is a straightforward way to reinforce

CO2 assimilation in cyanobacteria, which has already

been achieved by overexpressing individually selected

enzymes of CBB cycle, especially the low-activity

RuBisCO [37]. Following this strategy, studies

towards engineering biosynthetic pathways together

with separately overexpressing cyanobacterial

RuBisCO or other CBB enzymes resulted in increased

production of isobutyraldehyde, ethanol and free fatty

acids in cyanobacteria [5,37,38]. Most recently, Rous-

sou et al. effectively improved ethanol production in

Synechocystis by combined overexpression of selected

native CBB enzymes compared to overexpression of a

single CBB enzyme [39]. Therefore, co-overexpres-

sion of multiple CBB enzymes in cyanobacteria could

be a promising direction to improve the turnover rate

of the CBB cycle and thereby further increase the

production of a chemical like butanol.

Even more intriguingly, pioneer efforts have been

made to introduce an entire cyanobacterial carboxy-

some or even proteobacterial CCM and CBB system

into E. coli that are not capable of assimilating CO2

in their native forms, achieving CO2 assimilation

ability [40,41�]. These studies provide a hypothesis

that heterogeneous assembly and generation of CCM

and CBB system in cyanobacterial host strains might

pave the way for improving photosynthetic produc-

tion, as the strength of natural regulation is proved

very high on endogenous CO2 fixation [35,42]. More-

over, to minimize the native regulation, constructing

synthetic pathways for efficient CO2 fixation in cya-

nobacteria is another promising strategy which may

facilitate chemical production. The synthetic MCG

pathway discussed above improved internal acetyl-

CoA pool and CO2 assimilation rate by roughly

twofold in Synechococcus [19]. It is worth noting that

the CBB cycle produces C3 metabolites, not C2
Current Opinion in Biotechnology 2022, 73:143–150
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acetyl-CoA (Figure 2d). Thus, the MCG pathway

augments the CBB cycle, as might be expected for

higher carbon partitioning into production in

cyanobacteria.

Stress responses
In addition to altering the metabolic pathways, it is also

possible to divert carbon flow under certain stress condi-

tions like nutrient deprivation and salt shock, and there-

fore stress conditions are routinely applied to stimulate

product biosynthesis in cyanobacteria. For instance, salt

stress was found to increase production of sucrose, hydro-

gen, ethanol, acetate and formate in cyanobacteria

[43,44]. In a butanol production study in Synechocystis,
nitrogen starvation improved the acetyl-CoA level by

twofold, thereby increasing the specific 1-butanol pro-

ductivity up to threefold, but cessation of cell growth

limited the total 1-butanol titers [13]. Additionally, a

preprint (DOI: 10.21203/rs.3.rs-155437/v1) discovered

that high salinity stress significantly enhanced isobutanol

production in Synechococcus. Thus, further optimizing

stress conditions is a practical strategy to improve butanol

production in cyanobacteria.

Products toxicity is another concern that can greatly

restrict the metabolic output of cyanobacteria. Although

some products like isobutanol and 1-butanol can be

directly exported out of the cyanobacterial cells via secre-

tion or simple diffusion, accumulation of toxic products in

the cultivation medium may inhibit cell growth

[5,6,12,21,45]. Thus, in situ removal of the products or

improvement of cellular tolerance to the target products

would benefit cyanobacterial cells to prolong the produc-

tion phase. In two previous studies, a gas stripping

method and a solvent trap by oleyl alcohol were employed

during the cultivation process to efficiently remove the

produced isobutyraldehyde from Synechococcus and isobu-

tanol from Synechocystis, respectively [5,6]. Alternatively,

improving butanol tolerance of cells is another strategy

that has been achieved in Synechocystis by adaptive labo-

ratory evolution or overexpression of the native transcrip-

tional regulators involved in butanol tolerance [45].

Although the tolerance engineering has not been com-

bined with butanol biosynthesis in engineered cyanobac-

teria so far, it is a promising strategy for further increasing

the butanol production.

Modulating growth rate
An additional issue in engineering cyanobacteria is that

common cyanobacterial model strains grow much slower

than industrially utilized microbes. To promote industrial

applications of cyanobacteria, an urgent need arises to

search for and engineer faster-growing cyanobacterial

strains. So far, four single-celled strains with substantially

faster doubling time have been identified, including

Synechococcus elongatus UTEX 2973 [46], Synechococcus
elongatus PCC 11801 [47], Synechococcus elongatus PCC
Current Opinion in Biotechnology 2022, 73:143–150 
11802 [48], and Synechococcus PCC 11901 [49]. Basic

molecular-genetic techniques and genetic background

have been developed for these strains. Thus, these strains

can replace slower-growing strains by transferring the

biosynthetic pathways into these new metabolic engi-

neering hosts, which would take considerably less time

and effort to culture and likely contribute to more effi-

cient production.

The limited growth rates of commonly studied cyano-

bacterial strains can also be resolved by genetic editing of

their cell metabolism. Since low photosynthesis and

carbon assimilation rate is one of the main reasons and

bottlenecks for slow growth, the above-discussed studies

for improving photosynthetic light reaction, inorganic

carbon transportation and CO2 fixation successively

improved the growth rates of cyanobacteria. In a different

study, genes associated with the rapid growth of S.
elongatus UTEX 2973 were identified and introduced into

Synechococcus, remarkably reducing the doubling time

from 6.8 to 2.3 hours [50]. These studies help to bridge

the gap between current engineered strains and fast-

growing strains and, in turn, might boost metabolic

production.

When cyanobacterial cultures grow to exceed an optimal

cell density, the light and carbon will become insufficient

to supply to all cells. Therefore, engineering cyanobac-

teria to approach maximal production requires two phases

to function in tandem — one for growth to accumulate

biomass and metabolites, and a second for growth arrest to

increase carbon partitioning into products. In a related

study, through inducible CRISPRi repression of essential

genes for cell growth, a two-phase cultivation was per-

formed which increased the 1-butanol titer by 70% in

Synechocystis [14]. Thus, there is excellent scope for

improving production performance by modulating the

coupled growth and production of cyanobacteria. Besides

the genetic strategies, photo-bioreactor is a standard

device for controlling cell growth and chemical produc-

tion, as well as a large-scale cultivation system for

expanded biomass and chemical production [1,23]. Nev-

ertheless, the cyanobacterial butanol-producing studies

reported to date were all performed under small-scale

laboratory conditions, such as closed flasks. By contrast,

there might be large improvement for butanol titers by

cultivating engineered cyanobacterial strains in photo-

bioreactors which provide high intensity light and con-

centrated CO2.

Conclusion and outlook
Using the above outlined strategies to design, engineer

and analyze cyanobacteria for improved production, the

well-characterized system or synthetic biology techni-

ques are required, including the metabolic model,

genome-scale model, omics studies, genetic tools and

genetic manipulation. Indeed, sets of metabolic and
www.sciencedirect.com
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genome-scale models have been developed for cyanobac-

teria [51]. These models have followed behind high-

throughput omics analysis in the cyanobacteria, including

application of nearly all omics technologies in the repre-

sentative strain Synechocystis [51]. Applying extensive

strategies needs multiple genes to be expressed, which

has enabled the development of more efficient genetic

tools and genetic manipulation in recent years, such as

CRISPR-based systems [51]. Especially with a CRISPRi

gene repression library completed [52��] and an improved

natural transformation approach developed [53] recently

in cyanobacteria, the potential applications of the

research advances for biosynthesis can be accelerated.

Ultimately, we anticipate that the most successful strate-

gies will be those that combine a variety of the advances

described throughout this review. Achievements from

applying more comprehensive approaches and technolo-

gies are promising to establish efficient cyanobacterial

systems for production.
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