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Supersymmetric quantum field theories provide a framework where certain physical observables
can be computed exactly. In those cases, one not only has control over perturbative
contributions but also over non-perturbative contributions. In this thesis the main focus are N=2
supersymmetric quantum field theories on compact manifolds with U(1)xU(1) isometry and a
Killing vector with isolated fixed points.

In Part I, focusing on pure gauge theories, it is explained how equivariant Donaldson-Witten
theory and a certain class of non-topological theories, related to the well-known result of Pestun
on the four-dimensional sphere, can be described as two instances of an underlying framework.
Employing this formalism, a general formula for the partition functions has been proposed which
is valid both for equivariant Donaldson-Witten and Pestun-like theories. On top of perturbative
contributions, the partition functions get contributions from instantons and fluxes.

In Part II, the results appearing in the papers attached to this thesis are presented. First, a
formal treatment of the perturbative part is discussed. Then, the dependence on flux of the
partition function is studied and it is shown how Donaldson-Witten and Pestun-like theories arise
from a unique five-dimensional theory, after dimensional reduction. Finally, matter coupled to
gauge fields are included in the framework above.
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1. Introduction

Quantum field theory (QFT) of gauge fields coupled to matter has had tremen-

dous success in describing three (electromagnetic, weak, strong) of the four

fundamental interactions and incorporating them in the Standard Model of

particle physics. The success of QFT has a natural explanation as it is a

framework combining special relativity and quantum mechanics. The study

of its supersymmetric version (SQFT) started in the early seventies [1–4] and

soon after a classification of super Yang-Mills (SYM) theories in different

dimensions appeared [5]. These theories have been later extensively consid-

ered because of string theory considerations and as options for models beyond

the standard model. The extra structure given by supersymmetry enables to

(i) constrain protected physical observables under deformations of the SQFT

and, in some cases, (ii) large cancellations due to supersymmetry occur and

quantities can be exactly determined.

To introduce these two concepts, we will review one of the simplest, and

earliest, example. This is the Witten index [6], a topological quantity counting

the difference between bosonic and fermionic zero energy states in a super-

symmetric theory and which can be used to establish whether the ground state

of a theory preserves supersymmetry. The motivation is that the ground state

of a theory is supersymmetric if and only if its energy vanishes exactly, thus a

non-zero Witten index determines that the ground state is supersymmetric. Let

us then take a supersymmetric theory in a d-dimensional Euclidean finite vol-

ume V with periodic boundary conditions both for bosons and fermions and a

Hilbert space H . The periodic boundary conditions, forced by supersymme-

try, ensure that the finite volume is effectively a torus T d−1 × S1
β , where β is

the circumference of the Euclidean time circle.

Let us assume, for simplicity, that the theory possesses a single Hermitian

supercharge Q, whose superalgebra, restricted to the subset of states with zero

momentum1 P = 0, is given by:

Q2 = H, (1.1)

where H is the Hamiltonian of the theory and we have chosen properly a pos-

sible additive constant in H. If we define |Ω〉 the ground state of the theory,

we find:

〈Ω|H |Ω〉= 〈Ω|Q2 |Ω〉= ||Q |Ω〉 ||2. (1.2)

1Without loss of generality, we can consider massive and massless particles in the rest frame

where, respectively, Pμ = (E,0, ...,0) and Pμ = (E,0, ...,0,E). Hence zero energy states need

to have P = 0.
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Thus the ground state is supersymmetric, Q |Ω〉 = 0, if and only if its energy

is zero.

The Witten index is defined as:

IWitten = Tr(−1)Fe−βH = Tr e2πiJze−βH . (1.3)

The operator (−1)F acts on bosonic and fermionic states as e2πiJz |b〉=+ |b〉,
e2πiJz | f 〉 = −| f 〉. For a non-supersymmetric theory (1.3) could get contribu-

tions from an infinite number of states. However, the claim is that the Witten

index only counts the difference between the number of bosonic and fermionic

zero energy states and thus it can be used to determine whether a ground state

is supersymmetric. The action of Q on bosonic and fermionic states is:

Q |b〉=
√

E | f 〉 , Q | f 〉=
√

E |b〉 . (1.4)

Hence, as [Q,H] = 0, all states come in pairs with the same energy, except

for those with vanishing energy. The latter states then form a small multiplet

with half (one) the dimension of the multiplets above the ground state2. Thus,

large multiplets give vanishing contribution to the Witten index (1.3) which

then only counts:

IWitten = Tr(−1)Fe−βH = nB −nF , (1.5)

where nB,nF are the number of bosonic and fermionic zero energy states, re-

spectively. This example shows how large cancellations occur in supersym-

metric theories making the computation of some observables much easier (ii).
Moreover, a non-zero Witten index means that supersymmetry is unbroken as

there are zero energy states. Instead, using the Witten index to prove that the

ground state breaks supersymmetry is harder, as a zero Witten index might be

due to either nB = nF �= 0 or nB = nF = 0.

If one is able to compute the Witten index in a certain region in the pa-

rameter space of the theory, a natural question is to ask how it changes under

deformations. It turns out that the pairing (1.4) also constrains the behaviour

of the Witten index under deformations of the theory. A large multiplet can

generically change its energy under a deformation and even acquire zero en-

ergy for some particular values of the parameters. If this happens, the large

multiplet splits into two small multiplets of opposite eigenvalue under (−1)F ,

therefore not contributing to the Witten index. Vice versa, a bosonic small

multiplet can get non-zero energy under a deformation only together with a

fermionic small multiplet, so that they can form a non-zero energy large mul-

tiplet. An example of these deformations can be obtained taking the large

volume limit V → ∞. If the energy of a state is zero, its large V limit is again

zero3. Hence, under certain deformations, the Witten index is left unchanged.

2Small supersymmetric multiplets are usually named BPS multiplets, after Bogomol’nyi [7],

Prasad and Sommerfield [8].
3Note however that the converse is not true, so supersymmetry can be broken at finite V and

restored in the infinite volume limit.
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We see then how observables can be protected under deformations because of

the extra constraints given by supersymmetry (i).
The quantity (1.3) we are considering is strictly related to the mathematical

concept of index of an operator. To show this, it is enough to split the Hilbert

space into its bosonic and fermionic components H = HB ⊕HF . With re-

spect to this decomposition the supercharge Q acts as:

Q =

(
0 M†

M 0

)
, (1.6)

where M† is the adjoint of M as Q is Hermitian. Zero energy states in H
have zero eigenvalue under H |ψ〉 = Q2 |ψ〉 and thus also under Q. There-

fore, bosonic small multiplets in HB satisfy M |b〉 = 0 while fermionic ones

M† | f 〉= 0. Hence, the Witten index is given by:

IWitten = ker M−ker M†, (1.7)

which is the definition of the index of an operator [9]. We will encounter again

the interplay between supersymmetric theories and indices of (transversally)

elliptic operators later in the thesis.

The properties (i)-(ii) discussed above for the Witten index are a common

feature of supersymmetric theories. Supersymmetric localization relies heav-

ily on these features and it has been employed, over the years, to compute

exactly protected observables in supersymmetric theories of increasing com-

plexity. The main idea is to deform the theory, without affecting the value of

certain protected observables, to a region where exact computations are sim-

pler. For example, in some cases, observables are protected under the RG flow

connecting a strongly coupled region to a weakly coupled one. Because of

this independence, it is possible to employ weakly coupled computations to

describe observables in a strongly coupled region. Moreover, supersymmetry

makes these computations much more tractable, giving a certain control also

over non perturbative contributions. For reviews of supersymmetric localiza-

tion, see [10, 11].

In Part I of this thesis we introduce the localization technique applied to

N = 2 super Yang-Mills theories, reviewing some of the major advances in

the field. The earliest localization computation has been employed by Witten

in relation to Morse theory [12] and for the topological sigma model in two

dimensions [13]. As we want to focus on gauge theories, the first example

we consider in chapter 2 is that of topologically twisted N = 2 SYM [14].

Later results include the seminal paper by Nekrasov [15], which we introduce

in chapter 3, computing the N = 2 SYM partition function as an integral

over the moduli space of instantons in the Ω-background C2
ε1,ε2

. Nekrasov’s

computation is performed in the UV weakly coupled region and it is shown to

match, in a certain limit, the Seiberg-Witten prepotential [16] computed in the

IR strongly coupled region.

9



Relying on [15], Pestun computed the full partition function for N = 2

SYM on S4 [17]. To introduce this result we employ, in chapter 4, a modern

approach proposed in [18, 19] which includes both Pestun’s theory and topo-

logically twisted SYM as two particular instances of a unique framework, also

applicable to a more general class of four-dimensional compact manifolds.

The goal of the first part is to introduce some background material needed

to understand the works presented in Part II. First, in chapter 5, following

Paper I, we provide a formal treatment of the perturbative contribution of the

partition functions considered in the framework of [18, 19]. Then, in chapter 6,

we discuss how fluxes enter these partition functions, focusing on the case of

CP
2 studied in Paper II. Finally, chapter 7 is based on Paper III, where it is

shown how to include N = 2 hypermultiplets coupled to gauge theories.
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Part I:
Background





2. Topological Twisting

The work of Witten [14] for the topological subsector of twisted N = 2 SYM

in d = 4 has been a first step towards computing exact observables in SQFTs,

including non-perturbative contributions. Supersymmetry is present through a

scalar supercharge, acting like a BRST operator. The idea is to deform the the-

ory to a weakly coupled region employing the independence of supersymmet-

ric, or BRST closed, observables under a rescaling of the Yang-Mills coupling

constant g2
Y M (i). In this region, only small perturbations around classical so-

lutions contribute to the path integral, which then simplifies to a sum over

instanton sectors, reducing the complexity of computing observables (ii). Re-

markably, the work of Witten gives a physical interpretation to Donaldson’s

study of smooth four manifolds [20] employing the moduli space of anti-self-

dual field strengths. Thus, topologically twisted N = 2 will often be denoted

Donaldson-Witten (DW) theory.

2.1 Action

Following [14], we take d = 4 Euclidean space with SU(2)L ×Z2
SU(2)R rota-

tion group and an N = 2 vector multiplet with gauge group G, whose on-shell

field content is that of a gauge boson Aμ , scalars φ ,ϕ and gauginos λiα , λ̄ i
α̇

1.

Both the scalars and the gauginos transform in the adjoint of the gauge group.

The theory also has internal symmetries SU(2)I ×U(1)U under which λiα and

λ̄ i
α̇ transform in the fundamental representation of SU(2)I and with ±1 charge

for the U(1)U rotations.

On top of the bosonic symmetries we also want to define a fermionic sym-

metry. In flat space it is possible to write an N = 2 Lagrangian invariant under

supersymmetry transformations generated by δ = Qiεi, where εi is a constant

Killing spinor2 solving:

∂μεi = 0. (2.1)

As we will be interested in generic four-manifolds, we need to replace the

derivatives with covariant ones. However, covariantly constant spinors do

1Here we are employing the standard notation of denoting α, α̇ indices of SU(2)L and SU(2)R
respectively.
2The Killing spinor will be, in general, a linear combination of two spinors of opposite chirality,

thus it transforms under both SU(2)L and SU(2)R. However we will omit spinor indices.
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not exist on generic four manifolds and writing down supersymmetric La-

grangians is often quite complicated3. To tackle this issue in general one has

to couple SYM to a rigid supergravity background, a technique pioneered in

[22].

The trick employed by Witten to circumvent this problem is to introduce a

twisting of the isometry group of flat space, obtained taking the diagonal sum

SU(2)′R ⊂ SU(2)R×SU(2)I . The gauginos λiα , λ̄ i
α̇ transform, under SU(2)L×

SU(2)′R ×U(1)U , as a one-form Ψμ , a self-dual two-form χμν and a scalar η :

(1/2,1/2)1 ⊕ (0,1)−1 ⊕ (0,0)−1, (2.2)

where the exponents label the U(1)U charges. The same splitting occurs for

the Killing spinor εi. If we now keep only the constant anti-commuting scalar

component, which we denote ε , we have that ε solves:

∂με = 0, (2.3)

on every four manifold4. We can use this result to define a scalar fermionic

generator Q, such that Q2 = 0, reminiscent of a BRST-like operator, defining

physical states as equivalence classes of Q-closed states modulo Q-exact ones.

Supersymmetry transformations with constant parameter ε are:

δAμ = iεΨμ , δΨμ =−εDμφ , δφ = 0,

δϕ = 2iεη , δη =
1

2
ε[φ ,ϕ],

δ χμν = ε(Fμν +
1

2
εμνρσ Fρσ ),

(2.4)

defining the field strength as Fμν = ∂μAν −∂νAμ +[Aμ ,Aν ]. A supersymmet-

ric Lagrangian can be written as follows:

L =+Tr

[
1

4
FμνFμν +

1

2
φDμDμϕ − iηDμΨμ + iDμΨν χμν+

− i
8

φ [χμν ,χμν ]− i
2

λ [Ψμ ,Ψμ ]− i
2

φ [η ,η ]− 1

8
[φ ,ϕ]2

]
.

(2.5)

It is possible to check that the Lagrangian is supersymmetric under (2.4) on

any orientable Riemannian four-manifold, not only flat space. In non-flat

backgrounds the Riemann tensor can appear as the commutator of covariant

derivatives in the variation of δL . However such commutator appears only

acting on scalars ∼ [Dμ ,Dν ]φ , thus not creating any problem.

3For an early attempt on spheres of diverse dimensions, see [21].
4From a rigid supergravity point of view, the twisting is obtained turning on a background field

in the SU(2)I R-symmetry, chosen such that it cancels the contribution of the spin connection

in the covariant derivative.
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2.2 Stress-energy tensor
We now show that the stress energy tensor Tμν can be written as a BRST

anti-commutator, a key ingredient in defining Witten-type topological field

theories (TFTs). The definition of Tμν follows from the variation of the action

S =
∫

M
√

gL under an infinitesimal metric transformation5:

δS =
1

2

∫
M

√
gδgμνTμν . (2.6)

The stress-energy tensor turns out to be a complicated function of the vector

multiplet fields. As expected, on the equations of motion, one finds that Tμν is

conserved:

DμT μν = 0. (2.7)

Moreover the trace of the stress-energy tensor is given by:

gμνTμν = DμRμ , (2.8)

where:

Rμ = Tr[ϕDμφ −2iηΨμ ]. (2.9)

Because of this, under a generic conformal transformation δgμν = w(x)gμν ,

the variation of the action (2.6) does not vanish:

δS =
1

2

∫
M

√
gw(x)gμνTμν =

1

2

∫
M

√
gw(x)DμRμ �= 0. (2.10)

However, for a constant function w, one finds δS = 0, and the action is invari-

ant under a global rescaling of the metric. Similarly, taking the manifold to be

flat space and transforming the coordinates as δxμ = wxμ , one finds, because

of (2.8), that the corresponding current is conserved:

DμSμ = 0, Sμ = T μνxν −Rμ . (2.11)

The insight of Witten was to realize that the stress-energy tensor, even if it

does not vanish as in Schwarz-type TQFTs6, can be written as a BRST anti-

commutator:

Tμν = {Q,λμν}, (2.12)

where:

λμν =
1

2
Tr(Fμρ χ ρ

ν +Fνρ χ ρ
μ − 1

2
gμνFρσ χρσ )+

+
1

2
Tr(ΨμDνϕ +ψνDμϕ −gμνψρDρϕ)+

+
1

4
gμνTr(η [φ ,ϕ]).

(2.13)

5When computing variations under a change in the metric one has to be careful that the self-dual

condition on χμν is preserved
6Chern-Simons theory is an example of Schwarz-type TQFT where the metric does not appear

anywhere in the theory [23].
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Equation (2.12) will prove crucial in showing that the partition function is a

topological invariant.

Similar considerations hold also for the Lagrangian (2.5):

{Q,V}= L ′, (2.14)

where:

L ′ = L +
1

4
TrFμν F̃μν , F̃μν =

1

2
εμνρσ Fρσ (2.15)

and:

V =
1

4
TrFμν χμν +

1

2
ΨμDμϕ − 1

4
Tr(η [φ ,ϕ]). (2.16)

In deriving (2.14) one needs to use the equations of motion for χμν . Moreover,

the term added in L is a topological invariant labeling instanton sectors by

their charge k ∈ Z. We denote S′ the action computed using L ′. As the

term added is topological, the considerations above regarding infinitesimal

transformations are left untouched.

2.3 Partition function

This section is aimed at showing that the partition function is a topological in-

variant due to the stress-energy tensor being a BRST anti-commutator. More-

over, the partition function computes a certain class of Donaldson invariants

of smooth orientable four manifolds [20].

The expectation value of a generic operator O is given by the following

path integral:

Z(O) =
∫
(DX)e

− 1

g2
Y M

S′[X ] ·O. (2.17)

Here, the action is determined by the Lagrangian (2.15) and the integration

measure (DX) is defined over the fields of the vector multiplet (A,φ ,ϕ,η ,Ψ,χ).
The integral (2.17) does not depend on the supersymmetry parameter ε as

the integration measure is supersymmetric. Thus:

Z(O) = Zε(O) =
∫
(DX)exp(εQ) · e−

1

g2
Y M

S′[X ] ·O. (2.18)

Moreover, expanding exp(εQ) and using that the Lagrangian is supersymmet-

ric, we find:

Zε(O) =
∫
(DX)e

− 1

g2
Y M

S′[X ]
(O + ε{Q,O}). (2.19)

Therefore we conclude:∫
(DX)e

− 1

g2
Y M

S′[X ] · {Q,O}= 0. (2.20)
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The statement that the expectation value of a BRST anti-commutator van-

ishes can be used to show that the partition function is a topological invariant.

Under a change in the metric, the variation of the partition function can be

implemented by inserting an operator (2.6):

− 1

g2
Y M

δS =− 1

2g2
Y M

∫
M

√
gδgμνTμν =− 1

2g2
Y M

{
Q,
∫

M

√
gδgμνλμν

}
.

(2.21)

From this we conclude7:

δZ =
∫
(DX)e

− 1

g2
Y M

S′[X ] ·
(
− 1

g2
Y M

δS′
)

= 0. (2.22)

Similarly, varying the partition function with respect to the Yang-Mills cou-

pling is obtained inserting the BRST anti-commutator {Q,V}. Hence, the

partition function is also independent of g2
Y M , as long as g2

Y M �= 0, similarly to

what we have discussed above for the Witten index.

To compute the partition function we will use its independence of the Yang-

Mills coupling and take the limit g2
Y M → 0, where the theory is weakly coupled

and the path integral is dominated by the classical minima of the action. These

are classified considering the action for the field strength Fμν :

1

4
Tr
(
FμνFμν +Fμν F̃μν

)
=

1

8
Tr
(
Fμν + F̃μν)(Fμν + F̃μν) , (2.23)

which is positive semi-definite and vanishes if and only if:

Fμν =−F̃μν . (2.24)

While strictly speaking these are anti-self-dual anti-instantons, the author of

[14] calls them instantons as “it would be tiresome to call them anti-instantons”

and we will follow this convention. Substituting for (2.24) and setting φ ,ϕ,η ,

ψ,χ to zero in (2.4), one finds that these configurations are supersymmetric.

As the Lagrangian L ′ is Q-exact (2.14) and positive definite, it is consistent

that configurations minimizing the action are supersymmetric.

On manifolds where non-trivial solutions to (2.24) exist, the instantons can

have a moduli spaces of solutions M of dimensions different than zero. We

postpone till later the treatment of these cases where, due to the existence of

fermionic zero modes, one has to modify the observables under considera-

tion. Thus, we assume that gauge bundle over the manifold is such that the

dimension of the instanton moduli space vanishes and that the instantons are

discrete and isolated solutions. Hence, for an arbitrary instanton sector and

very small g2
Y M , we can expand the Lagrangian (2.15) at quadratic order in the

fields Φ = (Aμ ,φ ,ϕ) and Ω = (η ,Ψμ ,χμν), and find:

L ′
(2) =

∫
M

√
g(ΦΔBΦ+ iΩDFΩ). (2.25)

7Here we assume that the measure (DX) is invariant under a transformation of the metric.
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Here, ΔB and DF are, respectively, second and first order operators. A property

of ΔB, is that, replacing the highest order derivatives in ΔB with vector fields

ξ , we can find a polynomial σξ (ΔB), the principal symbol of ΔB, such that

σξ (ΔB) is an isomorphism for non-zero ξ . This, by definition, shows that ΔB
is an elliptic operator.

The partition function, at an arbitrary instanton sector, is then given by

bosonic and fermionic Gaussian integrals:

Zk =
∫

M
(DX)e

− 1

g2
Y M

L ′
(2)

=
Pf(DF)√
det(ΔB)

. (2.26)

We have been able to reduce to a Gaussian integral a complicated integral

over the infinite-dimensional configuration space of the fields in the vector

multiplet. In doing so, we have employed the independence of the partition

function under a change in g2
Y M, due to the Q-exactness of the Lagrangian L ′.

In determining the partition function Zk we are helped again by supersym-

metry. We have shown previously that the supersymmetry transformations

vanish on Fμν satisfying (2.24), with all other fields in the (twisted) vector

multiplet vanishing. Therefore for every eigenvalue λ of DFΩ = λΩ, there

exists an eigenvalue of a bosonic field ΔBΦ = λ 2Φ. This observation hugely

simplifies the ratio of determinants and we find:

Zk =±∏
i

λi√
|λi|2

. (2.27)

The overall uncertainty in the sign is due to a choice of orientation on the

manifold.

Ignoring the overall minus sign, we can compute the full partition function

of the topological subsector of N = 2 twisted SYM as a sum over instanton

sectors:

Z = ∑
k

Zk = ∑
k
(−1)nk . (2.28)

As we have shown above the partition function is a topological invariant and

it can be shown to match a particular class of Donaldson invariants, defined

for gauge bundles over M with vanishing dimension of the moduli space of

instantons.

2.4 Non vanishing moduli space
So far we have considered zero-dimensional instanton moduli spaces. Let

us now assume that the space is not trivial: d(M ) �= 0. Thus, around each

anti-self-dual connection there exist d(M ) flat directions such that, if A is an

instanton gauge field, there will exist deformations A+ δA which will again

solve the anti-self-dual condition (2.24):

DμδAν −DνδAμ + εμνρσ DρδAσ = 0. (2.29)
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In order to obtain physically inequivalent configurations, we impose that δA
is not obtained only through a gauge transformation. Hence, we demand the

following gauge condition:

DμδAμ = 0. (2.30)

Because of supersymmetry (2.4), we expect to have also fermionic zero-modes.

Indeed, solving for χ and η , one finds:

DμΨν −DνΨμ + εμνρσ DρΨσ = 0,

DμΨμ = 0.
(2.31)

But these are exactly the equations above which we assumed to have d(M )
solutions. Finally, the index theorem [9] says that the number of Ψ zero modes

minus the zero modes of (η ,χ) is exactly d(M ). Therefore there cannot be

any zero mode for (η ,χ).
If we were to compute a partition function as above, we would find that

it vanishes due to the presence of fermionic zero modes. The reason is that,

while the Lagrangian (2.5) is U(1)U symmetric, this is not the case for the

integration measure (DX), which transforms with −d(M ) weight. The lack

of invariance happens as only zero modes of Ψ are present and these have +1

charge under the U(1)U . However, there is a straightforward method to absorb

the zero modes and define a meaningful observable:

Z(O) =
∫
(DX)e

− L ′
g2
Y M ·O, (2.32)

where the operator O is chosen so that it has a U(1)U charge equal to d(M ).
One can check that (2.32) is a non-trivial topological invariant if:

{Q,O}= 0 and O �= {Q,ρ},
δgO = {Q,ρ ′}, (2.33)

where the condition on the second line is the variation of O under a change in

metric. Operators satisfying these conditions are gauge invariant polynomials

in the scalar field φ , as Trφ 2, Trφ 4 and higher even powers in φ . The amount

of independent operators depend on the gauge group under consideration.

As an example, we consider SU(2) gauge group and a manifold M such that

d(M ) = 4k. The rank of SU(2) is one and thus the only independent operator

inserted at a point p ∈ M is:

W |p = 1

2
Trφ 2|p, (2.34)

whose charge under U(1)U is four. Therefore, we can define topological in-

variant correlators as follows:

Z(k) =
∫
(DX)e

− L ′
g2
Y M ·

k

∏
i=1

W |pi . (2.35)

19



Following a similar logic one can define topological invariants for any value

of d(M ).
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3. Nekrasov Partition Function

The derivation of Seiberg and Witten (SW) [16] of the low-energy exact pre-

potential of N = 2 SU(2) SYM relied on the Kähler structure of the moduli

space of vacua and on a version of Montonen-Olive [24] duality for N = 2

theories. In the following years there were many attempts to derive the SW

prepotential in the UV weakly coupled region of an SU(N) gauge theory. In

this region the prepotential can be expanded as a sum of perturbative and non-

perturbative contributions:

F =
N
πi

N−1

∑
m=1

am +
i

4π

N−1

∑
1<i< j

(ai −a j)
2log

(ai −a j)
2

Λ2
+

∞

∑
k=1

Λ2Nk

2kπi
F k(a). (3.1)

Here a = (a1, ...,aN−1) is the vacuum expectation value of the scalar in the

vector multiplet and Λ is a renormalization invariant dimensionful parameter.

Also, the first two terms account for classical and one-loop contributions while

the last term is a sum over non-trivial instantonic sectors.

As discussed in the previous chapter for the topological subsector of N = 2

SYM, instantons, in general, have a moduli space of solutions. The ADHM

(Atiyah, Drinfeld, Hitchin and Manin) [25] construction described the mod-

uli space of instantons MN,k as a quotient of a hyperkähler manifold. One can

then use supersymmetry to reduce the path integral over the infinite-dimensional

field configurations space to an integral over the moduli space of instantons,

similarly as for topologically twisted N = 2 SYM. Early attempts at com-

puting (3.1) were semi-classical computations around a fixed instanton back-

ground. In the simplest cases they could successfully match some coefficients

F k(a) in (3.1). However, these techniques become less efficient for high in-

stanton number or high rank of the gauge group, when the instanton moduli

space becomes extremely complicated. A comprehensive review for this ap-

proach can be found in [26].

The crucial insight by Nekrasov [15, 27] was to modify Witten’s localiza-

tion computation [14] using also the the one-form supercharge Gμ , appearing

after the twisting of the isometry group. The deformation is such that it re-

duces the integration domain in the path integral to the fixed points of MN,k
under the U(1)2 Cartan of the SO(4) isometry group1. This hugely simplifies

the computation and the partition function, in a particular limit, shows exact

agreement with the low-energy prepotential F (3.1).

1The fixed points are in general not isolated and one has to consider a non-commutative defor-

mation to find a discrete set of fixed points.
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A complete review of the derivation of Nekrasov partition function goes

beyond the scope of the present work. Thus, in this chapter, we only review

some aspects which are more important for the rest of thesis. The Nekrasov

partition functions will then be used as building block for partition functions of

N = 2 SYM theories on compact manifolds [18, 19] which will be considered

in the next chapter.

3.1 ADHM construction
In this section, rather than following the original work [25], we will take the

opposite approach [28] and show how ADHM equations arise from solutions

of the anti-self-dual condition (2.24). The first step will consist in formulat-

ing F =−�F , a second order partial differential equation, into the equivalent

problem of solving a first-order Dirac equation, after identifying the spinor

bundle with that of holomorphic differential forms. Second, we will find so-

lutions of the Dirac equation which will be used, eventually, to describe the

moduli space of instantons as algebraic equations describing an hyperkähler

manifold.

Let us start considering the SU(N) YM action on R4 ∼= C2, with metric

ds2 = dz1dz̄1 +dz2dz̄2:

LSY M =
1

4g2
Y M

∫
TrF ∧�F +

iθ
8π

∫
TrF ∧F

=
1

8g2
Y M

∫
Tr(F +�F)2 + i

τ
4π

∫
TrF ∧F,

(3.2)

where we have defined the complexified gauge coupling

τ ≡ 4πi
g2

Y M
+

θ
2π

. (3.3)

The first term is minimized by anti-self-dual2 field strengths F =−�F while

the second one is a topological invariant proportional to the instanton charge

k ∈ Z. Similar considerations hold for the self-dual two-form F =+�F :

LSY M =
1

8g2
Y M

∫
Tr(F −�F)2 + i

τ̄
4π

∫
TrF ∧F. (3.4)

To solve the anti-self-dual condition, it is useful to introduce the gauge co-

variant Dolbeault operator, the analog of the de Rahm cohomology for com-

plex manifolds:

∂̄A : Ω0,i → Ω0,i+1,

∂̄ †
A : Ω0,i → Ω0,i−1.

(3.5)

2Following the conventions of the previous chapter we label instantons by anti-self-dual field

strengths.
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where the adjoint operator ∂̄ † is defined, for arbitrary α,β ∈ Ω j,i, as:

(α, ∂̄ β ) = (∂̄ †α,β ), (3.6)

and (· , ·) is the inner product.

We now look at solutions of the anti-self-dual condition at arbitrary k:

F+ ≡ F +�F = 0. (3.7)

This condition is worth three real equations and, written in terms of complex

geometry, it can be expressed as:

F+ = 0 ⇐⇒
{

F0,2 = 0

F1,1
ω = 0

(3.8)

The first condition on the right is equivalent to solving the cohomology prob-

lem ∂̄ 2
A = 0. Therefore, we look at the space of anti-holomorphic differential

forms. This can be identified, after choosing a spin structure, with a spinor

bundle on C2 of the same dimension:

s+ ∼= Ω0,0 ⊕Ω0,2, s− ∼= Ω0,1, (3.9)

where s± are spinor representations of the SO(4) Lorentz group of opposite

chirality. Thus, we need to solve:

∂̄Aψ̃ = 0 up to exact forms, ψ̃ ∼ ψ̃ + ∂̄Aχ (3.10)

where ψ̃ ∈ L2(Ω0,i⊗E), χ ∈ L2(Ω0,i−1⊗E) and E ∼=CN is a rank N complex

vector bundle on R4 representing the fundamental representation of the gauge

group.

The latter condition in (3.8), F1,1
ω = 0, requires the component of the curva-

ture along the Kähler form:

ω =− i
2
(dz1 ∧dz̄1 +dz2 ∧dz̄2), (3.11)

to vanish. While F0,2 is invariant under complexified gauge transformation,

this is not the case for F1,1
ω . Thus, instead of imposing F0,2 = F1,1

ω = 0 and

dividing by real gauge transformation, we can equivalently require F0,2 = 0

quotienting by complex gauge transformations. Thus, we set a gauge condition

by imposing:

∂̄ †
Aψ̃ = 0. (3.12)

Therefore, combining (3.10) and (3.12), we need to find solutions of:

(∂̄A ⊕ ∂̄ †
A)ψ̃ = 0, (3.13)

but this is just the Dirac equation:

/DA ≡ (∂̄A ⊕ ∂̄ †
A) : s± → s∓. (3.14)
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Thus, as stated earlier, we have shown how solving the anti-self-dual con-

dition, a second-order partial differential equation, has reduced to solving a

first-order Dirac equation.

The second part of this section is devoted to describing solutions of the

Dirac equation (3.13). We start looking at s+, and thus at η ∈ L2(Ω0,0 ⊗E)
and χ ∈ L2(Ω0,2 ⊗E). Using the definition of the Dolbeault operators (3.5),

we find:

(∂̄A ⊕ ∂̄ ∗
A)(η ⊕χ) = ∂̄Aη + ∂̄ ∗

A χ = 0, (3.15)

which can be rewritten, showing explicitly the components, as:{
D1̄η +D2χ = 0

D2̄η −D1χ = 0.
(3.16)

Acting on the first equation with D1 and on the second with D2, and using that

[D1,D2] commute, one finds:

(D1D1̄ +D2D2̄)η = 0. (3.17)

With a further rewriting, we find that η needs to be covariantly harmonic:

1

2
({D1,D1̄}+{D2,D2̄})η = 0. (3.18)

However, on flat space the only normalizable solution is the vanishing solu-

tion. Then, also χ = 0 and in general for positive chirality spinors there is no

solution in an instanton background.

Employing the same argument presented below (2.31), instead of solving

explicitly the Dirac equation (3.13) also for negative chirality spinors s−, we

can apply the index theorem [9] to /DA:

ind /DA = dim ker− /DA −dim ker+ /DA = k, (3.19)

where dim ker± stands for the kernel on L2(s±⊗E)-normalizable forms. Thus,

we have a k-dimensional space of solutions of negative chirality, which we la-

bel by K. The space is spanned by forms ψ ∈ (Ω0,1 ⊗E) solving:

∂̄Aψ = 0, ∂̄ ∗
Aψ = 0, (3.20)

where we recall that the first condition is equivalent to the cohomology prob-

lem ∂̄ 2
A = 0 while the second is a choice of gauge.

Finally, we need to properly describe solutions of (3.20). For each ψ ∈K we

define a four-vector multiplying ψ by the coordinate functions (z1,z2, z̄1, z̄2).
Thus, we will obtain elements (ziΨ) ∈ (Ω0,1 ⊗E) not necessarily solving the

Dirac equation. The space of all L2-normalizable (0,1)-forms, however, can

be decomposed into the kernel of the Dirac operator, K, and its orthogonal
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component with respect to the L2-norm. The projector acts as Π(zi,ψ) ∈ K
such that /DAΠ(zi,ψ) = 03. We can then define (B1,B2,B

†
2,B

†
2) : K → K:

Biψ ≡ Π(zi,ψ),

B†
i ψ ≡ Π(z̄i,ψ).

(3.21)

An important point is that multiplying solutions of Dirac equation (3.20) by

coordinate functions (ziΨ) is an operation that commutes. However, this is

not the case anymore, when projecting onto the space of solution of Dirac

equation to define the matrices B1,B2,B
†
1,B

†
2.

We also need to look at the asymptotics of the solution at large r2 = |z1|2 +
|z2|2, where the gauge field approaches the pure gauge A→ g−1dg and thus the

Dirac operator becomes the flat Dirac operator. Writing again in components,

we need to solve (3.13):

D f lat
1̄

ψ2̄ −D f lat
2̄

ψ1̄ = 0

D f lat
1 ψ1̄ +D f lat

2 ψ2̄ = 0.
(3.22)

To solve the second equation we consider a solution of the form ψᾱ = D f lat
ᾱ χ .

Inserting this solution in the first equation we find that χ needs to solve the

Laplace equation:

ΔAχ = 0, (3.23)

and thus χ needs to be a harmonic function4. Then, for r → ∞:

ψᾱ ∼ Dᾱ
1

r2
I† − εᾱβ̄ gγβ̄ Dγ

(
1

r2
J
)
, (3.24)

where I,J are, respectively, N × k and k×N matrices:

I : E → K,

J : K → E,
(3.25)

and E ∼=CN on flat space.

The construction of the solution leads to an algebraic structure on the vector

space K, given by (3.21) and (3.25). It was shown in [29] that:

[B1,B2]+ IJ = 0

[B1,B
†
1]+ [B2,B

†
2]+ II† − JJ† = 0,

(3.26)

up to a U(k) change of basis in the vector space K. These are the well-known

ADHM equations describing a finite-dimensional hyperkähler manifold being

3The explicit projector, introducing the Laplacian operator /DA /D†
A ≡ ΔA, is written as:Π = 1−

/D†
A

1
ΔA

/DA.
4We stress that solving ΔAχ = 0 only makes sense locally at infinity as we have shown above

that, globally, χ needs to be zero.
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the moduli space of anti-self-dual instantons. This can be written using a

quiver diagram:

K EB1B2

J

I

Above, we have solved the Dirac equations for spinors in the fundamental

representations of the gauge group, however, we will mostly be interested in

adjoint-valued spinors. In this case the dimension of the moduli space of in-

stantons matches the degrees of freedom of the ADHM construction. These

are four k× k matrices (B1,B2,B
†
1,B

†
2) and two complex N × k matrices (I,J).

Moreover, one has to impose three equations (3.26) and divide by U(k) gauge

transformations. Finally one finds that the dimension of the moduli space of

instantons is 4Nk.

The precise definition of the ADHM data goes as follows: take two com-

plex vector spaces E,K of dimension respectively k and N and consider the

following space:

X= (K∗ ⊗K)⊕ (E∗ ⊗K)⊕ (K∗ ⊗E). (3.27)

An element of X is specified by a quadruple:

B1,2 ∈ End(K), I ∈ Hom(E,K), J ∈ Hom(K,E). (3.28)

We also need to define an anti-linear involution:

Y : (B1,B2, I,J)→ (B†
2,−B†

1,J
†,−I†). (3.29)

Hence, X is both hyperkähler and flat.

The action of the groups U(k) and SU(N) on X is naturally deduced from

their action on K,E and preserves the hyperkähler structure. We define the

three Hamiltonians (i.e. moment maps) generating the group action on X:

μR = [B1,B
†
1]+ [B2,B

†
2]+ II† − J†J,

μC = [B1,B2]+ IJ.
(3.30)
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Then the ADHM equations (3.26) can be written as:

μR = 0, μC = 0. (3.31)

Defining the inclusion ι : R ∼= u(1)∗ → u(k)∗, the hyperkähler quotient of X

is:

X///U(k)≡ μ−1ι(ζ i)/U(k). (3.32)

Finally, imposing the ADHM equations, one finds the moduli space of instan-

tons:

MN,k ≡ μ−1ι(0)/U(k), (3.33)

whose dimension, as discussed above, is given by:

dim MN,k = 4kN. (3.34)

The original construction [25] consists in showing, given a set of solutions

of (3.31), how to construct an anti-self-dual two-form. Here, we took the

opposite route of motivating the ADHM equation starting with an instanton

configuration.

3.2 Omega-background
Along the lines of Witten’s [14] localization computation for the topological

subsector of twisted N = 2 SYM, discussed in the previous section, one can

show how the infinite-dimensional path integral over the field configurations

can be reduced to an integral over the finite-dimensional moduli space of in-

stantons MN,k. The trick employed by Nekrasov [15] is to introduce the action

of the flat space SO(4) isometries on the instanton moduli space, through the

Ω-background. This further localizes the path integral to a sum of contribu-

tions over the fixed point of MN,k under the T 2 ⊂ SO(4) rotations.

The Ω-background can be understood as the reduction to four dimensions

of the following five-dimensional metric:

ds2 = (dxμ +Aμdx5)
2 +dx2

5. (3.35)

The connection Aμ is independent of the four-dimensional space and gives

rise to an anti-self-dual field strength Fμν . The metric (3.35) describes a

C2
ε1,ε2

bundle over S1 with the following identification:

(z1,z2,0)∼ (eiβε1z1,eiβε2z2,β ), (3.36)

where β is the circumference of the circle in the fifth dimension. The idea is

then to study the reduction of a five-dimensional N = 1 vector multiplet to

an N = 2 vector multiplet on C2
ε1,ε2

. We set the integral along x5 of the gauge

field at infinity to be:

diag(eiβa1 , ...,eiβaN−1) ∈U(1)N−1 (3.37)
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Effectively, what we are doing in the four-dimensional set-up is to deform

the scalar supercharge employed by Witten (2.3) by also considering the one-

form supercharge Gμ :

Q̃ = Q+ΩμνxνGμ , (3.38)

with Ω12 = Ω21 = ε1 and Ω34 = Ω43 = ε2. The deformation is related to Aμ
as follows:

Aμ = Ωμνxν . (3.39)

The Killing vector generating the SO(4) transformation is:

v = iε1

(
z1

∂
∂ z1

− z̄1
∂

∂ z̄1

)
+ iε2

(
z2

∂
∂ z2

− z̄2
∂

∂ z̄2

)
, (3.40)

with ε1,2 ∈ C. Note, however, that the isometries of flat space are generated

by real ε1,2.

With respect to the deformed supercharge, the supersymmetry transforma-

tions (2.4), become:

δA = iΨ, δΨ = ιvF + idAφ ,
δϕ = iη , δη = L A

v ϕ − [φ ,ϕ],
δ χ = H, δH = iL A

v χ − i[φ ,χ],
δφ = ιvΨ,

(3.41)

Here, we have defined the covariant Lie derivative as:

L A
v = dAιv + ιvdA = Lv − i[ιvA, ], (3.42)

where ιv is the contraction of v and an arbitrary differential form ω(n):

(ιvω)
(n−1)
μ1...μn−1

= vνω(n)
νμ1...μn−1

. (3.43)

Moreover, one can check that the square of a supersymmetry transformation

gives:

δ 2 = iLv −Gφ+iιvA, (3.44)

where:

GεA = dAε, (3.45)

and:

Gε•= i[ε,•], (3.46)

for all fields transforming in the adjoint.

With respect to the new supercharge Q̃, the topological observables com-

puted by Witten are no longer invariant, except for those inserted at the origin

of R4. However we can define new observables. The starting point is the

five-dimensional supersymmetric partition function on Cε1,ε2
×S1 in (3.35):

ZNek
5d (β ,ε1,2;a1,...,N−1) = TrH (−1)Feiβ (ε1J1+ε2J2+∑N−1

s=1 asQs). (3.47)
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This expression is a refined version of the Witten index obtained introducing

the generators for the spatial rotations J1,2 and the charges Q1,...,N−1. The trace

is taken over the Hilbert space on Cε1,ε2
. As above one can use supersymmetry

to restrict the Hilbert space only to the action-minimizing instantons. Then,

we need to compute:

ZNek
5d (β ,ε1,2;a1,...,N−1) = ∑

n≥0

e
− 8π2nβ

g2
5,Y M TrHn(−1)Feiβ (ε1J1+ε2J2+∑N−1

s=1 asQs).

(3.48)

We have defined g5,Y M the five-dimensional Yang-Mills coupling constant.

The Hilbert space Hn coincides with the instanton moduli space MN,k. The

U(1)2 ⊂ SO(4) transformations generated deforming the supercharge Q̃ as in

(3.38) can be naturally extended to act on MN,k and similarly for the SU(N)
gauge transformations.

Now, if the fixed point of MN,k under U(1)N+1 ⊂ T 2 × SU(N) were iso-

lated, we could apply the fixed points theorem [30] and find:

ZNek
5d (β ,ε1,2;a1,...,N−1) = ∑

n≥0

e
− 8π2nβ

g2
5,Y M ∑

p

4kN

∏
t=1

1

1− eiβvt (p)
, (3.49)

where vt are linear combinations of ε1, ε2 and a1, ...,aN−1. Moreover, identi-

fying the characters under T 2 with a vector space, we can write:

TMN,k|p =
4kN

∑
t=1

eiβvt (p). (3.50)

To take the four-dimensional limit we need to shrink the radius of the circle in

the fifth direction taking the limit β → 0 while keeping the parameters ε1,ε2,ai
of T 2 ×SU(N) fixed. A term at the n-th instanton sector in (3.49) has a factor

∼ β−4kN . To find a meaningful limit β → 0 we take the classical contribution

to be:

e
− 8π2β

g2
5,Y M = (−iβ )4kq. (3.51)

Hence, if we keep fixed q while β → 0, we find:

ZNek(ε1,2;a1,...,N−1) = ∑
n≥0

qn ∑
p

4kN

∏
t=1

1

vt(p)
. (3.52)

The four-dimensional coupling constant is related to g5,Y M as follows:

8π2

g2
4,Y M

=
8π2β
g2

5,Y M
. (3.53)

However, it turns out that the tangent space is not well defined at the fixed

points of MN,k. To remove this problem we need to consider a non-commutative
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deformation of space-time [31–33]:

[xμ ,xν ] = iθ μν , (3.54)

where xμ are coordinates on R4 and θ μν a real anti-symmetric matrix. Tech-

nically, this is equivalent to consider the non-zero level of the moment map

(3.30):

μR = ζR1 ∼ (θ11̄ −θ22̄)1. (3.55)

We denote the corresponding instanton moduli space M nc
N,k. With this modifi-

cation it is possible to make sense of the above expressions (3.49) and (3.52).

The result is independent of the value of ζR and thus we can consider ζR = 0

where, however, there is no interpretation in terms of contributions coming

from different fixed points.

To actually describe (3.50), we need to introduce the T 2-action on X (3.27).

Following [34]:

X
′ = (T⊗−1

1 ⊕T⊗−1
2 )⊗ (K∗ ⊗K)⊕ (E∗ ⊗K)⊕ (T⊗−1

1 ⊗T⊗−1
2 ⊗K∗ ⊗E),

(3.56)

where Ti is a one-dimensional space on which the generators for the spatial

rotations Ji have eigenvalue +1. As above, we identify a vector space with its

character and rewrite X′ as:

X
′ = (e−iβε1 + e−iβε2)(K∗K)+(E∗K)+(e−iβ (ε1+ε2))(K∗E). (3.57)

Then, the fixed points of U(1)1+N on M nc
N,k have been classified in [35] and

are labeled by N −1 Young diagrams:

Y = (Y1, ...,YN−1), such that the number of boxes |Y |= k. (3.58)

Denoting (i, j) ∈ Y the position in a Young diagram for a fixed point p, the

action on K and E of T 2 and U(1)N−1 is:

Kp =
N−1

∑
s=1

∑
(i, j)∈Ys

eiβ (as+(1−i)ε1+(1− j)ε2),

Ep =
N−1

∑
s=1

eiβas .

(3.59)

Therefore, one can read v(p)t entering (3.52) from:

TM nc
N,k|p = E∗

pKp + eiβ (ε1+ε2)K∗
pEp − (1− eiβε1)(1− eiβε2)KpK∗

p. (3.60)

Finally, one can check that Nekrasov partition function ZNek(ε1,2;a1,...,N−1)
for anti-self-dual instantons reproduces the SW prepotential (3.1):

F = lim
ε1,2→0

ε1ε2 log ZNek(ε1,2;a1,...,N−1), (3.61)
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This limit can be understood as follows: the partition functions on the Ω-

background is finite as the deformation makes the volume:

V =
1

ε1ε2
, (3.62)

finite. Clearly, V diverges for ε1,ε2 → 0 and so does the free energy:

F =− log ZNek(ε1,2;a1,...,N−1). (3.63)

However, the SW prepotential coincides with the specific free energy F/V
which does not diverge.

So far, we have only considered pure gauge theories. The inclusion of mat-

ter in the Ω-background, both in the fundamental and in the adjoint represen-

tation of the gauge group, has been studied in [15, 27] and it will be discussed

in chapter 7.
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4. Pestunization

On S4, a non-topological theory with the field content of an N = 2 SYM

theory has been studied in the seminal work of Pestun [17]. The result of

Pestun shows how the partition function on S4 can be computed gluing an

instanton and an anti-instanton Nekrasov partition function, respectively at the

north and south pole of S4, where the theory on the sphere is identified with

the theory on the Ω-background discussed in chapter 3. On the other hand,

an equivariant version of Witten’s topologically twisted SYM is found placing

instantons at both north and south poles.

The localization computation performed in [17] employs only a single U(1)
contained in the SO(5) isometry group. This corresponds to setting ε1 = ε2 in

the Ω-background. Later, in [36], the entire U(1)2 Cartan of the isometry

group was employed. Their result can be written as follows:

ZS4 =
∫

h
dae−Scl

∣∣Zinst
ε1,ε2

(ia,q)
∣∣2, (4.1)

where, for convenience, we included the perturbative contribution in (3.52)

and define:

Zinst
ε i

1,ε
i
2
≡ Zpert ·ZNek. (4.2)

It is important, in Pestun’s result, that ε1,ε2 ∈ R. Moreover, the expectation

value of certain supersymmetric Wilson loops operators are also computed

in [17]. In recent years there has been extensive progress towards localizing

SQFTs living on manifolds in different dimensions and with different amounts

of supercharges. For a review see [11].

The work of Pestun is also crucial in deriving the AGT (Alday, Gaiotto,

Tachikawa) correspondence [37] between a class of d = 4 N = 2 supercon-

formal field theories (SCFTs) [38] and Liouville field theory on punctured

Riemann surfaces. The correspondence is understood, geometrically, start-

ing from d = 6 (2,0) theories of type A1 and reducing on a punctured Rie-

mann surface, with the simplest example being that of reducing on a two-torus

with modular parameter τ , which leads to N = 4 SU(2) gauge theory. The

SL(2,Z) transformations of the modular parameter give rise to S-duality trans-

formations of the N = 4 theory.

Instead of reviewing Pestun’s work on S4, we conclude the introductory

part focusing on more general four-dimensional N = 2 vector multiplets on a

compact manifold M admitting a T 2-isometry and a Killing vector with a dis-

crete set of fixed points. The framework developed in [18] consists in defining
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a modified notion of (anti-)self-duality which allows for flips between self-

dual two-forms to anti-self-dual ones at different fixed points. In general,

then, one can consider an arbitrary choice of field strength F approaching,

at each fixed point, either instantons or anti-instantons. Hence, the full parti-

tion function on M is conjectured to be obtained patching Nekrasov instanton

or anti-instanton partition functions (3.52) at each fixed point:

ZM =∑
ki

∫
h

dae−Scl
p

∏
i=1

Zinst
ε i

1,ε
i
2
(ia+ki(ε i

1,ε
i
2),q)

l

∏
i=p+1

Zanti−inst
ε i

1,ε
i
2

(ia+ki(ε i
1,ε

i
2), q̄),

(4.3)

where the parameters ε i
1,ε

i
2 ∈C determine the T 2-action at each fixed point, as

given by the Killing vector v (3.40). We have also introduced a sum over pos-

sible flux contributions ki which will be discussed in chapter 6. As discussed

above, equivariant DW and Pestun’s theory can be obtained from (4.3) setting

p = l = 2 in the first case and 2p = l = 2 in the latter one. In particular, to

match with (4.1), one needs to assume ε i
1,ε

i
2 ∈ R. Only with this assumption

it is true that:

Zanti−inst
ε i

1,ε
i
2

(ia, q̄) = Zinst
ε i

1,ε
i
2

(ia,q). (4.4)

The framework developed in [18, 19] is quite powerful as it allows to com-

pute partition functions with different distributions of (anti-)instantons at the

different fixed point of a generic four manifold. In this chapter we will review

this construction highlighting some of the open problems, which will then be

tackled in Part II.

4.1 Projector

We consider the manifold M and its open cover M = ∪l
i=1Ui such that each set

contains at most one fixed point of the T 2-action. The idea is to define a gener-

alized projector on the space of two-forms Ω2 which approaches, at each fixed

point, the standard (anti-)self-dual projector P± = (1±�). Now, we consider

the intersection Ui ∩Uj which, by definition, does not contain any fixed point.

Also Ui,Uj contain fixed points where the two-forms approach, respectively,

anti-self-dual Ω2+ and self-dual two-forms Ω2−. We will denote the former

plus fixed points and the latter minus fixed point. To define a projector on the

entire M, we need to find a map mi j : Ω2+ → Ω2−:

mi j : B →−B+
2

ιvκ
κ ∧ ιvB. (4.5)

Here we have defined the one-form κ as κ = g(v) and ιvκ = g(v,v) = ||v||2.

In order to glue patches containing fixed points of the same kind one uses the

identity map.
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Once it is understood how to glue Ω2± bundles, we need to construct the

projector. Away from the fixed points, m2 acts like the identity on Ω2 and,

assuming that α2 +β 2 = 1, one finds:

(α �+βm)2 = 1. (4.6)

Employing this condition, and introducing α = cos2ρ , β = sin2ρ , the most

general projector constructed using � and m is given by:

P+
ω =

1

2
(1+ cos2ρ �+sin2ρm). (4.7)

We also need to impose that 2ρ|v=0 = 0,π which ensures that one recovers the

standard projector P± = 1
2(1±�) at the zeroes of v. Moreover, with a further

change of variables:

1− sin2ρ =
2

1+ cos2 ω
, (4.8)

we rewrite (4.7) as:

P+
ω =

1

1+ cos2 ω

(
1+ cosω − sin2 ω

κ ∧ ιv

ιvκ

)
. (4.9)

The function ω is such that ω = 0 at plus fixed points and ω = π at minus

ones. Substituting ω = 0,π one recovers the standard projector P± = 1
2(1±�).

However, in order for the projector to be well defined at the fixed points of v,

we need that sin2 ω goes to zero at least as ιvκ = ||v||2. Finally, field strengths

satisfying P+
ω F = 0 are denoted flip instantons. We can thus use this projector

to define a generalized decomposition of two-forms as:

Ω2 = P+
ω Ω2 ⊕P−

ω Ω2, (4.10)

where P−
ω = 1−P+

ω .

4.2 Cohomological theory

We can use the projector defined above to explain the difference between

equivariant DW theories and Pestun-like theories1 on a generic compact man-

ifold M with isolated fixed points under T 2. Linearization of topologically

twisted SYM is related to an elliptic complex:

Ω0(M)
d−→ Ω1(M)

P+d−−→ P+Ω2(M) = Ω2+(M), (4.11)

where d is the de Rham differential and P± the (anti-)self-dual projector P± =
1
2(1± �). We denote this complex (E•,P+d). The cohomology Ω1(M) rep-

resents small deformations δA of the gauge connection in the kernel of P+d,

1We define Pestun-like theories the cases where not all fixed points are of the same kind.
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that is such that the anti-self-dual condition is maintained. These deforma-

tions, as in chapter 2, need to be taken modulo gauge transformations, that is

up to elements in the image of the first map d. The ellipticity of the problem

is related to the fact that the moduli space of instantons is finite-dimensional.

On manifolds with a T 2-isometry it possible to consider a more general

complex, defined using the projector (4.9) introduced above:

Ω0(M)
d−→ Ω1(M)⊕Ω0(M)

D̃−→ P+
ω Ω2(M)⊕Ω0(M), (4.12)

where:

D̃ =

(
P+

ω d P+
ω ιv �d

d†ιvd −d†d cosω

)
. (4.13)

We denote the complex (4.12) as (E•, D̃). Flips between instantons and anti-

instantons at different fixed points is what characterizes Pestun-like theories.

For equivariant DW theory the supersymmetry transformations are those in

(4.14):

δA = iΨ, δΨ = ιvF + idAφ ,
δϕ = iη , δη = L A

v ϕ − [φ ,ϕ],
δ χ = H, δH = iL A

v χ − i[φ ,χ],
δφ = ιvΨ,

(4.14)

In particular both χ and H are anti-self-dual two-forms. When considering the

complex (E•, D̃) (4.12), associated to a manifold with a generic distribution of

plus/minus fixed points, the two-forms need to satisfy:

P+
ω χ = χ, P+

ω H = H. (4.15)

Moreover, the Lie derivative Lv preserves the decomposition of two-forms in

P+
ω Ω2 ⊕P−

ω Ω2. Therefore, the same supersymmetry transformations (4.14)

hold also in this case.

The observables of the theory are generalizations of observables of equiv-

ariant DW theory. One can check that:

δ (φ +Ψ+F) = (idA + ιv)(φ +Ψ+F), (4.16)

thus:

δTr(φ +Ψ+F)k = (idA + ιv)Tr(φ +Ψ+F)k. (4.17)

If considering a form Ω such that δΩ = 0, then also:

δ
∫

M
Ω∧Tr(φ +Ψ+F)k = 0. (4.18)

These will be the observables computed and do not depend on a δ -exact de-

formations of Ω:

Ω → Ω+(id + ιv)(...). (4.19)
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In particular, we show now how the SYM Lagrangian can be recast in this

form. The SYM Lagrangian on a generic four-manifold can be found through

a rigid supergravity approach [22] and its more generic form can be found in

[18]. As we need something quadratic in F for the Lagrangian, we look at:

O =
∫

M
(Ω0 +Ω2 +Ω4)∧Tr(φ +Ψ+F)2

=
∫

M
(Tr(φ 2)Ω4 +2Ω2 ∧Tr(φF)+Ω0Tr(F2)+Ω2 ∧Tr(Ψ2)).

(4.20)

The computation for generic four manifolds can be found in [18], here we

focus on S4 with Killing vector v = ∂α +∂β . One can check that taking:

Ω0 = cosθ ,

Ω2 =−i(sinθdθ ∧ (xdα +(x−1)dβ )+
i
2

cosθ sin2 θdx∧ (dα +dβ ),

Ω4 =
3

2
sin3 θdθ ∧dx∧dα ∧dβ = 3VolS4 ,

(4.21)

reproduces Pestun’s action on S4 [17]:

S =
1

g2
Y M

∫
S4
(cosθ +Ω2 +3VolS4)Tr(φ +Ψ+F)2 +δ (...), (4.22)

up to a term ∼ F ∧ F . We also observe that the top component Ω4 is the

volume form on S4 and more generally Ω = Ω0 +Ω2 +Ω4 is the equivariant

extension of the volume form on S4.

4.3 BPS locus
We have described how supersymmetry behaves in this more general set-up

which includes, in a unique framework, both equivariant DW and Pestun-like

theories on more generic four manifolds and, in the last section, the observ-

ables we are interested in computing. This section is devoted to study the

reduced integration locus, obtained deforming the path integral inserting a δ -

exact term with coefficient t. Taking the limit t → ∞ we restrict the integration

domain in the path integral to configurations minimizing the deformation, that

is supersymmetric configurations.

The localization locus is defined by the intersection of imposing reality con-

ditions on the fields and solving the supersymmetry transformations. The real-

ity conditions are needed to ensure that the localization action is positive def-

inite and gives a well-defined Gaussian integration. Focusing on the bosonic

fields we have that F is Hermitian and the scalars:

ϕ ∈ R, φ̃ = φ +
i
2
(s− s̃)ϕ ∈ R. (4.23)

36



Similarly, H is chosen such that the Gaussian integral converges.

The localization term considered is:

LlocVolM = δTr
[
2(2Ω−H)∧�χ +(ιvF − idA(φ + i(s− s̃)ϕ))∧�Ψ+

+(ιvdAϕ +[φ ,ϕ])η)
]
.

(4.24)

The adjoint valued two-form Ω(Φ) depends on the bosonic fields in the par-

ticular theory under consideration, with the requirement that:

LvΩ(Φ) = Ω(LvΦ),

Ω(Φ) real on the integration contour.
(4.25)

Focusing on the bosonic terms:

L bos
loc VolM = Tr

[
1

4
(2ιvF +dA((s− s̃)ϕ))∧�(2ιvF +dA((s− s̃)ϕ))+

+dAφ̃ ∧�dAφ̃ +VolM((ιvdAϕ)2 − [φ̃ ,ϕ]2)+

+2P+
ω Ω∧�Ω−2P+

ω (H −Ω)∧�(H −Ω)

]
.

(4.26)

Hence, asking for vanishing supersymmetry transformations gives:

[φ̃ ,ϕ] = 0, ιvdAϕ = 0, dAφ̃ = 0,

2ιvF +dA((s− s̃)ϕ) = 0, P+
ω Ω = 0.

(4.27)

The first line is solved imposing:

ϕ = diag(ϕa), φ̃ = diag(φ̃ a), (4.28)

where a runs over the element in the U(1)N−1 Cartan of the gauge group.

Moreover, at the fixed points of M, the projector P+
ω reduces to the standard

(anti-)self-dual projector and we need to consider point-like instantons or anti-

instantons respectively for s̃ = 0 or s = 0. One can also find solutions for the

field strength with flux, but these will be considered in chapter 6.

Once the localization locus is found, the next step is to compute the one-

loop superdeterminant around these configurations. The result will split into

contributions coming from each fixed point which then need to be glued con-

sistently. The technique developed in [18, 19] motivates the computation only

for certain distribution of ± fixed points on certain manifolds which can be

obtained dimensionally reducing Sasaki-Einstein manifolds in d = 5. Thus,

we leave the explicit computations for chapter 5, where we will develop a

way to patch contributions which applies to generic four manifolds admitting

a Killing vector with isolated fixed points.
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Part II:
Results





5. Perturbative partition function

In Part I we have presented an expression (4.3) for the full partition function

on certain compact manifolds M with a T 2-isometry. In this chapter, whose

content is based on Paper I, we provide a method to compute the perturbative

part of (4.3), entering through (4.2).

We concluded the previous chapter with the study of the BPS locus of field

configurations where the localization action (4.24) vanishes. Using localiza-

tion, the one-loop contribution is thus given by a Gaussian integral around

these configurations as in the simpler case of (non-equivariant) DW theory

studied in chapter 2. Hence, focusing on the trivial instanton sector, we will

show how the integral over bosonic and fermionic fields gives rise to a su-

perdeterminant. This can be equivalently computed by the equivariant index

of either an elliptic or a transversally elliptic operator, respectively for equiv-

ariant DW and Pestun-like theories. The study of these operators on compact

manifolds has been developed in [30].

Elliptic operators have been defined below (2.25) as operators whose princi-

pal symbol σξ (·), obtained by replacing the highest order derivatives with vec-

tor fields ξ , is invertible for non-zero ξ . Moreover, elliptic operators on com-

pact manifolds have finite-dimensional kernel and cokernel. Thus, to compute

the equivariant index of an elliptic operator it is enough to employ the Atiyah-

Bott formula [39]. If we take the elliptic complex (E•,P+d) (4.11) associated

to equivariant DW theory, we find:

index (E•,P+d) = ∑
p

χeq(Ω•
p)

det(1−d f )
, (5.1)

where χeq(Ω•
p) is the equivariant Euler character of the fiber Ω•

p and the dif-

feomorphism induced by the T 2-action on M is labeled by the map f : M →M.

Thus, the index is a sum over finite-dimensional contributions arising from the

fixed points of the manifold under a T 2-action. Examples of this procedure,

related to equivariant DW, can be found in [18].

Transversally elliptic operators, instead, are operators which are elliptic

only in directions transversal to the orbits of T 2. Hence, the cohomologies

turn out to be infinite-dimensional and using (5.1) gives infinite power series

at each fixed point. The problem, from a physical perspective, is to regu-

larize these contributions so that, once patched together on M, they give the

correct perturbative partition function. From a mathematical point of view,

instead, we need to compute the equivariant index of a transversally elliptic
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operator. Such computations have been performed on S4 for N = 2 theories

[17, 36] and, more in general, for certain distributions of ± fixed points on

four manifolds which can be uplifted to five-dimensional N = 1 theories on

Sasaki-Einstein manifolds [18, 19]. Here, we extend the latter result by devel-

oping an approach applicable to any four-dimensional compact manifold with

a T 2-action and isolated fixed points, following the study of the equivariant

index of transversally elliptic operators in [30].

5.1 Complex from localization

In this section we show the relation between the perturbative partition func-

tion of Pestun-like theories on M and the equivariant index of the associated

complex. Moreover, we introduce the objects which will be required, later,

to compute the equivariant index of a transversally elliptic operator. In par-

ticular, we need the symbol of the transversally elliptic complex associated to

Pestun-like theories.

Let us start from the supersymmetry transformations (4.14), which can be

written schematically as:

Qφ = ψ, Qψ = L A
v φ ,

Qψ̃ = φ̃ , Qφ̃ = L A
v ψ̃.

(5.2)

where φ = (A,φ ,ϕ), φ̃ = H and ψ = (Ψ,η), ψ̃ = χ label, respectively, even

and odd fields. The superdeterminant arises from expanding the Q-exact ac-

tion (4.24) around the BPS configurations (4.28) at quadratic order:

QV (2) = Q
(
〈ψ,L A

v φ〉+ 〈ψ̃, D̃φ〉+ 〈ψ̃, φ̃〉
)
. (5.3)

Here, D̃ is the differential operator given in (4.13). Integrating (5.3) gives rise

to a ratio of one-loop determinants of fermionic and bosonic contributions:

det1/2|coker D̃L

det1/2|ker D̃L
= sdet1/2|H•(D̃)L , (5.4)

where H•(D̃) is the cohomology of the operator D̃ mapping φ to ψ̃ . We stated

above that these cohomologies are infinite-dimensional for transversally ellip-

tic operators, unlike elliptic operators. However, a property of transversally

elliptic operators is that both the kernel and the cokernel can be decomposed

into irreducible representations of T 2, labeled by α , and appearing with finite

multiplicities mα . Hence, we find:

sdet
1
2 L = ∏

α
wα(ε)

1
2 (m

coker
α −mker

α ), (5.5)
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where wα(ε) denote the weights of the representation depending on the equiv-

ariant parameters. This can be translated into the equivariant index of D̃:

index D̃ = ∑
α
(mcoker

α −mker
α )ewα , (5.6)

where now ewα is the character of the corresponding representation.

As discussed in chapter 4, the complex associated to Pestun-like theories is

given by (E•, D̃):

Ω0(M)
d−→ Ω1(M)⊕Ω0(M)

D̃−→ P+
ω Ω2(M)⊕Ω0(M). (5.7)

An equivalent complex is found by folding:

Ω1(M)⊕Ω0(M)
ð−→ P+

ω Ω2(M)⊕Ω0(M)⊕Ω0(M). (5.8)

The differential operator ð is given by1:

ð=

⎛
⎜⎝ P+

ω d P+
ω ιv �d

d†ιvd d†dcosω
d† 0

⎞
⎟⎠ , (5.9)

Notice that here we have been neglecting the gauge part of the index. It con-

tributes as follows:

index(ð⊗1) = index ð ·χAd , (5.10)

where χAd is the character for the adjoint representation of G. In the rest of

the chapter we will focus on the part arising from the T 2-action only.

Hence, let us consider the complex (5.8). At the fixed points of the Killing

vector v the complex splits into the part corresponding to the (anti)-self-dual

(ASD/SD) part and the scalar Laplacian:(
Ω1(M)⊕Ω0(M)

d±⊕d†−−−−→ Ω2+(M)⊕Ω0(M)

)
⊕
(

Ω0(M)
Δ−→ Ω0(M)

)
.

(5.11)

Thus, the original complex approaches either an ASD complex (Ω•,d+) or an

SD one (Ω•,d−).
Computing the index requires the knowledge of the symbol of a complex.

Considering the complex in (5.8), its symbol complex denoted by σ(ð) is

given by:

π∗
(

Λ1(M)⊕Λ0(M)
) σ(ð)−−→ π∗

(
P+

ω Λ2(M)⊕Λ0(M)⊕Λ0(M)
)
, (5.12)

where Λi(M) = ΛiT ∗M and π : T ∗M → M is the projection.

1Notice that index (E•, D̃) =−index (E•,ð) as the complex (5.8) starts at level one.
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It is useful to describe the symbol as an element of the equivariant K-group

KT 2 over the cotangent bundle2 T M, which is defined as:

KT 2(T M)≡Cn
T 2(M)/Cn

/0,T 2(M), (5.13)

where Cn
T 2(M) is the set of complexes, up to homotopy, of length n, with

compact support3 and respecting the T 2-action. Instead, Cn
/0,T 2(M) labels those

with empty support. For a proof of this statement see [40, 41] or appendix B

of Paper I. We can now exploit the relation of the analytic index(ð) to what is

called the topological index of ð [30]:

indT 2 [σ(ð)] = index(ð), (5.14)

where, for an R(T 2)-module homomorphism:

indT 2 : KT 2(T M)→ D ′(T 2). (5.15)

Here, R(T 2) denotes the representation ring of T 2 and, unlike for an elliptic

complex, the image of the equivariant index of a transversally elliptic complex

is not a regular function but rather an element of the space of distributions

D ′(T 2) over the space of test functions on T 2.

Explicitly, the map (5.12) restricted to the fiber over (x,ξ ) ∈ M × TxM is

given by:

σ(ð)|(x,ξ ) : (a,φ)−→
(

P+
ω [ξ ∧a+�(ξ ∧κ)φ ],

‖ξ‖2ιva−ξv〈ξ ,a〉−‖ξ‖2 cosω φ ,−〈ξ ,a〉
)
,

(5.16)

where a ∈ Λ1(M), φ ∈ Λ0(M) and we defined ξv ≡ 〈ξ ,v〉. Notice that the

support of σ(ð) is the zero section over M and, at cosω = 0, also ξ �= 0 in the

subspace of the tangent space that is along v.

Finally, one can show that the scalar Laplacian part of the symbol complex

splits globally:

indT 2 [σ(ð)] = indT 2 [σω ]+ indT 2 [σ(Δ)]. (5.17)

It is shown in Paper I that indT 2 [σ(Δ)] = 0 and therefore we focus on the sym-

bol σω which approaches σ(d±) at the ASD/SD fixed points (5.11). This is the

object we need to compute and which can be used to obtain the perturbative

part of the partition function on M, as in (5.5).

2Using the metric, we identify tangent and cotangent bundles over M in the following.
3The support of a complex is defined as the points x ∈ M where [σω ]|x fails to be exact.
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5.2 Trivialization

To compute (5.17) one could follow [42, 43], however, we find it more con-

venient to follow the approach of [30] focusing on σω . The idea behind the

trivialization of the symbol (5.16), is to deform it in order to reduce its sup-

port to the zero section at the set of fixed points, where the complex is elliptic.

This is achieved by deforming the symbol in the direction of the Killing vec-

tor v, or against it. The choice of sign will follow the distribution of ASD/SD

complexes at the fixed points. From a physical perspective, the direction of

v will instruct us on how to regularize the infinite power series arising using

the Atiyah-Bott formula (5.1) at each fixed point. Explicit examples will be

shown in the next section.

The first step in the construction is to isolate the fixed point contributions

in σω . For this purpose, we can define a filtration, introducing Mi = {x ∈
M|dim Hx ≥ i} where Hx is the stabilizer set of x:

M = M0 ⊃ M1 ⊃ M2 ⊃ M3 = /0. (5.18)

Notice that M2 is the set of the fixed points of M under the T 2-action. It was

shown in [30] that for this filtration there exists a homomorphism θi and split

short exact sequences4:

KT 2(TT 2(M−Mi))→ KT 2(TT 2(M−Mi+1))
θi←−−−→ KT 2(TT 2X |Mi−Mi+1

)). (5.19)

From this, we find recursively:

KT 2(TT 2M) =
2⊕

i=0

θiKT 2(TT 2M|Mi−Mi+1
). (5.20)

The crucial observation [30] is that, using the Killing vector v, we can define

a new symbol homotopic to σω by trivializing it away from the zero section

at the fixed points M2. The new symbol has only support at M2, where the

symbol complex is elliptic, and gets contributions only from the fixed points:

[σω ] = [0]+θ2[σω |M2
] ∈ KT 2(TH(M−M2))⊕θ2KT 2(T M|M2

). (5.21)

Therefore, the symbol complex [σω ] is completely determined by the homo-

morphism θ2 which, effectively, extends [σω |M2
]∈ KT 2(T M|M2

) to an element

of KT 2(TT 2M). In particular, when extending [σω |M2
] to a neighbour U ⊃ M2,

and restricting to THU , the symbol fails to have a compact support as it has

support on the zero section over U . However, on U −M2 it is possible to push

the support away from the zero section, either along or against the Killing

vector field v. Asking for continuity of the deformed symbol complex, it is

4An exact sequence is a chain complex where the image of one morphism actually equals the

kernel of the next.
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possible to argue that the choice of push follows the distribution of ASD/SD

complexes. More details on the trivialization can be found in [30] and its

application to the complex under consideration in Paper I.

Here, instead, we present a simpler example [30], that is a U(1)-action, with

weight 1, on the one-point compactification of the complex plane, C∪{pt}=
S2. We label E0 the trivial complex line bundle on the sphere. We denote ε the

coordinates on u(1) and t = eiε the coordinates on U(1). Then, we can define

E1 = E0 ⊗ t. We consider the U(1)-invariant operator D:

D : D(S2,E0)→ D(S2,E1), (5.22)

defined by:

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ z̄ =

1
2 eiθ

(
∂
∂ r +

i
r

∂
∂θ

)
near the north pole z = 0, z = reiθ ,

− ∂
∂ω = r2

2 eiθ

(
∂
∂ r − i

r
∂

∂θ

)
near the south pole z = ∞, ω = 1

z ,

1
2 φ(r)eiθ

(
∂
∂ r +

iψ(r)
r

∂
∂θ

)
otherwise.

(5.23)

Here:

φ(r) = 1 for r � 1, φ(r) = r2 for r � 1,

ψ(r) = 1 for r � 1, ψ(r) =−1 for r � 1.
(5.24)

Also, φ(r) never vanishes while ψ(r), without loss of generality, can be cho-

sen to vanish at the equator r = 1. The symbol σξ (D), as in (5.16), acts as a

linear map once restricted to (x,ξ ) ∈ S2 ×TxS2:

σ(D)|(x,ξ ) : λ −→ 1

2
φ(r)eiθ

(
ξr +

iψ(r)
r

ξθ

)
λ (5.25)

where λ ∈ Λ0(S2). Thus, the operator D fails to be elliptic at the equator

where ∂
∂θ has vanishing coefficient and the symbol σ(D) fails to be invertible,

not only for the zero section ξr = ξθ = 0, but also for non-zero ξθ ∈ T ∗C.

However it is elliptic in directions transversal to the U(1)-action, that is along

r.

Assuming that (5.21) holds, we just focus on5 θ1[σ(D)|M1
], where M1 is

the set of fixed points. The operator D approaches ∂̄ near z = 0 and −∂̄ near

z = ∞6. If U is an open neighborhood around the two poles, the push away

5As there is a single U(1), the set of the fixed points obtained through the filtration (5.20) is

denoted M1.
6In terms of the coordinate ω̄ .
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from the zero section on U −M1 can be achieved by introducing a new symbol

homotopic to the undeformed one as follows:

σ̃ |(x,ξ ) = σ |
(x,ξ±ve−ξ 2

)
, (5.26)

where (x,ξ ) are coordinates on TU . The crucial observation is that σ̃(D) is an

isomorphism outside of the zero section once the tangent space is restricted to

the one transversal to U(1), TU(1)U . Moreover, if we define ξ± ≡ ξ ± ve−ξ 2

and impose continuity of the deformed symbol at the equator, we find:

σ

(
∂
∂ z̄

)
(ξ+) = σ

(
− ∂

∂ω

)
(ξ−). (5.27)

Therefore, we can trivialize D at the equator by trivializing ∂
∂ z̄ in the positive

direction and − ∂
∂ω in the negative direction. Thus, we have restricted the

support of σ(D) to the set of fixed points and we can write:

[σ(D)] = [σ(D)]0 +[σ(D)]∞. (5.28)

Moreover, [σ(D)] defines an element in:

KU(1)(TU(1)(S
2 −S1)) = KU(1)(TU(1)(B0 −S1))⊕KU(1)(TU(1)(B∞ −S1)),

(5.29)

where B0, B∞ are the northern and southern hemispheres whose boundary is

the equator of S2.

The first contribution gives:

[σ(D)]0 = [∂̄+], (5.30)

where the exponent labels the choice of deformation in (5.26). The second

contribution is associated to an operator:

−∂− : Λ0(TC)→ Λ1(TC). (5.31)

Here, we have been using ω as coordinate, hence U(1) acts by the representa-

tion t−1. Instead, if we take the ω̄ coordinate, U(1) acts by t, and we find:

− ∂̄− : Λ0(T̄C)→ Λ1(T̄C), (5.32)

Then the index is given by [30]:

ind(D) = ind[∂̄+]+ ind[∂̄−]. (5.33)

Again, the ± subscripts are associated to the direction of the vector v appearing

in (5.27). This prescription tells us how to associate, at each fixed point on S2,

a distribution. In particular (in our case α = 1):

ind[∂̄+] =

(
1

1− t−α

)+

=−tα − t2α − ... ,

ind[∂̄−] =
(

1

1− t−α

)−
= 1+ t−α + t−2α − ... ,

(5.34)
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where (·)± denotes the Laurent expansions at t = 0 and t = ∞, respectively.

We will also need later the expansions for negative weights:

ind[∂̄+] =

(
1

1− tα

)+

= 1+ tα + t2α − ... ,

ind[∂̄−] =
(

1

1− tα

)−
=−t−α − t−2α − ... .

(5.35)

A similar computation for the symbol complex σ(ð) can be found in Paper

I. Here we only show the final result. Let us then consider a patch Ul � C2

around a fixed point Fl ∈ M2. We pick complex coordinates (z1,z2) and let

ε1,ε2 be coordinates on t2 such that t1 = exp(iε1), t2 = exp(iε2) are coordinates

on T 2. Then, the infinitesimal weights α(l)
1 ,α(l)

2 act on (z1,z2) ∈ C2 as α(l)
i =

∑2
j=1 α(l)

i j ε j with α(l)
i j ∈ Z for i, j = 1,2. Then we get:

index ð=ind θ2[σω |Y ] =

= ∑
l∈M2

(
1+

2

∏
i=1

t−α(l)
i

)
2

∏
k=1

(
1

1− t−α(l)
k

)sl

,
(5.36)

where:

tα(l)
i :=

2

∏
j=1

t
α(l)

i j
j , (5.37)

and sl is + for ASD fixed points and − for SD ones. Moreover, when consid-

ering an SD fixed point one also has to flip the local infinitesimal weights as

α1 →−α1. This is equivalent to a change in the complex structure (z1,z2)→
(z̄1,z2) which triggers the isomorphism (Ω•,d+)∼= (Ω•,d−).

We see how the equivariant index, and thus the perturbative partition func-

tion, of Pestun-like theories is computed employing the Atiyah-Bott formula

(5.1) for the local, and elliptic, contributions at each fixed point, and regular-

izing the infinite power series according to the distribution of ASD/SD fixed

points.

5.3 Examples
We can use the equivariant index (5.36) to compute the one-loop superdeter-

minant as in (5.5)-(5.6) and we now show some explicit computations. The S4

example, both for DW and Pestun [17], is treated in full details. For the other

cases we only show the results.

S4

We describe S4 as a quaternion projective space HP
1:

[q1,q2]∼ [q1q̃,q2q̃], where q1,q2 ∈H and q̃ ∈H
×. (5.38)
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We can also define inhomogenous coordinates:

northern hemisphere: q = q1q−1
2 = z1 + jz2, q ∈H

×,

southern hemisphere: q−1 =
1

|q|2 (z̄1 − jz2),
(5.39)

where z1,z2 ∈ C. The infinitesimal weights can be read from the action of

U(1)2:

q1 → t1q1, q2 → t2q2, (5.40)

or equivalently:

z1 → t1t−1
2 z1, z2 → t−1

1 t−1
2 z2. (5.41)

Thus, the infinitesimal weights of the T 2-action are:

(ai j) =

(
1 −1

−1 −1

)
. (5.42)

Similarly, one finds z̄1 → t−1
1 t2z̄1. Thus, taking into account the flip of the com-

plex structure for SD fixed points, equivariant DW and Pestun [17] correspond

to the following 7 “Delzant polygons”:

+

+
t1t−1

2

t−1
1 t2 t−1

1 t−1
2

t−1
1 t−1

2

−

+
t1t−1

2

t1t−1
2 t−1

1 t−1
2

t−1
1 t−1

2

As stated above, the deformation of symbol complex follows the distribution

of ASD/SD fixed points. Hence, we find, respectively for DW and Pestun:

indexð1 =(1+ t−2
2 )

(
1

1− t1t−1
2

)+(
1

1− t−1
1 t−1

2

)+

+(1+ t−2
1 )

(
1

1− t−1
1 t2

)+(
1

1− t−1
1 t−1

2

)+

=1.

(5.43)

indexð2 =(1+ t−2
2 )

(
1

1− t1t−1
2

)+(
1

1− t−1
1 t−1

2

)+

+(1+ t−2
2 )

(
1

1− t1t−1
2

)−(
1

1− t−1
1 t−1

2

)−
.

(5.44)

7Equivariant DW corresponds to two ASD fixed points while Pestun to a flip from ASD to SD

fixed point
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The first complex, being elliptic, is a regular function. Instead, the second

case corresponds to a transversally elliptic complex whose equivariant index

is an infinite power series in (t1t−1
2 )n1 and (t−1

1 t−1
2 )n2 , where each term appears

with a finite multiplicity. We thus plot the multiplicities in the (n1,n2) plane

in Figure 5.1.

n1

n2

Figure 5.1. The plot shows the exponents of the weights in (5.44). Light blue points

have multiplicity one, blue points have multiplicity two.

CP
2

In the complex projective space:

[z1,z2]∼ [z1z̃,z2z̃], where z1,z2 ∈ C and z̃ ∈ C
×, (5.45)

we consider a patch U1, z1 �= 0, with inhomogenous coordinates (z2/z1,z3/z1)
on whom T 2 acts as:

z2

z1
→ t1

z2

z1
,

z3

z1
→ t2

z3

z1
. (5.46)

Thus the infinitesimal weights become:

(ai j) =

(
1 0

0 1

)
. (5.47)

Once this is determined, the action of T 2 on the other two patches around the

other two fixed points follows. Again, we can study the elliptic complex with

three ASD fixed points and a transversally elliptic one with one ASD fixed

point and two SD fixed points:

++

+

t1

t2

t−1
2

t−1
1

t−1
1 t2

t1t−1
2

−+

−

t1

t2

t2

t1
t−1
1 t2

t1t−1
2
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The first complex is elliptic and one can find, as for (5.43):

index ð1 = 2. (5.48)

The second case, corresponding to a transversally elliptic complex, is shown

in Figure 5.2.

n1

n2

Figure 5.2. This plots shows the multiplicities of the transversally elliptic complex on

CP
2. Light blue points have multiplicity one, blue points have multiplicity two.

Hirzebruch surface F1

Finally, we consider a particular complex on F1 which cannot be obtained

with the regularization procedure of [18, 19], that is it does not arise from a

five-dimensional N = 1 theory on a Sasaki-Einstein manifold. The Hirze-

bruch surface, which has four fixed points under the T 2-action, is defined as

the equivalence class (z1,z2;u1,u2) ∼ (z′1,z
′
2;u′1,u

′
2) where two elements are

equivalent if:

∃λ ,μ ∈ C
× : (z′1,z

′
2;u′1,u

′
2) = (λ z1,λ z2;λ μu1,μu2). (5.49)

The T 2-action on z1,z2 is z1 → t1z1, u1 → t2u1. We consider an alternating

distribution of ASD/SD fixed points with the following Delzant polygon:

−

+

+

−t1

t2

t2

t1t2

t1t2
t2

t2
t1

As for the two previous examples we plot the multiplicities in Figure 5.3.
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n1

n2

Figure 5.3. We show the multiplicities of the complex under considearation. Light

blue points have multiplicity one, blue points multiplicity two, black squares multi-

plicity three and white squares multiplicity four.
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6. Fluxes

In the previous chapter we computed the equivariant index of a generic dis-

tribution of ASD/SD complexes at the isolated fixed points of a manifold M
under a T 2-action. The approach we took, studied in [18, 19], shows how

different distributions originate from a choice of projector (4.9) approaching

either P± = 1
2(1± �) at each fixed point. However, when studying BPS con-

figurations in chapter 4, we omitted field strengths with non-trivial flux on

two-cycles, labeled by elements of H2(M,Z) and which enter the proposed

result for the full partition function (4.3).

In this chapter we extend the framework presented earlier in two directions:

• We compute, at all flux sectors, the perturbative partition function on

CP
2 for the two complexes considered in chapter 5. These correspond to

an elliptic complex and a transversally elliptic one. The flux dependence

in the perturbative partition function is via a shift of the Coulomb branch

parameter σ0, as proposed on non-compact manifolds in [44] and for

compact manifolds in [18].

• We discuss how different theories in four dimensions stem from a unique

five-dimensional N = 1 theory on a Sasaki-Eistein manifold. This was

suggested in [19] and shown, at the trivial instanton sector, for the re-

duction along the Hopf fiber S1 ↪→ S5 → CP
2 in Paper II1.

The dimensional reduction could be performed shrinking the radius of the

Hopf circle. Instead, in Paper II, it is introduced a Zp quotient acting on the

fiber. At finite p the quotient defines a higher-dimensional generalization of

lens spaces supporting non trivial flat connections. At large p, the manifold

effectively resembles CP2 and the flat connections give rise to flux on the base

manifold. Crucially, there are two inequivalent choices of fiber with respect

to the five-dimensional Killing vector. The two choices of reduction will turn

into the two different complexes on CP
2.

6.1 Geometry of the five-sphere
The five-dimensional sphere is an example of Sasaki-Einstein manifolds (S,g),
for a review see [47]. Here, we will only need some basic facts. These mani-

folds are defined in relation to their metric cone:

C(S) = R>0 ×S, ḡ = dr2 + r2g, (6.1)

1In Paper II it is also discussed the S1 ↪→ S3 → CP
1 case which is shown to match the known

results [45, 46].
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being Kähler and Ricci-flat. For example, the Kähler cone of odd-dimensional

spheres is Cn \ 0, equipped with its flat metric. Moreover, Sasaki-Einstein

manifolds admit a characteristic vector field, called the Reeb vector:

ξ = J(r∂r), (6.2)

where J is the complex structure on the metric cone (C(S), ḡ). This vector

field can be shown to be Killing Lξ ḡ = 0 and with square length ḡ(ξ ,ξ ) = r2.

We thus consider its restriction to the Sasaki-Einstein manifold, through the

inclusion S = {r = 1}× S, where ξ has unit length. Its integral curves are

geodesics and can be used to define the Reeb foliation Fξ whose leaf space

inherits a Kähler metric. We are interested in the regular case where the orbits

are all closed, and thus the Reeb vector field integrates to an isometric, and

free, U(1)-action on (S,g). In this case the leaf space Z = S/Fξ = S/U(1) is

a compact manifold. Hence, a regular Sasaki-Einstein manifold can be seen as

a total space of a principal U(1) bundle over a Kähler-Einstein manifold, CP2

in the case of S5.

Besides this, simply-connected regular Sasaki-Einstein manifolds always

admit a Zp ⊂ U(1) quotient. The resulting manifold is a regular Sasaki-

Einstein manifold with π1(S/Zp) = Zp.

While in the rest of the chapter we will focus on S5, the procedure described

can be extended to more general cases, as the Y p,q spaces [48]. The idea is to

dimensionally reduce S5 onto the leaf space CP
2, employing two different

fibers with respect to a direction fixed by the Killing vector. The starting point

in Paper II is an N = 1 vector multiplet on S5 embedded in C3 with the metric:

ds2
S5 =

3

∑
i=1

|dzi|2. (6.3)

This can be rewritten as the Hopf metric:

ds2
S5 = ds2

CP
2 +(dα +V )2, (6.4)

where the metric on CP
2 is the Fubini-Study one, α is the coordinate along

the Hopf fiber and V is a connection one-form. At this point, each choice of

fiber is equivalent to perform dimensional reduction as they are related by an

SO(6) rotation. However, a choice of supercharge will determine a preferred

direction through the Killing vector v, which is also Reeb. To describe this

choice we introduce the vector fields ei, i = 1, ...,3 for the action zi → eiαi zi of

the U(1)3 Cartan of the isometry group. Hence:

v = e1 + e2 + e3. (6.5)

With respect to v we find two different choices of fiber:

top: xtop =+e1 + ...+ er, (6.6)

ex: xex =−e1 + ...+ er. (6.7)
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Here, we introduced the notation “top”, for topologically twisted theories, and

“ex” for Pestun-like theories. In the next section we will show how these

two choices give rise two two different theories on the base manifold. Notice

already that xtop is along the Killing vector and thus, the reduced theory will

have a supercharge squaring to zero, as in chapter 2. This, instead, is not the

case for the choice xex which will have fermionic generators squaring to the

isometry of the base manifold.

We conclude this section considering the action of squashing and quotient-

ing on five-spheres. Starting with the former, we define squashing parameters:

ω ≡ (ω1,ω2,ω3), ωi = 1+ai ∈ R, (6.8)

where a1 = a2 = a3 = 0 corresponds to the unsquashed limit of S5 and each

squashing parameter deforms a single C-plane inside C3. Thus, the sphere,

which is embedded in C3 (6.3), is also squashed. The Killing vector (6.5)

becomes:

v = ω1e1 +ω2e2 +ω3e3. (6.9)

The important point is that the squashing is set to act only on the base mani-

fold, leaving the fiber untouched. To achieve this one sets:

top: +a1 +a2 + ...+ar = 0, (6.10)

ex: −a1 +a2 + ...+ar = 0. (6.11)

Hence, the reduction can still be performed along the fibers (6.6). In the topo-

logically twisted case we will show how a squashing acting on the base gives

rise to equivariant DW theory.

The dimensional reduction we are going to perform is achieved through

quotienting by a freely-acting Zp acting on the fibers xtop or xex:

(z1,z2, ...,zr)→ (z1e±2πi/p,z2e+2πi/p, ...,zre+2πi/p). (6.12)

The sign in the first factor is, respectively, for an action along xtop or xex. The

quotient defines a higher-dimensional generalization of lens space:

L5(p,±1)≡ S5/Zp, (6.13)

and it induces a change in the topology of the manifold, which is now not

simply connected, and thus:

π1(L5(p,±1))∼= Zp. (6.14)

Because of this, there exist p topologically inequivalent complex line bundles

labeled by flat connections:

A = diag (Am1
p , ...,AmN−1

p ), (6.15)

where 0 ≤ mi < p and i = 1, ...,N −1 counts the element in the Cartan of the

gauge group SU(N).
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6.2 Perturbative partition function on S5

A localization computation on S5 has first been performed in [49–51] and it has

been later generalized to toric Sasaki-Einstein manifolds, see [52] for a review.

The field content of an N = 1 vector multiplet consists in a gauge boson Aμ , a

real scalar σ , gauginos λi, λ̄ i and an auxiliary scalar Di j, where λi and Di j are,

respectively, a doublet and a triplet of SU(2)I . Similarly to four dimensions,

it is possible to recast the fermionic fields in cohomological variables Ψμ and

χμν , such that they do not transform under the R-symmetry. It is important to

notice that the reduction onto CP
2, which is not a spin manifold, is possible

as the cohomological variables are forms and not spinors.

The BPS locus for these theories is given by a covariantly constant scalar

σ0 and contact instantons at the three fixed fibers of S5:

F+
H = 0, ιvF = 0 ⇒ Contact instanton: �F =−κ ∧F. (6.16)

An heuristic treatment of the instanton part and its reduction to CP
2 can be

found in [19]. Here, we will focus on the perturbative partition function2 on

S5, given by:

Zpert
S5 = ∏

α∈roots
∏

n1,n2,n3≥0

(
n1ω1 +n2ω2 +n3ω3 + iα(σ0)

)

∏
n1,n2,n3≥1

(
n1ω1 +n2ω2 +n3ω3 + iα(σ0)

)
.

(6.17)

The three positive integers n1,n2,n3 in (6.17) are eigenvalues, under the U(1)3

rotation, of the modes contributing to the partition function after cancellations

due to supersymmetry.

An elegant way to express (6.17) is through multiple gamma functions [54]:

Γr(z,ω) = ∏
n≥0

(n ·ω + z), (6.18)

where ω = (ω1, ...,ωr), and multiple sine functions [55, 56]:

Sr(z,ω) = Γr(z,ω)−1Γr(ωtot − z,ω)(−1)r
, (6.19)

where ωtot = ω1 + ...+ωr. Hence:

Zpert
S5 = ∏

α∈roots
S3(−iα(σ0),ω). (6.20)

Multiple sine functions enjoy factorization properties [57].

2The full partition function also has a classical contribution whose reduction to CP
2 is briefly

discussed in Paper II, along the lines of [53].
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Moreover, for ease of notation, we will omit from the next formulae the

product in (6.17) over n1,n2,n3 ≥ 1 and the product over the roots. However,

to obtain the correct perturbative partition function, both contributions need to

be restored.

We introduce equivariant parameters ε1, ε2, related to the squashing param-

eters as:

top: ε top
1 = ω2 −ω1, ε top

2 = ω3 −ω1,

ex: εex
1 = ω2 +ω1, εex

2 = ω3 +ω1.
(6.21)

The unsquashed limit is ε top
1 = ε top

2 = 0 and εex
1 = εex

2 = 2. We will often

denote the equivariant parameters ε1, ε2 for both cases, however, they need to

be intended as defined above.

A useful rewriting is in terms of the quantum number for rotations along

the fibers (6.6):

ttop =+n1 +n2 +n3, (6.22)

tex =−n1 +n2 +n3. (6.23)

Also in this case we will denote both quantum numbers as t. Hence, we find:

Zpert,top
S5 = ∏

t≥n2+n3

∏
n2,n3≥0

(
ω1t +(ω2 −ω1)n2 +(ω3 −ω1)n3 + iα(σ0)

)

= ∏
t≥n2+n3

∏
n2,n3≥0

(
ε1n2 + ε2n3 + iα(σ0)+

(
1− ε1 + ε2

3

)
t

)
.

(6.24)

Zpert,ex
S5 = ∏

t≤n2+n3

∏
n2,n3≥0

(
−ω1t +(ω2 +ω1)n2 +(ω3 +ω1)n3 + iα(σ0)

)

= ∏
t≤n2+n3

∏
n2,n3≥0

(
ε1n2 + ε2n3 + iα(σ0)+

(
1− ε1 + ε2

3

)
t

)
.

(6.25)

At this point the two rewriting are equivalent to (6.17), however, their reduc-

tion to CP
2 will give different results, as we are going to show momentarily.

Note that the bounds on t are different in the two cases: at fixed t a finite num-

ber of n2,n3 contributes to Zpert,top
S5 while, for Zpert,ex

S5 , an infinite number of

n2,n3 contributes. Finally, these expression can be factorized in contributions

coming from the three fixed fibers of S5, employing the factorization proper-

ties of the triple sine function [57]. The precise regularization of each con-

tribution is the higher-dimensional equivalent of the computation described in

chapter 5.
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6.3 Reduction to CP
2

As discussed above, we will perform the dimensional reduction introducing a

Zp quotient along either xtop or xex. On the resulting manifolds, L5(p,±1), the

partition function localizes to a set of inequivalent flat connections (6.15):

ZL5(p,±1) = ∑
[m]

∫
dσ0e−Scl Zpert

L5(p,±1)
(σ0,m)Znon−pert

L5(p,±1)
(σ0,m), (6.26)

where the sum is over the winding numbers m = diag (m1, ...,mN−1) of the

flat connections. The crucial observation is that the quotient introduces also a

projection conditions for the quantum number for rotations along the fiber:

top: ttop =+n1 +n2 +n3 = α(m) mod p,
ex: tex =−n1 +n2 +n3 = α(m) mod p.

(6.27)

If we now take the large p limit, we find that we can simply set:

top: t = α(m),

ex: t = α(m).
(6.28)

Substituting this into (6.24)-(6.25), we find the all-flux partition function on

CP
2 for equivariant DW and Pestun-like theories:

Zpert,top
CP

2 = ∏
α(m)≥n2+n3

∏
n2,n3≥0

(
ε1n2+ε2n3+ iα(σ0)+

(
1− ε1 + ε2

3

)
α(m)

)
,

(6.29)

Zpert,ex
CP

2 = ∏
α(m)≤n2+n3

∏
n2,n3≥0

(
ε1n2 + ε2n3 + iα(σ0)+

(
1

3
− ε1 + ε2

3

)
α(m)

)
,

(6.30)

where the full partition function on CP
2 is given as a sum over flux sectors:

Z
CP

2 = ∑
[m]

∫
dσ0e−Scl Zpert

CP
2(σ0,m)Znon−pert

CP
2 (σ0,m). (6.31)

Hence, we see how flat connections on lens spaces give rise to fluxes on the

base manifold. Moreover, at each flux sector, there is a finite amount of n2,n3

contributing to the partition function, as expected for an elliptic complex. Vice

versa, we find an infinite amount of n2,n3 at each flux sector for the Pestun-

like theory, corresponding to a transversally elliptic complex. As proposed in

[18, 44] the dependence on fluxes in (6.29)-(6.30) enters through a squashing

dependent shift of the Coulomb branch parameter σ0.

A consistency check of these results is that the trivial flux sector of (6.29)-

(6.30) gives the result derived in chapter 5. At non-trivial flux, the eigenvalues

come from a slice of the original cone (n1,n2,n3) ≥ 0. The slices are per-

formed along the direction determined by the fibers xtop or xex. Examples of

these slicings can be found in Figure 6.1.
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Figure 6.1. The plots show slices at different values of t = α(m) of the octant in R3

spanned by positive (n1,n2,n3). Each plane is determined by n1 = ∓(n2 + n3 − t),
where the orientation is related to the choice of fiber used to reduce and it determines

the eigenvalues contributing at the each flux sector.

As stated above, the same procedure can be performed starting from an

N = 2 vector multiplet on S3 [58, 59] to achieve two different N = (2,2)
theories on the base manifold CP

1 ∼= S2. Lens spaces can be introduced as in

[60] and the results, at large quotienting, show agreement with known results

on S2 [45, 46].
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7. Hypermultiplet

In this final chapter, following Paper III, we will include matter coupled to the

gauge fields in the framework developed in [18, 19] and presented in chap-

ter 4. Writing the content of a four-dimensional N = 2 hypermultiplet in

terms of cohomological variables gives rise to spinors, unlike for the vector

multiplet. Hence, it is generically needed for the manifold under considera-

tion to be spin1. For example, CP2, considered previously, does not admit a

spin structure. Moreover the projector P+
ω (4.9) acting on flipping ASD/SD

two-forms comes together with a projector acting on chiral spinors which are

allowed to flip chirality at different fixed points. Similarly, as for the vector

multiplet, equivariant DW theory on S4 is obtained with left-handed spinors at

both poles while Pestun’s theory stems from a flip of the chirality between the

two poles.

7.1 Cohomological variables

We start by introducing the field content of an N = 2 hypermultiplet in d = 4,

as in chapter 2, and then switch to cohomological variables. Hence, let us

consider a single2 hypermultiplet containing a scalar qi, transforming in the

fundamental of SU(2)I , spinors ψα , ψ̃α̇ and auxiliary fields Fî, in the funda-

mental of an SU(2)Î-symmetry3. Here, the SU(2)Î bundle is in general distinct

from the SU(2)I bundle and it is required to write off-shell transformations.

More details can be found in Paper III and Appendix A. The fields are then

expressed in terms of cohomological variables as follows:

q =

(
ζ iqi
χ̄ iqi

)
, c =−1

4

(
sψ − vμσμψ̄
s̃ψ̄ + vμσ̄μψ,

)
, (7.1)

and:

b =
1

4

(
s̃ψ − vμσμψ̄
−sψ̄ + vμσ̄μψ

)
, h =

s+ s̃
2

(
ζ̂ i

ˆ̄χ i

)
Fî +(...)q, (7.2)

1Discussion on spinc structures can be found, for example, in Paper III.
2Generalization to n hypermultiplets transforming in the fundamental of Sp(n) is straightfor-

ward.
3Reality conditions for the bosons are: (qi)

∗ = qi and (Fî)
∗ = Fî.
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where v is the Killing vector and we refer again to Appendix A for definitions

of s, s̃ and of the Killing spinors ζ̂ i, ˆ̄χ i, ζ i, χ̄ i. Plus fixed points (ASD) are

such that s̃ = 0 and ˆ̄χ i = 0 while, vice versa, at minus fixed points (SD) s = 0

and ζ̂ i = 0. Moreover, the dots in the definition of h in (7.2) stand for a depen-

dence on the supergravity background fields, as discussed in Paper III. It can

be shown that these maps have a smooth inverse. Hence, the cohomological

fields for an hypermultiplet turn out to be Grassmann-even fermions q,h and

Grassmann-odd fermions b,c. Moreover, imposing reality conditions on qi, Fî
and the Killing spinors, one finds:

(h)∗ =−h̄− (...)q̄,
(q)∗ = q̄,

(7.3)

where the term in the dots is computed using reality conditions on the super-

gravity background fields, see Paper III.

In terms of cohomological variables, the supersymmetry transformations

are given by:

δq = c, δc = (iLv −GΦ)q,
δb = ih, δh = (Lv + iGΦ)b,

(7.4)

where GΦ acts on the variables according to their representation. For example:

GΦ q = i[i(ιvA)+φ ]q. (7.5)

Thus, δ acts on the cohomological fields as:

δ 2 = iLv −GΦ, (7.6)

and here no R-symmetry transformations appears, due to the definitions (7.1)-

(7.2).

Moreover, the N = 2 Lagrangian is found by taking the variation of a

fermionic potential:

L hyper = δVG, (7.7)

whose explicit expression can be found in Paper III.

7.2 Projector

Counting the degrees of freedom of the cohomological variables (q,c,b,h) one

finds that these exceed those of the original content of an N = 2 hypermulti-

plet. Thus, one expects that the cohomological variables need to satisfy certain

conditions. Therefore, the idea is to define flipping projectors, as for P+
ω and

two-forms, but for Dirac spinors on a four manifold M with a T 2-isometry
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and a Killing vector with isolated fixed points. Such projector would have to

approach the left/right-handed projectors:

L =
1

2
(1+ γ5), R =

1

2
(1− γ5), (7.8)

respectively at plus/minus fixed points where s = 0 or s̃ = 0. Hence, one finds:

Z+ =
1

2

(
1+

s− s̃
s+ s̃

γ5 − 2

s+ s̃
vμγ5γμ

)
, (7.9)

whose image comprises spinors which are in the image of L when s = 0 and

in the image of R when s̃ = 0. Because of the definition of the Killing spinors

(A.3)-(A.4), one finds:

Z+

(
ζ i

χ̄ i

)
=

(
ζ i

χ̄ i

)
, (7.10)

which shows the strict relation between supersymmetry and the projector (7.9),

similarly as for the projector P+
ω of chapter 4.

Perhaps the most intuitive way to understand this projector is in its rela-

tion with P+
ω . Let us consider Dirac spinors Ψ1,2 = Z+Ψ1,2. Then, one can

construct a two-form as follows4:

Λμν = Ψ̄2γμνΨ1 = ψ2σμνψ1 + ψ̃2σ̄μνψ̃1. (7.11)

One can check that this two-form satisfies:

P+
ω Λ = Λ. (7.12)

Also it possible to construct related projectors as follows:

Z− = 1−Z+, Z̃+ = γ5Z+γ5, Z̃− = 1− Z̃+. (7.13)

Moreover, due to (7.10), one finds that q and c are in the image of Z+

projector:

Z+q = q, Z+c = c, (7.14)

while b and h are in the image of Z̃−:

Z̃−b = b, Z̃−h = h. (7.15)

The action of supersymmetry (7.4) commutes with the projectors as the vector

appearing in Z+ (7.9) is the Killing vector.

4The spinors ψα and ψ̃α̇ are the two components of the Dirac spinor. Check appendix A of

Paper III for more extensive treatment of conventions.
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7.3 One-loop determinant

The BPS locus of an N = 2 hypermultiplet is found imposing supersymmetry

transformations (7.4) and reality conditions (7.3):

b = h = c = h = 0. (7.16)

To localize the partition function we use:

V hyper
loc =

8

(s+ s̃)2
[(δb)∗b+(δc)∗c]

=
8

(s+ s̃)2

(
δ̄q, q̄

)(D00 D01

D10 D11

)(
q
δb

)
.

(7.17)

as deformation term. The relevant operator is D10, which fails to be elliptic

at points where s̃ = s, but it turns out to be transversally elliptic with respect

to the Killing vector v. Moreover, the symbol complex σ(D10) approaches

either ∂̄ or ∂ respectively at left/right chirality fixed points. Unlike the vector

multiplet, there is no contribution of the complex conjugate operator.

The one-loop determinant can be computed using the formalism introduced

in chapter 5, that is to use to Atiyah-Bott formula (5.1) at each fixed point

being careful of patching properly all contributions. We assume the patching

can be carried along the lines of chapter 5, even if a formal treatment of this

would require a trivialization of the symbol complex of the hypermultiplet.

Therefore, at plus fixed points, we need to compute:

det(1−d f ) =
1

(1− t1)(1− t2)
,

χeq(E•
pi
) =

√
t1t2.

(7.18)

Combining these contributions, one finds:

index(D10)|pluspoint =

√
t1t2

(1− t1)(1− t2)
. (7.19)

Similar expressions can be found at minus fixed points, being careful of per-

forming the same flip of infinitesimal weight α1 →−α1, as in chapter 5.

Hence, for a generic distribution of plus/minus fixed points, we find:

index D10 = ∑
l∈M2

2

∏
k=1

⎛
⎜⎝
√

t−α(l)
k

1− t−α(l)
k

⎞
⎟⎠

sl

. (7.20)

This expression, which holds for the perturbative partition function of an N =
2 hypermultiplet, is the equivalent of (5.36) for an N = 2 vector multiplet.
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As an example, we can compute the equivariant index of a Pestun-like the-

ory on S4 [17, 36]. The weights can be read from chapter 5, hence one finds:

indexD10 = t−1
2

(
1

1− t1t−1
2

)+(
1

1− t−1
1 t−1

2

)+

+ t−1
2

(
1

1− t1t−1
2

)−(
1

1− t−1
1 t−1

2

)−
.

(7.21)
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Appendices
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A. Supersymmetry on curved manifolds

The Killing spinors associated to the supersymmetry transformations are a pair

of spinors ζ i
α and χ̄ α̇

i which satisfy:

(ζiα)
∗ = ζ iα , ζ iζi =

s
2
,

(χ̄ α̇
i )

∗ = χ̄ i
α̇ , χ̄ iχ̄i =

s̃
2
,

χ̄ iσ̄ μζi =
1

2
vμ .

(A.1)

Notice then that the square norm of the Killing vector is:

||v||2 = ss̃, (A.2)

so that either s or s̃ vanishes at the fixed points. In particular, we label plus

fixed points those where s = 0 and minus ones where s̃ = 0.

We consider an open cover of M, ∪i=lUl =M, where each patch is equipped

with a local frame ea
l and each fixed point is contained in a single Ul . The

frames, in the overlap Ul ∩Uk, are related by an SU(2)L ×Z2
SU(2)R trans-

formation. A Killing spinor for topological twisting, discussed in chapter 2, is

found identifying SU(2)I and SU(2)R. It is globally defined and its expression,

in each patch, is (ζt)
i
α = δ i

α .

In patches were s does not vanish, we can find spinors satisfying (A.1):

ζ i =

√
s

2
ζ i

t , χ̄i =
1

s
vμσ̄μζi. (A.3)

Similarly, on patches where s̃ = 0, solutions of (A.1) are given by:

ˆ̄χi =−i
√

s̃
2

δi, ζ̂i =−1

s̃
vμσμ ˆ̄χi. (A.4)

In an overlap between two patches containing ± fixed points, solutions of

(A.3) and (A.4) are related by an SU(2)I transformation:

χ̄ =U j
i

ˆ̄χ j, ζi =U j
i ζ̂ j, U j

i = i
vμ

||v||σ
j

μi . (A.5)

Surrounding a fixed point with s = 0 with a small three-sphere Σ, the map

U j
i from Σ to SU(2)I is non-singular and of degree one. Hence, moving
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between patches with different fixed points, the Killing spinor first transforms

under the SU(2)I transformation (A.5), and second under the transformation

associated to topological twisting. Spinors constructed as above are smooth on

M. Moreover, it is shown in [18], that they solve the Killing spinor equations

arising from the appropriate rigid supergravity background on M.

Finally, in order to write N = 2 off-shell transformations, we need to add

auxiliary spinors ζ̂ i
α and ˆ̄χα̇

i satisfying:

(ζ α
î )∗ = ζ î

α , ζîζ
î =

s̃
2
,

(χ̄ îα̇)∗ = χ̄îα̇ , χ̄îχ̄
î =

s
2
,

χ̄ îσ̄ μζî =−1

2
vμ ,

ζiζî −χiχî = 0.

(A.6)

Moreover, they transform under SU(2)L ×Z2
SU(2)Î and SU(2)R ×Z2

SU(2)Î .

In the general the bundles SU(2)I and SU(2)Î are not identified. More details

can be found in Paper III.
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Svensk Sammanfattning

Uppkomsten av kvantfältsteori under 1920-talet, en teori som kombinerar kvant-

mekanik och speciell relativitetsteori, tillät fysiker under andra hälften av sek-

let att ena tre (elektromagnetism och svag samt stark växelverkan) av de fyra

fundamentala krafterna i partikelfysikens Standardmodell. Sedan dess har den

stora utmaningen för teoretiska fysiker varit att också inkludera gravitation,

och därmed allmän relativitetsteori, tillsammans med de tre andra krafterna i

ett och samma ramverk.

Det är välkänt att om gravitation behandlas som en kvantfältsteori leder

detta till svårhanterliga divergenser. En möjlig lösning kom dock från sträng-

teori, en teori först utvecklade i slutet av 1960-talet och början på 1970-talet

som en, icke-framgångsrik, modell för hadroner. Huvudiden bakom sträng-

teori är att ersätta punktpartiklar med vibrerande öppna och slutna strängar.

Det är viktigt att notera att strängteori har en naturlig lågenergigräns där den

karakteristiska längdskalan av en sträng är liten och, effektivt, liknar en par-

tikel vilken kan beskrivas av en approximativ kvantfältsteori. Därmed måste

strängteori ses som en högenergikomplettering av kvantfältsteori. Dessutom

beskriver en av strängvibrationerna i punktpartikelgränsen en masslös spin

2 partikel: gravitonen. ännu mer intressant är att strängens karakteristiska

längdskala ger ett enkelt sätt att bota de tidigare nämnda divergenser som up-

pkommer när gravitation naivt beskrivs som en kvantfältsteori.

Två ytterligare ingredienser i strängteori är extra dimensioner samt super-

symmetri, en symmetri som relaterar bosoniska och fermioniska frihetsgrader.

I synnerhet lever en konsistent teori med supersymmetriska strängar i tio di-

mensioner vilket leder till den naturliga frågan hur vi bör hantera de sex extra

dimensioner vi inte upplever i vår vardag. Den enklaste lösning är att tänka

sig att dessa extra dimensioner är så små att de har en negligerbar påverkan på

den fyra-dimensionella rymdtid vi upplever i vårt vardagliga liv.

Denna avhandling behandlar dock främst den andra aspekten av strängteori:

supersymmetri. Uppenbarligen är supersymmetri bruten vid de energiskalor

vi möter i vår vardag och även vid de energinivåer som kan nås i partikelaccel-

eratorer som LHC. Oavsett antags det vanligtvis att den energinivå vid vilken

supersymmetri bryts är lägre än den energinivå vid vilken strängar ej längre

kan approximeras med punktpartiklar. Det är därmed av yttersta vikt att förstå

supersymmetriska kvantfältsteorier. Utöver motivation från strängteori är su-

persymmetriska kvantfältsteorier också av intresse på grund av deras funda-

mentala natur. Supersymmetri ger mer kontroll över fysiska observabler och

har därmed också varit till hjälp för att förstå aspekter av vanliga kvantfältste-

orier.
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Den extra struktur som ges av supersymmetri gör det möjligt att studera

skyddade fysiska observabler under deformationer av den underliggande su-

persymmetriska kvantfältsteorin och i vissa fall kancellerar bidrag från olika

sektorer varandra på grund av supersymmetri och kvantiteter kan bestämmas

exakt. Detta är avhandlingens huvudämne. Mer specifikt behandlas exakta

beräkningar för partitionsfunktioner för N = 2 supersymmetriska kvantfält-

teorier på en klass av fyradimensionella mångfalder som tillåter en T 2 isometri

och isolerade fixpunkter.
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