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1. Introduction

Quantum field theory (QFT) of gauge fields coupled to matter has had tremen-
dous success in describing three (electromagnetic, weak, strong) of the four
fundamental interactions and incorporating them in the Standard Model of
particle physics. The success of QFT has a natural explanation as it is a
framework combining special relativity and quantum mechanics. The study
of its supersymmetric version (SQFT) started in the early seventies [1—4] and
soon after a classification of super Yang-Mills (SYM) theories in different
dimensions appeared [5]. These theories have been later extensively consid-
ered because of string theory considerations and as options for models beyond
the standard model. The extra structure given by supersymmetry enables to
(i) constrain protected physical observables under deformations of the SQFT
and, in some cases, (ii) large cancellations due to supersymmetry occur and
quantities can be exactly determined.

To introduce these two concepts, we will review one of the simplest, and
earliest, example. This is the Witten index [6], a topological quantity counting
the difference between bosonic and fermionic zero energy states in a super-
symmetric theory and which can be used to establish whether the ground state
of a theory preserves supersymmetry. The motivation is that the ground state
of a theory is supersymmetric if and only if its energy vanishes exactly, thus a
non-zero Witten index determines that the ground state is supersymmetric. Let
us then take a supersymmetric theory in a d-dimensional Euclidean finite vol-
ume V with periodic boundary conditions both for bosons and fermions and a
Hilbert space 7#. The periodic boundary conditions, forced by supersymme-
try, ensure that the finite volume is effectively a torus 79! x Sllg, where B is
the circumference of the Euclidean time circle.

Let us assume, for simplicity, that the theory possesses a single Hermitian
supercharge O, whose superalgebra, restricted to the subset of states with zero
momentum! P = 0, is given by:

0*=H, (1.1)

where H is the Hamiltonian of the theory and we have chosen properly a pos-
sible additive constant in H. If we define |Q) the ground state of the theory,
we find:

(QIH|Q) = (Q|@*|2) =102 |I* (1.2)

I'Without loss of generality, we can consider massive and massless particles in the rest frame
where, respectively, P, = (E,0,...,0) and P, = (E,0,...,0,E). Hence zero energy states need
to have P = 0.



Thus the ground state is supersymmetric, Q|Q) = 0, if and only if its energy
is zero.
The Witten index is defined as:

Iyisten = Tr(—1)F e PH = Ty ¢2%iee=BH. (1.3)

The operator (—1)F acts on bosonic and fermionic states as >z |b) = + |b),
e*™z| f) = —|f). For a non-supersymmetric theory (1.3) could get contribu-
tions from an infinite number of states. However, the claim is that the Witten
index only counts the difference between the number of bosonic and fermionic
zero energy states and thus it can be used to determine whether a ground state
is supersymmetric. The action of Q on bosonic and fermionic states is:

Q|by=VE|f),  Ql|f)=VE|b). (1.4)

Hence, as [Q,H| = 0, all states come in pairs with the same energy, except
for those with vanishing energy. The latter states then form a small multiplet
with half (one) the dimension of the multiplets above the ground state”. Thus,
large multiplets give vanishing contribution to the Witten index (1.3) which
then only counts:

Iwitten = Tr(—l)Fe_ﬁH =ng—nr, (1.5)

where ng,np are the number of bosonic and fermionic zero energy states, re-
spectively. This example shows how large cancellations occur in supersym-
metric theories making the computation of some observables much easier (ii).
Moreover, a non-zero Witten index means that supersymmetry is unbroken as
there are zero energy states. Instead, using the Witten index to prove that the
ground state breaks supersymmetry is harder, as a zero Witten index might be
due to either ng = np # 0 or ng = np =0.

If one is able to compute the Witten index in a certain region in the pa-
rameter space of the theory, a natural question is to ask how it changes under
deformations. It turns out that the pairing (1.4) also constrains the behaviour
of the Witten index under deformations of the theory. A large multiplet can
generically change its energy under a deformation and even acquire zero en-
ergy for some particular values of the parameters. If this happens, the large
multiplet splits into two small multiplets of opposite eigenvalue under (—1)F,
therefore not contributing to the Witten index. Vice versa, a bosonic small
multiplet can get non-zero energy under a deformation only together with a
fermionic small multiplet, so that they can form a non-zero energy large mul-
tiplet. An example of these deformations can be obtained taking the large
volume limit V — oo. If the energy of a state is zero, its large V limit is again
zero>. Hence, under certain deformations, the Witten index is left unchanged.

2Small supersymmetric multiplets are usually named BPS multiplets, after Bogomol’nyi [7],
Prasad and Sommerfield [8].

3Note however that the converse is not true, so supersymmetry can be broken at finite V and
restored in the infinite volume limit.



We see then how observables can be protected under deformations because of
the extra constraints given by supersymmetry (i).

The quantity (1.3) we are considering is strictly related to the mathematical
concept of index of an operator. To show this, it is enough to split the Hilbert
space into its bosonic and fermionic components .77 = #p & .#%. With re-
spect to this decomposition the supercharge Q acts as:

0 Mt
Q=<M 0>, (1.6)

where M" is the adjoint of M as Q is Hermitian. Zero energy states in .J#
have zero eigenvalue under H|y) = Q?|y) and thus also under Q. There-
fore, bosonic small multiplets in .73 satisfy M |b) = 0 while fermionic ones
M |f) = 0. Hence, the Witten index is given by:

Lwitten = ker M — ker MT, (1.7)

which is the definition of the index of an operator [9]. We will encounter again
the interplay between supersymmetric theories and indices of (transversally)
elliptic operators later in the thesis.

The properties (i)-(ii) discussed above for the Witten index are a common
feature of supersymmetric theories. Supersymmetric localization relies heav-
ily on these features and it has been employed, over the years, to compute
exactly protected observables in supersymmetric theories of increasing com-
plexity. The main idea is to deform the theory, without affecting the value of
certain protected observables, to a region where exact computations are sim-
pler. For example, in some cases, observables are protected under the RG flow
connecting a strongly coupled region to a weakly coupled one. Because of
this independence, it is possible to employ weakly coupled computations to
describe observables in a strongly coupled region. Moreover, supersymmetry
makes these computations much more tractable, giving a certain control also
over non perturbative contributions. For reviews of supersymmetric localiza-
tion, see [10, 11].

In Part I of this thesis we introduce the localization technique applied to
A =2 super Yang-Mills theories, reviewing some of the major advances in
the field. The earliest localization computation has been employed by Witten
in relation to Morse theory [12] and for the topological sigma model in two
dimensions [13]. As we want to focus on gauge theories, the first example
we consider in chapter 2 is that of topologically twisted ./~ =2 SYM [14].
Later results include the seminal paper by Nekrasov [15], which we introduce
in chapter 3, computing the .#" = 2 SYM partition function as an integral
over the moduli space of instantons in the Q-background Cgm. Nekrasov’s
computation is performed in the UV weakly coupled region and it is shown to
match, in a certain limit, the Seiberg-Witten prepotential [16] computed in the
IR strongly coupled region.



Relying on [15], Pestun computed the full partition function for .4~ =2
SYM on $* [17]. To introduce this result we employ, in chapter 4, a modern
approach proposed in [18, 19] which includes both Pestun’s theory and topo-
logically twisted SYM as two particular instances of a unique framework, also
applicable to a more general class of four-dimensional compact manifolds.

The goal of the first part is to introduce some background material needed
to understand the works presented in Part II. First, in chapter 5, following
Paper I, we provide a formal treatment of the perturbative contribution of the
partition functions considered in the framework of [18, 19]. Then, in chapter 6,
we discuss how fluxes enter these partition functions, focusing on the case of
CIP? studied in Paper II. Finally, chapter 7 is based on Paper III, where it is
shown how to include .#” = 2 hypermultiplets coupled to gauge theories.
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Part I:
Background






2. Topological Twisting

The work of Witten [14] for the topological subsector of twisted .4 =2 SYM
in d = 4 has been a first step towards computing exact observables in SQFTs,
including non-perturbative contributions. Supersymmetry is present through a
scalar supercharge, acting like a BRST operator. The idea is to deform the the-
ory to a weakly coupled region employing the independence of supersymmet-
ric, or BRST closed, observables under a rescaling of the Yang-Mills coupling
constant g%, v (). In this region, only small perturbations around classical so-
lutions contribute to the path integral, which then simplifies to a sum over
instanton sectors, reducing the complexity of computing observables (ii). Re-
markably, the work of Witten gives a physical interpretation to Donaldson’s
study of smooth four manifolds [20] employing the moduli space of anti-self-
dual field strengths. Thus, topologically twisted ./~ = 2 will often be denoted
Donaldson-Witten (DW) theory.

2.1 Action

Following [14], we take d = 4 Euclidean space with SU(2);, xz, SU(2) rota-
tion group and an .4 = 2 vector multiplet with gauge group G, whose on-shell
field content is that of a gauge boson A, scalars ¢, ¢ and gauginos l,-a,létl.
Both the scalars and the gauginos transform in the adjoint of the gauge group.
The theory also has internal symmetries SU(2); x U(1)y under which A;¢ and
Al transform in the fundamental representation of SU(2); and with =1 charge
for the U(1)y rotations.

On top of the bosonic symmetries we also want to define a fermionic sym-
metry. In flat space it is possible to write an .#” = 2 Lagrangian invariant under
supersymmetry transformations generated by § = Q'¢;, where & is a constant
Killing spinor? solving:

du€i =0. (2.1)

As we will be interested in generic four-manifolds, we need to replace the
derivatives with covariant ones. However, covariantly constant spinors do

'Here we are employing the standard notation of denoting ¢, ¢& indices of SU(2); and SU (2)r
respectively.

2The Killing spinor will be, in general, a linear combination of two spinors of opposite chirality,
thus it transforms under both SU (2);, and SU(2)g. However we will omit spinor indices.
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not exist on generic four manifolds and writing down supersymmetric La-
grangians is often quite complicated®. To tackle this issue in general one has
to couple SYM to a rigid supergravity background, a technique pioneered in
[22].

The trick employed by Witten to circumvent this problem is to introduce a
twisting of the isometry group of flat space, obtained taking the diagonal sum
SU(2)k C SU(2)g x SU(2);. The gauginos A;q, AL, transform, under SU (2), x
SU(2)g x U(1)y, as a one-form Wy, a self-dual two-form ., and a scalar n:

(1/2,1/2) & (0,1)"' & (0,0) 71, (2.2)

where the exponents label the U(1)y charges. The same splitting occurs for
the Killing spinor ¢;. If we now keep only the constant anti-commuting scalar
component, which we denote €, we have that € solves:

due =0, 23)

on every four manifold*. We can use this result to define a scalar fermionic
generator Q, such that 9% = 0, reminiscent of a BRST-like operator, defining
physical states as equivalence classes of Q-closed states modulo O-exact ones.
Supersymmetry transformations with constant parameter € are:

} 1
O =2ien, on =0, 9], 2.4)
1
6%/.1\/ - S(F’uv + Egl.leGFpG)a

defining the field strength as F,y = dyAy — dyAy +[Ay,Ay]. A supersymmet-
ric Lagrangian can be written as follows:

1 1
L =+Tr ZFM#” +59DuDH @ —inDy P + iDy Wy "+

(2.5)
i

1
§¢[n,n]—§[¢,¢]2 .

— g0t 2" = SAIR W]
It is possible to check that the Lagrangian is supersymmetric under (2.4) on
any orientable Riemannian four-manifold, not only flat space. In non-flat
backgrounds the Riemann tensor can appear as the commutator of covariant
derivatives in the variation of .. However such commutator appears only
acting on scalars ~ [Dy, Dy]¢, thus not creating any problem.

3For an early attempt on spheres of diverse dimensions, see [21].

4From a rigid supergravity point of view, the twisting is obtained turning on a background field
in the SU(2); R-symmetry, chosen such that it cancels the contribution of the spin connection
in the covariant derivative.

14



2.2 Stress-energy tensor

We now show that the stress energy tensor 7y, can be written as a BRST
anti-commutator, a key ingredient in defining Witten-type topological field
theories (TFTs). The definition of 7}, follows from the variation of the action
S = [y /8- under an infinitesimal metric transformation:

55 = % /M VeS8 Ty, (2.6)

The stress-energy tensor turns out to be a complicated function of the vector
multiplet fields. As expected, on the equations of motion, one finds that 7,y is
conserved:

D,TH =0. 2.7
Moreover the trace of the stress-energy tensor is given by:
where:
RM =Tr[pD" ¢ —2in'P*]. (2.9

Because of this, under a generic conformal transformation 6g"" = w(x)g"",
the variation of the action (2.6) does not vanish:

1 1
65 =7 | VEwWe T =7 [ VewwDuR! £0. (210

However, for a constant function w, one finds 65 = 0, and the action is invari-
ant under a global rescaling of the metric. Similarly, taking the manifold to be
flat space and transforming the coordinates as dx* = wx*, one finds, because
of (2.8), that the corresponding current is conserved:

DyS* =0,  SH=THx, —RM. @2.11)

The insight of Witten was to realize that the stress-energy tensor, even if it
does not vanish as in Schwarz-type TQFTs®, can be written as a BRST anti-
commutator:

Tuv = {Qaluv}; (2~12)

where:
1 p p 1 poc
A,uv :ETr(Fppr +vax,u - EgH.VFPGX )+

1
+5Te(¥uDy@ + YD @ —guv¥pDP @)+ (2.13)

+8u (09, 0)

>When computing variations under a change in the metric one has to be careful that the self-dual
condition on yy is preserved

5Chern-Simons theory is an example of Schwarz-type TQFT where the metric does not appear
anywhere in the theory [23].

15



Equation (2.12) will prove crucial in showing that the partition function is a
topological invariant.
Similar considerations hold also for the Lagrangian (2.5):

{0,v}=<, (2.14)
where:
L =L+ %TrFqu“v, FHY = %e“VPonG (2.15)
and: | | |
V= ZTrF,Wx“" + E‘PMD“(p - ZTr(n [¢0,0]). (2.16)

In deriving (2.14) one needs to use the equations of motion for . Moreover,
the term added in .Z is a topological invariant labeling instanton sectors by
their charge k € Z. We denote S’ the action computed using .#’. As the
term added is topological, the considerations above regarding infinitesimal
transformations are left untouched.

2.3 Partition function

This section is aimed at showing that the partition function is a topological in-
variant due to the stress-energy tensor being a BRST anti-commutator. More-
over, the partition function computes a certain class of Donaldson invariants
of smooth orientable four manifolds [20].
The expectation value of a generic operator & is given by the following
path integral:
~ - 5lx]
2(6) = / (ZX)e S 0. 2.17)
Here, the action is determined by the Lagrangian (2.15) and the integration
measure (ZX) is defined over the fields of the vector multiplet (A, ¢, ¢, n,¥, x).
The integral (2.17) does not depend on the supersymmetry parameter € as
the integration measure is supersymmetric. Thus:

: - ——S'[X]
2(6) = Z:(6) = / (ZX)exp(eQ)-¢ Su - 6. 2.18)

Moreover, expanding exp(£Q) and using that the Lagrangian is supersymmet-
ric, we find:
Ls'[x

ze(ﬁ):/(gx)[% o1e10,0Y). (2.19)

Therefore we conclude:

1

/ —>—S'[X] B
(ZX)e 9m {0,060} =0. (2.20)

16



The statement that the expectation value of a BRST anti-commutator van-
ishes can be used to show that the partition function is a topological invariant.
Under a change in the metric, the variation of the partition function can be
implemented by inserting an operator (2.6):

1 1 1
———08685=— / g6g"VT, :—{Q,/ gog"v A }
812/1\4 2812/M M ve w 2g12/M M ve .
(2.21)
From this we conclude’:
———5'[x] 1 .,
67=[(7x)e Fu” "~ 5-55') =0, (2.22)
8ym

Similarly, varying the partition function with respect to the Yang-Mills cou-
pling is obtained inserting the BRST anti-commutator {Q,V}. Hence, the
partition function is also independent of g% - as long as g%, y 7 0, similarly to
what we have discussed above for the Witten index.

To compute the partition function we will use its independence of the Yang-
Mills coupling and take the limit glz, u — 0, where the theory is weakly coupled
and the path integral is dominated by the classical minima of the action. These
are classified considering the action for the field strength Fj;y:

1 . 1 _ .
T (FuvF* + F*VEyy) = 3T (Fuv + Euy) (F*Y + FHY) (2.23)
which is positive semi-definite and vanishes if and only if:

Fuv — _Fuv. (2.24)

While strictly speaking these are anti-self-dual anti-instantons, the author of
[14] calls them instantons as “it would be tiresome to call them anti-instantons”
and we will follow this convention. Substituting for (2.24) and setting ¢, ¢, 1,
Y, X to zero in (2.4), one finds that these configurations are supersymmetric.
As the Lagrangian .’ is Q-exact (2.14) and positive definite, it is consistent
that configurations minimizing the action are supersymmetric.

On manifolds where non-trivial solutions to (2.24) exist, the instantons can
have a moduli spaces of solutions .# of dimensions different than zero. We
postpone till later the treatment of these cases where, due to the existence of
fermionic zero modes, one has to modify the observables under considera-
tion. Thus, we assume that gauge bundle over the manifold is such that the
dimension of the instanton moduli space vanishes and that the instantons are
discrete and isolated solutions. Hence, for an arbitrary instanton sector and
very small g7,,, we can expand the Lagrangian (2.15) at quadratic order in the
fields @ = (Au, ¢, ¢) and Q = (N, ¥y, Xuv), and find:

"Here we assume that the measure (2X) is invariant under a transformation of the metric.

17



Here, Ap and Dp are, respectively, second and first order operators. A property
of Ag, is that, replacing the highest order derivatives in Ap with vector fields
&, we can find a polynomial og (Ag), the principal symbol of Ap, such that
0¢ (Ap) is an isomorphism for non-zero &. This, by definition, shows that Ag
is an elliptic operator.

The partition function, at an arbitrary instanton sector, is then given by
bosonic and fermionic Gaussian integrals:

7 Pf(Dr)
k= [ ZXe det(Ap)

We have been able to reduce to a Gaussian integral a complicated integral
over the infinite-dimensional configuration space of the fields in the vector
multiplet. In doing so, we have employed the independence of the partition
function under a change in g% - due to the Q-exactness of the Lagrangian .Z”.

In determining the partition function Z; we are helped again by supersym-
metry. We have shown previously that the supersymmetry transformations
vanish on Fy, satisfying (2.24), with all other fields in the (twisted) vector
multiplet vanishing. Therefore for every eigenvalue A of DpQ = AQ, there
exists an eigenvalue of a bosonic field Agd® = A2®. This observation hugely
simplifies the ratio of determinants and we find:

Ai
Z==+]] )
i VI
The overall uncertainty in the sign is due to a choice of orientation on the
manifold.
Ignoring the overall minus sign, we can compute the full partition function

of the topological subsector of .4 =2 twisted SYM as a sum over instanton
sectors:

(2.26)

(2.27)

z:;zk :;(—1)% (2.28)

As we have shown above the partition function is a topological invariant and
it can be shown to match a particular class of Donaldson invariants, defined
for gauge bundles over M with vanishing dimension of the moduli space of
instantons.

2.4 Non vanishing moduli space

So far we have considered zero-dimensional instanton moduli spaces. Let
us now assume that the space is not trivial: d(.#) # 0. Thus, around each
anti-self-dual connection there exist d(.#) flat directions such that, if A is an
instanton gauge field, there will exist deformations A + 6A which will again
solve the anti-self-dual condition (2.24):

18



In order to obtain physically inequivalent configurations, we impose that A
is not obtained only through a gauge transformation. Hence, we demand the
following gauge condition:

Dy 8A* =0. (2.30)

Because of supersymmetry (2.4), we expect to have also fermionic zero-modes.
Indeed, solving for ) and 7, one finds:

2.31

But these are exactly the equations above which we assumed to have d(.Z)
solutions. Finally, the index theorem [9] says that the number of W zero modes
minus the zero modes of (1, ) is exactly d(.#'). Therefore there cannot be
any zero mode for (1, %).

If we were to compute a partition function as above, we would find that
it vanishes due to the presence of fermionic zero modes. The reason is that,
while the Lagrangian (2.5) is U(1)y symmetric, this is not the case for the
integration measure (ZX ), which transforms with —d(.#) weight. The lack
of invariance happens as only zero modes of W are present and these have +1
charge under the U (1)y. However, there is a straightforward method to absorb
the zero modes and define a meaningful observable:

ff’

7(0) = / (Z2X)e im0, (2.32)

where the operator & is chosen so that it has a U(1)y charge equal to d(.#).
One can check that (2.32) is a non-trivial topological invariant if:

{0.0)=0 and O #{0.p).
Sgﬁ = {va/}’

where the condition on the second line is the variation of & under a change in
metric. Operators satisfying these conditions are gauge invariant polynomials
in the scalar field ¢, as Tr¢>, Tr¢* and higher even powers in ¢. The amount
of independent operators depend on the gauge group under consideration.

As an example, we consider SU (2) gauge group and a manifold M such that
d(') = 4k. The rank of SU(2) is one and thus the only independent operator
inserted at a point p € M is:

(2.33)

]
Wi, = ETNPZ\p, (2.34)

whose charge under U(1)y is four. Therefore, we can define topological in-
variant correlators as follows:

_%ﬂ k
z(k):/(@x)e i -TIW - (2.35)
i=1

19



Following a similar logic one can define topological invariants for any value

ofd(A).
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3. Nekrasov Partition Function

The derivation of Seiberg and Witten (SW) [16] of the low-energy exact pre-
potential of 4" =2 SU(2) SYM relied on the Kihler structure of the moduli
space of vacua and on a version of Montonen-Olive [24] duality for .4 =2
theories. In the following years there were many attempts to derive the SW
prepotential in the UV weakly coupled region of an SU(N) gauge theory. In
this region the prepotential can be expanded as a sum of perturbative and non-
perturbative contributions:

N N= i N-l o (ai—a)? A2NK 4
ﬁ‘:ﬁzanﬁ-f Y. (ai—aj)*log 2] +22k (a). (3.1

m=1 1<i<j

Here a = (ay,...,ay—1) is the vacuum expectation value of the scalar in the
vector multiplet and A is a renormalization invariant dimensionful parameter.
Also, the first two terms account for classical and one-loop contributions while
the last term is a sum over non-trivial instantonic sectors.

As discussed in the previous chapter for the topological subsector of A" =2
SYM, instantons, in general, have a moduli space of solutions. The ADHM
(Atiyah, Drinfeld, Hitchin and Manin) [25] construction described the mod-
uli space of instantons .#J x as a quotient of a hyperkéhler manifold. One can
then use supersymmetry to reduce the path integral over the infinite-dimensional
field configurations space to an integral over the moduli space of instantons,
similarly as for topologically twisted ./~ =2 SYM. Early attempts at com-
puting (3.1) were semi-classical computations around a fixed instanton back-
ground. In the simplest cases they could successfully match some coefficients
F*(a) in (3.1). However, these techniques become less efficient for high in-
stanton number or high rank of the gauge group, when the instanton moduli
space becomes extremely complicated. A comprehensive review for this ap-
proach can be found in [26].

The crucial insight by Nekrasov [15, 27] was to modify Witten’s localiza-
tion computation [14] using also the the one-form supercharge G, appearing
after the twisting of the isometry group. The deformation is such that it re-
duces the integration domain in the path integral to the fixed points of .Zy x
under the U(1)? Cartan of the SO(4) isometry group!. This hugely simplifies
the computation and the partition function, in a particular limit, shows exact
agreement with the low-energy prepotential .# (3.1).

I'The fixed points are in general not isolated and one has to consider a non-commutative defor-
mation to find a discrete set of fixed points.
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A complete review of the derivation of Nekrasov partition function goes
beyond the scope of the present work. Thus, in this chapter, we only review
some aspects which are more important for the rest of thesis. The Nekrasov
partition functions will then be used as building block for partition functions of
A =2 SYM theories on compact manifolds [18, 19] which will be considered
in the next chapter.

3.1 ADHM construction

In this section, rather than following the original work [25], we will take the
opposite approach [28] and show how ADHM equations arise from solutions
of the anti-self-dual condition (2.24). The first step will consist in formulat-
ing F = —x F, a second order partial differential equation, into the equivalent
problem of solving a first-order Dirac equation, after identifying the spinor
bundle with that of holomorphic differential forms. Second, we will find so-
lutions of the Dirac equation which will be used, eventually, to describe the
moduli space of instantons as algebraic equations describing an hyperkéhler
manifold.

Let us start considering the SU(N) YM action on R* = C?, with metric
ds* = dz1dz) +dzdz:

1 10
Lsym :T/TI‘F/\*F-FL/TI'F/\F

(3.2)
/Tr F—i—*F /TrF/\F
Sg YM
where we have defined the complexified gauge coupling
4mwi 6
=2 7 3.3)
Sym 2T

The first term is minimized by anti-self-dual® field strengths F = —x F while
the second one is a topological invariant proportional to the instanton charge
k € Z. Similar considerations hold for the self-dual two-form F = +«x F:

Lsym =

/TrF *F) —H /TrF/\F (3.4)
gYM

To solve the anti-self-dual condition, it is useful to introduce the gauge co-
variant Dolbeault operator, the analog of the de Rahm cohomology for com-
plex manifolds:

éA . QO,i N QO,H»I’

dy : QO — Q1 52

ZFollowing the conventions of the previous chapter we label instantons by anti-self-dual field
strengths.
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where the adjoint operator 97 is defined, for arbitrary o, B € Q/*, as:
(@,0B) = (9"a, B), (3.6)

and (- ,-) is the inner product.
We now look at solutions of the anti-self-dual condition at arbitrary k:

FT=F+%F=0. (3.7)

This condition is worth three real equations and, written in terms of complex
geometry, it can be expressed as:

F92=0

3.8
FM 0 (3.8)

Fr=0 <+ {
The first condition on the right is equivalent to solving the cohomology prob-
lem 93 = 0. Therefore, we look at the space of anti-holomorphic differential
forms. This can be identified, after choosing a spin structure, with a spinor
bundle on C? of the same dimension:

P L Y o S =N o \ L} (3.9)

where s are spinor representations of the SO(4) Lorentz group of opposite
chirality. Thus, we need to solve:

4 =0 uptoexact forms, [~ W—+dsx (3.10)

where r € L2(QY ®E), y € L>(Q% ' ®E) and E = CV is a rank N complex
vector bundle on R* representing the fundamental representation of the gauge
group.

The latter condition in (3.8), Fal,’l = 0, requires the component of the curva-
ture along the Kihler form:

(x):—%(dzl/\dfl—i-dzz/\dfz), 3.11)

to vanish. While F%? is invariant under complexified gauge transformation,
this is not the case for Fal,’l. Thus, instead of imposing F%? = Fal,’1 =0and
dividing by real gauge transformation, we can equivalently require F? = 0
quotienting by complex gauge transformations. Thus, we set a gauge condition
by imposing:

o5 =0. (3.12)
Therefore, combining (3.10) and (3.12), we need to find solutions of:
(02@ )W =0, (3.13)
but this is just the Dirac equation:
Pr=(0a®I)) 51 — 5. (3.14)
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Thus, as stated earlier, we have shown how solving the anti-self-dual con-
dition, a second-order partial differential equation, has reduced to solving a
first-order Dirac equation.

The second part of this section is devoted to describing solutions of the
Dirac equation (3.13). We start looking at s, and thus at ) € L*>(Q*°® E)
and y € L*(Q%? ® E). Using the definition of the Dolbeault operators (3.5),
we find:

(04®05)(N®x) = an +dsx =0, (3.15)
which can be rewritten, showing explicitly the components, as:
Din+Dyx =0
3.16
{ D;n—Dix =0. (3.16)

Acting on the first equation with D and on the second with D;, and using that
[Dy, D,] commute, one finds:

(D1D1+DyD3)1 =0. (3.17)

With a further rewriting, we find that 1) needs to be covariantly harmonic:

1
5({D17D1}+{D2702})n =0. (3.18)

However, on flat space the only normalizable solution is the vanishing solu-
tion. Then, also ¥y = 0 and in general for positive chirality spinors there is no
solution in an instanton background.

Employing the same argument presented below (2.31), instead of solving
explicitly the Dirac equation (3.13) also for negative chirality spinors s_, we
can apply the index theorem [9] to [P:

ind ), = dim ker_Ip, —dim ker D, = k, (3.19)

where dim ker stands for the kernel on L?(s+ ® E )-normalizable forms. Thus,
we have a k-dimensional space of solutions of negative chirality, which we la-
bel by K. The space is spanned by forms y € (Q%! ® E) solving:

o4y =0, diy=0, (3.20)

where we recall that the first condition is equivalent to the cohomology prob-
lem 93 = 0 while the second is a choice of gauge.

Finally, we need to properly describe solutions of (3.20). For each y € K we
define a four-vector multiplying y by the coordinate functions (z;,z2,%1,22)-
Thus, we will obtain elements (z;¥) € (Q%! ® E) not necessarily solving the
Dirac equation. The space of all [*-normalizable (0, 1)-forms, however, can
be decomposed into the kernel of the Dirac operator, K, and its orthogonal
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component with respect to the L2-norm. The projector acts as I1(z;, ) € K
such that I3, T1(z;, ¥) = 0°. We can then define (By, By, B}, B}) : K — K:

Biy = H(Zia W)a
By =TIz, y).

An important point is that multiplying solutions of Dirac equation (3.20) by
coordinate functions (z;¥) is an operation that commutes. However, this is
not the case anymore, when projecting onto the space of solution of Dirac
equation to define the matrices By, BZ,BI,B;.

We also need to look at the asymptotics of the solution at large 2 = |z;|> +
|22/, where the gauge field approaches the pure gauge A — g~ 'dg and thus the
Dirac operator becomes the flat Dirac operator. Writing again in components,
we need to solve (3.13):

(3.21)

1 1
D}I”ath_D]i”atWI —0

(3.22)
D)]”laz‘lljI +D§latllfj —0.

To solve the second equation we consider a solution of the form Y5 = Délat X.
Inserting this solution in the first equation we find that )} needs to solve the
Laplace equation:

Agx =0, (3.23)
and thus )y needs to be a harmonic function*. Then, for r — oo
~Da1'—e oD (1) 3.24
Vo Ocrz _Eaﬁg Y r2 ) ( . )
where 1, J are, respectively, N x k and k x N matrices:
I:E—K,
(3.25)
J:K—E,

and E = CN on flat space.
The construction of the solution leads to an algebraic structure on the vector
space K, given by (3.21) and (3.25). It was shown in [29] that:
[B] ,Bz] +1J=0

(3.26)
[B1,B]] + [Ba, By + 11" —JJT =0,

up to a U (k) change of basis in the vector space K. These are the well-known
ADHM equations describing a finite-dimensional hyperkédhler manifold being

3The explicit projector, introducing the Laplacian operator B)ijx = Ay, is written as:IT =1 —

Byip

AN, FA

4We stress that solving A, x = 0 only makes sense locally at infinity as we have shown above
that, globally, y needs to be zero.
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the moduli space of anti-self-dual instantons. This can be written using a
quiver diagram:

J
R EO=0
1

Above, we have solved the Dirac equations for spinors in the fundamental
representations of the gauge group, however, we will mostly be interested in
adjoint-valued spinors. In this case the dimension of the moduli space of in-
stantons matches the degrees of freedom of the ADHM construction. These
are four k x k matrices (By,Ba, B}, B}) and two complex N x k matrices (1,J).
Moreover, one has to impose three equations (3.26) and divide by U (k) gauge
transformations. Finally one finds that the dimension of the moduli space of
instantons is 4Nk.

The precise definition of the ADHM data goes as follows: take two com-
plex vector spaces E,K of dimension respectively k and N and consider the
following space:

X=(K'®K)®(E*®K)® (K*®E). (3.27)
An element of X is specified by a quadruple:
B1; € End(K), I€Hom(E,K), JecHom(K,E). (3.28)
We also need to define an anti-linear involution:
Y : (B1,Ba,1,J) — (B}, —B},J",—I"). (3.29)

Hence, X is both hyperkihler and flat.

The action of the groups U (k) and SU(N) on X is naturally deduced from
their action on K, E and preserves the hyperkéhler structure. We define the
three Hamiltonians (i.e. moment maps) generating the group action on X:

Up = [B1,B]| + B2, By +1IT —J'J,

3.30
,u(c:[Bl,Bz}—FI]. ( )
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Then the ADHM equations (3.26) can be written as:

pe=0,  pc=0. (3.31)

Defining the inclusion t : R = u(1)* — u(k)*, the hyperkihler quotient of X
is:

X// /U (k) = pu~ "1 (/U (k). (3.32)
Finally, imposing the ADHM equations, one finds the moduli space of instan-
tons:

My =1 1(0)/U (k) (3.33)

whose dimension, as discussed above, is given by:
dim Ay j = 4kN. (3.34)

The original construction [25] consists in showing, given a set of solutions
of (3.31), how to construct an anti-self-dual two-form. Here, we took the
opposite route of motivating the ADHM equation starting with an instanton
configuration.

3.2 Omega-background

Along the lines of Witten’s [14] localization computation for the topological
subsector of twisted .4/ =2 SYM, discussed in the previous section, one can
show how the infinite-dimensional path integral over the field configurations
can be reduced to an integral over the finite-dimensional moduli space of in-
stantons .#y x. The trick employed by Nekrasov [15] is to introduce the action
of the flat space SO(4) isometries on the instanton moduli space, through the
Q-background. This further localizes the path integral to a sum of contribu-
tions over the fixed point of .y 4 under the 72 C SO(4) rotations.

The Q-background can be understood as the reduction to four dimensions
of the following five-dimensional metric:

ds® = (dxy + oydxs)? + da2. (3.35)

The connection .7, is independent of the four-dimensional space and gives
rise to an anti-self-dual field strength .%;,. The metric (3.35) describes a
Cgl ¢, bundle over S! with the following identification:

(21,22,0) ~ (ePe12y,ePe22, B), (3.36)

where [ is the circumference of the circle in the fifth dimension. The idea is
then to study the reduction of a five-dimensional .#” = 1 vector multiplet to
an ./~ = 2 vector multiplet on C%l &,- We set the integral along x° of the gauge
field at infinity to be:

diag (P ... ePan-1y e U (1)V-! (3.37)
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Effectively, what we are doing in the four-dimensional set-up is to deform
the scalar supercharge employed by Witten (2.3) by also considering the one-
form supercharge Gy:

0=0+Qux"G*, (3.38)

with Qi = Q1 = & and Q34 = Q43 = &. The deformation is related to .27,
as follows:

Ay = Quyx". (3.39)
The Killing vector generating the SO(4) transformation is:
d d d d
=i |a=——"Z2=— | +i&|ns—""25— |, 3.40
v 1(1azl 1921) 2(2(922 2822> (3.40)

with € > € C. Note, however, that the isometries of flat space are generated
by real €1 .

With respect to the deformed supercharge, the supersymmetry transforma-
tions (2.4), become:

So=in, &n=Llo—10,9, 341)
Sy =H, SH =i % —ilo, %],
6¢ = lv\P’
Here, we have defined the covariant Lie derivative as:
LA =dy,+1,dy = 2L —i[LA,], (3.42)
where 1, is the contraction of v and an arbitrary differential form o™:
wo) ) =vaell . . (3.43)

Moreover, one can check that the square of a supersymmetry transformation
gives:

8% =i% —Gpiia, (3.44)
where:
GeA = dye, (3.45)
and:
Geo = i[€, 0], (3.46)

for all fields transforming in the adjoint.

With respect to the new supercharge 0, the topological observables com-
puted by Witten are no longer invariant, except for those inserted at the origin
of R*. However we can define new observables. The starting point is the
five-dimensional supersymmetric partition function on Cg ¢, X § Vin (3.35):

ZNK(BL &1 psa1. N1) = Tr%(—1)Fe"5<€"'+€2’2+2f§1 a5Qs) (3.47)
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This expression is a refined version of the Witten index obtained introducing
the generators for the spatial rotations J; » and the charges Q... y—1. The trace
is taken over the Hilbert space on Cg, ¢,. As above one can use supersymmetry
to restrict the Hilbert space only to the action-minimizing instantons. Then,
we need to compute:

_ 87!211[3

2 . N—1
Z5K (B erpsar, 1) = Y e STy (—1)FePer/itahitofal),
n>0

(3.48)
We have defined gsyy the five-dimensional Yang-Mills coupling constant.
The Hilbert space .7, coincides with the instanton moduli space .#y k- The
U(1)? € SO(4) transformations generated deforming the supercharge O as in
(3.38) can be naturally extended to act on .#y 4 and similarly for the SU(N)
gauge transformations.
Now, if the fixed point of .y under U(1)N*! T2 x SU(N) were iso-
lated, we could apply the fixed points theorem [30] and find:

8” 8ninB gpN
Nek 5’5 YM
(B,&123a1,. =Y e ) lﬁw (3.49)
n>0 p t= 1
where v; are linear combinations of €1, & and ay,...,ay_1. Moreover, identi-

fying the characters under T2 with a vector space, we can write:

4kN
Tllyglp =Y P, (3.50)
=1

To take the four-dimensional limit we need to shrink the radius of the circle in
the fifth direction taking the limit 8 — 0 while keeping the parameters €|, €, a;
of T? x SU(N) fixed. A term at the n-th instanton sector in (3.49) has a factor
~ B~*N _To find a meaningful limit B — 0 we take the classical contribution
to be:

_ 8ﬂ2ﬁ
2
e SyM — (—iﬁ)4kq. 3.51)
Hence, if we keep fixed ¢ while  — 0, we find:
4kN
ZN* (g1 25a1,. =Y q (3.52)
n>0 p t= l
The four-dimensional coupling constant is related to g5y as follows:
8w 8m?
= P (3.53)

P

84ym  85ym

However, it turns out that the tangent space is not well defined at the fixed
points of .# x. To remove this problem we need to consider a non-commutative
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deformation of space-time [31-33]:
[t xV] = iotY, (3.54)

where x* are coordinates on R* and 8*" a real anti-symmetric matrix. Tech-
nically, this is equivalent to consider the non-zero level of the moment map
(3.30):

UR = C]Rl ~ (911 - 922)1. (355)

We denote the corresponding instanton moduli space ﬁ‘k With this modifi-
cation it is possible to make sense of the above expressions (3.49) and (3.52).
The result is independent of the value of {g and thus we can consider {g = 0
where, however, there is no interpretation in terms of contributions coming
from different fixed points.

To actually describe (3.50), we need to introduce the T2-action on X (3.27).
Following [34]:

X'=T1"ery e (K @K o (E*"2K)o(T7 0T '@ K* ®F),
(3.56)
where 7; is a one-dimensional space on which the generators for the spatial
rotations J; have eigenvalue +1. As above, we identify a vector space with its
character and rewrite X’ as:

X' = (e P8 o7 POY(K*K) + (E*K) + (e PETR)K*E).  (3.57)

Then, the fixed points of U (1) on .#}, have been classified in [35] and
are labeled by N — 1 Young diagrams:

Y =(Y1,...,Yy—1), such that the number of boxes |Y|=k. (3.58)

Denoting (i,j) € Y the position in a Young diagram for a fixed point p, the
action on K and E of T2 and U (1)~ is:

N-1
K, = Y ePlati=Dati=je)
s=1 (I\I)GYY
v (3.59)

ePas.

Ep

o
I
_

Therefore, one can read v(p), entering (3.52) from:
Ty = EjKy+ P ORI E, — (1—ePa)(1— Pk, K5 (3.60)

Finally, one can check that Nekrasov partition function ZNek (e12:a1,. . N—1)
for anti-self-dual instantons reproduces the SW prepotential (3.1):

Z = lim 186 log ZNek(8172;a17.__7N_1), (361)
8]\2—>0
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This limit can be understood as follows: the partition functions on the Q-
background is finite as the deformation makes the volume:

1
V=— 3.62
e’ (3.62)

finite. Clearly, V diverges for €1, & — 0 and so does the free energy:

F=—log ZNek(Sljz;aL /N71). (3.63)

However, the SW prepotential coincides with the specific free energy F/V
which does not diverge.

So far, we have only considered pure gauge theories. The inclusion of mat-
ter in the Q-background, both in the fundamental and in the adjoint represen-
tation of the gauge group, has been studied in [15, 27] and it will be discussed
in chapter 7.
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4. Pestunization

On $*, a non-topological theory with the field content of an .4 =2 SYM
theory has been studied in the seminal work of Pestun [17]. The result of
Pestun shows how the partition function on $* can be computed gluing an
instanton and an anti-instanton Nekrasov partition function, respectively at the
north and south pole of §%, where the theory on the sphere is identified with
the theory on the Q-background discussed in chapter 3. On the other hand,
an equivariant version of Witten’s topologically twisted SYM is found placing
instantons at both north and south poles.

The localization computation performed in [17] employs only a single U (1)
contained in the SO(5) isometry group. This corresponds to setting €] = & in
the Q-background. Later, in [36], the entire U(1)? Cartan of the isometry
group was employed. Their result can be written as follows:

Lo = /dae Set

where, for convenience, we included the perturbative contribution in (3.52)
and define:

Zm (ia,q)|, (4.1)

€1,

stt — gpert ZNek (42)

eled —
It is important, in Pestun’s result, that €,& € R. Moreover, the expectation
value of certain supersymmetric Wilson loops operators are also computed
in [17]. In recent years there has been extensive progress towards localizing
SQFTs living on manifolds in different dimensions and with different amounts
of supercharges. For a review see [11].

The work of Pestun is also crucial in deriving the AGT (Alday, Gaiotto,
Tachikawa) correspondence [37] between a class of d =4 .4 = 2 supercon-
formal field theories (SCFTs) [38] and Liouville field theory on punctured
Riemann surfaces. The correspondence is understood, geometrically, start-
ing from d = 6 (2,0) theories of type A; and reducing on a punctured Rie-
mann surface, with the simplest example being that of reducing on a two-torus
with modular parameter 7, which leads to .4#" = 4 SU(2) gauge theory. The
SL(2,Z) transformations of the modular parameter give rise to S-duality trans-
formations of the ./~ = 4 theory.

Instead of reviewing Pestun’s work on $*, we conclude the introductory
part focusing on more general four-dimensional ./~ = 2 vector multiplets on a
compact manifold M admitting a T2-isometry and a Killing vector with a dis-
crete set of fixed points. The framework developed in [18] consists in defining
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a modified notion of (anti-)self-duality which allows for flips between self-
dual two-forms to anti-self-dual ones at different fixed points. In general,
then, one can consider an arbitrary choice of field strength F' approaching,
at each fixed point, either instantons or anti-instantons. Hence, the full parti-
tion function on M is conjectured to be obtained patching Nekrasov instanton
or anti-instanton partition functions (3.52) at each fixed point:

Iy = Z/dae CIHZZS; la+k 81782 H Zszéz ot la+k (Eiagé)aq_)7

i=p+1
4.3)
where the parameters 8{ ) 85 € C determine the T2-action at each fixed point, as
given by the Killing vector v (3.40). We have also introduced a sum over pos-
sible flux contributions k; which will be discussed in chapter 6. As discussed
above, equivariant DW and Pestun’s theory can be obtained from (4.3) setting
p =1 =2 in the first case and 2p = [ = 2 in the latter one. In particular, to
match with (4.1), one needs to assume 8{ , 85 € R. Only with this assumption
it is true that:
Zglmglé st (ja,q) = ng“sl (ia,q). 4.4
The framework developed in [18, 19] is quite powerful as it allows to com-
pute partition functions with different distributions of (anti-)instantons at the
different fixed point of a generic four manifold. In this chapter we will review
this construction highlighting some of the open problems, which will then be
tackled in Part II.

4.1 Projector

We consider the manifold M and its open cover M = U'_, U; such that each set
contains at most one fixed point of the 72-action. The idea is to define a gener-
alized projector on the space of two-forms Q2 which approaches, at each fixed
point, the standard (anti-)self-dual projector P* = (14 x). Now, we consider
the intersection U; N U; which, by definition, does not contain any fixed point.
Also U;,U; contain ﬁxed points where the two-forms approach, respectively,
anti-self-dual Q?* and self-dual two-forms Q>~. We will denote the former
plus fixed points and the latter minus fixed point. To define a projector on the
entire M, we need to find a map m;; Q¥ 5 Q>

2
mij: B—>—B+—K1<MVB. 4.5)
v

Here we have defined the one-form k as k = g(v) and 1,k = g(v,v) = [[v||%.
In order to glue patches containing fixed points of the same kind one uses the
identity map.
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Once it is understood how to glue Q>* bundles, we need to construct the
projector. Away from the fixed points, m? acts like the identity on Q? and,
assuming that o> + 8% = 1, one finds:

(ax+Bm)* =1. (4.6)
Employing this condition, and introducing & = cos2p, = sin2p, the most
general projector constructed using x and m is given by:

1
Pl = 5(1 +cos2p *+sin2pm). 4.7

We also need to impose that 2p|,—o = 0, 7 which ensures that one recovers the
standard projector P* = %(1 + %) at the zeroes of v. Moreover, with a further
change of variables:

2
l1—sin2p= ——— 4.8
smep 14cos2w’ 4.8)
we rewrite (4.7) as:
1 KA1
+ .2 v
Pw —1—1_0082(0(1—’—(:0S(1)—S1n w L ) (49)

The function ® is such that @ = 0 at plus fixed points and @ = 7 at minus
ones. Substituting @ = 0, & one recovers the standard projector P~ = %(1 +x).
However, in order for the projector to be well defined at the fixed points of v,
we need that sin? @ goes to zero at least as 1,k = ||v||?. Finally, field strengths
satisfying P;f F = 0 are denoted flip instantons. We can thus use this projector
to define a generalized decomposition of two-forms as:

Q=P Q* P, Q% (4.10)

where P, =1—PJ.

4.2 Cohomological theory

We can use the projector defined above to explain the difference between
equivariant DW theories and Pestun-like theories' on a generic compact man-
ifold M with isolated fixed points under 72. Linearization of topologically
twisted SYM is related to an elliptic complex:

Q") % o () P pra (M) = Q2 (M), @.11)

where d is the de Rham differential and P* the (anti-)self-dual projector P* =
2(1£%). We denote this complex (E*,P*d). The cohomology Q!(M) rep-
resents small deformations 6A of the gauge connection in the kernel of Ptd,

"'We define Pestun-like theories the cases where not all fixed points are of the same kind.
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that is such that the anti-self-dual condition is maintained. These deforma-
tions, as in chapter 2, need to be taken modulo gauge transformations, that is
up to elements in the image of the first map d. The ellipticity of the problem
is related to the fact that the moduli space of instantons is finite-dimensional.

On manifolds with a T2-isometry it possible to consider a more general
complex, defined using the projector (4.9) introduced above:

Q) L M) a QM) B PEQR (M) QO(M),  (4.12)
where:
~ [ Pfd Piiu*d
b= (dmd ~didcosw | 13

We denote the complex (4.12) as (E ',D). Flips between instantons and anti-
instantons at different fixed points is what characterizes Pestun-like theories.

For equivariant DW theory the supersymmetry transformations are those in
(4.14):

3¢ =m, on =2l —[6,9), @.14)
Sy —=H, SH =il — i[9, %], '
0 =19,

In particular both y and H are anti-self-dual two-forms. When considering the
complex (E ',D) (4.12), associated to a manifold with a generic distribution of
plus/minus fixed points, the two-forms need to satisfy:

Plx=x, P/H=H. (4.15)

Moreover, the Lie derivative ., preserves the decomposition of two-forms in
P} Q? @ P, Q2 Therefore, the same supersymmetry transformations (4.14)
hold also in this case.

The observables of the theory are generalizations of observables of equiv-
ariant DW theory. One can check that:

S(O+¥+F) = (idy+1,) (0 + W+ F), (4.16)

thus:
STr(¢p+¥ +F)* = (idy +1,)Tr(¢p +¥ + F)*. (4.17)

If considering a form Q such that §Q = 0, then also:
6/ QATr(¢ +¥+F)F=o0. (4.18)
M
These will be the observables computed and do not depend on a d-exact de-
formations of Q:

Q= Q+(id+1,)(...). (4.19)
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In particular, we show now how the SYM Lagrangian can be recast in this
form. The SYM Lagrangian on a generic four-manifold can be found through
a rigid supergravity approach [22] and its more generic form can be found in
[18]. As we need something quadratic in F for the Lagrangian, we look at:

ﬁ:/ (Qo+ Qo+ Q) AT+ + F)?

M (4.20)

- / (Tr(92)Qu + 205 ATH(9F) + QoTr(F2) + Qs ATr(¥2)).
M

The computation for generic four manifolds can be found in [18], here we
focus on $* with Killing vector v = dy + dg. One can check that taking:

Qp=cosB,

Q) = —i(sinOd A (xda + (x — 1)dB) + % cos Bsin’ Bdx A (da -+ dp),

3
Q=7 sin® 040 Adx Adot Adf = 3Volg,
@.21)

reproduces Pestun’s action on S [17]:

2

1
S=—— [ (cos8+Q+3Vole)Tr(¢p +¥+F)*+5(...), (4.22)
8ym /S

up to a term ~ F A F. We also observe that the top component Q* is the
volume form on §* and more generally Q = Qg + Q, + Q4 is the equivariant
extension of the volume form on S*.

4.3 BPS locus

We have described how supersymmetry behaves in this more general set-up
which includes, in a unique framework, both equivariant DW and Pestun-like
theories on more generic four manifolds and, in the last section, the observ-
ables we are interested in computing. This section is devoted to study the
reduced integration locus, obtained deforming the path integral inserting a -
exact term with coefficient #. Taking the limit  — oo we restrict the integration
domain in the path integral to configurations minimizing the deformation, that
is supersymmetric configurations.

The localization locus is defined by the intersection of imposing reality con-
ditions on the fields and solving the supersymmetry transformations. The real-
ity conditions are needed to ensure that the localization action is positive def-
inite and gives a well-defined Gaussian integration. Focusing on the bosonic
fields we have that F' is Hermitian and the scalars:

¢ R, q3:¢+§(s—s”)(p€R. (4.23)
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Similarly, H is chosen such that the Gaussian integral converges.
The localization term considered is:

LrocVoly = 0Tr |2(2Q —H) Axx + (LF —ida(¢ +i(s —5)@)) AxP+

+(da@ +[9,01)n))|.
(4.24)

The adjoint valued two-form Q(®) depends on the bosonic fields in the par-
ticular theory under consideration, with the requirement that:

L0(P) = ALP),

_ ) (4.25)
Q(®) real on the integration contour.

Focusing on the bosonic terms:

Aol = Tr | F(QF +da((s— 5)9)) A*(2uF +da((s —5)9)) +
+da® Axdad -+ Vol ((1da9)” — [0, 9]%)+ (4.26)

F2PFQAKQ 2P (H — Q) Ax(H —Q)|.

Hence, asking for vanishing supersymmetry transformations gives:

[q§,(p]:O, Lydpa@ =0, qu;:O7

4.27)
2LF +da((s—5)@) =0, PyQ=0.

The first line is solved imposing:

@ =diag(9?), ¢ =diag(¢"), (4.28)

where a runs over the element in the U(1)¥~! Cartan of the gauge group.
Moreover, at the fixed points of M, the projector P, reduces to the standard
(anti-)self-dual projector and we need to consider point-like instantons or anti-
instantons respectively for § = 0 or s = 0. One can also find solutions for the
field strength with flux, but these will be considered in chapter 6.

Once the localization locus is found, the next step is to compute the one-
loop superdeterminant around these configurations. The result will split into
contributions coming from each fixed point which then need to be glued con-
sistently. The technique developed in [18, 19] motivates the computation only
for certain distribution of 4 fixed points on certain manifolds which can be
obtained dimensionally reducing Sasaki-Einstein manifolds in d = 5. Thus,
we leave the explicit computations for chapter 5, where we will develop a
way to patch contributions which applies to generic four manifolds admitting
a Killing vector with isolated fixed points.
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Part II:
Results






5. Perturbative partition function

In Part I we have presented an expression (4.3) for the full partition function
on certain compact manifolds M with a 72-isometry. In this chapter, whose
content is based on Paper I, we provide a method to compute the perturbative
part of (4.3), entering through (4.2).

We concluded the previous chapter with the study of the BPS locus of field
configurations where the localization action (4.24) vanishes. Using localiza-
tion, the one-loop contribution is thus given by a Gaussian integral around
these configurations as in the simpler case of (non-equivariant) DW theory
studied in chapter 2. Hence, focusing on the trivial instanton sector, we will
show how the integral over bosonic and fermionic fields gives rise to a su-
perdeterminant. This can be equivalently computed by the equivariant index
of either an elliptic or a transversally elliptic operator, respectively for equiv-
ariant DW and Pestun-like theories. The study of these operators on compact
manifolds has been developed in [30].

Elliptic operators have been defined below (2.25) as operators whose princi-
pal symbol o (+), obtained by replacing the highest order derivatives with vec-
tor fields &, is invertible for non-zero &. Moreover, elliptic operators on com-
pact manifolds have finite-dimensional kernel and cokernel. Thus, to compute
the equivariant index of an elliptic operator it is enough to employ the Atiyah-
Bott formula [39]. If we take the elliptic complex (E®,P*d) (4.11) associated
to equivariant DW theory, we find:

Xeq(23)

det(1—df)’ D

index (E*,P*d) = Z
P

where xeq(Q;,) is the equivariant Euler character of the fiber Q7 and the dif-
feomorphism induced by the 72-action on M is labeled by the map f: M — M.
Thus, the index is a sum over finite-dimensional contributions arising from the
fixed points of the manifold under a T%-action. Examples of this procedure,
related to equivariant DW, can be found in [18].

Transversally elliptic operators, instead, are operators which are elliptic
only in directions transversal to the orbits of 72. Hence, the cohomologies
turn out to be infinite-dimensional and using (5.1) gives infinite power series
at each fixed point. The problem, from a physical perspective, is to regu-
larize these contributions so that, once patched together on M, they give the
correct perturbative partition function. From a mathematical point of view,
instead, we need to compute the equivariant index of a transversally elliptic
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operator. Such computations have been performed on §* for .4 = 2 theories
[17, 36] and, more in general, for certain distributions of & fixed points on
four manifolds which can be uplifted to five-dimensional .#” = 1 theories on
Sasaki-Einstein manifolds [18, 19]. Here, we extend the latter result by devel-
oping an approach applicable to any four-dimensional compact manifold with
a T?-action and isolated fixed points, following the study of the equivariant
index of transversally elliptic operators in [30].

5.1 Complex from localization

In this section we show the relation between the perturbative partition func-
tion of Pestun-like theories on M and the equivariant index of the associated
complex. Moreover, we introduce the objects which will be required, later,
to compute the equivariant index of a transversally elliptic operator. In par-
ticular, we need the symbol of the transversally elliptic complex associated to
Pestun-like theories.

Let us start from the supersymmetry transformations (4.14), which can be
written schematically as:

0=y, Qy=2L19,

5.2
Qp=¢, 0¢=2L"p. -2

where ¢ = (A,¢,¢), § = H and y = (¥, 1), = y label, respectively, even
and odd fields. The superdeterminant arises from expanding the Q-exact ac-
tion (4.24) around the BPS configurations (4.28) at quadratic order:

oV =0 (v, 210) + (W.D9) +(11.9) ). (53)

Here, D is the differential operator given in (4.13). Integrating (5.3) gives rise
to a ratio of one-loop determinants of fermionic and bosonic contributions:

det!/2 L
- 1 LCOkerD = sdet!/ 2|H'(D)‘$ ’ G4
det!/ ker 5%

where H*(D) is the cohomology of the operator D mapping ¢ to . We stated
above that these cohomologies are infinite-dimensional for transversally ellip-
tic operators, unlike elliptic operators. However, a property of transversally
elliptic operators is that both the kernel and the cokernel can be decomposed
into irreducible representations of 72, labeled by «, and appearing with finite
multiplicities m. Hence, we find:

1 coker ker)

sdet? & — HW‘X (5.5)
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where wq (€) denote the weights of the representation depending on the equiv-
ariant parameters. This can be translated into the equivariant index of D:

index D = Z(mg()ker — mger)ew"‘, (5.6)
[0

where now " is the character of the corresponding representation.
As discussed in chapter 4, the complex associated to Pestun-like theories is
given by (E®,D):

QM) 4 ol (M) @ QO (M) 2 P2 (M) 3 Q0 (M). 5.7)
An equivalent complex is found by folding:

Q' (M) »Q° (M) S PLOA (M) @ QO (M) B QO (M). (5.8)
The differential operator 3 is given by':

Pid Pl1,*d
d=|d'yd didcosw |, (5.9)
d 0

Notice that here we have been neglecting the gauge part of the index. It con-
tributes as follows:
index(0® 1) = index 0 ¥aq, (5.10)

where Y44 is the character for the adjoint representation of G. In the rest of
the chapter we will focus on the part arising from the 72-action only.

Hence, let us consider the complex (5.8). At the fixed points of the Killing
vector v the complex splits into the part corresponding to the (anti)-self-dual
(ASD/SD) part and the scalar Laplacian:

1 0 dred o4 0 0 A o0
<Q M)eQ' (M) —— Q" (M)DdQ (M)> & <Q (M) = Q°(M)
(5.11)
Thus, the original complex approaches either an ASD complex (Q°,d™) or an
SD one (Q°*,d7).

Computing the index requires the knowledge of the symbol of a complex.
Considering the complex in (5.8), its symbol complex denoted by c(9) is
given by:

w (A (M) @ A°(M) ) 20, (P ()@ A1) & A(M)),  (5.12)

where A/(M) = A'T*M and 7 : T*M — M is the projection.

Notice that index (E*®,D) = —index (E*,d) as the complex (5.8) starts at level one.
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It is useful to describe the symbol as an element of the equivariant K-group
K72 over the cotangent bundle? TM, which is defined as:

Kp2(TM) = ;Z(M)/C&]Q (M), (5.13)
where C7,(M) is the set of complexes, up to homotopy, of length n, with
compact support’ and respecting the T?-action. Instead, Cp 72 (M) labels those
with empty support. For a proof of this statement see [40, 41] or appendix B

of Paper I. We can now exploit the relation of the analytic index(9) to what is
called the topological index of 0 [30]:

ind;2[0(0)] = index(9), (5.14)
where, for an R(T?)-module homomorphism:
ind;2 : Kp2(TM) — 2'(T?). (5.15)

Here, R(T?) denotes the representation ring of 72 and, unlike for an elliptic
complex, the image of the equivariant index of a transversally elliptic complex
is not a regular function but rather an element of the space of distributions
9'(T?) over the space of test functions on 72,

Explicitly, the map (5.12) restricted to the fiber over (x,&) € M x TM is
given by:

(®)g) : (a.9) — (P5IENa+x(EAR)9)

1817 ta—& (E.a) ~|&]2cos @ 6.~ (E,a)),
(5.16)

where a € A (M), ¢ € A°(M) and we defined &, = (&, v). Notice that the
support of ¢ (9) is the zero section over M and, at cos @ = 0, also & # 0 in the
subspace of the tangent space that is along v.

Finally, one can show that the scalar Laplacian part of the symbol complex
splits globally:

ind;2[0(0)] = indj2[0p] +indy2 [0 (A)]. (5.17)

It is shown in Paper I that ind ;2 [6(A)] = 0 and therefore we focus on the sym-
bol 6, which approaches o (d*) at the ASD/SD fixed points (5.11). This is the
object we need to compute and which can be used to obtain the perturbative
part of the partition function on M, as in (5.5).

2Using the metric, we identify tangent and cotangent bundles over M in the following.
3The support of a complex is defined as the points x € M where [0w]|x fails to be exact.
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5.2 Trivialization

To compute (5.17) one could follow [42, 43], however, we find it more con-
venient to follow the approach of [30] focusing on 6. The idea behind the
trivialization of the symbol (5.16), is to deform it in order to reduce its sup-
port to the zero section at the set of fixed points, where the complex is elliptic.
This is achieved by deforming the symbol in the direction of the Killing vec-
tor v, or against it. The choice of sign will follow the distribution of ASD/SD
complexes at the fixed points. From a physical perspective, the direction of
v will instruct us on how to regularize the infinite power series arising using
the Atiyah-Bott formula (5.1) at each fixed point. Explicit examples will be
shown in the next section.

The first step in the construction is to isolate the fixed point contributions
in 0. For this purpose, we can define a filtration, introducing M; = {x €
M|dim H, > i} where H, is the stabilizer set of x:

M =MyDM; DM, DM;=0. (5.18)

Notice that M is the set of the fixed points of M under the 72-action. It was
shown in [30] that for this filtration there exists a homomorphism 6; and split
short exact sequences®:

1

0.
Ko (T2 (M — M) = Ko (Tpa (M — Miy1)) “— Kpa (T2 X v, ) (5.19)

From this, we find recursively:

2

Kp2(TraM) = @ 6K 2 (TraM|ag—,, ) (5.20)
i=0

The crucial observation [30] is that, using the Killing vector v, we can define
a new symbol homotopic to 0y, by trivializing it away from the zero section
at the fixed points M>. The new symbol has only support at M>, where the
symbol complex is elliptic, and gets contributions only from the fixed points:

[Cw] = [0] + 62[0w|a,] € Kp2 (T (M — M) © 6:K72(TM|y,).  (5.21)

Therefore, the symbol complex [0y] is completely determined by the homo-
morphism 6, which, effectively, extends [0 |m,] € K72 (T M|y, ) to an element
of Kr2(Tp2M). In particular, when extending [0 |a,] to a neighbour U D M,,
and restricting to 7z U, the symbol fails to have a compact support as it has
support on the zero section over U. However, on U — M, it is possible to push
the support away from the zero section, either along or against the Killing
vector field v. Asking for continuity of the deformed symbol complex, it is

4An exact sequence is a chain complex where the image of one morphism actually equals the
kernel of the next.
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possible to argue that the choice of push follows the distribution of ASD/SD
complexes. More details on the trivialization can be found in [30] and its
application to the complex under consideration in Paper 1.

Here, instead, we present a simpler example [30], that is a U (1)-action, with
weight 1, on the one-point compactification of the complex plane, CU {pt} =
S2. We label E° the trivial complex line bundle on the sphere. We denote € the
coordinates on u(1) and ¢ = ¢® the coordinates on U(1). Then, we can define
E' = E°®t. We consider the U (1)-invariant operator D:

D: 2(8* Ey) — 2(S*,E)), (5.22)
defined by:
a% = %eie (grﬁL;aae) near the north pole z =0, z = reie,
D= _% - ;eie (i—i%) near the south pole z =oo, ® = 1,
%(b(r)eie <gr + iwr(r) 3‘99> otherwise.
) (5.23)
Here:
o(r)=1forr <1, ¢(r)=r*forr>1, (5.24)

y(r)=1forr<l1, y(r)=—1forr>1.

Also, ¢(r) never vanishes while y/(r), without loss of generality, can be cho-
sen to vanish at the equator r = 1. The symbol o (D), as in (5.16), acts as a
linear map once restricted to (x,&) € §? x T,.8%:

o(D)|(xe) A — %qb(r)eie <§,+ () §9> A (5.25)

r

where A € A%(S?). Thus, the operator D fails to be elliptic at the equator
where % has vanishing coefficient and the symbol o (D) fails to be invertible,
not only for the zero section &, = &g = 0, but also for non-zero g € T*C.
However it is elliptic in directions transversal to the U (1)-action, that is along
r.

Assuming that (5.21) holds, we just focus on’ 6; [0(D)|m,], where M, is
the set of fixed points. The operator D approaches d near z = 0 and —d near
7 =005 If U is an open neighborhood around the two poles, the push away

> As there is a single U(1), the set of the fixed points obtained through the filtration (5.20) is
denoted M.
SIn terms of the coordinate @.
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from the zero section on U — M can be achieved by introducing a new symbol
homotopic to the undeformed one as follows:

6l(r&) = Ol £ave-e2) (5.26)

where (x, &) are coordinates on TU. The crucial observation is that 5(D) is an
isomorphism outside of the zero section once the tangent space is restricted to
the one transversal to U(1), Ty(;)U. Moreover, if we define &4 = & + ve &2
and impose continuity of the deformed symbol at the equator, we find:

"(i) E)=o ( - a‘L) ). (5.27)

Therefore, we can trivialize D at the equator by trivializing a% in the positive
direction and —% in the negative direction. Thus, we have restricted the
support of ¢ (D) to the set of fixed points and we can write:
[0(D)] = [6(D)]o+[0(D)]w. (5.28)
Moreover, [o(D)] defines an element in:
Ky (1) (Ty1y(S* = 81)) = Ky (1) (Ty 1y (Bo = 81)) ® Ky 1) (Tyy 1) (B — S1)),
(5.29)
where By, B are the northern and southern hemispheres whose boundary is
the equator of S2.
The first contribution gives:

[o(D))o = [97], (5.30)
where the exponent labels the choice of deformation in (5.26). The second
contribution is associated to an operator:

— 937 : A%TC) = AY(TC). (5.31)

Here, we have been using @ as coordinate, hence U (1) acts by the representa-
tion +~!. Instead, if we take the @ coordinate, U (1) acts by ¢, and we find:

— 97 :ANTC) - AYTC), (5.32)
Then the index is given by [30]:
ind(D) = ind[d "] +ind[d . (5.33)

Again, the + subscripts are associated to the direction of the vector v appearing
in (5.27). This prescription tells us how to associate, at each fixed point on S2,
a distribution. In particular (in our case o0 = 1):

_ 1 +
ind[d"] = < ) e e

-t
(5.34)

- 1 o
ind[d™] = <l—t“> =142
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where (-)* denotes the Laurent expansions at = 0 and ¢ = oo, respectively.
We will also need later the expansions for negative weights:

; ] 1 +_ o 200
ind[d"] = T =1+1%+1¢ .

ind[0~] = <1 _lta> =%

A similar computation for the symbol complex ¢(9) can be found in Paper
I. Here we only show the final result. Let us then consider a patch U; ~ C?
around a fixed point F; € M,. We pick complex coordinates (z1,z») and let
€1, & be coordinates on > such that 1; = exp(ig; ), 7, = exp(i&,) are coordinates

on T2. Then, the infinitesimal weights Otl(l), 2(1) act on (z1,22) € C? as al.(l) =

)

(5.35)

25:1 O‘i(;)gj with Ocl-(; € Zfor i, j=1,2. Then we get:

index 0 =ind &[0y =

2 0\ £ 1 K (5.36)
A0 )

leM, k=1 \\1 —¢t %

where: :

) 2 U
1% ;:H;]‘?‘U, (5.37)
j=1

and s; is 4 for ASD fixed points and — for SD ones. Moreover, when consid-
ering an SD fixed point one also has to flip the local infinitesimal weights as
o — —oy. This is equivalent to a change in the complex structure (z1,z2) —
(Z1,22) which triggers the isomorphism (Q°,d™) = (Q°®,d ™).

We see how the equivariant index, and thus the perturbative partition func-
tion, of Pestun-like theories is computed employing the Atiyah-Bott formula
(5.1) for the local, and elliptic, contributions at each fixed point, and regular-
izing the infinite power series according to the distribution of ASD/SD fixed
points.

5.3 Examples

We can use the equivariant index (5.36) to compute the one-loop superdeter-
minant as in (5.5)-(5.6) and we now show some explicit computations. The s4
example, both for DW and Pestun [17], is treated in full details. For the other
cases we only show the results.

S4
We describe S* as a quaternion projective space HP':

[91,92] ~ [91G,924], where q1,q> € H and G € H*. (5.38)

48



We can also define inhomogenous coordinates:

northern hemisphere: g = qlqgl =271+ jz, gq€H",

1 5.39
southern hemisphere: cfl = W(Zl —Jjz2), ( )

where 71,70 € C. The infinitesimal weights can be read from the action of
U(1)2:
q1 — hqz, q2 — hq, (5.40)
or equivalently:
71—ty 'z, 2=t . (5.41)
Thus, the infinitesimal weights of the 7'>-action are:

(aij) = (_11 :}) : (5.42)

Similarly, one finds z; — 7, ltzz 1. Thus, taking into account the flip of the com-
plex structure for SD fixed points, equivariant DW and Pestun [17] correspond
to the following 7 “Delzant polygons”:

—1 —1.—1
nty' Yo't

As stated above, the deformation of symbol complex follows the distribution
of ASD/SD fixed points. Hence, we find, respectively for DW and Pestun:

1 i 1 "
indexd; = (1+15°
1=+ )<1—tlt21> (1—t11t21>
+ +
. . . (5.43)
+(1+172) ;1 1,1
—1;'n -1,

=1.

1 " 1 "
indexdy = (141, >
2 =140 )<1—m21> <1—tllt21>
R 1 )
+ (14147
1+ )<1—t1t21> <1—t11t21>

7Equivariant DW corresponds to two ASD fixed points while Pestun to a flip from ASD to SD
fixed point

(5.44)
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The first complex, being elliptic, is a regular function. Instead, the second
case corresponds to a transversally elliptic complex whose equivariant index
is an infinite power series in (t;, )™ and (¢, 'z, '), where each term appears
with a finite multiplicity. We thus plot the multiplicities in the (n;,n;) plane

in Figure 5.1.

Figure 5.1. The plot shows the exponents of the weights in (5.44). Light blue points
have multiplicity one, blue points have multiplicity two.

CP?
In the complex projective space:

[21,22] ~ [21%,227], where 71,25 € C and 7 € C*, (5.45)

we consider a patch Uy, z; # 0, with inhomogenous coordinates (z2/z1,23/z1)
on whom 7?2 acts as:

2,520 BnB (5.46)
21 21 21 21
Thus the infinitesimal weights become:
1 0
(aij) = (0 1) : (5.47)

Once this is determined, the action of 72 on the other two patches around the
other two fixed points follows. Again, we can study the elliptic complex with
three ASD fixed points and a transversally elliptic one with one ASD fixed
point and two SD fixed points:

—1
1+’lfz — ity !
ty 5]
1) -1 _
1 N 15 f ll‘g
+ h - + + f -
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The first complex is elliptic and one can find, as for (5.43):
index 01 = 2. (5.48)

The second case, corresponding to a transversally elliptic complex, is shown
in Figure 5.2.

Figure 5.2. This plots shows the multiplicities of the transversally elliptic complex on
CP>. Light blue points have multiplicity one, blue points have multiplicity two.

Hirzebruch surface T

Finally, we consider a particular complex on F!' which cannot be obtained
with the regularization procedure of [18, 19], that is it does not arise from a
five-dimensional .4~ = 1 theory on a Sasaki-Einstein manifold. The Hirze-
bruch surface, which has four fixed points under the T2-action, is defined as
the equivalence class (z1,z2;u1,uz) ~ (2},25;u},uy) where two elements are
equivalent if:

I, 1€ C*:(zy, 2 uy,uy) = (Azi, Azos Apuy, fuy). (5.49)

The T2-action on 21,22 18 71 — 121, U] — Huy;. We consider an alternating
distribution of ASD/SD fixed points with the following Delzant polygon:

nn +
5]
nn
I
15) 15)
+n -

As for the two previous examples we plot the multiplicities in Figure 5.3.

51



Figure 5.3. We show the multiplicities of the complex under considearation. Light
blue points have multiplicity one, blue points multiplicity two, black squares multi-
plicity three and white squares multiplicity four.
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6. Fluxes

In the previous chapter we computed the equivariant index of a generic dis-
tribution of ASD/SD complexes at the isolated fixed points of a manifold M
under a T?-action. The approach we took, studied in [18, 19], shows how
different distributions originate from a choice of projector (4.9) approaching
either P* = %(1 + %) at each fixed point. However, when studying BPS con-
figurations in chapter 4, we omitted field strengths with non-trivial flux on
two-cycles, labeled by elements of H*(M,Z) and which enter the proposed
result for the full partition function (4.3).

In this chapter we extend the framework presented earlier in two directions:

* We compute, at all flux sectors, the perturbative partition function on
CP? for the two complexes considered in chapter 5. These correspond to
an elliptic complex and a transversally elliptic one. The flux dependence
in the perturbative partition function is via a shift of the Coulomb branch
parameter Gy, as proposed on non-compact manifolds in [44] and for
compact manifolds in [18].

* We discuss how different theories in four dimensions stem from a unique
five-dimensional .#” = 1 theory on a Sasaki-Eistein manifold. This was
suggested in [19] and shown, at the trivial instanton sector, for the re-
duction along the Hopf fiber S' < §> — CIP? in Paper IT'.

The dimensional reduction could be performed shrinking the radius of the
Hopf circle. Instead, in Paper II, it is introduced a Z, quotient acting on the
fiber. At finite p the quotient defines a higher-dimensional generalization of
lens spaces supporting non trivial flat connections. At large p, the manifold
effectively resembles CPP? and the flat connections give rise to flux on the base
manifold. Crucially, there are two inequivalent choices of fiber with respect
to the five-dimensional Killing vector. The two choices of reduction will turn
into the two different complexes on CP?.

6.1 Geometry of the five-sphere

The five-dimensional sphere is an example of Sasaki-Einstein manifolds (S, g),
for a review see [47]. Here, we will only need some basic facts. These mani-
folds are defined in relation to their metric cone:

C(S)=RsoxS, g=dr*+rg, 6.1)

'In Paper I it is also discussed the S' < §3 — CP' case which is shown to match the known
results [45, 46].
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being Kihler and Ricci-flat. For example, the Kihler cone of odd-dimensional
spheres is C"\ 0, equipped with its flat metric. Moreover, Sasaki-Einstein
manifolds admit a characteristic vector field, called the Reeb vector:

E=J(rdy), (6.2)

where J is the complex structure on the metric cone (C(S),g). This vector
field can be shown to be Killing .Z: & = 0 and with square length g(§,&) = .
We thus consider its restriction to the Sasaki-Einstein manifold, through the
inclusion § = {r = 1} x S, where £ has unit length. Its integral curves are
geodesics and can be used to define the Reeb foliation .7 whose leaf space
inherits a Kédhler metric. We are interested in the regular case where the orbits
are all closed, and thus the Reeb vector field integrates to an isometric, and
free, U(1)-action on (S, g). In this case the leaf space Z = §/.7¢ = S/U(1) is
a compact manifold. Hence, a regular Sasaki-Einstein manifold can be seen as
a total space of a principal U (1) bundle over a Kihler-Einstein manifold, CP?
in the case of §°.

Besides this, simply-connected regular Sasaki-Einstein manifolds always
admit a Z, C U(1) quotient. The resulting manifold is a regular Sasaki-
Einstein manifold with 7, (S/Z,) = 7Z,,.

While in the rest of the chapter we will focus on S, the procedure described
can be extended to more general cases, as the Y77 spaces [48]. The idea is to
dimensionally reduce S onto the leaf space CPP?, employing two different
fibers with respect to a direction fixed by the Killing vector. The starting point
in Paper ITis an .#” = 1 vector multiplet on S°> embedded in C? with the metric:

3

dsgs = Y |dz|. (6.3)
i=1

This can be rewritten as the Hopf metric:

dsgs = dszp0 + (da+V)?, (6.4)

where the metric on CP? is the Fubini-Study one, « is the coordinate along
the Hopf fiber and V is a connection one-form. At this point, each choice of
fiber is equivalent to perform dimensional reduction as they are related by an
SO(6) rotation. However, a choice of supercharge will determine a preferred
direction through the Killing vector v, which is also Reeb. To describe this
choice we introduce the vector fields e;, i = 1, ...,3 for the action z; — ¢'%z; of
the U(1)? Cartan of the isometry group. Hence:

v=e1+ex+es. (6.5)

With respect to v we find two different choices of fiber:
top: XP = +te;+...+ep, (6.6)
ex: x*=—e;+..+e,. (6.7)
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Here, we introduced the notation “top”, for topologically twisted theories, and
“ex” for Pestun-like theories. In the next section we will show how these
two choices give rise two two different theories on the base manifold. Notice
already that x'° is along the Killing vector and thus, the reduced theory will
have a supercharge squaring to zero, as in chapter 2. This, instead, is not the
case for the choice x** which will have fermionic generators squaring to the
isometry of the base manifold.

We conclude this section considering the action of squashing and quotient-
ing on five-spheres. Starting with the former, we define squashing parameters:

wE(wlvabvaB)7 wi:1+ai€R7 (68)

where a; = ay = az = 0 corresponds to the unsquashed limit of $° and each
squashing parameter deforms a single C-plane inside C3. Thus, the sphere,
which is embedded in C? (6.3), is also squashed. The Killing vector (6.5)
becomes:

V= @e] + ther + xes. (6.9)

The important point is that the squashing is set to act only on the base mani-
fold, leaving the fiber untouched. To achieve this one sets:

top: +a+a+..+a =0, (6.10)
ex: —aj+ay+...+a,=0. (6.11)

Hence, the reduction can still be performed along the fibers (6.6). In the topo-
logically twisted case we will show how a squashing acting on the base gives
rise to equivariant DW theory.

The dimensional reduction we are going to perform is achieved through
quotienting by a freely-acting Z, acting on the fibers x'°” or x*:

(21,225 ey 2r) = (zleiznl/p,z26+2”’/p, ...,zre+2m/p). (6.12)

The sign in the first factor is, respectively, for an action along x'°? or x**. The
quotient defines a higher-dimensional generalization of lens space:

L(p,+£1)=8/Z,, (6.13)

and it induces a change in the topology of the manifold, which is now not
simply connected, and thus:

m (L (p,+1)) 2 Z,,. (6.14)

Because of this, there exist p topologically inequivalent complex line bundles
labeled by flat connections:

A =diag (A)", ..., Ap"), (6.15)

where 0 < m; < pandi=1,...,N — 1 counts the element in the Cartan of the
gauge group SU(N).
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6.2 Perturbative partition function on S°

A localization computation on S° has first been performed in [49-51] and it has
been later generalized to toric Sasaki-Einstein manifolds, see [52] for a review.
The field content of an .4 = 1 vector multiplet consists in a gauge boson A, a
real scalar o, gauginos A;, Aiand an auxiliary scalar D;;, where A; and D; ; are,
respectively, a doublet and a triplet of SU(2);. Similarly to four dimensions,
it is possible to recast the fermionic fields in cohomological variables '), and
Xuv, such that they do not transform under the R-symmetry. It is important to
notice that the reduction onto CP?, which is not a spin manifold, is possible
as the cohomological variables are forms and not spinors.

The BPS locus for these theories is given by a covariantly constant scalar
0y and contact instantons at the three fixed fibers of S°:

FJ =0, 1,F =0 = Contactinstanton: xF = —K A F. (6.16)

An heuristic treatment of the instanton part and its reduction to CP? can be
found in [19]. Here, we will focus on the perturbative partition function? on
$3, given by:

Zé’f"z T 1II <n10)1+n2(02+n3(03+i06(60)>

aeroots ny,ny,n3>0

(6.17)
I1 <n1601 +n +n3m3 +i06(60)> :

ny,ng,n3>1

The three positive integers ny,ny,n3 in (6.17) are eigenvalues, under the U (1)3
rotation, of the modes contributing to the partition function after cancellations
due to supersymmetry.

An elegant way to express (6.17) is through multiple gamma functions [54]:

[ (z,0)=]](n 0+2), (6.18)

n>0
where ® = (@y, ..., @), and multiple sine functions [55, 56]:
Sr(z,0) = (2, 0) ' To(@r0 — 2, 0) 7', (6.19)
where @;,; = @; + ... + @,. Hence:

78" = ] S:(—ia(on), ®). (6.20)

o.€roots

Multiple sine functions enjoy factorization properties [57].

2The full partition function also has a classical contribution whose reduction to CP? is briefly
discussed in Paper 11, along the lines of [53].
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Moreover, for ease of notation, we will omit from the next formulae the
product in (6.17) over ny,ny,n3 > 1 and the product over the roots. However,
to obtain the correct perturbative partition function, both contributions need to
be restored.

We introduce equivariant parameters £, &, related to the squashing param-
eters as:

to to
top: g7 =m—w, &7=w—ow,

6.21
ex: &'=m+w, & =a+a. (621)

The unsquashed limit is 810” = 82017 =0 and &f* = &5 = 2. We will often
denote the equivariant parameters €;, & for both cases, however, they need to
be intended as defined above.

A useful rewriting is in terms of the quantum number for rotations along
the fibers (6.6):

trop = +ny1 +ny+n3, (6.22)
tex = —n1 +ny+n3. (6.23)

Also in this case we will denote both quantum numbers as ¢. Hence, we find:

zEmP = 11 11 | @+ (@ —@)na+ (03— o1)ns +ia(0p)

t>ny+n3 ny,n3>0

, e +e€
= H H gny +enz+ia(oy) + 1—¥
t>ny+n3 ny,n3>0 3
(6.24)
zZi" = 11 1I1 (| — @+ (@24 o)n2+ (03 4 o1)n3 +ic(o)
t<np+n3ny,n3>0
. & +E€
= H H eny +ens+ia(oy) + 1*¥
t<np-+n3ny,n3>0 3
(6.25)

At this point the two rewriting are equivalent to (6.17), however, their reduc-
tion to CP? will give different results, as we are going to show momentarily.
Note that the bounds on ¢ are different in the two cases: at fixed ¢ a finite num-
ber of ny,n3 contributes to ng 1P \while, for nge "¢X " an infinite number of
ny,n3 contributes. Finally, these expression can be factorized in contributions
coming from the three fixed fibers of S°, employing the factorization proper-
ties of the triple sine function [57]. The precise regularization of each con-
tribution is the higher-dimensional equivalent of the computation described in

chapter 5.
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6.3 Reduction to CIP?

As discussed above, we will perform the dimensional reduction introducing a
Z, quotient along either X7 or x*. On the resulting manifolds, L’ (p, 41), the
partition function localizes to a set of inequivalent flat connections (6.15):

Zy5(pa) Z / doye™Zy5 | (00, m)Zy T (og.m), (6.26)

where the sum is over the winding numbers m = diag (my,...,my_1) of the
flat connections. The crucial observation is that the quotient introduces also a
projection conditions for the quantum number for rotations along the fiber:

top:  tyop = +n1 +n2+n3 = a(m) mod p,

(6.27)
ex: ftp = —ny+ny+n3=a(m)mod p.
If we now take the large p limit, we find that we can simply set:
top: ¢t =o(m),
P (m) (6.28)

ex: t=o(m).

Substituting this into (6.24)-(6.25), we find the all-flux partition function on
CP? for equivariant DW and Pestun-like theories:

, , e +e
Z(’é]epzt P — H I (81n2+€2n3+la(60)+ (1—132> Oﬂ(m)>a

>n2+n3 ny,n3>0
(6.29)

. . 1 g+e
ngztex— H H (81n2+82n3+106(60)+<3 13 2)06(1’(1)),

)<n2 +n3n,n3=> >0

(6.30)
where the full partition function on CP? is given as a sum over flux sectors:
Zepr = / doye > Zle (00, m)Z s 7" (0p, m). (6.31)

Hence, we see how flat connections on lens spaces give rise to fluxes on the
base manifold. Moreover, at each flux sector, there is a finite amount of n,,n;3
contributing to the partition function, as expected for an elliptic complex. Vice
versa, we find an infinite amount of n,,n3 at each flux sector for the Pestun-
like theory, corresponding to a transversally elliptic complex. As proposed in
[18, 44] the dependence on fluxes in (6.29)-(6.30) enters through a squashing
dependent shift of the Coulomb branch parameter oy.

A consistency check of these results is that the trivial flux sector of (6.29)-
(6.30) gives the result derived in chapter 5. At non-trivial flux, the eigenvalues
come from a slice of the original cone (nj,nz,n3) > 0. The slices are per-
formed along the direction determined by the fibers x’7 or x**. Examples of
these slicings can be found in Figure 6.1.
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m

Figure 6.1. The plots show slices at different values of # = o(m) of the octant in R?
spanned by positive (nj,n2,n3). Each plane is determined by n; = F(np +nz —t),
where the orientation is related to the choice of fiber used to reduce and it determines
the eigenvalues contributing at the each flux sector.

As stated above, the same procedure can be performed starting from an
N =2 vector multiplet on §* [58, 59] to achieve two different .4 = (2,2)
theories on the base manifold CP! = §2. Lens spaces can be introduced as in
[60] and the results, at large quotienting, show agreement with known results
on S? [45, 46].

59



7. Hypermultiplet

In this final chapter, following Paper I1I, we will include matter coupled to the
gauge fields in the framework developed in [18, 19] and presented in chap-
ter 4. Writing the content of a four-dimensional .4~ = 2 hypermultiplet in
terms of cohomological variables gives rise to spinors, unlike for the vector
multiplet. Hence, it is generically needed for the manifold under considera-
tion to be spin'. For example, CPP?, considered previously, does not admit a
spin structure. Moreover the projector P (4.9) acting on flipping ASD/SD
two-forms comes together with a projector acting on chiral spinors which are
allowed to flip chirality at different fixed points. Similarly, as for the vector
multiplet, equivariant DW theory on S* is obtained with left-handed spinors at
both poles while Pestun’s theory stems from a flip of the chirality between the
two poles.

7.1 Cohomological variables

We start by introducing the field content of an .4~ = 2 hypermultiplet in d = 4,
as in chapter 2, and then switch to cohomological variables. Hence, let us
consider a single> hypermultiplet containing a scalar ¢;, transforming in the
fundamental of SU(2);, spinors g, W and auxiliary fields F;, in the funda-
mental of an SU (2);-symmetry>. Here, the SU(2); bundle is in general distinct
from the SU(2); bundle and it is required to write off-shell transformations.
More details can be found in Paper III and Appendix A. The fields are then
expressed in terms of cohomological variables as follows:

_ C'qi __l sy —viho, g
q“(zfq,- C T sy, ) 7D

and:

_ 1L sy—itoup Cos+s (& X
b_4<—s1/7—|—v’“‘6u1// ’ h= ) 7 Fr+(...)g, (7.2)

IDiscussion on spin® structures can be found, for example, in Paper III.
2Generalization to n hypermultiplets transforming in the fundamental of Sp(n) is straightfor-
ward.

3Reality conditions for the bosons are: (¢;)* = ¢’ and (F)"=F i
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where v is the Killing vector and we refer again to Appendix A for definitions
of 5, § and of the Killing spinors é i %% ¢ x'. Plus fixed points (ASD) are
such that § =0 and )?i = 0 while, vice versa, at minus fixed points (SD) s =0
and Z:’ = 0. Moreover, the dots in the definition of 4 in (7.2) stand for a depen-
dence on the supergravity background fields, as discussed in Paper III. It can
be shown that these maps have a smooth inverse. Hence, the cohomological
fields for an hypermultiplet turn out to be Grassmann-even fermions ¢,/ and
Grassmann-odd fermions b, c. Moreover, imposing reality conditions on g;, F;
and the Killing spinors, one finds:

(4) =4 7

where the term in the dots is computed using reality conditions on the super-
gravity background fields, see Paper II1.

In terms of cohomological variables, the supersymmetry transformations
are given by:

0q =c, oc=(i4 —%)q,

7.4
8b = ih, Sh= (%, +i%s)b, 7

where ¥y acts on the variables according to their representation. For example:
Do q = ili(1,A) + 9g. (7.5)

Thus, 0 acts on the cohomological fields as:
8’ =i%, — Yo, (7.6)

and here no R-symmetry transformations appears, due to the definitions (7.1)-
(7.2).
Moreover, the .4~ = 2 Lagrangian is found by taking the variation of a
fermionic potential:
ghrer — sy, (1.7)

whose explicit expression can be found in Paper III.

7.2 Projector

Counting the degrees of freedom of the cohomological variables (g, c,b, ) one
finds that these exceed those of the original content of an .4 = 2 hypermulti-
plet. Thus, one expects that the cohomological variables need to satisfy certain
conditions. Therefore, the idea is to define flipping projectors, as for P, and
two-forms, but for Dirac spinors on a four manifold M with a T2-isometry
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and a Killing vector with isolated fixed points. Such projector would have to
approach the left/right-handed projectors:

1 1

respectively at plus/minus fixed points where s = 0 or § = 0. Hence, one finds:

1 s—§ 2
Z,. =—11 — K 7.9
+ 2< +s+s~?’5 515 Ysyu), (7.9)

whose image comprises spinors which are in the image of L when s = 0 and
in the image of R when § = 0. Because of the definition of the Killing spinors

(A.3)-(A.4), one finds:
2 )- ()
Z+ < Zl - Zl ) (710)

which shows the strict relation between supersymmetry and the projector (7.9),
similarly as for the projector P, of chapter 4.

Perhaps the most intuitive way to understand this projector is in its rela-
tion with Pa’,L . Let us consider Dirac spinors W > = Z; ¥ ,. Then, one can
construct a two-form as follows*:

Apv =210 W1 = Va0 Wi + Va6 . (7.11)
One can check that this two-form satisfies:
PIA=A. (7.12)
Also it possible to construct related projectors as follows:
Z.=1-Z., Zi=vZ.y, Z.=1-Z,.. (7.13)

Moreover, due to (7.10), one finds that ¢ and ¢ are in the image of Z
projector:

Ziq=q, Zic=c, (7.14)

while b and £ are in the image of Z_:

Z_b=b, Z_h=h. (7.15)

The action of supersymmetry (7.4) commutes with the projectors as the vector
appearing in Z (7.9) is the Killing vector.

4The spinors Wy and % are the two components of the Dirac spinor. Check appendix A of
Paper III for more extensive treatment of conventions.
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7.3 One-loop determinant

The BPS locus of an .#” = 2 hypermultiplet is found imposing supersymmetry
transformations (7.4) and reality conditions (7.3):

b=h=c=h=0. (7.16)
To localize the partition function we use:

hyper 8
V. =
loc (S‘+*5)2

8 < _\ (Doo Doi q
_(S—l-f)z (5% q) (DIO D11> ( ob >

as deformation term. The relevant operator is Do, which fails to be elliptic
at points where § = s, but it turns out to be transversally elliptic with respect
to the Killing vector v. Moreover, the symbol complex o(Djg) approaches
either 9 or d respectively at left/right chirality fixed points. Unlike the vector
multiplet, there is no contribution of the complex conjugate operator.

The one-loop determinant can be computed using the formalism introduced
in chapter 5, that is to use to Atiyah-Bott formula (5.1) at each fixed point
being careful of patching properly all contributions. We assume the patching
can be carried along the lines of chapter 5, even if a formal treatment of this
would require a trivialization of the symbol complex of the hypermultiplet.

Therefore, at plus fixed points, we need to compute:

[(6D)"b+ (8c)*c]
(7.17)

1
det(l1 —df) = ——x—,
(1=475) (I=1)(1-12) (7.18)
KealEL) = Vit
Combining these contributions, one finds:
. 151%)
index(D10)| pluspoint = m (7.19)

Similar expressions can be found at minus fixed points, being careful of per-
forming the same flip of infinitesimal weight a; — —a1, as in chapter 5.
Hence, for a generic distribution of plus/minus fixed points, we find:

S1
N0

2 —
t %

index Dio= Y [[| —a | - (7.20)
leMyk=1 \ 1 —¢ %

This expression, which holds for the perturbative partition function of an .4 =
2 hypermultiplet, is the equivalent of (5.36) for an .4~ = 2 vector multiplet.
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As an example, we can compute the equivariant index of a Pestun-like the-
ory on $* [17, 36]. The weights can be read from chapter 5, hence one finds:

N A T
indexD1g =1, !
02 <l—t1t2_1> <l—tl‘1t2‘1>
+1;! ! _ ! _
> \1=ny! -1l

(7.21)

64



Appendices
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A. Supersymmetry on curved manifolds

The Killing spinors associated to the supersymmetry transformations are a pair
of spinors {;, and ¥ which satisfy:

. ; ; s
(Ciar) =", ClCi:§>
- i _io S
Z) =% XX=3, (A.1)
i 1
‘6 = EV”
Notice then that the square norm of the Killing vector is:
V] |? = s5, (A2)

so that either s or § vanishes at the fixed points. In particular, we label plus
fixed points those where s = 0 and minus ones where § = 0.

We consider an open cover of M, U;—;U; = M, where each patch is equipped
with a local frame ef and each fixed point is contained in a single U;. The
frames, in the overlap U; N Uy, are related by an SU(2);, x7z, SU(2)g trans-
formation. A Killing spinor for topological twisting, discussed in chapter 2, is
found identifying SU (2); and SU (2)g. It is globally defined and its expression,
in each patch, is (§)!, = 8.,.

In patches were s does not vanish, we can find spinors satisfying (A.1):

. . 1
{'= \féz’, Xi= ;v“c‘méi. (A.3)

Similarly, on patches where § = 0, solutions of (A.1) are given by:

. § 2 1 s
Xi= i\f&', Gi= *EV“@JG- (A.4)

In an overlap between two patches containing & fixed points, solutions of
(A.3) and (A.4) are related by an SU(2); transformation:

_ j & i P . V“ :
%:Ui]Xju Ci:UijCj, U~]:lw6'ui ]. (AS)

1

Surrounding a fixed point with s = 0 with a small three-sphere X, the map
U’ from X to SU(2); is non-singular and of degree one. Hence, moving
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between patches with different fixed points, the Killing spinor first transforms
under the SU(2); transformation (A.S), and second under the transformation
associated to topological twisting. Spinors constructed as above are smooth on
M. Moreover, it is shown in [18], that they solve the Killing spinor equations
arising from the appropriate rigid supergravity background on M.

Finally, in order to write .4~ = 2 off-shell transformations, we need to add
auxiliary spinors 5& and f(’-‘j‘ satisfying:

o _ 4 i_ S
(C[a) :Cou C{C :Ev
A ol _ S
(X'%)" = Xiors XX =5, A6)
P 1
Zléqu:_Evﬂa
Gi&:—xix; =0.

Moreover, they transform under SU(2), x7, SU(2); and SU (2)g Xz, SU(2);.
In the general the bundles SU(2); and SU(2); are not identified. More details
can be found in Paper III.
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Svensk Sammanfattning

Uppkomsten av kvantfiltsteori under 1920-talet, en teori som kombinerar kvant-
mekanik och speciell relativitetsteori, tilldt fysiker under andra hilften av sek-
let att ena tre (elektromagnetism och svag samt stark vixelverkan) av de fyra
fundamentala krafterna i partikelfysikens Standardmodell. Sedan dess har den
stora utmaningen for teoretiska fysiker varit att ocksa inkludera gravitation,
och diarmed allmén relativitetsteori, tillsammans med de tre andra krafterna i
ett och samma ramverk.

Det dr vilkint att om gravitation behandlas som en kvantfiltsteori leder
detta till svarhanterliga divergenser. En mojlig 16sning kom dock fran strang-
teori, en teori forst utvecklade i slutet av 1960-talet och borjan pa 1970-talet
som en, icke-framgangsrik, modell fér hadroner. Huvudiden bakom string-
teori dr att ersitta punktpartiklar med vibrerande 6ppna och slutna stringar.
Det dr viktigt att notera att stringteori har en naturlig lagenergigrians dér den
karakteristiska ldngdskalan av en string &r liten och, effektivt, liknar en par-
tikel vilken kan beskrivas av en approximativ kvantfiltsteori. Diarmed maste
strangteori ses som en hogenergikomplettering av kvantfiltsteori. Dessutom
beskriver en av stringvibrationerna i punktpartikelgriansen en masslos spin
2 partikel: gravitonen. dnnu mer intressant dr att stringens karakteristiska
langdskala ger ett enkelt sitt att bota de tidigare nimnda divergenser som up-
pkommer nér gravitation naivt beskrivs som en kvantfiltsteori.

Tva ytterligare ingredienser i stringteori dr extra dimensioner samt super-
symmetri, en symmetri som relaterar bosoniska och fermioniska frihetsgrader.
I synnerhet lever en konsistent teori med supersymmetriska strdngar i tio di-
mensioner vilket leder till den naturliga fragan hur vi bor hantera de sex extra
dimensioner vi inte upplever i var vardag. Den enklaste 16sning &r att tinka
sig att dessa extra dimensioner &r sa sma att de har en negligerbar paverkan pa
den fyra-dimensionella rymdtid vi upplever i vart vardagliga liv.

Denna avhandling behandlar dock framst den andra aspekten av stringteori:
supersymmetri. Uppenbarligen dr supersymmetri bruten vid de energiskalor
vi moter i var vardag och dven vid de energinivaer som kan nas i partikelaccel-
eratorer som LHC. Oavsett antags det vanligtvis att den energiniva vid vilken
supersymmetri bryts ir lagre 4n den energiniva vid vilken stringar ej ldngre
kan approximeras med punktpartiklar. Det &r ddrmed av yttersta vikt att forsta
supersymmetriska kvantfiltsteorier. Utdver motivation fran stringteori dr su-
persymmetriska kvantfiltsteorier ocksa av intresse pa grund av deras funda-
mentala natur. Supersymmetri ger mer kontroll 6ver fysiska observabler och
har ddrmed ocksa varit till hjdlp for att forsta aspekter av vanliga kvantfiltste-
orier.
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Den extra struktur som ges av supersymmetri gor det mojligt att studera
skyddade fysiska observabler under deformationer av den underliggande su-
persymmetriska kvantféltsteorin och i vissa fall kancellerar bidrag fran olika
sektorer varandra pa grund av supersymmetri och kvantiteter kan bestimmas
exakt. Detta dr avhandlingens huvuddmne. Mer specifikt behandlas exakta
berdkningar for partitionsfunktioner for .4~ = 2 supersymmetriska kvantfalt-
teorier pa en klass av fyradimensionella mangfalder som tillter en 72 isometri
och isolerade fixpunkter.
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