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Abstract
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Spin-orbit torques (SOTs) have emerged recently as practical tools to control the magnetization 
in spintronic devices, but it is debated what the underlying fundamental processes are that enable 
fast and energy-efficient magnetization switching.

In this thesis, we investigate theoretically possible means of controlling magnetization in 
magnetic materials and heterostructures. To this end we employ relativistic density functional 
theory and linear-response theory to compute electrically induced spin currents and spin 
polarizations. We focus initially on two effects, the spin Hall effect (SHE) and the spin Rashba-
Edelstein effect (SREE) that are due to spin-orbit coupling (SOC).

First, we investigate the electric-field induced local magnetization in two antiferromagnets, 
CuMnAs and Mn2Au. Our explicit calculations show that there is not only an SREE-induced 
local spin polarization, but also a surprisingly large orbital polarization, due to what we call an 
orbital Rashba-Edelstein effect (OREE). We show that the induced orbital polarization does not 
require SOC and that it exhibits a staggered, Rashba symmetry in contrast to the induced spin 
polarization that can have Rashba- or Dresselhaus-like symmetries.

Second, we investigate heavy-metal/ferromagnetic-metal bilayers, previously proposed to be 
exceptionally suited for large SOTs. Calculating the induced spin currents and accumulations, 
we find that there is an unusual magnetic spin Hall effect (MSHE), carrying a spin current whose 
polarization points along the electric field. The MSHE is odd under magnetization reversal, in 
contrast to the conventional SHE which is magnetization invariant.

We investigate further the MSHE for the ferromagnets Fe, Co, and Ni, for which we show 
that the size of the MSHE can be comparable to that of the SHE and therefore they can in general 
not be ignored for SOTs. To access their thermal counterparts, we systematically investigate the 
spin Nernst and orbital Nernst effect (ONE) for 40 metallic monoatomic crystals. We predict 
large ONE values for the group-10 elements Ni, Pd, and Pt.

Lastly, we go beyond linear-response theory by using a more advanced method based on non-
equilibrium Green’s functions, to compute ab initio the impact of applied bias voltages and show 
that induced spin and orbital accumulations have different spatial profiles. Our work emphasizes 
that there exist various novel spin/orbital effects that have not received much attention yet but 
could become harnessed in future spin-orbitronics.
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Part I:
Introduction and Theory





1. Introduction

There does seem to be a sense in which physics has gone beyond
what human intuition can understand. We shouldn’t be too surprised
about that because we’re evolved to understand things that move at
a medium pace at a medium scale. We can’t cope with the very tiny

scale of quantum physics or the very large scale of relativity.

RICHARD DAWKINS

Technological revolutions related to the way we store and handle information
have been profoundly shaping the development of humanity. Pivotal events
such as the establishment of writing systems more than 5000 years ago or the
development of scalable printing systems in the 15th century have irreversibly
impacted our journey as a species in this wonderful universe. The most recent
revolution is without any doubt the advent of computers and the internet,
which are propelling us into a new era of civilizational progress.

For most of our history, data has been stored in human-readable formats,
directly on solid physical media such as paper. In the middle of the last
century, the foundations of our relationship to data started to change as IBM
introduced, in 1956, the first digital storage device, the IBM 3501. Weighing
over a ton, with a storage capacity of approximately 5 MB, the IBM 350
was prohibitively expensive such that for consumer-grade applications paper
remained a more economically viable storage solution.

In 1996, a turning point was reached as digital storage became more cost
efficient than paper. This change in paradigm was enabled by the so-called
hard disk drive (HDD). While the cost of storing 1 MB of data in a HDD was
more than 100 $ in 1980, it fell below the symbolic 1 $ mark around 1995, and
by the beginning of the 21st century, it reached sub-cent prices [1]. Nowadays,
we have access to HDD’s that weigh less than 1 kg, can be hand-held and are
able to store more than 10 TB (10 millions MB). Compared to the 1956 IBM
350, we have for sure come a long way !

The evolution of HDD’s is shaped by Nobel prize physics, such as Albert
Fert and Peter Grünberg simultaneous discovery of the giant magnetoresis-
tance (GMR) [2, 3]. At the core of HDD technology lays magnetism. Data
is stored in magnetic bits, where each bit is a microscopic magnet whose
magnetic orientation defines either a "1" or a "0". Writing information cor-
responds to controlling the magnetization state of those microscopic magnets,

1www.ibm.com/ibm/history/exhibits/storage/storage_350.html
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while reading operations consist in retrieving the magnets’ orientation with
the help of GMR2 reading heads [4].

The microscopic understanding of magnetism, that is how magnetism arises
from fundamental particles and interactions, is rather new in the grand scheme
of science. Indeed, we had to wait until the beginning of the 20th century,
with the discovery of quantum mechanics, this strange, but powerful, new lens
through which we are able to apprehend the world at the atomic scale. Quan-
tum mechanics allowed for the discovery of a crucial quantity for magnetism:
the electron spin angular momentum.

In 1924, Wolfgang Pauli proposed a doubled number of available electron
states due to a two-valued non-classical angular momentum quantum number:
the concept of spin was born. Later, in 1927, Pauli established a mathematical
description of the spin, with the now well-known Pauli matrices [5]. A year
later, Paul Dirac worked out a relativistic description of the electron, in which
the concept of spin naturally arises [6] (in Pauli’s approach, the spin is an ad-
hoc quantity). The fact that the concept of spin emerges from a relativistic
description seems quite fundamental, reminiscent of the need of relativity to
correctly describe classical electromagnetism (Lorentz transformation).

Since the spin is an intrinsic property of the electron, just like its charge,
physicists and engineers have been actively looking at how this new degree
of freedom could be leveraged for technological applications. This quest has
given birth to the so-called field of spintronics, portmanteau word made of
“spin” and “electronics”. Recent developments in spintronics research have
revealed that the electron orbital angular momentum, which has usually been
disregarded due to quenching, might play an important role. This has led to
the emergence of the field of orbitronics.

This Thesis
In this thesis, we investigate key phenomena in the field of spintronics and
orbitronics. More specifically, we focus at effects through which external
electrical driving forces, e.g. electric field or electric current, couple to the
magnetization of solid state systems. A microscopic understanding of those
phenomena, as well as methods to perform ab initio simulations, is not only
desirable but necessary for the development of next generation technology.

In the first part of this thesis, we discuss the fundamentals as well as the
mathematical background. In Chapter 2, we briefly review key phenomena
such as the spin Hall effect and spin Rashba-Edelstein effect, as well as their
orbital counterparts. We discuss how they have attracted a lot of attention over
the past two decades in the context of magnetization control. In Chapter 3, we
present the theoretical framework that allows for the ab initio simulations of
those phenomena in materials.

2In reality, nowadays technology is based on “tunnel magnetoresistance” (TMR), which can be
seen as the evolution of GMR.
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In the second part, we summarize the results of our works. We provide a
summary of the papers which are attached to this thesis. While the manuscripts
provide a more complete and thorough analysis, the summaries focus on the
main message behind those results. The results are presented in Chapters 4-7.
Note that for Chapter 7, the manuscript being in preparation, the results are
analyzed directly within this thesis rather than in Paper V.

In the last part, we conclude and provide popular science summaries in
English, Swedish and French. Note that while the papers are included in the
printed version of this thesis, this is not the case for the digital version. The
link to the papers is provided on the DIVA portal of Uppsala University library.
The papers are also listed at the beginning of this thesis and are available on
the internet.
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2. Electrical Control of Spin an Orbital Angular
Momenta

Our minds are all we have. They are all we have ever had. And they
are all we can offer others.

SAM HARRIS

Because spintronics is all about leveraging the spin degree of freedom in
(nano)elecronic devices, there is no surprise that the efficient generation of
spin and spin currents are key issues in this very active field. Over the past two
decades, there have been two effects which have attracted an enormous amount
of attention: the spin Hall effect (SHE) and the spin Rashba-Edelstein effect
(SREE) (also referred to as inverse spin-galvanic effect). While the former
describes the electrical generation of spin currents, the latter describes the
electrical generation of non-equilibrium spin density in systems with broken
inversion symmetry (see Fig. 2.1 for a schematic representation).

Equivalently, the orbital counterparts of those effects can be defined, that is
the orbital Hall effect (OHE) and the orbital Rashba-Edelstein effect (OREE).
Similarly to the spin, the former describes the electrical generation of orbital
currents, while the latter describes the electrical generation of non-equilibrium
orbital density in systems with broken inversion symmetry. Although the
concepts of utilization and detection of orbital current remain elusive, the
emergence of this new orbital physics is igniting a huge interest in the so-
called field of orbitronics.

To define properly the aforementioned phenomena, we need to identify
objective quantities and establish a clear mathematical framework that artic-
ulates them in a proper way. For this, we first list the desired observables,
which are the induced spin density δSSS, orbital density δLLL, spin current density
JJJSSS and orbital current density JJJLLL, and relate them to driving fields,

δSi = χS
i jE j−ϒS

i j
dT
dr j

, (2.1a)

δLi = χL
i jE j−ϒL

i j
dT
dr j

, (2.1b)

JSk
i = σSk

i j E j−ΛSk
i j

dT
dr j

, (2.1c)

JLk
i = σLk

i j E j−ΛLk
i j

dT
dr j

, (2.1d)
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where E j is the jth component of a driving electric field EEE and dT
dr j

the jth

component of a driving temperature gradient ∇T . The tensorial quantities tell
us how those driving fields relate to the observables, where χχχS (χχχL) is the 2nd

rank magneto-electric spin (orbital) susceptibility tensor, ϒϒϒS (ϒϒϒL) the 2nd rank
magneto-thermal spin (orbital) susceptibility tensor, σσσSSS (σσσLLL) the 3rd rank spin
(orbital) conductivity tensor and ΛΛΛSSS (ΛΛΛLLL) the 3rd rank magneto-thermal spin
(orbital) conductivity tensor. Note that JSk

i (JLk
i ) is the i,k element of the 2nd

rank tensor JJJSSS (JJJLLL), where i is the direction of the flow of the spin (orbital)
current and k the direction of the spin (orbital) polarization carried by that
current. Note that Einstein notation for summation is used.

The 8 tensors we have just defined quantify how SSS and LLL, and their respective
current densities JJJSSS and JJJLLL, react to external electrical and/or thermal per-
turbations, in the linear regime. They are material dependent quantities and
their components are constrained by the symmetry of the system considered.
Those tensors allow for an objective description of the electrical and thermal
generation of spin and orbital density as well as their respective current density.

In this chapter, we give a brief overview of key phenoma that relate closely
to those tensor. We discuss how those material dependent quantities can be
used to extract a qualitative and quantitative description of effects such as the
SHE.

Figure 2.1. Schematic representation of some electrically- and thermally-induced
spin current and density generation. Top left is the SHE, where a longitudinal
electric field gives rise a transverse spin current. Top right is the spin Nernst
effect (SNE), where a longitudinal temperature gradient gives rise to a transverse
spin current. Bottom left is the spin Rashba-Edelstein effect (SREE), where a
longitudinal electric field gives rise to a local out-of-equilibrium spin density. Bottom
right is the thermal counterpart of the SREE, where a longitudinal temperature
gradient gives rise to a local out-of-equilibrium spin density. (Figure taken from
http://zfmezo.home.amu.edu.pl/research.php)
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2.1 Spin and Orbital Hall Effects
The first mention of the SHE goes back to the early 70’s, with the theoretical
prediction of Dyakonov and Perel [7, 8]. They based their discussion on the
concept of Mott scattering [9] which can be used to explain the anomalous Hall
effect (AHE) [10–16]. Indeed, spin-orbit interaction generates an asymmetry
in scattering of spin up and spin down electrons, such that, in the case of a
current flowing in a ferromagnet, where charge currents are inherently spin-
polarized, a transverse flux of charge arises, leading to a transverse anomalous
Hall voltage.

Applying the same rationale, Dyakonov and Perel postulated that, quote,
“when current flows through a conductor, the multiple scattering of the car-
riers should give rise to a spin flux perpendicular to the current and directed
from the interior to the periphery of the conductor", and predicted that this
would lead to spin accumulation at the sample boundary [7]. While the dis-
cussion raised by Dyakonov and Perel is seminal, not much interest was raised
for nearly three decades.

In 1999, Hirsch revisited this phenomenon in his eponymous scientific letter
entitled “Spin Hall Effect” [17]. Contrarily to the 70’s, the by-then nascent
field of spintronics had been found to be at the core of an extraordinary tech-
nological revolution, with the advent of HDD technology [18], as well as the
discovery of spin transfer torque (STT) that we will discuss later on. Within
such context, it is easy to understand that the prospect of generation and de-
tection of spin currents put forward by Hirsch ignited an intense interest in
SHE-related research. Subsequent theoretical works explored the SHE within
a diffusive regime [19] and unraveled the intrinsic contribution of the eletronic
structure [20, 21]. The first observations of the SHE were performed in a
semiconductors, GaAs and InGaAs [22], and (Al,Ga)As/GaAs heterostruc-
tures [23]. Soon after, observation of the inverse spin Hall effect (ISHE) in
metals showed effects orders of magnitude larger than for semiconductors
[24–26].

The microscopic origin of the SHE can be discussed in terms of extrinsic
and intrinsic mechanisms. The extrinsic contribution (skew-scattering and side
jumps) stems from spin-dependent scattering on defects [11, 15, 27], while
the intrinsic contribution originates from the Berry curvature associated to the
eletronic band-structure of the material [20, 21, 28, 29].

In its conventional definition, the SHE relates to specific components of the
spin conductivity tensor σσσ SSS, that is to σSk

i j (i, j,k = x,y,z) with the cartesian
indices satisfying εi jk �= 0 (εi jk is the Levi-Civita symbol). For high symmetry
crystals like paramagnetic cubic materials (e.g. Pt), this definition is quite
convenient since σσσSSS can be written as,

σSk
i j = σSHεi jk, (2.2)
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where σSH is the uniquely and unambiguously defined spin Hall conductivity
(SHC). Subsequently, we can define the spin Hall angle (SHA) θSH as

θSH =
2e
�

σSH

σ
(2.3)

where e is the elementary charge, � the reduced Planck constant and σ the
longitudinal electrical conductivity.

It is crucial to understand that it is the high symmetry of paramagnetic cubic
materials that allows for this unambiguous definition of σSH and θSH. In a more
general case, there is simply no way to uniquely define such quantities, and
reporting results using those terms might lead to confusion. A much better,
objective approach would be to refer directly to the spin conductivity tensor
σσσSSS and to define a spin-charge angle tensor θθθ SSS,

θ Sk
i j =

2e
�

σSk
iq

(
σ−1

)
q j

(2.4)

where the tensorial nature of θθθ SSS, σσσSSS and σσσ are fully taken into account.
Because definitions are nothing but human constructs, we need to acknowl-

edge that they are not absolute as their scope of applicability sometimes fails
to cover related effects that were not considered initially. We might be in the
midst of such issue with the SHE, with recent works on "non-conventional
SHE" in low symmetry materials [30–33] and magnetic systems [34–40]. In
these cases, it is not possible to refer to “a” SHC or “a” SHA. However,
any ambiguity can be circumvented by directly referring to the appropriate
elements of the tensors θθθ SSS and σσσSSS.

Analogously to the SHE, one can define the OHE, with its associated orbital
conductivity tensor σσσLLL and orbital-charge angle θθθ LLL. In 2007, using a tight-
binding model, Kontani et al. computed a huge transverse orbital conduc-
tivity in Pt [41]. They discovered that this effect arises from a phase factor
analogous to the Aharonov-Bohm phase factor and that the OHE, contrarily
to its spin counterpart, does not require spin-orbit coupling (SOC). Other
theoretical works investigated the OHE [28, 42–44], with similar conclusions.

Over the past few years, interest in OHE-related phenomena has been steadi-
ly rising. Recent works re-investigated this effect in d-transition metals systems
as well as sp metals such as Li or Al [45, 46], similarly to the original paper
of Kontani et al. [41]. In a crystal environment, the physical understanding
of orbital transport is quite challenging, due to the fact that orbital momentum
has to be defined with respect to a specific atomic site. Despite the elusive
nature of orbital currents, interesting proposals on their practical implications
are actively being explored [47].
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2.2 Spin and Orbital Rashba-Edelstein Effects
The spin Rashba-Edelstein effect (SREE), also called inverse spin galvanic
effect (ISGE), is the electrical generation of an out-of-equilibrium spin polar-
ization δSSS in a system lacking inversion symmetry. The lower symmetry of
the system, coupled to SOC leads to a spin-splitting in the electronic bands,
necessary ingredient to observe the SREE.

The first mention of the SREE in the scientific literature can be found in
a 1978 theoretical paper from Ivchenko and Pikus, where they proposed that
currents in non-centrosymmetric crystals would lead to a “partial orientation
of free carriers” [48]. One year later, Vorobev et al. experimentally observed
that for a Te crystal with an electrical current flowing along the major axis,
the change in rotation rate of the plane of polarization of light propagating
through the crystal was proportional to the current, and changes sign if the
current flows in the opposite direction [49]. In the following decade, similar
works on the SREE and its inverse, the inverse spin Rashba-Edelstein effect
(ISREE), were conducted [50–53].

In 1990, V. M. Edelstein showed that an electric current could induce an
out-of-equilibrium spin polarization in 2D systems with broken inversion sym-
metry along the normal direction [54]. His proof relied on the Rashba-like
spin-orbit coupling (SOC) Hamiltonian whose expression had been formalized
few years earlier [55]. Edelstein’s work is somewhat analogous to Hirsch’s
when is come to the rise of interest in the SREE.

Measurements of current-induced spin polarization at a ferromagnet- semi-
conductor interface were conducted in 2000 by Hammar et al. [56, 57].
However, it was quickly debated whether their observation could be unani-
mously attributed to the SREE since other effects like the local Hall effect and
anisotropic magnetoresistances could be used to explain their experiment [58–
60].

In 2002, the ISREE was observed in semiconductor heterostructures at
room temperature [61]. Soon later, Kato et al. were able to experimentally
observe and quantify the electrically-induced spin polarization in strained non-
magnetic semiconductors using the static and time-resolved Faraday rotation
[62].

If the increased discussions of the SREE happen roughly at the same time
as for the SHE, the orbital counter part of this effect, the OREE, emerges at a
later point than for the OHE. The first mention of the OREE goes back to 2015,
with a “tight-binding + Boltzmann transport” modeling of helical structure by
Yoda et al. [63]. Three years later, they reinvestigated the OREE within a
similar framework as an analogy to the Ampère field in classical solenoid
[64]. Because their approach relies on semi-classical Boltzmann transport,
no coherent quantum mechanical effects are taken into account. In 2019,
we provided one of the first material dependent ab initio study of the OREE
in antiferromagnets CuMnAs and Mn2Au [65]. We showed that the OREE
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was dominating over its spin counterpart. This is discussed more in details in
Chapter 4/Paper I.

Similarly to how the OHE is impacting more and more the field of spin(-
orbi)tronics, the OREE have become more present in the scientific landscape.
However, research on this phenomenon is in its infancy, and a lots of work
and investigation has to be done, with recent theoretical efforts going in that
direction [66, 67]. In a recent work, the Orbital Rashba-Edelstein magnetore-
sistance in permalloy/copper oxide heterostructures has been observed [68].
This work also sheds light on past observations of enhanced spin-torque in
presence of copper oxide [69].

2.3 Thermal Effects
The effects that we have considered up to this point are all electrically driven.
It is possible to extend our discussion to thermally driven phenomena, that is
driven by a temperature gradient ∇T , using the so-called Mott formula [70].
If we take the example of the spin conductivity σσσSSS, we have

ΛSk

i j =
π2k2

BT
−3e

( d
dE

σSk

i j

)
E=EF

, (2.5)

where ΛΛΛSSS is the magneto-thermal spin conductivity tensor, which has been
introduced phenomenologically at the beginning of this chapter, kB the Boltz-
mann constant, T the temperature and e the elementary charge. The derivative
is taken with respect to the electrochemical potential and evaluated at the
Fermi level (EF ). Similarly, the other magneto-thermal response tensors ϒϒϒSSS,
ϒϒϒLLL and ΛΛΛLLL can easily be defined using Eq. (2.5).

Among ϒϒϒSSS, ϒϒϒLLL, ΛΛΛSSS and ΛΛΛLLL, only the spin-magneto thermal conductivity
tensor ΛΛΛSSS has been actively investigated, both theoretically and experimentally.
To be accurate, mainly components of ΛΛΛSSS which relate to the spin Seebeck
[71–74] and SNE [75–82] have been discussed. Out of those two effects, there
is a particular interest in the SNE due to its similarity with the SHE. Indeed,
the “conventional SNE ” relates to the components ΛSk

i j where εi jk �= 0, just
like discussed for the SHE.

Due to the direct relationship between thermal and electrical coefficients,
what is predicted in the realm of electrically-driven phenomena can be straight-
forwardly extended to thermally-driven effects. From this, we can predict the
existence of the magnetic spin Nernst effect (MSNE), magnetic orbital Nernst
effect (MONE), spin thermal Rashba-Edelstein effect (STREE) and orbital
thermal Rashba-Edelstein effect (OTREE), thermal analogs of respectively
magnetic spin Hall effect (MSHE), magnetic orbital Hall effect (MOHE),
SREE and OREE. The MSNE has indeed been proposed recently by Mook et
al. [39]. In Paper IV, we provide an ab initio material-dependent calculation
of the MSNE, and extend our discussion to the MONE, based on calculations.
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2.4 Electrically-induced Torques in Magnetic Systems
The effects we have discussed up to this point do not only challenge our un-
derstanding of the world at the atomic scale, but also open the possibility for
novel technological applications. While humanity’s thirst for understanding
“how things work” can’t be denied, the prospect of novel technological devices
has been a major driving force in the increased research activities on those
phenomena.

The 1996 theoretical prediction of the spin transfer torque (STT) by Slonc-
zewski and Berger is without any doubt one of the key events at the origin of
today’s high level of activity in our field. In their works, they simultaneously
predicted that the injection of a spin-polarized current in a magnetic layer
would excite the magnetization through exchange-interaction of polarized car-
riers and local moments [83, 84]. Experimental observations of this effect
quickly followed, with the reporting of STT-driven magnetization precession
and magnetization reversal [85–88].

Extensive efforts were made to explore and understand the microscopic
behavior and the spin-dynamics related to STT [89–93]. With our current
understanding, practical STT-based devices can be manufactured. The most
emblematic is with little doubt the STT-based magnetic random access memory
(STT-MRAM) [94], with companies like IBM, Samsung and Everspin actively
involved in its development and commercial production [95].

A decade ago, another promising way to control magnetic states in devices
emerged with the discovery of the so-called spin-orbit torque (SOT) [96–99].
Compared to STT, SOT-mediated control of magnetization offers advantages
such as lower power consumption as well as a distinct read and write path for
read and write currents [100–102] (see Fig 2.2).
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Figure 2.2. Schematic of the typical architecture for a STT-based MRAM cell (left)
and a SOT-base MRAM cell (right). In the STT case, the read and write current
paths are the same, which may cause accidental writes in read operations. In the SOT
architecture, the read and write paths are different, which is safer. Note that we have
considered here the "classical" heavy-metal/ferromagnetic layer structure for the SOT.
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One of the typical systems that has been studied for SOT is the heavy-
metal/ferromagnet (HM/FM) heterostructure, where a current flowing in the
heavy-metal, parallel to the interface, exerts a torque on the magnetization of
the ferromagnetic layer. In the case of HM/FM system, the HM layer has often
been Pt [103–106], β -Ta [99, 100, 103, 107, 108] and β -W [109, 110]. The
interest of using those heavy-metals was mainly fueled by the report of their
strong SHE.

Alongside the SHE, the SREE has also been heavily discussed to explain the
SOT-enabled magnetization control [96, 97, 100, 111]. In the case of HM/FM
heterostructures, both effects are believed to play a role, although their relative
contribution is yet to be fully unraveled [112–119].

The research activities around SOT-related phenomena have given birth
to an incredibly diverse investigation landscape. In addition to the HM/FM
bilayers mentioned earlier, we could cite heavy-metal/ferromagnet multilayers
[120, 121], heavy-metal/ ferrimagnet [122–127], antiferromagnets [128–132],
topological insulators [133–137] and transition metal dichalcogenides [32,
138–142].

Until now, the vast majority of SOT-related research have focused on spin
phenomena such as the SHE and SREE. Recently, orbital phenomena, such as
the OHE and OREE, have also entered the picture. In 2020, Go et al. proposed
a mechanism of torque generation via the OHE [47]. A similar effort has been
made by Xiao et al. [143].

Experimentally, there are a lot of research efforts that need to be made in
order to understand this orbital contribution. Nevertheless, recent works show
really promising results. In 2021, Choi et al. reported observation of OHE-
induced magnetization at Ti surfaces [144] and, more recently, Ding et al.
reported the observation of an orbital-induced magnetoresistance effect, the
orbital Rashba-Edelstein magnetoresistance, in permalloy/oxidized Cu hetero-
structure [68]. There is no doubt that we are in the infancy of this “orbital-
driven physics”, but the first results are quite exciting. Indeed, contrarily
to spin phenomena such as SHE and SREE, the orbital counterparts do not
require large SOC. This allows us to use a wider, more versatile range of
materials such as light metals for SOT devices, reducing our usage of heavy-
metals which can be less environmentally friendly.
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3. Theoretical Framework

Make everything as simple as possible, but not simpler.

ALBERT EINSTEIN

In this chapter, we will explore the theoretical methods at the core of this
work. We will assume that the reader is familiar with basic concepts of quan-
tum mechanics and solid state physics (e.g. wave function, density matrix,
Bloch theorem). The focus here is to derive, from first principles, equations to
understand the influence of an external electric field EEE on the magnetization
MMM of a material, at the atomic scale.

First, we will discuss how materials can be described at the atomic scale.
For this, we will look at the most fundamental equation of quantum mechanics,
the Schrödinger equation, and discuss briefly the many-body nuclei-electron
case. Since quantum mechanical treatment of the nuclei is unnecessary in our
case, we will restrict our problem to the electronic subsystem.

The second step is to solve the electronic Schrödinger equation to compute
the ground state of our quantum system. Here, we will discuss the most, if
not the most, successful and groundbreaking theory of modern computational
material science: density functional theory (DFT).

Finally, we will see how the influence of an the external electric field EEE
can be taken into account. Here, we will derive an equation that allows us to
compute the material-dependent tensorial quantities defined in Eq. (2.1).

3.1 Electronic Structure
3.1.1 Schrödinger Equation
We consider a system of N electrons and M nuclei. It is fully described by the
time-dependent Schrödinger equation,

i�
∂
∂ t

Ψ(rrr1, ...,rrrN ,RRR1, ...,RRRM, t) = ĤeNΨ(rrr1, ...,rrrN ,RRR1, ...,RRRM, t), (3.1)

where i is the imaginary unit, � the reduced Planck constant, Ψ the wave func-
tion, a complex-valued function of 3N+3M+1 real variables, rrri (i = 1, ...,N)
the position of the ith electron, RRR j the position of the jth nucleus ( j = 1, ...,M)
and ĤeN the Hamiltonian, where the subscript "eN" stands for electron-nuclei.
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In the absence of any external fields and considering the Coulomb electro-
static interaction between particles, ĤeN can be explicitly written as

ĤeN =−
N

∑
i=1

�
2

2m
∇2

rrri
− 1

4πε0

N

∑
i=0

M

∑
j=0

e2Z j

|rrri−RRR j| +
1

4πε0

N

∑
i=0

N

∑
j=i+1

e2

|rrri− rrr j|

−
M

∑
i=1

�
2

2Mi
∇2

RRRi
+

1
4πε0

M

∑
i=0

M

∑
j=i+1

e2ZiZ j

|RRRi−RRR j| ,
(3.2)

where m is the mass the of the electron, ε0 the vacuum permitivity, Zi the
atomic number of the ith nucleus, e the elementary charge and Mi the mass the
of ith nucleus.

From left to right, the terms correspond to: (1) the kinetic energy of the
electrons, (2) the Coulomb interaction energy between electrons and nuclei,
(3) the Coulomb interaction energy between electrons, (4) the kinetic energy
of the nuclei and (5) the Coulomb interaction energy between nuclei.

Since ĤeN is time-independent, we can separate the spatial dimensions from
time in the wave function,

Ψ(rrr1, ...,rrrN ,RRR1, ...,RRRM, t) = ψ(rrr1, ...,rrrN ,RRR1, ...,RRRM) f (t). (3.3)

Injecting Eq. (3.3) in Eq. (3.1) leads to

f (t) = exp
(

E
i�

t
)
, (3.4a)

ĤeNψ(rrr1, ...,rrrN ,RRR1, ...,RRRM) = Eψ(rrr1, ...,rrrN ,RRR1, ...,RRRM), (3.4b)

where Eq. (3.4b) is an eigenvalue equation, the time-independent Schrödinger
equation, with E the eigenvalue associated to the time-independent wave func-
tion ψ(rrr1, ...,rrrN ,RRR1, ...,RRRM). To be more accurate, considering the non-degen-
erate case, there exists an ensemble of eigenvalue/eigenfunction pairs {(Eq;ψq)}
which respects Eq. (3.4b), and where q is a suitable (set of) quantum number(s)
which depends on the system considered.

The Electronic Hamiltonian
The inclusion of nuclei in the Hamiltonian makes our picture more complete,
but also more intricate. Considering that the mass of the proton is ∼ 2000
times bigger than the mass of an electron, we can assume that the low inertia
of the electrons allows them to adapt virtually instantaneously to any change in
the nuclei positions. This is the so-called Born-Oppenheimer approximation,
which allows us to write an electron-only Schrödinger equation

Ĥψ(rrr1, ...,rrrN) = Eψ(rrr1, ...,rrrN), (3.5)

with the electronic Hamiltonian Ĥ,

Ĥ =−
N

∑
i=1

�
2

2m
∇2

rrri
− 1

4πε0

N

∑
i=0

M

∑
j=0

e2Z j

|rrri−RRR j| +
1

4πε0

N

∑
i=0

N

∑
j=i+1

e2

|rrri− rrr j| . (3.6)
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The influence of the nuclei is still taken into account by the Coulomb interaction
between nuclei and electrons (second term).

Because the electronic system is the main focus of this thesis, we will refer
to the "electronic Hamiltonian" simply as the "Hamiltonian". We also use use
the atomic units (Hartree), which sets the elementary charge e, the electron
mass me, � and 1

4πε0
to 1,

Ĥ =−1
2

N

∑
i=1

∇2
rrri
−

N

∑
i=0

M

∑
j=0

Z j

|rrri−RRR j| +
N

∑
i=0

N

∑
j=i+1

1
|rrri− rrr j| . (3.7)

The non-relativistic flavor of the Schrödinger equation, which is the one
discussed so far, fails to capture magnetism, primarily because spin angular
momentum cannot naturally arise within this formulation. We could correct
this by considering the Pauli Hamiltonian, but it would still fails at capturing
SOC, which is of crucial importance in our case.

The most rigorous approach is to consider the Dirac Hamiltonian, which
is fully relativistic. There, the wave function becomes a 4-dimensional object
from which spin angular momentum naturally arises and adequately couples
to orbital angular momentum. Fortunately for us, the specific choice of the
Hamiltonian is not crucial at this stage of our discussion, and we can write,
without loss of generality,

Ĥ = T̂ +V̂ +Û , (3.8)

where T̂ is the kinetic operator, V̂ the one-body potential and Û the two-body
potential. For the non-relativistic case, we can easily identify

T̂ =−1
2

N

∑
i=1

∇2
rrri
, (3.9a)

V̂ =−
N

∑
i=0

M

∑
j=0

Z j

|rrri−RRR j| , (3.9b)

Û =
N

∑
i=0

N

∑
j=i+1

1
|rrri− rrr j| . (3.9c)

Now that we have an equation for ψ(rrr1, ...,rrrN),(
T̂ +V̂ +Û

)
ψ(rrr1, ...,rrrN) = Eψ(rrr1, ...,rrrN), (3.10)

the question is "How to solve it?". The most straightforward way would be
to use a brute-force algorithm such as finite-difference. Sadly, this is not
possible for realistic systems due to the high dimensionality of ψ . Indeed,
because ψ(rrr1, ...,rrrN) is a function from R

3N to C, we would need to store
complex values on a 3N dimensional grid1. Let us assume 10 discrete points

1Here we assume the simple non-relativistic case.
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per dimension and a complex double-float precision, i.e. 16 bytes per complex
number. If we consider a single nickel atom (N = 28), we would need a
memory capacity of 16 1084 bytes (16 1075 Gbytes), which is a ridiculous
number, even for nowadays computing standards. The problem appears even
more critical when we consider that we will not look at a single nickel atom
but at structures with several of them. Fortunately, it is possible to circumvent
this problem, which is what the next section will be about.

3.1.2 Density Functional Theory
Density functional theory (DFT) is probably one of the most groundbreaking
theory in the field of computational condensed matter physics and computa-
tional chemistry. In fact, one could argue that DFT is the main driver for the
incredible expansion of those fields since the beginning of the 21st century.

The revolutionizing idea at the core of DFT is that knowledge of the elec-
tronic density n(rrr) is sufficient to quantify the ground state of the system. It is
defined as

n(rrr) = N
∫

...
∫

ψ∗(rrr, ...,rrrN)ψ(rrr, ...,rrrN)d3rrr2...d3rrrN . (3.11)

Because n(rrr) is a function from R
3 to R, whatever the number of electrons is,

dimensionality ceases to become a problem.

The raison d’être of DFT are the Hohenberg-Kohn theorems. First formulated
by P. Hohenberg and W. Kohn in 1964 [145], they state that:

• The ground state density n(rrr) of a many-electron system determines
uniquely the external2 one-body potential V̂ (rrr) (up to a spatial constant),
and vice versa.

• The ground-state energy can be obtained variationally: the density min-
imizing the total energy is the exact ground-state density.

2"External" refers to anything external to the electronic system, e.g. the electrostatic potential
due to the nuclei.
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The Kohn-Scham Scheme
From the first Hohenberg-Kohn theorem, two important corollaries arise:

• There exists a relationship between the one-body potential V (rrr) and the
ground-state density n(rrr), and since V (rrr) is determined by the atomic
nuclei, then n(rrr) should in theory be known;

• Because the wave function is determined by n(rrr) and because the wave
function determines the expectation value 〈O〉 of any observable O, 〈O〉=
〈O〉[n(rrr)] is a functional of the density.

Unfortunately, the relationship between V (rrr) and n(rrr) is unknown, and is
still an open question (whoever solves this problem will probably receive a
Nobel prize). One of the research area within the DFT community is actually
based on this idea of direct V (rrr)/n(rrr) relationship. This field is referred to as
orbital free DFT (OFDFT) [146], where "orbital free" relates to the fact that
the density is directly used, rather than electronic wave functions. In contrast
to this orbital free approach, there is an orbital-based version, which relies
explicitly on electronic orbitals, a.k.a wave functions. This version is referred
to as the Kohn-Sham DFT (KSDFT), from the names of Walter Kohn and Lu
Jeu Sham, pioneers in the field.

The original formulation of the KSDFT dates back to 1965 [147]. The
key idea is to consider an auxiliary system consisting of N non-interacting
single-electron states φ(rrr). Such system is described by the single electron
Hamiltonian Ĥ,

Ĥφq(rrr) =

(
−∇2

2
+VKS(rrr)

)
φq(rrr) = εqφq(rrr) (3.12)

where VKS(rrr) is the so-called Kohn-Sham potential and q refers to a (set of)
quantum number(s) conveniently labeling the states. The electronic density
nKS(rrr) for this auxiliary system is given by

nKS(rrr) = ∑
q

fq|φq(rrr)|2. (3.13)

where fq is the occupation number of state φq(rrr), which can be defined as the
Fermi-Dirac distribution,

fq =
1

exp
(

εq−εF
kBT

)
−1

(3.14)

where εF is the Fermi energy, kB the Boltzmann constant and T the temperature.
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The ingenious approach of Kohn and Sham is to consider that, if we manage
to build VKS(rrr) such that nKS(rrr) = n(rrr), then Eq. (3.12) can be used to obtain
n(rrr), effectively solving our problems (recall that DFT states that only “n(rrr)”
is needed !). Within the Kohn-Sham scheme, the ground state energy can be
written as

EKS
[
n(rrr)

]
= TKS

[
n(rrr)

]
+Eext

[
n(rrr)

]
+EHa

[
n(rrr)

]
+EXC

[
n(rrr)

]
, (3.15)

where TKS
[
n(rrr)

]
is the Kohn-Sham kinetic energy, Eext

[
n(rrr)

]
the energy term

due to the external potential, EHa
[
n(rrr)

]
the energy term due to the Coulomb

electron-electron interactions and EXC
[
n(rrr)

]
the so-called exchange-correlation

potential.
The Kohn-Sham kinetic energy is given by

TKS
[
n(rrr)

]
=−1

2

∫
∑
q

fq
∣∣∇φq(rrr)

∣∣2 d3rrr, (3.16)

which is a non-interacting kinetic energy. It is different from the kinetic energy
built from the many-body wavefunction.

The energy term due to the external potential is

Eext
[
n(rrr)

]
=

∫ (
−

M

∑
j=0

Z j

|rrr−RRR j|

)
n(rrr) d3rrr =

∫
Vext(rrr) n(rrr) d3rrr, (3.17)

where we have defined Vext(rrr) = −∑M
j=0

Z j
|rrr−RRR j| . Note that while we restrict

our discussion to the atomic potential, we could include other contributions,
as long as they are external to the electronic system.

The energy term due to the Coulomb electron-electron interactions, more
commonly referred to as the Hartree term, is

EHa
[
n(rrr)

]
=

∫ (
1
2

∫ n(rrr′)
|rrr− rrr′| d3rrr′

)
n(rrr) d3rrr =

∫
VHa(rrr) n(rrr) d3rrr. (3.18)

This is a mean-field approach to the Coulomb electron-electron interaction.
The Hartree potential VHa(rrr)= 1

2
∫ n(rrr′)
|rrr−rrr′| d3rrr′ actually includes self-interactions

(which is conceptually not correct).
Finally, the last term is given by

EXC
[
n(rrr)

]
=

∫
VXC

[
n(rrr)

]
n(rrr)d3rrr, (3.19)

where we assume that there exists a potential VXC
[
n(rrr)

]
such that EXC

[
n(rrr)

]
can be written in this integral form. The potential VXC

[
n(rrr)

]
is referred to as

the exchange-correlation potential. The exchange-correlation term accounts
for all the necessary corrections due to many-body effects. For instance,
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corrections to the Kohn-Sham kinetic energy or electron-electron effective
interactions which are embodied in the symmetry of the many-body wave
function. This term is crucial for magnetic properties.

The variational equation tells us that if nKS(rrr) is the ground-state density,
then

δEKS
[
n(rrr)

]
δφq(rrr)† =

δTKS
[
n(rrr)

]
δφq(rrr)†

+

(
δEext

[
n(rrr)

]
δnKS(rrr)

+
δEHa

[
n(rrr)

]
δnKS(rrr)

+
δEXC

[
n(rrr)

]
δnKS(rrr)

)
δn(rrr)

δφq(rrr)† = 0,

(3.20)

which reduces to(
− 1

2
∇2 +Vext(rrr)+VHa

[
n(rrr),rrr

]
+VXC

[
n(rrr),rrr

])
φq(rrr) = 0, (3.21)

Although this equation nearly looks like an eigenvalue equation, the right
hand-side is zero. To get our effective Hamiltonian equation, we need to
constrain the electronic density to integrate to N,∫

n(rrr) d3rrr = N. (3.22)

Introducing the Lagrange multiplier εq, the constrained variational equation
becomes

δ
δφq(rrr)†

(
EKS

[
n(rrr)

]− εq
(∫

n(rrr) d3rrr−N
))

= 0, (3.23)

which reduces to the well-known Kohn-Sham effective equation(
− 1

2
∇2 +Vext(rrr)+VHa

[
n(rrr),rrr

]
+VXC

[
n(rrr),rrr

])
φq(rrr) = εqφq(rrr). (3.24)

By identification, we see that VKS(rrr) =Vext(rrr)+VHa
[
n(rrr),rrr

]
+VXC

[
n(rrr),rrr

]
.

The attentive reader will have noticed that we are facing a serious "chicken-
and-egg" dilemma here. Indeed, VKS is built upon the knowledge of n(rrr),
but n(rrr) is obtained by solving the effective Kohn-Sham Hamiltonian which
requires ... VKS! To solve this problem in practice, we initialize n(rrr) to some
appropriate value and compute VKS. Now that the effective Hamiltonian is
defined, we solve it and compute a new density n(rrr). This new density is
used to update VKS, which can then be used to update n(rrr). When we are
close enough to stationary point in our iterations, we can assume that we have
converged to an appropriate solution. This approach is referred to as self-
consistent field (SCF) (see Fig. 3.1).
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Figure 3.1. Flowchart representation of the SCF method to solve the Kohn-Sham
auxiliary system. A initial guess for the density is used, then we solve the eigenvalue
problem, compute the new density and compare it with the old density. If both
densities are close enough, we have a converged solution. If not, we update the density
and iterate until convergence is reached. The parameter α is used to obtain a smoother
convergence and controls the mixing of the old and new density.
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It is important to understand that the Kohn-Sham Hamiltonian is an auxiliary
system, i.e. it is a mathematical construction built to compute the true elec-
tronic density. Therefore, quantities extracted from the Kohn-Sham procedure
must be handled with caution. For instance, there is no reason to assume that
the potential VKS is a scalar potential that falls within Maxwell’s description
electromagnetism. This is especially true for VXC, which contains effective
interactions naturally included in the symmetry of the many-body wave func-
tion. Also, the single-particle "wave functions" φq(rrr) are, per se, auxiliary
functions used to obtain the real density, and the single-particle "eigenenergies"
εq are Lagrange multipliers ensuring the correct number of total electrons.

Despite all of this, in this thesis, we assume φq(rrr) and εq to be physically
representative of the systems studied. In order words, we assume that the
effective single-electron picture is close enough to a real physical picture.
What is amazing here is that, while there is no formal mathematical proof
to justify this approach, “it simply works”3.

Density Functional Theory and Relativity
The discussion on DFT within the Kohn-Sham framework can easily be extended
to the Dirac Hamiltonian. In such case, the Hamiltonian reads

ĤDKS(rrr) =
(

σσσ ·BBBXC(rrr)+mc2III2 cσσσ · p̂pp
cσσσ · p̂pp −σσσ ·BBBXC(rrr)−mc2III2

)

+
(

Vext(rrr)+VHa
[
n(rrr),rrr

]
+VXC

[
n(rrr),rrr

])
III4,

(3.25)

where ĤDKS(rrr) is the Dirac-Kohn-Sham Hamiltonian, σσσ = (σx,σy,σz) the
vector of Pauli matrices, BBBXC(rrr) the exchange-correlation field, c the speed
of light, p̂pp the momentum operator and IIIN a N×N unit matrix. The three last
terms are analogous to the non-relativistic case.

The eigenvalue equations is therefore written as

ĤDKS(rrr)Ψq(rrr) = εqΨq(rrr) (3.26)

where Ψq(rrr) is a function from R
3 to C

4, that is a four-component wave func-
tion.

The concept of density is also extended to a four-component density
(n(rrr),mx(rrr),my(rrr),mz(rrr)),

n(rrr) = ∑ fqΨq(rrr)†Ψq(rrr) (3.27a)

mi(rrr) = ∑ fqΨq(rrr)† σi Ψq(rrr) (i = x,y,z) (3.27b)

3This argument might not be well received in a mathematics thesis. Fortunately, here we are
doing physics.
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where mi(rrr) is the ith component of the magnetization density. Those additional
densities define BBBXC(rrr) analogously to how VVV XC(rrr) is defined by n(rrr),

Bi
XC(rrr) =

δEXC
[
n(rrr),mmm(rrr)

]
δmi(rrr)

(i = x,y,z). (3.28)

Relativistic corrections are necessary to appropriately simulate effects such
as the SHE and SREE. In practice, we use an equation in between the non-
relativistic Schrödinger and the fully relativistic Dirac equation. This middle
ground equation is referred to as the “scalar relativistic + SOC” Schrödinger
equation and includes relativistic corrections, considering a 2-dimensional
wave function rather than a 4-dimensional one. In this thesis, we use the
“scalar relativistic + SOC” equation as implemented in the DFT package WIE-
N2k [148].
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3.2 Density Matrix Perturbation Theory
Now that we have a clear formulation of the electronic problem, as well as a
practical way of obtaining single-particle wave functions and eigenenergies,
we can continue our theoretical journey and discuss how the effects of an
external perturbation can be included. Here, we consider an external time-
varying electric field EEE(t), and its influence on magnetism-related observables
such as spin angular momentum SSS and orbital angular momentum LLL.

Because we have access to the equilibrium electronic wave functions, our
computing method of choice is the density matrix perturbation theory (DMPT),
in its linear form. The main idea behind DMPT is to use the ground state wave
functions to evaluate changes in expectation values of physical observables.
The working hypotheses are the following,

Assumption 1. The system is described by a time-dependent Hamiltonian
Ĥ(t) which can be written as

Ĥ(t) = Ĥ0 + Â(t), (3.29)

where Ĥ0 is the time-independent part of Ĥ(t) and Â(t) the time-dependent
part of Ĥ(t). Ĥ0 and Â(t) are usually respectively referred to as the “unperturbed
Hamiltonian” and the “(external) perturbation”.

Assumption 2. The unperturbed Hamiltonian is solvable, that is

Ĥ0|φi〉= εi|φi〉, (3.30)

is a solvable eigenvalue equation where the equilibrium wave functions |φi〉
with their associated eigenenergies εi are known. Here, i is a (set of) quantum
number(s) appropriate for the system considered.

Assumption 3. At any time t, the perturbation Â(t) has a workable mathematical
expression, that is we can compute its matrix representation

Ai j(t) = 〈φi|Â(t)|φ j〉. (3.31)

3.2.1 Density Matrix
The concept of density matrix is the generalization of the concept of wave
function and can be used to compute expectation values of physical observables
in quantum systems. Let us consider a quantum system described the time-
dependent Schrödinger equation

i�
d
dt
|Ψ j(t)〉= Ĥ(t)|Ψ j(t)〉, (3.32)
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where |Ψ j(t)〉 are the time-dependent single-particle wave functions evolving
under the influence of Ĥ(t). The time-dependent expectation value 〈B〉(t) of a
physical observable B, associated to its quantum operator B̂, is given by

〈B〉(t) = ∑
j

f j 〈Ψ j(t)|B̂|Ψ j(t)〉, (3.33)

where f j is the occupation number associated to state |Ψ j(t)〉. Because 〈B〉(t)
is a scalar quantity, we can take the trace in Eq. (3.33) and make use of its
cyclic property4

〈B〉(t) = Tr

(
∑

j
f j 〈Ψ j(t)|B̂|Ψ j(t)〉

)

= Tr

(
∑

j
f j |Ψ j(t)〉〈Ψ j(t)|B̂

)

= Tr
(
ρ̂(t)B̂

)
,

(3.34)

where we have defined the density operator ρ̂(t),

ρ̂(t) = ∑
j

f j |Ψ j(t)〉〈Ψ j(t)|. (3.35)

Here, we see that by tracing the product between the density operator ρ̂(t) and
a quantum mechanical operator B̂ we can compute 〈B〉(t).

The time-evolution of ρ̂(t) can be explicitly computed,

d
dt

ρ̂(t) = ∑
j

f j

(
d|Ψ j(t)〉

dt
〈Ψ j(t)|+ |Ψ j(t)〉d〈Ψ j(t)|

dt

)
, (3.36)

which can be simplified using Eq. (3.32) and its complex conjugate,

i�
d
dt

ρ̂(t) =
[
Ĥ(t), ρ̂(t)

]
, (3.37)

with [., .] the commutator.
The time-evolution equation Eq. (3.37) is commonly referred to as the

Liouville-von Neumann equation. It describes the evolution of the system in
terms of density operator rather than wave function. If this equation can be
solved, then using the trace property of the density matrix (see Eq. (3.34)),
the expectation value of any given physical observable can be straightfor-
wardly computed. Unfortunately, solving directly Eq. (3.37) can prove quite
challenging.

4The trace is invariant under cyclic permutations, i.e. Tr
(
ÂB̂Ĉ

)
= Tr

(
B̂ĈÂ

)
= Tr

(
ĈÂB̂

)
.
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3.2.2 Perturbation Expansion
A formal solution of the Liouville-von-Neumann Equation can be found by
integrating it,

ρ̂(t) = ρ̂(t0)+
1
i�

∫ t

t0

[
Ĥ(τ), ρ̂(τ)

]
dτ. (3.38)

where ρ̂(t0) is a known initial condition, at time t0. Using Assumption (2), we
can conveniently define ρ̂(t0) to be the density matrix of Ĥ0, the unperturbed
part of the Hamiltonian,

ρ̂(t0) = ρ̂0 = ∑
i

fi |φi〉〈φi|. (3.39)

While we have isolated ρ̂(t) on the left hand-side of Eq. (3.38), ρ̂(τ) stills
appears in the right hand-side, inside the integral. A workable expression for
ρ̂(τ) is not known, however the formal solution is given by Eq. (3.38), which
yields

ρ̂(t) = ρ̂0 +
1
i�

∫ t

t0

[
Ĥ(τ),

ρ̂(τ)︷ ︸︸ ︷
ρ̂0 +

1
i�

∫ τ

t0

[
Ĥ(τ ′), ρ̂(τ ′)

]
dτ ′

]
dτ. (3.40)

Rearranging, we can write

ρ̂(t) = ρ̂0

+
1
i�

∫ t

t0

[
Ĥ(τ), ρ̂0

]
dτ

+
1

(i�)2

∫ t

t0

∫ τ

t0

[
Ĥ(τ),

[
Ĥ(τ ′), ρ̂(τ ′)

]]
dτ ′dτ.

(3.41)

We got rid of the time-dependent ρ̂’s in the two first term. However, we have
introduced a new term which contains ρ̂(τ ′). If we keep injecting Eq. (3.38),
we can get rid, term by term, of the time-dependent ρ̂’s, i.e.

ρ̂(t) = ρ̂0

+
1
i�

∫ t

t0

[
Â(τ), ρ̂0

]
dτ

+
1

(i�)2

∫ t

t0

∫ τ

t0

[
Ĥ(τ),

[
Â(τ ′), ρ̂0]] dτ ′dτ

+
1

(i�)3

∫ t

t0

∫ τ

t0

∫ τ ′

t0

[
Ĥ(τ),

[
Ĥ(τ ′),

[
Â(τ ′′), ρ̂0]]] dτ ′′ dτ ′ dτ

+ ...

(3.42)

where we have used the fact that ρ̂0 commutes with Ĥ0 to replace time-
dependent Hamiltonian in the innermost commutators by the perturbation term.
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Here, we have build a perturbative expansion, that is an infinite sum of
terms that do not contain a time-dependent ρ̂ in the right hand-side. Formally
speaking, we have transformed a differential equation into a infinite series,
whose individual terms can be evaluated. If the series converges sufficiently
fast enough such that only few terms are needed, then we have a practical
solving method. In practice, the restriction in the number of terms is done a
priori.

We can define the terms of the expansion in a recursive way. If we write

ρ̂(t) =
∞

∑
n=0

ρ̂ [n](t), (3.43)

where the n refers to the order of the correction to the density operator, the
following recursion relation holds

i�
∂
∂ t

ρ̂ [n](t) =
[
Ĥ0, ρ̂ [n](t)

]
+
[
V̂ (t), ρ̂ [n−1](t)

]
n = 1,2, ... (3.44)

The zeroth order term is given by ρ̂ [0](t) = ρ̂0, which is equivalent to the initial
condition requirement of the problem expressed as differential equation. The
nth correction ρ̂ [n](t) depends on itself and on order n−1.

Here, it is important to realize that the electronic system is studied in isolation
(e.g. no electron-phonon coupling). Coupling to external bath is however
crucial to understand the response function of quantum systems. To convince
ourselves, we could consider the case of electrical conductivity: because elec-
trons couple to the lattice, part of their energy is irreversibly transferred to a
system that is external to the electronic one. In fact, this coupling between
electrons and external sources is essential to obtain a finite conductivity.

The inclusion of such coupling is unfortunately deeply challenging. To
circumvent this problem, we add an effective non-Hermitian decay term to
Eq. (3.44),

i�
∂
∂ t

ρ̂ [n](t) =
[
Ĥ0, ρ̂ [n](t)

]
+
[
V̂ (t), ρ̂ [n−1](t)

]
− i�Γ̌ρ̂ [n](t) n = 1,2, ...

(3.45)
where Γ̌ is a decay superoperator, that is a linear operator acting on operators
space. Here, we assume

〈φi|Γ̌ρ̂|φ j〉= Γi jρi j (3.46)

where Γi j is a real scalar. The decay term introduced in Eq. (3.45) is essentially
an effective exponential decay. Because the Γi j’s are purely real, i�Γ̌ρ̂ [n](t) is
anti-Hermitian, and energy is not conserved anymore. The Γi j’s account for
the fact that electronic excitations have a finite lifetime.
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3.2.3 First-Order Correction
We now focus on the first order correction, which is given by

i�
∂
∂ t

ρ̂ [1](t) =
[
Ĥ0, ρ̂ [1](t)

]
+
[
Â(t), ρ̂0

]
− i�Γ̌ρ̂ [1](t), (3.47)

We define the following Fourier transformation

F(t) =
1

2π

∫ +∞

−∞
e−iωt F̃(ω) dω,

F̃(ω) =
∫ +∞

−∞
eiωt F(t) dt,

(3.48)

and Fourier transform Eq. (3.47),

�ω ˆ̃ρ [1](ω) = Ĥ0 ˆ̃ρ [1](ω)− ˆ̃ρ [1](ω)Ĥ0 +
ˆ̃A(ω)ρ̂0− ρ̂0

ˆ̃A(ω)

− i�Γ̌ ˆ̃ρ [1](ω).
(3.49)

We now make use of Assumption (2), project onto states 〈φi| and |φ j〉, and
make use of the identity relation Î = ∑p |φp〉〈φp|,

�ω〈φi| ˆ̃ρ [1](ω)|φ j〉= ∑
p
〈φi|H0|φp〉〈φp| ˆ̃ρ [1](ω)|φ j〉

−∑
p
〈φi| ˆ̃ρ [1](ω)|φp〉〈φp|Ĥ0|φ j〉

+∑
p
〈φi| ˆ̃A(ω)|φp〉〈φp|ρ̂0|φ j〉

−∑
p
〈φi|ρ̂0|φp〉〈φp| ˆ̃A(ω)|φ j〉

− i�〈φi|Γ̌ ˆ̃ρ [1](ω)|φ j〉,

(3.50)

Because 〈φi|H0|φp〉= εiδip and 〈φp|ρ̂0|φ j〉= fpδp j, we can simply the expression
to obtain

ρ̃ [1]
i j (ω) = ( f j− fi)

Ãi j(ω)

�ω−�ωi j + i�Γi j
, (3.51)

where we have defined �ωi j = εi− ε j.
This is the general form of the first-order correction to the density matrix.

As long as that matrix elements Ai j are known and have a Fourier transform,
ρ̃ [1]

i j (ω) can be computed. If ρ̃ [1]
i j (ω) is known, then the time-varying expectation

value associated to operator B̂, in the frequency space, is

〈B̃〉[1](ω) = ∑
i j

Bi jρ̃
[1]
ji (ω)

= ∑
i j
( fi− f j)

Bi jÃ ji(ω)

�ω−�ω ji + i�Γ ji
,

(3.52)

〈B〉[1](t) can then be obtained using the inverse Fourier transform.
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3.2.4 Electromagnetic Perturbation in Periodic Solid
In the case of an external electric field EEE(t), the perturbation Â(t) can written
as

Â(t) =−qEEE(t) · r̂rr, (3.53)

where q is the electron charge and r̂rr the position operator. If the physical
quantity of interest is vectorial, that is B̂BB = (B̂x, B̂y, B̂z), then Eq. (3.52) can be
written as

〈B̃α〉[1](ω) =−q∑
β

∑
i j
( fi− f j)

Bα
i j rβ

ji(ω)

�ω−�ω ji + i�Γ ji
Ẽβ (ω) (3.54)

where α and β are Cartesian coordinates, and Ẽβ (ω) is the Fourier transform
of the β component of the electric field. In general, such equation can be
written as

〈B̃α〉[1](ω) = ∑
β

χαβ (ω) Ẽβ (ω), (3.55)

where χαβ (ω) is the susceptibility tensor. By identification,

χαβ (ω) =−q∑
i j
( fi− f j)

Bα
i j rβ

ji(ω)

�ω−�ω ji + i�Γ ji
. (3.56)

Using the commutation relation
[
Ĥ, r̂rr

]
=− i� p̂pp

m , one can show that

rrri j =
pppi j

imeωi j
, (3.57)

such that

χαβ (ω) =
−iq
me

∑
i j

fi− f j

�ωi j

Bα
i j pβ

ji(ω)

ω−ω ji + iΓ ji
. (3.58)

Here, we have the general form of the susceptibility tensor, in the linear response
regime, due to an external electric field. We can now use the fact that our
system is periodic, that is the electronic states are written

|φi〉 → |φikkk〉, (3.59)

where ikkk is the appropriate set of quantum number in our case, that is the band
index and the reciprocal wave vector. In this representation, χαβ

B̂
(ω) can be

written as5

χαβ (ω) =
−iq
me

∫ ∫
dkkk dqqq∑

i j

fikkk− f jqqq

�ωikkk jqqq

Bα
ikkk jqqq pβ

jqqqikkk(ω)

ω−ω jqqqikkk + iΓ jqqqikkk
. (3.60)

5Note that because the wave vector is a continuous quantity, we have introduced integrals in the
expression.
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We can decompose χαβ (ω) into two terms, χαβ (ω) = χαβ
inter(ω)+χαβ

intra(ω),

χαβ
inter(ω) =

−iq
me

∫ ∫
dkkk dqqq ∑

i�= j

fikkk− f jqqq

�ωikkk jqqq

Bα
ikkk jqqq pβ

jqqqikkk(ω)

ω−ω jqqqikkk + iΓ jqqqikkk
, (3.61)

χαβ
intra(ω) =

−iq
me

∫ ∫
dkkk dqqq∑

i

fikkk− fiqqq

�ωikkkiqqq

Bα
ikkkiqqq pβ

iqqqikkk(ω)

ω−ωiqqqikkk + iΓiqqqikkk
. (3.62)

In this work, we consider electromagnetic perturbations in the range of few
eVs, meaning that the wavelength of the incoming photon is typically ∼ 106

m−1. Because the typical wavelength of the electron in periodic solid is around
109 m−1, we can assume the transition between states to be vertical, i.e. during
a transition the band index changes, but not the wave vector. To account for
this, we take the limit for qqq→ kkk,

χαβ
inter(ω) =

−iq
me

∫
dkkk ∑

i�= j

fikkk− f jkkk

�ωi jkkk

Bα
i jkkk pβ

jikkk(ω)

ω−ω jikkk + iΓ jikkk
, (3.63)

χαβ
intra(ω) =

−iq
me

∫
dkkk∑

i

d f
dε

∣∣∣
εikkk

Bα
iikkk pβ

iikkk(ω)

ω−ωiikkk + iΓiikkk
, (3.64)

where we have omitted one kkk in the subscripts for clarity, i.e. ikkk jkkk → i jkkk.
Here, we recover the conventional interband and interband contributions to
response functions. Note that by taking the limit qqq → kkk at the end of our
derivation, we obtain, from first-principle, the characteristic term d f

dε of the
intraband contribution. With this careful approach, all contribution arise form
first-principles and clearly stated approximations.

The inverse of the Γ jikkk’s corresponds to lifetime of specific electronic exci-
tations between states i and j. A simple picture of this would be to consider
that if an electron “jumps” from the occupied state ikkk to the unoccupied state
jkkk, it will de-excite with a typical decay time of ∼ Γ−1

jikkk . Unfortunately, the
determination of the Γ jikkk’s is a tedious problem. We simplify this by defining

Γ jikkk =

{
δ inter if i �= j,
δ intra if i = j,

(3.65)

where δ inter the interband broadening and δ intra the intraband broadening. In
other words, δ−1

inter is the typical decay time of excitation coupling states below
and above Fermi while δ intra is the typical decay time of electronic excitations
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at Fermi. If we inject those in our response function, the equations read

χαβ
inter(ω) =

−iq
me

∫
dkkk ∑

i�= j

fikkk− f jkkk

�ωi jkkk

Bα
i jkkk pβ

jikkk(ω)

ω−ω jikkk + iδ inter
, (3.66)

χαβ
intra(ω) =

−iq
me

∫
dkkk∑

i

d f
dε

∣∣∣
εikkk

Bα
iikkk pβ

iikkk(ω)

ω−ωiikkk + iδ intra
. (3.67)

These two equations allow us to compute the response function for any
observable B. We can use them to compute the electrical response tensors
defined in Eq. (2.1), that is the spin (orbital) susceptibility χχχS (χχχL) and spin
(orbital) conductivity σσσSSS (σσσSSS),

- χχχS: we set B̂BB = ŜSS = �

2 σ̂σσ ,

- χχχL: we set B̂BB = L̂LL = r̂rr× p̂pp,

- σσσ Sk (k = x,y,z): we set B̂BB = JJJSk = {Ŝk,p̂pp}
2meV ,

- σσσLk (k = x,y,z): we set B̂BB = JJJLk = {L̂k,p̂pp}
2meV ,

where {., .} is the anti-commutator. To obtain the thermal response tensors,
we use Eq. (2.5).

39





Part II:
Summary of Results





4. Spin and Orbital Rashba-Edelstein Effects
in Antiferromagnetic CuMnAs and Mn2Au

4.1 Motivations and Background
Antiferromagnets have attracted a lot of attention in the past few years. The
reasons behind this interest stem from their advantages compared to ferro-
magnets: they are more robust against external magnetic field perturbations,
are available in a wider range of materials (insulators, semi-conductors, and
metals), and often have a high Néel temperature, making them more appropri-
ate for room temperature operation in devices [149–154]. Also, their intrinsic
spin dynamics is quite fast, in the THz regime [155–157], compared to the
GHz dynamics reported for ferromagnets [158, 159].

Paper I was motivated by the experimental works on CuMnAs and Mn2Au
in which stable and reversible electrical-control of the Néel vector was demon-
strated [129, 160–164]. The SREE, which had usually been referred to as
"Rashba-Edelstein effect", was proposed as a candidate to explain switch-
ing. In our work, we did not only quantify the SREE in those materials but
also showed that the orbital counterpart, the OREE, was huge and dominant.
Up to our knowledge, only Yoda et al. had investigated this effect before,
considering Boltzmann tranport of electrons hoping in a helicoidal structure
[63, 64]. In Paper I, we provide a qualitative and quantitative description of
the SREE and the OREE, within a first principles ab initio framework.

4.2 Summary
We quantify the SREE and OREE with, respectively, χχχS and χχχL. Those tensors
relate the external electric field EEE to the induced spin angular momentum δSSS
and orbital angular momentum δLLL,

δSi = χS
i jE j, (4.1a)

δLi = χL
i jE j. (4.1b)

Both χχχS and χχχL are computed for each atomic site, using a projection of
the wave function, which allows us to analyze the atom-resolved SREE and
OREE. In Paper I, we investigate both CuMnAs and Mn2Au. Here, we provide
an overview of the main results by focusing on CuMnAs.
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Figure 4.1. Magnetization induced by the Rashba-Edelstein effects in
antiferromagnetic CuMnAs. a Sketch of the tetragonal unit cell of CuMnAs with
the magnetic moments constrained to the c-axis. The inset depicts the direction of the
crystal axes. The red arrows on the manganese atoms represent the initial magnetic
moments. Applying an electric field EEE along the (100) direction (gray arrow) induces
a nonequilibrium magnetization mainly along the (010) direction (green arrows). b
Symmetry of the induced spin magnetization as a function of the static electric-field
direction for Mn1. c Symmetry of the induced orbital magnetization as a function of
the static electric-field direction for Mn1. d Real parts of the nonzero tensor compo-
nents (labeled i j, with i, j = x,y or z) of the spin and orbital Rashba-Edelstein suscep-
tibilities, ℜ

[
2χS

]
and ℜ

[
χL

]
, as function of the electric-field frequency, �ω . Caption

and figure from Paper I.

The crystal structure of CuMnAs is tetragonal (see Fig. 4.1 a), with space
group P4/nmm. The cell is composed of 3 species, that is Cu, Mn and As. The
tetragonal cell contains two atoms per specie, which belong to distinct sub-
lattices. An inversion center maps one sublattice onto the other, but a specific
sublattice has no inversion symmetry. We refer to those atomic sites who are
mapped by inversion-symmetry as "paired sites". Both the Mn and As atoms
have the 4mm point group, whereas the Cu atoms possess the −4m2 point
group symmetry. This difference plays an important role in the symmetry of
the atom-projected response tensors.

The susceptibilities can be analyzed based on symmetry arguments (see
Refs. [31, 165]). If we consider the crystal space group only, without magnetic
ordering, the sum over the whole cell of each atomic contribution to χχχS and
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χχχL must be zero, for all components. When looking at a particular sub-lattice,
only the off-diagonal components χS

xy/yx and χL
xy/yx can be non-zero. Due to

the point group symmetry,

χS/L
xy =±χS/L

yx , (4.2)

where the "+" sign holds for Mn and As while the "-" sign holds for Cu.
Based on the non-magnetic space group, the cell-averaged SREE and OREE

are zero, with purely staggered local moments that are opposite for atoms
laying on paired sites. When magnetism is added to the picture, the symme-
try changes. If the Néel vector is along the c-axis (see Fig. 4.1 a), then the
diagonal elements of the atom-projected χχχS and χχχL are not constrained by
symmetry anymore. Moreover, their sum over the whole cell will not vanish.
Because this specific magnetic ordering does not break symmetry in the ab-
plane, χS/L

xx = χS/L
yy for all atomic species.

In Fig. 4.1 d, the atom-resolved non-zero components of χχχS and χχχL are
shown as a function of the perturbation frequency �ω . We see that our calcu-
lations recover the correct symmetry, as discussed in the previous paragraphs.
For the spin response, the staggered tensor elements χS

xy/yx and non-staggered
ones χS

xx/yy are of similar order of magnitude. This indicates that for an in-
plane electric field, the induced spin moments will not have a pure Rashba-like
symmetry (Fig. 4.1 b).

For the orbital part, the staggered response χL
xy/yx dominates, being an order

of magnitude larger than χL
xx/yy. The orbital response has a therefore pro-

nounced Rashba-like symmetry (Fig. 4.1 c), producing a strong orthogonal
orbital-momentum locking for in-plane electric field. Remarkably, the stag-
gered components χL

xy/yx are not only dominating when compared to other χχχL

components, but they also completely overshadow the analogous spin compo-
nents χS

xy/xy, being nearly ∼ 50 times bigger. This result is truly astonishing,
and to be honest was not expected when performing the simulations.

We now look at the case where the Néel vector is along the a-axis (see
Fig. 4.2 a). In this case, symmetry of the atom-resolved χχχS and χχχL changes
quite drastically: the diagonal components are zero, the components χS/L

xy and
χS/L

yx are no-longer equivalent due to the symmetry-breaking in the ab-plane,
and the non-staggered components are χS/L

xz and χS/L
zx .

In Fig. 4.2 d, the atom-resolved non-zero components of χχχS and χχχL are
shown. Again, we see that our calculations correctly recover the symmetry of
the tensors. The qualitative behavior of the tensor elements is quite similar
to Fig. 4.1 d, with the dominant staggered orbital response. Remarkably, we
observe that χS

yx �=±χS
xy for all atomic species, while the off-diagonal compo-

nents of the orbital response tensor stay opposite. This can be understood as a
virtually vanishing influence of the magnetism-induced symmetry breaking to
the staggered orbital response.
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The symmetry of the spin and orbital response (Fig. 4.2 b and c) is Rashba-
like. Note that in the case of the spin, for an electric field along the a-direction,
the induced spin moments on paired sites will have a non-negligible non-
staggered out-of-plane component due to χS

zx �= 0. For the orbital part, the
strong staggered response is such that the induced orbital moments are mainly
in-plane.

Figure 4.2. Rashba-Edelstein effects in CuMnAs with magnetic moments along the a-
axis. a Sketch of the tetragonal unit cell of CuMnAs. The red arrows on the Mn atoms
represent the initial magnetic moments. Applying an electric field EEE along the (100)
direction (gray arrow) induces a nonequilibrium magnetization mainly along the (010)
direction (green arrows). b In-plane symmetry of the induced spin magnetization as
a function of the static electric-field direction for Mn1. c In-plane symmetry of the
induced orbital magnetization as a function of the static electric-field direction for
Mn1. d Real parts of the nonzero tensor components (labeled i j, with i, j = x,yorz) of
the spin and orbital Rashba-Edelstein susceptibility tensors, ℜ

[
2χS

]
and ℜ

[
χL

]
, as

function of the driving electric-field frequency, �ω . Caption and figure from Paper I.
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Conclusions
In this work, we investigated the electrically-induced spin and orbital polar-
izations in antiferromagnetic CuMnAs and Mn2Au. While we only presented
CuMnAs here, the same analysis is performed for Mn2Au in Paper I, yielding
similar results. For both materials, the staggered orbital response is strongly
dominant over the other contribution, suggesting that the OREE is important
in order to understand properly magnetization switching in those materials.
This dominant nature of the orbital response is without any doubt the most
surprising result of this work. Moreover, the staggered component of the
OREE does not require SOC (see Fig. 5 in Paper I), which suggests that it is a
more fundamental effect which does not rely on small relativistic corrections.
In Paper I, we brought new insights for orbital-related phenomena in the con-
text of magnetization control (SOT). Hopefully, our research helped building
up a better understanding in orbitally-driven physics, which is gaining more
and more momentum in the scientific community.
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5. Electrically-induced Spin and Orbital Mag-
netization in Pt/3d Bilayers

5.1 Motivations and Background
The control of magnetization via spin-orbit torque (SOT) is an incredibly
active field of research. Over the past years, considerable efforts have been
made to explore this phenomenon experimentally as well as theoretically (see
discussion in section 2.4). One of the most common architecture considered
is the heavy-metal/ferromagnet bilayer [99, 100, 103, 105, 109].

The microscopic description of SOT is often discussed in terms of two
major candidates: SHE and SREE. As discussed in Chapter 2, the former
gives rises to a spin current that flows from the bulk of the heavy-metal to the
ferromagnetic layer while the latter produces an off-equilibrium magnetiza-
tion close to the interface due to local symmetry breaking. With the recent
discoveries of orbital-related effects, there is a need to extend the discussion
to the OHE and OREE.

In Paper II, we investigate several heavy-metal/ferromagnet bilayer struc-
tures of the nPt/2Y , where n represent the number of Pt atomic layers (n =
2,4,6,8,10,12,14,16), and Y is either Pt, Cu, Co or Ni. A typical structure
is shown in Fig. 5.1. The goal of this work is to investigate the microscopic
effects, that is SHE, SREE, OHE and OREE for all the considered systems at
different Pt thicknesses. We probe atomic-layer resolved response functions,
which allows us to analyze the spatial variation of spin and orbital accumula-
tions and current densities. In practice, we look at the atomic layer-resolved
response tensors χχχS, χχχL, σσσSSS and σσσLLL.

Figure 5.1. Schematic of a typical system studied in this work, a nPt/2Y bilayer. There
are n (= 16, here) monolayers of Pt heavy-metal (HM) capped by two Y monolayers,
where Y is Ni, Co, or nonmagnetic Cu or Pt. The z axis is taken normal to the slab,
with unit vector uuuz. Each atomic plane is numbered with an index, where index 1 refers
to the Pt atomic-layer interfaced with vacuum, n to the Pt atomic-layer interfaced with
the 3d element in layer n+ 1, and n+ 2 labels the top layer at the vacuum interface.
Figure and caption from Paper II.
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5.2 Summary
Similarly to Paper I, we can first spend some time looking at the symmetry
of the response tensors. In this work, all structures considered are tetragonal,
with nonmagnetic point group 4mm. If the magnetization vector MMM points
along uuuz, the spin and orbital susceptibilities can be written as

χχχS(L) =

⎛
⎜⎝χS(L)

xx χS(L)
xy 0

χS(L)
yx χS(L)

yy 0
0 0 χS(L)

zz

⎞
⎟⎠ , (5.1)

where χS(L)
xy = −χS(L)

yx are the time-reversal even (T-even) off-diagonal com-
ponents and χS(L)

xx = χS(L)
yy �= χS(L)

zz are the time-reversal odd (T-odd) diagonal
components. If the system is non-magnetic, i.e. nPt/2Pt and nPt/2Cu, the
diagonal components are forbidden by lack of magnetization-induced symme-
try breaking. If the magnetization vector MMM points along uuux (in-plane magne-
tization),

χχχS(L) =

⎛
⎜⎝ 0 χS(L)

xy χS(L)
xz

χS(L)
yx 0 0

χS(L)
zx 0 χS(L)

zz

⎞
⎟⎠ . (5.2)

Here, χS(L)
xy and χS(L)

yx are the T-even components and χS(L)
xz and χS(L)

zx are
the T-odd components. If the system is non-magnetic, we recover χS(L)

xy =

−χS(L)
yx and χS(L)

xz = χS(L)
zx = 0, as discussed earlier for the diagonal compo-

nents for MMM ‖ uuuz. If the system is magnetic, then χS(L)
xy �= −χS(L)

yx due to the
magnetization-induced symmetry breaking in the ab-plane.

We classify the susceptibilities components in three categories depending
on the relative orientation of the induced spin (orbital) polarization δSSS (δLLL) to
the applied electric field EEE, normal direction uuuz, and magnetization vector MMM.

• EEE-transverse components (EEE⊥): SSS ∝ EEE×uuuz;

• MMM-transverse components (MMM⊥): SSS ∝ (EEE×uuuz)×MMM;

• MMM-longitudinal components (MMM‖): SSS ∝ MMM when EEE ‖ uuuz.

If we consider a EEE-field along uuux, then the EEE⊥ component is χS(L)
yx , both for

MMM ‖ uuuz and MMM ‖ uuux, while the MMM⊥ component is χS(L)
xx and χS(L)

zx , respectively
for MMM ‖ uuuz and MMM ‖ uuux.
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In Paper II, we showed that the torque TTT could be written as TTT = TTT o +TTT e,
where TTT o is T-odd and TTT e is T-even, and that they can be written as

TTT o ≈+2μB|BBBXC| |EEE| χS
yx uuux, (5.3a)

TTT e ≈−2μB|BBBXC| |EEE| χS
xx uuuy, (5.3b)

if MMM ‖ uuuz, and

TTT o ≈−2μB|BBBXC| |EEE| χS
yx uuux, (5.4a)

TTT e ≈+2μB|BBBXC| |EEE| χS
zx uuuy. (5.4b)

if MMM ‖ uuux. In those expressions, μB is the Bohr magneton and |BBBXC| is the
modulus of the exchange-correlation effective field. The odd component TTT o
can be identified as the field-like torque TTT FL, and TTT e as the damping-like torque
TTT DL.

The computed χχχS, χχχL, σσσ SSS and σσσLLL can be straightforwardly used to quantify
the electrically-induced spin and orbital density and current density, in an
atomic layer-resolved fashion. For this, we simply need to multiply them by
EEE, e.g.,

δSi(z) = χS
ix(z) Ex, (5.5)

where z is an integer index referring to a specific atomic layer (see Fig. 5.1)
and the electric field is assumed to be in the x-direction. The quantities δLi(z),
JSk

i (z) and JLk
i (z) (i,k = x,y,z) can similarly be computed.

Let us focus on the thickest systems, that is 16Pt/2Y (Y =Pt, Cu, Ni or Co),
and analyze the atomic layer profile of the relevant spin and orbital responses.
We assume EEE ‖ uuux for the rest of the discussion. In Fig. 5.2, we show the
EEE⊥, MMM⊥ and MMM‖ components for the spin responses χχχS and σσσSSS. We associate
the component σSk

zx to the component χS
kx as they both have the same spin

polarization direction and are both driven by the x-component of EEE.
The σSy

zx component of the spin conductivity tensor (see Fig. 5.2 (d)) is
commonly associated to the conventional SHE. For all systems considered, the
value of σSy

zx reaches a maximum in the bulk of the Pt layer, consistent with a
SHE picture in which a spin current is generated in the bulk and flows towards
the interface. For the spin accumulation given by χS

yx (see Fig. 5.2 (a)), in the
case of pure Pt (yellow diamonds), the accumulation resembles a stationary
profile of a spin diffusion process. When the two rightmost layers are replaced
by a 3d element (Cu, Ni or Co), the spin profile changes drastically close to the
Pt/3d interface (z = 16), but is virtually not affected at the vacuum/Pt interface
(z = 0). The change in spin profile at the Pt/3d interface is highly dependent
on the element considered.
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The σSx
zx component of the spin conductivity tensor (see Fig. 5.2 (e)) is

not associated to a conventional SHE, and have been recently introduced in
the context of MSHE [36] (this will be discussed in Chapter 6/Paper IV).
Contrarily to σSy

zx , σSx
zx is T-odd and is therefore non-zero only in magnetic

systems, here nPt/2Ni and nPt/2Co. Similarly, the component χS
xx is also T-

odd, and both χS
xx and σSx

zx vanish as one go from the ferromagnetic interface
(z∼ 16) to the vacuum/Pt interface (z∼ 0).

A similar analysis can be performed for the orbital angular momentum.
This is shown at Fig. 5.3, where the relevant atomic layer-resolved compo-
nents of σσσ LLL and χχχL are plotted. Analogously to σSy

zx , the component σLy
zx

can be associated to the conventional definition of the OHE. Remarkably,
the profile of σLy

zx (Fig. 5.3 (d)) is quite different from its spin counterpart.
Indeed, while σSy

zx was smoothly varying along the layer, with the maximum
within the bulk of Pt, σLy

zx varies sharply close to the interface, over∼ 3 atomic
layers, and plateaus from z ∼ 4 to z ∼ 15. Similarly, the profile of χL

yx is also
quite different from χS

yx, with a strong localization close to the interfaces of

Figure 5.2. Computed atomic layer-resolved nonzero components of the spin
magneto-electric susceptibility χS and spin conductivity σσσSSS of the 16Pt/2Y struc-
tures. (a) The EEE-transverse component χS

yx, (b) MMM-transverse component χS
xx, and

(c) MMM-longitudinal component χS
zz. The corresponding components of the spin con-

ductivity tensor are given as (d) EEE-transverse σSy
zx , (e) MMM-transverse σSx

zx , and (f) MMM-
longitudinal σSz

zz . The E-transverse components of σσσ SSS can be associated with SHE.
The MMM-transverse components of χS are nonzero only for magnetic systems (16Pt/2Ni
and 16Pt/2Co) and in the vicinity of the interface, suggesting the importance of spin-
splitting of the electronic states. The MMM-longitudinal components are discussed in the
text. See Fig. 5.1 for the numbering of the atomic layers. Figure and caption from
Paper II.
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the induced orbital polarization. These observations suggests that the idea of
orbital current and orbital accumulation is quite different than its spin coun-
terpart.

In Fig. 5.3 (e), the profile of the component σLx
zx is shown. This component

can be associated to an effect which we refer to as the MOHE (see Chapter 6
and Paper IV). Similarly to its spin counterpart, this component is magnetic
and is non-zero close to the Pt/Ni and Pt/Co interfaces. The component χL

xx is
also T-odd and vanishes as we go towards z∼ 0.

Figure 5.3. Computed atomic layer-resolved nonzero components of the orbital
magneto-electric susceptibility χχχL and orbital conductivity σσσLLL of the 16Pt/2Y struc-
tures. (a) The E-transverse component χL

yx, (b) MMM-transverse component χL
xx, and

(c) MMM-longitudinal component χL
zz. The corresponding components of the spin con-

ductivity tensor are given as (d) EEE-transverse σ Ly
zx , (e) MMM-transverse σ Lx

zx , and (f)
MMM-longitudinal σLz

zz . The EEE-transverse component σLy
zx is associated with the OHE

conductivity, conventionally defined for bulk Pt. The MMM-transverse components are
nonzero only for the magnetic systems (16Pt/2Ni and 16Pt/2Co), and also the MMM-
longitudinal components arise from the spin polarization of the electronic states.
Figure and caption from Paper II.
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Conclusions
Paper II is an extensive study of the electrically-induced spin and orbital po-
larizations and currents in bilayers heterostructures. Because we compute the
layer-projected response tensors, we are able to analyze their spatial profile.
Here, we have shown those profiles for the thickest systems considered, that is
bilayers made of 18 atomic layers (16 are Pt and 2 are either Ni, Cu, Co or Pt).
We showed that the spin and orbital profiles, both for the susceptibility and
conductivity, have distinct behavior, with the orbital showing strong variations
close to interfaces.

In this summary, we have looked at the atomic layer-resolved profile of
the spin and orbital response tensors for the thickest systems considered. We
observed that there is a magnetic component of σσσ SSS, which can be associated to
the recently introduced MSHE, and extended our analysis of those magnetic
component to σσσLLL. Those magnetic components are discussed in more detail
Chapter 6/Paper IV.

Paper II covers various aspects of those spin and orbital tensors, which have
not been discussed in this brief overview. Among those, we have looked
at the Pt thickness dependency of the responses, as well as the magnetiza-
tion direction influence and variation due to lifetime broadening (intraband
vs interband, see Eq. (3.66)). Paper II scrutinizes those dependencies both
qualitatively and quantitatively.
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6. Magnetic Spin and Orbital Hall and Nernst
Effects in Bulk Ferromagnets

6.1 Motivations and Background
As discussed in Chapter 2, the conventional definition of the SHE relates
the effect to the component σSk

i j of the spin conductivity tensor σσσSSS with the
Cartesian components i, j,k such that εi jk �= 0 (εi jk is the Levi-Civita tensor).
This definition is convenient for high symmetry materials like paramagnetic
cubic Pt since σSk

i j = σSHεi jk. In lower symmetry systems, the picture becomes
more complex.

When discussing symmetry of materials, the structure of the material, i.e.
the type of lattice and the position of atoms, is one of the main determining
factors. Magnetism is also a key factor when discussing symmetry. This
consideration gives rise to the concept of magnetic space groups, where sym-
metry groups classify symmetries of a crystal in the real space, as well as in
the spin space.

For cubic bulk ferromagnets such as Ni and Fe, magnetism lowers the
symmetry. If we constrain the magnetization MMM along a main direction, i.e.
(100)/(010)/(001), the symmetry of the structure becomes analogous to a tetrag-
onal structure with the c-axis representing the magnetization direction, and the
ab-plane the plane perpendicular to it.

In Paper IV, we investigate the full tensor σσσ SSS of ferromagnetic cubic Fe
and Ni, as well as ferromagnetic hexagonal Co. Because of the magnetic
ordering, σσσSSS shows a much more complex structure than in the case of Pt.
We also investigate the orbital counterpart, that is σσσLLL, and extend our discus-
sion to thermal effects using the Mott formula (see Eq. (2.5)). The goal of
this work is to analyze components arising from magnetism, which relate to a
non-conventional SHE that has been referred to as magnetic spin Hall effect
(MSHE) [39]. We also extend our study to the orbital part and propose the
concept of magnetic orbital Hall effect (MOHE), and consider the thermal
effects, i.e. the magnetic spin Nernst effect (MSNE) and magnetic orbital
Nernst effect (MONE).
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6.2 Summary
We define the (100), (010) and (001) directions to respectively be along uuux, uuuy
and uuuz. The magnetization MMM is set along uuuz. In the case of hexagonal Co,
the uuuz direction is the direction of the conventionally defined c-axis. With the
spatial basis defined in this way, σσσSSS reads

σσσSx =

⎛
⎜⎝ 0 0 σSx

xz

0 0 σSx
yz

σSx
zx σSx

yz 0

⎞
⎟⎠ (6.1a)

σσσSy =

⎛
⎜⎜⎝

0 0 σSy
xz

0 0 σSy
yz

σSy
zx σSy

yz 0

⎞
⎟⎟⎠ (6.1b)

σσσ Sz =

⎛
⎜⎜⎝

σSz
xx σSz

xy 0

σSz
yx σSz

yy 0

0 0 σSz
zz

⎞
⎟⎟⎠ (6.1c)

The components can be divided into three categories. The first category is
made of components σSk

i j such that εi jk �= 0. Those components are T-even and
we refer to them as “SHE-like”. Because magnetic ordering lowers symmetry,
we have σSz

xy �= σSy
xz �= σSx

yz , where, for any of those, swapping the x and y

indices only changes the sign. For Fe and Ni, we find that σSy
zx ≈ σSx

yz , which
is absolutely not valid for Co. This suggests that, cubic materials (Fe and
Ni), the SHE-like components can be classified into spin-orthogonal σSy

xz /σSx
yz

and spin-parallel σSz
xy , where the qualifiers "parallel" and "orthogonal" refer

to the relative orientation of the spin polarization and MMM. For Co, the lower
symmetry of the hexagonal lattice is responsible for the strong anisotropy in
σSz

xy , σSy
xz and σSx

yz .
The second category is made of the other off-diagonal components of σσσSx

and σσσ Sy . Those components are T-odd. We refer to those as “MSHE-like”.
The symmetry in the ab-plane, that is in the plane defined by uuux and uuuy, is
such that σSx

xz = σSy
yz and σSx

zx = σSy
zy . For Fe and Ni, we find that σSx

xz ≈ σSx
zx

and σSy
yz ≈ σSy

zy . For Co, the structural asymmetry voids those relationships, as
discussed in the previous paragraph.

The last category is made of diagonal components of σσσSz . Similarly to the
MSHE-like components, they are T-odd. However, their physical picture is
different as they arise from the difference in longitudinal conductivity of spin
up and spin down electrons (σSz

ii ∝ σ↑ii −σ↓ii with i = x,y,z).
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Figure 6.1. Components of σσσ SSS and σσσLLL for ferromagnetic Fe, Ni and Co as a function
of the electrochemical potential (E = 0 eV is the Fermi level). In panels (a)-(f), the
T-even components of σσσSSS (σσσLLL), which can be referred to as SHE-like, are shown. In
panels (g)-(l), the T-odd components of σσσSSS (σσσLLL), which can be referred to as MSHE-
like, are shown. The lifetime broadening �τ−1 = �δ is set to 40 meV. Figure and
caption from Paper IV.

The SHE-like components of σσσSSS and OHE-like components of σσσLLL are
shown in Fig. 6.1 (a)-(f), as a function of the electrochemical potential. For the
spin components, we notice directly that components with a spin-polarization
orthogonal to MMM, σSy

xz and σSx
yz , show higher (lower) maxima (minima). For Fe

and Ni, those two components are quite similar, while for Co they are clearly
distinct. The strong asymmetry for Co can be explained by the lower sym-
metry of the hexagonal structure. For the orbital components, in the case of
Fe and Ni, the three components σSx

yz , σSy
xz and σSz

xy , are virtually the same.
This is not the case for Co, where they are different. From these observations,
we can infer that the OHE-like components are virtualy not impacted by the
magnetism-induced symmetry lowering. This observation relates closely to
the fact that the OHE exists even if SOC is not present.

The MSHE-like components of σσσSSS and MOHE-like components of σσσLLL are
shown in Fig. 6.1 (g)-(l), as a function of the electrochemical potential. For
the spin components, the magnitude of the components is the same as for
the SHE-like ones. The MOHE-like components are in the same order of
magnitude as their spin counterparts, which put them∼ 5 times lower than the
OHE-like components. Those magnetic components require an appropriate
3D description of magnetism and therefore rely on the existence of SOC.
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Figure 6.2. Components of σσσ SSS and σσσLLL for ferromagnetic Fe, Ni and Co as a function
of the lifetime broadening τ−1 = δ . In panels (a)-(f), the T-even components of σσσSSS

(σσσLLL), which can be referred to as SHE-like, are shown. In panels (g)-(l), the T-odd
components of σσσSSS (σσσLLL), which can be referred to as MSHE-like, are shown. The
electrochemical potential set to 0 eV. Figure and caption from Paper IV.

The lifetime broadening dependence of those components is shown at Fig. 6.2.
For the spin, both the SHE-like (Fig. 6.2 (a), (c) and (d)) and MSHE-like
(Fig. 6.2 (g), (i) and (k)) components tend to increase when the broadening
decreases. However, the latter increases at a much higher rate. In fact, the
increase of MSHE-like components follows a δ−1 rule as these components
are intraband dominated. For the SHE, the increase is more modest, due to
their interband nature. Because δ tends to decreases in clean samples1, one
can expect the MSHE to be dominant in those cases. When it comes to the δ -
dependency of the orbital components, the MOHE shows a similar behavior to
its spin counterpart. The OHE components are barely impacted by the broad-
ening value in the range considered.

What has been discussed so far focuses on the electrically-driven phenomena.
Using Mott formula (see Eq. (2.5)), we can extend our analysis to thermal
generation of spin and orbital current. By doing so, we compute transport
coefficients relating to the MSNE, as well as propose and compute the orbital
counterpart, that is the MONE. Results of our calculations are discussed in
more detail in Paper IV.

1Clean samples can be defined as samples which have a low number of defects (structural,
alloying atoms, ...).
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Before concluding the summary of this work, it is insightful to discuss
the difference of perspective between theoretical approaches and experiments.
Indeed, theoretical calculations often focus on conductivity tensors while ex-
perimental works look at the “spin-to-charge” conversion. Those two pictures
can easily be reconciled using θθθ SSS, the “spin-charge angle tensor”, as defined in
Eq. (2.4). This tensor directly relates the spin current density JJJSSS to the current
density JJJ,

JSk
i =

�

2e
θ Sk

i j J j. (6.2)

As shown in Paper IV, θθθ SSS can be written as

θθθ Sx =
2e
�

⎛
⎝ 0 0 σSx

xz ρ2
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yz ρ2
σSx
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yy ρ1 0
0 0 σSz

zz ρ2

⎞
⎟⎠ . (6.3c)

where ρ1 = ρxx = ρyy and ρ2 = ρzz are the longitudinal components of the
resistivity tensor ρρρ = σσσ−1 and ρA = ρxy =−ρyx is the anomalous component.
This formulation of θθθ SSS allows for a clear identification of the different physical
mechanisms, which are discussed in depth in Paper IV.

Conclusions
In this work, we investigated the recently discussed MSHE [36]. We provided
a qualitative, ab initio description of this effect in bulk ferromagnets Fe, Ni
and Co. Our results show that the MSHE-related components are on the
same order of magnitude than the traditionally defined SHE. However, while
the SHE stems from the interbands contributions, the MSHE has a strong
intraband origin, meaning that the effect could be huge in (ultra-)clean sample.
We also considered the thermal-analog of the MSHE, the MSNE, providing
material-dependent transport coefficients. We also extended our discussion to
the orbital counterpart of those effect, which has not been proposed before. For
this, we defined the MOHE and the MONE, and calculated their characterizing
transport coefficients. The versatility offered by the spin and orbital con-
ductivity tensors in those lower symmetry systems offers attractive ways to
design novel devices. Moreover, controlling the magnetization direction in
those systems can open up ways to effectively control which components are
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at play and which vanish. We hope that those results can contribute to building
up a more versatile control of magnetization in practical devices.
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7. Self-Consistent Current-Induced Spin and
Orbital Magnetization in Metallic Nanostructures

7.1 Motivations and Background
Linear response calculations offer an intuitive and efficient way to compute
the influence of external perturbations in quantum mechanical systems. It is
a very versatile method, which can be used on top of various frameworks. In
our case, we compute single-electron states and energies using DFT, which
are then fed into the linear response method. We could as well use other ways
to obtain the electronic states and energies, e.g. from a model Hamiltonian, it
would not change the way linear response works.

Of course, like most practical methods, there are several drawbacks that
need to be acknowledged. The most obvious is that only the first order term is
considered. Formally speaking, if we consider a system under the influence of
an external electric field EEE, the expectation value of the spin angular momen-
tum SSS can be expanded as1

Si = S[0]i +χS[1]
i j E j +χS[2]

i jk E jEk +χS[3]
i jkl E jEkEl + ... (7.1)

where S[0]i is the equilibrium value of the ith component of SSS, χχχS[1] the 2nd-rank
first order response tensor, χχχS[2] the 3nd-rank second order response tensor,
χχχS[3] the 4th-rank third order response tensor, and so on and so forth.

Omitting the equilibrium value from the count, linear response only consid-
ers the first term , i.e. χS[1]

i j E j, which is of course a good enough approximation
as long as the field is “small enough”. The problem here is that linear response
is blind to its own weakness, as it fails to explicitly tell us what is or is not
“small enough”.

Another weakness of linear response stems from the non-linearity in the
Kohn-Sham Hamiltonian, used when solving the electronic problem. This
non-linear character arises from the fact that the effective potential depends
on the density, which depends in itself in the effective potential (see Chapter
3). Applying an external electric field, changes the electronic density, which in
turns modifies the effective potential and a feedback loop should be considered.
In practice, these corrections are neglected.

1We use the example of spin angular momentum here but any other physical observable could
have been considered.
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In this chapter, we consider an different approach, which goes beyond
linear response capabilities. We compute, self-consistently, the influence of
an applied voltage in nanodevices using the non-equilibrium Green’s function
(NEGF) method [166–168] as implemented in the relativistic non-collinear
DFT code OpenMX [169–171]. The simulation cell is made of two leads, to
which a finite bias can be applied, with a central region sandwiched between
them that can be seen as the “active part” of the device. With the NEGF
method, we can simulate systems which are closer to real devices, as well as
include the self-consistent effects. A schematic of a typical structure that can
be simulated within this method is provided at Fig. 7.1.

The main goal of this work is to compute the voltage-induced spin and
orbital magnetization in realistic metallic nanodevices. We consider three
different systems: a 0.5 nm × 0.5 nm ferromagnetic Ni nanorod, a 1.2 nm
thick Pt layer and a 2.4 nm thick Ti layer. Investigating the light-meta Ti layer,
we show that a sizable orbital accumulation occurs close to its interface, in
agreement with a recent report [144]. As those results were recently obtained,
the manuscript (Paper V) is still in preparation.

V

ab

c

Figure 7.1. Schematic representation of the 0.5 nm × 0.5 nm Ni nanorod system
under a bias voltage V as simulated with OpenMX. The dark grey atoms define the
left and right leads while the light grey ones represent the central region. Along the
x-direction (a), the system is infinite. Vacuum is set along the two other directions.
The simulation cell contains 96 atoms, all of which are considered during the non-
collinear electronic structure calculation via the NEGF method. The self-consistent
spin and orbital magnetic moments can be computed as a function of V .
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7.2 Summary
The transport direction is our nanostructures is defined to be uuux, that is the bias
voltage is applied along this direction. For the Ni nanorod, the equilibrium
magnetization is along uuux. The simulation cell for the Ni nanorod contains 96
atoms and is 2.1 nm long along uuux. Vacuum is set along the transverse uuuy and
uuuz directions, such that the system simulated is quasi-1D. The simulation cell
for the Pt layer contains 72 atoms and is 2.3 nm long, with periodicity along
the uuuy direction. The slab is 1 nm thick along uuuz, with vacuum set such that
the system is simulated as a slab. The Ti layer setup is similar to Pt, with 144
atoms in the simulation cell, is 2.4 nm along uuux and 2.2 nm thick along uuuz. For
Pt and Ti, the periodicity along uuuy is accounted for by sampling the reciprocal
direction with 12 k-points.

We can first have a glance at how the voltage-induced spin and orbital mag-
netization look in the Ni nanorod. This is shown at Fig. 7.2, with the top three
panels showing the induced spin magnetic moment (Fig. 7.2 (a), (b) and (c)),
and the bottom three panels the induced orbital magnetic moment (Fig. 7.2
(d), (e) and (f)). The moments are strongly induced at the surfaces. Visually,
we notice that the induced orbital moments at the interfaces are more parallel
to the interface planes than its spin counterpart.

J J
J

(a) (b) (c)

J JJ
J

(d) (e) (f)

Figure 7.2. 3D view of the self-consistent electrically-induced spin magnetic moments
(top three) and orbital magnetic moments (bottom three) in a 0.5 nm × 0.5 nm Ni
nanorod. A bias voltage of 100 mV applied over a distance of 2.11 nm along the x-
direction, giving rise to an electrical current density J ∼ 6 1013 A/m2. We show the
system under three different angles with the (a, d) x-axis, (b, e) y-axis and (c, f) z-axis
pointing towards the reader.
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The spatial profile of the induced spin density can be extracted from the
NEGF calculation. In Fig. 7.3 (a) and (b), we respectively show the Sy and Sz
component of the voltage-induced spin density. Both components of the spin
density have a symmetrical profile, with respect to the xz and xy mirror planes
that pass through the center of the nanorod.

In Fig. 7.3 (c) and (d), we show the Sy component of the voltage-induced
spin density respectively for the Pt and Ti slab. Only this component is non-
zero in those systems, consistent with the symmetry discussion in Chapter 5.
There is a clear difference of profile for Pt (Fig. 7.3 (c)) and Ti (Fig. 7.3 (d)).
While the latter shows an induced spin density that is clearly localized close
to the slab interfaces, the former shows a non-negligible induced spin density
in the bulk of the layer.

(a)

(b)

(c) (d)

Ni

Pt Ti

Figure 7.3. 2D heat-map plot of the (a) SSSy and (b) SSSz component of the electrically-
induced spin density for a 0.5 nm× 0.5 nm Ni nanorod. A voltage of 300 mV is
applied over a distance of 2.11 nm along the x-direction, corresponding to an electric
field of 1.42 108 V

m . 2D heat-map plot of the SSSy component of the electrically-induced
spin density for (c) 1.2 nm thick Pt layer and (d) 2.4 nm thick Ti layer. The struc-
tures are periodic along the y-direction and the thickness refers to the z-direction.
For Pt, a voltage of 100 mV is applied over a 2.35 nm distance corresponding to
E = 4.25 107 V

m . For Ti, a voltage of 100 mV is applied over a 2.44 nm distance
corresponding to E = 4.09 107 V

m .
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The layer-resolved voltage-induced spin and orbital magnetization in the
Pt and Ti slabs is shown in Fig. 7.4. For Pt (Fig. 7.4 (b) and (d)), we see that
both the induced spin magnetic moment and orbital magnetic moment have the
same sign at interfaces, as well as the same order of magnitude, consistent with
the same sign of SHE and OHE (see Paper III Fig. 3). For an effective applied
electric field E ∼ 4 107 V/m, we find an induced spin moment μSy ∼ 2 10−3 μB

and induced orbital moment μLy ∼ 1.5 10−3 μB. This shows that the current-
induced magnetization at the outer most Pt atomic layer is due at 57% to the
spin moments and at 43% to the orbital moments.

For Ti (Fig. 7.4 (a) and (c)), the induced spin and orbital magnetic mo-
ments have opposite signs at the interfaces, consistent with an opposite SHE
and OHE in Ti (see Paper III Fig. 2). In terms of magnitude, the situation is
quite different than Pt. Indeed, at the interfaces, we have μSy ∼ 1.2 10−3 μB

and μLy ∼ 30 10−3 μB, that is the orbital magnetization is 25 times bigger
than the spin one. This dominant nature of the induced orbital magnetization
has recently been discussed in a recent experimental work in Ti layers [144].
When comparing the Ti and Pt slabs, we see that the induced magnetization is
strongly localized at the interfacial atomic layer for Ti, in contrast to Pt.
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Figure 7.4. Layer-resolved profile of the induced spin magnetic moment for (a) Ti and
(b) Pt, and induced orbital magnetic moment for (c) Ti and (d) Pt. Both systems are
under a bias voltage of 100 mV, corresponding to an electric field of E ∼ 4 107 V

m .
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Finally, we discuss the voltage dependence of the induced spin and orbital
polarization. Here, we measure this dependency in two different ways, by
looking at the half-layer averaged spin and orbital magnetic moments (top
panels in Fig. 7.5) and the maximum induced spin and orbital magnetic mo-
ments (bottom panels in Fig. 7.5). Qualitatively, we notice that strict linearity
is not observed for the voltages considered, which tells us that our calculations
capture what could not have been using linear response.

For Ni (Fig. 7.5 (a) and (c)), the induced orbital polarization is stronger
than the spin when the maximum is considered, but smaller on the half-layer
average. If we compute the susceptibility at 100 mV, we obtain |χS| ≈ 80 10−3

μBnm/V (|χL| ≈ 63 10−3 μBnm/V) and |χS| ≈ 156 10−3 μBnm/V (|χL| ≈
229 10−3 μBnm/V) respectively for the averaged and maximum induced spin
(orbital) moment.

For Pt and Ti (Fig. 7.5 (b) and (d)), the orbital response of Ti is dominant,
especially when comparing the maximum induced moments. The suscepti-
bilities for Pt at 100 mV are respectively ∼ −38.5 10−3 (∼ 8.5 10−3) and
∼ −69.2 10−3 (∼ −39.2 10−3) respectively for the averaged and maximum
induced spin (orbital) moment, in units of μBnm/V. For Ti, those numbers are
−5.1 10−3 (122.9 10−3) and −67.7 10−3 (803.8 10−3).
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Figure 7.5. (a) Voltage dependence of the induced spin and orbital magnetic mo-
ments for the Ni nanorod averaged over a half-layer. (b) Voltage dependence of the
maximum induced spin and orbital magnetic moments for the Ni nanorod. (c) Voltage
dependence of the induced spin and orbital magnetic moments for the Pt and Ti layers
averaged over a half-layer. (d) Voltage dependence of the maximum induced spin and
orbital magnetic moments for the Pt and Ti layers.
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Conclusions and outlook
The usage of NEGF method is far from novel in the field of transport calcu-
lations. When it comes to SOT-related investigations, previous works have
discussed spin torques as well as current-induced spin polarization using this
method [172, 173]. Recent works based on non-collinear density functional
theory have analyzed SOT realistic systems like ferromagnet/transition metal
dichalchogenide bilayers [174] as well as Mn2Au/heavy-metal bilayer [175].
However, up to our knowledge, orbital polarization has not been considered
so far.

In this initiating work, we have used the NEGF method to compute the
voltage-induced spin and orbital magnetization in realistic metallic nanode-
vices and showed sizable orbital polarization in all systems considered. This
method allowed us to go beyond linear response, by considering non-linear
effects as well as the self-consistency of the exchange correlation potential/field
when the system is under a finite voltage bias.

Our calculations show that the induced orbital polarization is far from being
negligible, and is dominant in the case of the light metal Ti. In the case of Pt,
we observed that the polarization at the Pt/vacuum interface was due at∼ 57%
to the spin and ∼ 43% to the orbital. This result is of the same magnitude as
Paper II with a ∼ 60%/∼ 40% ratio. More importantly, we showed that a
sizable orbital magnetization is induced in Ti, which opens the door to the use
of light metals for SOT-enabled devices.

Here, we have probably scratched the surface of what can be accomplished
with the NEGF method, which is quite versatile. Indeed, voltage-induced
spin and orbital polarization can be simulated in a virtually infinite number
of materials and systems, as long as the simulation cell respects the “left
lead/central region/right lead” geometry (see Fig. 7.1). The results of this work
are quite promising for the field of SOT, as the method is flexible enough to
become an efficient theoretical tool for simulating realistic nanodevices. We
hope that our work will inspire others to investigate more in that direction.
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Part III:
Final Remarks





8. Conclusions

We may differ on many things, but what we respect is free inquiry,
open mindedness, and the pursuit of ideas for their own sake.

CHRISTOPHER HITCHENS

The efficient electrical control of magnetization is a central issue for the
future of our technological developments. While the spin transfer torque
(STT) has been a decisive step in achieving this goal, spin-orbit torque (SOT)-
enabled devices seem to be the natural evolution to achieve fast and energy-
efficient magnetization control. The discussion about the origin of SOT has
often involved two mechanisms, namely the spin Hall effect (SHE) and the
spin Rashba-Edelstein effect (SREE). While the former produces a spin current
in the bulk that flows towards interfaces, the latter creates a local out-of-
equilibrium spin polarization where inversion symmetry is broken.

Engineering devices based on SOT does not only require understanding
phenomena like the SHE and the SREE, but also unraveling other possible
origins. Among those, orbitally-driven phenomena have attracted a lot of
attention over the past few years, with phenomena like the orbital Hall effect
(OHE) and the orbital Rashba-Edelstein effect (OREE). While it is well known
that equilibrium orbital polarization tends to be suppressed in crystals (orbital
quenching), it has been shown that sizable electrically-induced orbital mag-
netizations and currents can emerge, and that they can be 1 to 2 orders of
magnitudes larger than their spin counterparts.

Understanding orbital-related phenomena is important to get a complete
picture of the microscopic mechanisms leading to SOT. Nevertheless, we have
to acknowledge that the interesting character of electrically-induced orbital
polarization goes beyond our mere will to understand the origin SOT. Indeed,
it has been shown that effects like the OHE and the OREE, contrarily to their
spin counterparts, do not require strong spin-orbit coupling (SOC). This is
quite promising for material selection as a strong SOC requires scarce heavy
elements which tend be more harmful for the environment than lighter ones.

In this thesis, we investigated theoretically the possible means of controlling
magnetization in crystals and heterostructures via electric fields and currents.
For this, we employed relativistic density-functional theory and linear response
theory to compute electrically-induced spin and orbital polarizations and cur-
rents. These methods allowed us to extract material dependent properties that
can be used to qualitatively and quantitatively describe phenomena like the
SHE, SREE, OHE and OREE.
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First, we looked at electrically-induced spin and orbital magnetizations in
antiferromagnetic CuMnAs and Mn2Au. Those two materials have been at
the center of a lot of attention over the past few years as it was shown that
current-induced reversible Néel vector switching was possible. Our calcula-
tions showed that there is not only a SREE-induced local spin magnetization,
but also a surprisingly large orbital polarization, due to the so-called OREE.
We showed that the OREE does not require SOC and that it exhibits a strong
Rashba-like symmetry in contrast to the induced spin polarization which can
have Rashba- or Dresselhaus-like symmetries.

Second, we investigated heavy-metal/ferromagnetic-metal bilayers. The
huge interest behind those heterostructure stems from the fact that they have
been shown to be exceptionally well-suited for SOTs. We quantitatively an-
alyzed the atomic layer-resolved profile of the electrically-induced spin and
orbital polarization as well as spin and orbital currents. Parameters such as
heavy-metal thickness and magnetization direction where varied to understand
their influence. We also found an unusual component of the spin conductivity
tensor which gives rise to spin currents whose polarization points along the
electric field. This component is odd under magnetization reversal, and can
be associated to a recently introduced phenomenon referred to as the magnetic
spin Hall effect (MSHE).

In our third project, we focused our attention on the MSHE. We extended
the discussion to include orbital phenomena, which led us to propose and
compute what can be referred to as the magnetic orbital Hall effect (MOHE).
We showed that the size of the MSHE was comparable to the conventional
SHE, which opens up routes for a possible magnetization control of spin cur-
rents. Using the Mott formula, we also considered thermally-driven phenomena
and computed material dependent transport properties to quantify the magnetic
spin Nernst effect (MSNE) and the magnetic orbital Nernst effect (MONE).

Lastly, we go beyond linear-response by using a more advanced method
based on the so-called non-equilibrium Green’s function (NEGF). Within this
method, the voltage-induced spin and orbital polarization in realistic nanode-
vices can be computed in a fully self-consistent way. Our results showed that
sizable orbital polarizations can be electrically induced, which emphasize on
the necessity to consider the orbital component for SOT-based devices. The
versatility of this method allows for a virtually infinite number of material
combinations and geometries to be simulated, which makes it quite attractive
for engineering purposes.

The understanding of all those aforementioned phenomena is a central issue
to engineer efficient SOT-enabled technology. While lots of progress have
been made, there are still challenging parts that needs to be addressed. For
instance, it is one thing to understand how the SHE creates a spin current in
the bulk of Pt, it is another thing to understand how this spin current propagates
towards the interface where the SREE is at play, how it reflects/transmits
depending on the interface (e.g. lattice mismatch, crystallinity), etc. This
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challenge relates closely to the concept of “emergence”, which occurs when
the properties of a systems can not be described as the sum of the properties of
its components. This complexity, in which spin and orbital polarizations and
currents intersect and interact, though challenging, paves the way to not only
novel efficient technological applications but also to a better understanding of
the wonderful universe we are all living in.
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Popular Science Summary

Magnetism is one of the fundamental phenomena in our universe. Most of
us have experienced it, in one way or another, playing around with magnets
attracting or repelling each other depending on how they are oriented. What
is less known about magnetism is how essential it is in our daily life. A good
example would be the usage of strong magnets in power plants (gas, hydraulic,
...) to produce the electricity that is used not only to power our domestic
appliances, but also to run critical infrastructures such as hospitals.

Over the past decades, magnetism has also played a central role in the
digital revolution. Indeed, at the core of the hard disk drive (HDD) technology,
crucial for modern storage systems, lays a phenomenon called giant magne-
toresistance (GMR). The discovery of GMR was led by Albert Fert and Peter
Grünberg around the end of the 80’s. It was so influential for technological
development that they received the Nobel Prize of Physics in 2007.

In order to use magnetism in technological devices like HDDs, several
questions have to be answered. How does magnetism arise in matter? What
makes a magnet magnetic? To answer those, we need two ingredients, two
scientific revolutions that both happened at the beginning of the 20th century.
The first one is the discovery of quantum mechanics, this strange theory that
describes how the universe works at the scale of atoms and electrons, funda-
mental constituents of matter. The second ingredient is the theory of relativity,
established by Albert Einstein, crucial to understand how things behave when
moving really fast, i.e., at velocities close to the speed of light.

It is probably a euphemism to state that those two theories profoundly
transformed the scientific landscape, as they fueled an incredible amount of
groundbreaking discoveries. Among them, the 1928 work of Paul Dirac,
who realized that in order to describe the electron, fundamental constituent of
atoms (and thus matter), quantum mechanics and Einstein’s theory of relativity
had to be combined into one equation. Dirac’s equation allowed us to scrutinize
the electron like never before, and led us to the unraveling a fundamental
property of this particle, its “spin”.

Similar to its mass or charge, the spin is an intrinsic characteristic of the
electron. While we can directly experience the concepts of mass and charge in
our macroscopic world, understanding the spin from our everyday experience
is impossible. This is probably well summarized by the humoristic internet
meme “Electron spin explained: imagine a ball that’s rotating, except it’s not
a ball and it’s not rotating”.
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Fortunately, through careful mathematical investigations and experimenta-
tion, we can understand what are the implications of this property on our un-
derstanding of electrons. It turns out that, because of the existence of the spin,
the electron can be seen as a tiny magnet, with its own south and north pole.
From this, magnetism in materials can be understood at the microscopic level.
In the case of magnets, electrons’ spins are aligned in the same direction such
that their strength adds up and builds-up a sizable magnetic field. For non-
magnets, those spins are randomly aligned, such that they tend to cancel each
other out.

Because the spin is a characteristic of the electron, physicists and engineers
have been looking at ways to use it in technological applications. This quest
gave birth to the field of spintronics, a portmanteau word made of “spin"
and “electronics". Compared to classical electronics which relies solely on
the charge of the electron, spintronics relies on the spin (and possibly the
charge) of the electron. Research in spintronics is quite appealing, as it allows
us to design faster and more energy efficient devices compared to classical
electronics.

The field of spintronics is rather new, and many efforts have to be made to
unravel the fundamental phenomena at play. Basically, we need to understand
how we can interact with the electron’s spin, how we can control and detect it.
Those issues are at the core of this thesis. Over the past few years, I investi-
gated how the electrons’ spins in materials react when an electrical current is
applied. To do so, I used state-of-the-art computer simulation methods, which
gives us a fast and cost-efficient way to investigate various materials.

In my first project, we worked on antiferromagnetic CuMnAs and Mn2Au,
which have become exciting candidates for spintronics applications. Using
simulation tools, we analyzed the spin-response to an external electrical stim-
ulus, which arises from the so-called spin Rashba-Edelstein effect (SREE).
One of our main discoveries is that an analogous phenomenon, the orbital
Rashba-Edelstein effect (OREE) occurs, which is not only there, but actually
dominant over its spin counterpart. We quantified those phenomena in those
two materials, providing the material dependent calculations of the OREE.

In another project, we explored another celebrated phenomenon in the field
of spintronics, the spin Hall effect (SHE), which has been intensively investi-
gated in heavy-metals such as platinum (Pt). We analyzed this effect in the
case of magnetic materials, in particular nickel (Ni), iron (Fe), and cobalt
(Co) single crystals. To be more accurate, we looked at a non-conventional
variant of the SHE, the so-called magnetic spin Hall effect (MSHE), and
provided material dependent values to quantify it. Although the MSHE was
not considered much previously, we showed that the MSHE is far from being
negligible, and may be leveraged in practical applications.

Making detailed calculations, we also discovered new effects, the magnetic
orbital Hall effect and the magnetic orbital Nernst effect. The former is similar
to the MSHE, but here, an electric field induces a transverse orbital current.
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The latter occurs when a thermal gradient is applied on a magnetic material
leading as well to a transverse current of orbital angular momentum.

Most of the projects have been conducted within the framework of linear-
response theory. In the last project, we tried to go beyond this, and ran calcula-
tions using a more advance method called non-equilibrium Green’s functions.
Within this methods, the effect of an applied electrical field can be analyzed
self-consistently, that is, all the effects (in theory) are fully taken into account.
Because this method is flexible, a virtually infinite number of systems can
be studied. We hope that our work will inspire new research directions to
investigate the intriguing coupling of the electrons’ spin and orbital momenta
to external stimuli.
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Populärvetenskaplig Sammanfattning

Magnetism är ett av de grundläggande fenomenen i vårt universum. De flesta
av oss har upplevt det, på ett eller annat sätt, genom att leka med magneter som
attraherar eller stöter bort varandra beroende på hur de är orienterade. Vad
som är mindre känt om magnetism är hur viktigt det är i vårt dagliga liv. Ett
bra exempel är användningen av starka magneter i kraftverk (gas, hydraulik,
...) för att producera den elektricitet som används inte bara för att driva våra
hushållsapparater, men också för att driva kritisk infrastruktur som sjukhus.

Under de senaste decennierna har magnetism också spelat en central roll
i den digitala revolutionen. Faktum är att inuti i hårddisktekniken (HDD)
som är avgörande för moderna lagringssystem, finns ett fenomen som kallas
jättemagnetresistans (GMR). Upptäckten av GMR leddes av Albert Fert och
Peter Grünberg runt slutet av 80-talet. Den var så inflytelserik för den tekniska
utvecklingen att de fick Nobelpriset i fysik 2007.

För att kunna använda magnetism i tekniska enheter som hårddiskar måste
flera frågor besvaras. Hur uppstår magnetism i materia? Vad gör en magnet
magnetisk? För att besvara dem behöver vi två ingredienser, två vetenskapliga
revolutioner som båda inträffade i början av 1900-talet. Den första är upptäckten
av kvantmekaniken, denna märkliga teori som beskriver hur universum fungerar
på skalan av atomer och elektroner, grundläggande beståndsdelar i materia.
Den andra ingrediensen är relativitetsteorin, etablerad av Albert Einstein, som
är avgörande för att förstå hur saker beter sig när de rör sig riktigt snabbt, det
vill säga vid hastigheter nära ljusets hastighet.

Det är förmodligen en eufemism att påstå att dessa två teorier på djupet
förändrade det vetenskapliga landskapet, eftersom de gav anledning till en
otrolig mängd banbrytande upptäckter. Bland dem, 1928 års arbete av Paul
Dirac, som insåg att för att beskriva elektronen, den grundläggande beståndsdel
av atomer (och därmed materia), måste kvantmekaniken och Einsteins rela-
tivitetsteori kombineras i en ekvation. Diracs ekvation tillät oss att granska
elektronen som aldrig förr, och ledde oss till att reda ut en grundläggande
egenskap hos denna partikel, dess "spinn".

I likhet med dess massa eller laddning är spinn en inneboende egenskap hos
elektronen. Även om vi direkt kan uppleva begreppen massa och laddning i
vår makroskopiska värld, är det omöjligt att förstå spinn från vår vardagliga
erfarenhet. Detta sammanfattas förmodligen väl av det humoristiska internet-
memet "Elektronens spinn förklarat: tänk dig en boll som roterar, förutom att
den inte är en boll och den roterar inte”.

Lyckligtvis kan vi, genom noggranna matematiska undersökningar och ex-
periment, förstå vilka konsekvenser denna egenskap har för vår förståelse av
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elektroner. Det visar sig att på grund av spinnets existens kan elektronen ses
som en liten magnet, med sin egen syd- och nordpol. Av detta kan magnetism i
material förstås på mikroskopisk nivå. När det gäller magneter är elektronernas
spinn riktade i samma riktning så att deras styrka adderas och bygger upp ett
ansenligt magnetfält. För icke-magneter är elektronernas spinn slumpmässigt
fördelade, så att de tenderar att undanröja varandra.

Eftersom spinn är en egenskap hos elektronen, har fysiker och ingenjörer
tittat på sätt att använda den i tekniska tillämpningar. Denna strävan födde
fältet spinntronik, ett teleskopord gjort av "spinn" och "elektronik". Jämfört
med klassisk elektronik som enbart använder sig av elektronens laddning,
bygger spinntronik på elektronens spinn (och möjligen laddningen).

Forskning inom spinntronik är ganska tilltalande, eftersom det gör att vi
kan designa snabbare och mer energieffektiva enheter jämfört med klassisk
elektronik.

Området spinntronk är ganska nytt, och många ansträngningar måste göras
för att reda ut de grundläggande fenomenen som är på gång. I grund och
botten måste vi förstå hur vi kan interagera med elektronens spinn, hur vi
kan kontrollera och detektera det. Dessa frågor är kärnan i denna avhandling.
Under de senaste åren har jag undersökt hur elektronernas spinn i material
reagerar när en elektrisk ström appliceras. För att göra det använde jag topp-
moderna datorsimuleringsmetoder, vilket ger oss ett snabbt och kostnadsef-
fektivt sätt att undersöka olika material.

I mitt första projekt arbetade vi med antiferromagnetiska CuMnAs och
Mn2Au, som har blivit spännande kandidater för spinntronikapplikationer.
Med hjälp av simuleringsverktyg analyserade vi spinn-responsen på en extern
elektrisk stimulans, som uppstår från den så kallade spinn-Rashba-Edelstein-
effekten (SREE). En av våra främsta upptäckter är att ett analogt fenomen,
den orbitala Rashba-Edelstein-effekten (OREE) inträffar, som inte bara finns
där, utan faktiskt dominerar över dess spinnmotsvarighet. Vi kvantifierade
dessa fenomen i dessa två material, vilket ger materialberoende beräkningar
av OREE.

I ett annat projekt utforskade vi ett annat berömt fenomen inom spinntronik-
området, den spinn-Hall-effekten (SHE), som har undersökts intensivt i tung-
metaller som platina (Pt). Vi analyserade denna effekt i fallet med magnetiska
material, särskilt nickel (Ni), järn (Fe) och kobolt (Co) en-kristaller. I synnerhet
tittade vi på en icke-konventionell variant av SHE, den så kallade magnetiska
spinn-Hall-effekten (MSHE), och gav materialberoende värden för att kvanti-
fiera den. Även om MSHE inte ansågs särskilt mycket tidigare, visade vi att
MSHE är långt ifrån försumbar och skulle kunna utnyttjas i praktiska tillämp-
ningar.

Genom att göra detaljerade beräkningar upptäckte vi också nya effekter,
den magnetiska orbitala Hall-effekten och den magnetiska orbitala Nernst-
effekten. Den förra liknar MSHE, men här inducerar ett elektriskt fält en
tvärgående orbitalström. Det senare inträffar när en termisk gradient appliceras
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på ett magnetiskt material som också leder till en tvärgående ström med orbital
vinkelmoment.

De flesta av projekten har genomförts inom ramen för linjär-responsteori. I
det sista projektet försökte vi gå längre än detta och körde beräkningar med en
mer avancerad metod som kallas icke-jämvikt Greens funktioner. Inom dessa
metoder kan effekten av ett applicerat elektriskt fält analyseras självkonsistent,
det vill säga alla effekter (i teorin) beaktas fullt ut. Eftersom denna metod är
flexibel kan ett praktiskt taget oändligt antal system studeras. Vi hoppas att
vårt arbete kommer att inspirera till nya forskningsriktningar för att undersöka
den spännande kopplingen av elektronernas spinn och orbitala moment till
yttre stimuli.
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Résumé Populaire du Sujet de Thèse

Nous sommes tous plus ou moins familier avec le magnétisme, phénomène
fondamental dans notre mystérieux univers. La plupart d’entre nous ont expéri-
menté cette force, en jouant avec des aimants qui s’attirent ou se repoussent
en fonction de leur orientation relative. Ce qui est un peu moins connu, c’est à
quel point le magnétisme joue un rôle essentiel dans nos sociétés. L’exemple
le plus parlant est sans doute l’absolue nécessité d’utiliser de puissants aimants
pour produire l’électricité dans nos centrales (gaz, nucléaire, hydraulique, ...),
électricité qui est essentielle au bon fonctionnement de nos infrastructures tels
que nos hôpitaux.

Dans un tout autre registre, le magnétisme est aussi au premier plan de la
révolution digitale. En effet, au cœur de la technologie qui permet l’utilisation
des disques durs, se trouve un phénomène que l’on appelle “magnétorésistance
géante”, découvert par Albert Fert et Peter Grünberg en 1989. Cette découverte
fut tellement influente que Fert et Grünberg recevront le prix Nobel de physi-
que en 2007.

Pour pouvoir produire des appareils technologiques tels que les disques
durs, nous devons comprendre comment le magnétisme fonctionne. Comment
le magnétisme émerge-t-il dans la matière ? Pourquoi les aimants sont-ils
magnétiques ? Pour répondre à ces questions, les scientifiques ont dû attendre
deux théories scientifiques révolutionnaires, toutes deux émergentes au début
du 20e siècle. La première, c’est la “mécanique quantique”, cette théorie
étrange qui décrit comment notre univers se comporte à l’échelle des atomes
et électrons, composants fondamentaux de la matière. La deuxième, c’est
la théorie de la relativité établie par Albert Einstein, cruciale pour décrire
comment les choses se comportent à des vitesses gigantesques, proches de
celle de la lumière.

Ces deux théories ont profondément changé notre compréhension de l’uni-
vers et sont à l’origine d’un nombre colossal de découvertes fondamentales.
Parmi elles, le développement de l’équation de Dirac en 1928 par Paul Dirac
qui réalisa que, pour décrire correctement les électrons (particules fondamen-
tales de la matière), la mécanique quantique et la relativité d’Einstein devaient
être combinées en une équation. Grâce à ce travail, les scientifiques ont pu
analyser l’électron comme jamais auparavant, ce qui a mené à la découverte
d’une étrange propriété: le “spin” (prononcé “spinne”).

Le spin est un propriété des électrons, tout comme la masse ou la charge
électrique. Malheureusement, à la différence de ces deux derniers, le spin ne
peut pas vraiment se comprendre en se basant sur notre expérience de tous les
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jours. Le spin de l’électron est parfois “expliqué” de la manière humoristique
suivante: “Imaginez que l’électron soit une balle qui tourne, sauf que ce n’est
pas une balle et que ça ne tourne pas".

Heureusement, grâce à des analyses mathématiques rigoureuses et à la physi-
que expérimentale, nous pouvons comprendre ce que cette propriété de spin
implique. Il se trouve que, à cause de ce spin, les électrons se comportent
comme de petits aimants microscopiques. Grâce à ça, nous pouvons expliquer
le magnétisme dans la matière à l’échelle de l’atome. Dans les cas des aimants,
le spin des électrons sont alignés dans la même direction, de telle manière que
leur force s’additionne et crée un champ magnétique assez puissant. Dans le
cas de la matière dite "non-magnétique", ces “aimants microscopiques” sont
alignés de manière aléatoire, de telle manière qu’ils s’annulent l’un l’autre.

Puisque le spin est une propriété fondamentale, les physiciens et ingénieurs
se sont demandé s’ils pouvaient en faire usage pour des applications techno-
logiques. Cette quête a donné lieu à la naissance au champ de recherche que
l’on appelle “spintronique”. Comparé à l’électronique dite “classique”, qui ne
fait usage que de la charge de l’électron, la spintronique considère aussi cette
propriété de spin, ce qui ouvre la porte à de nouvelles technologies. Ce qui très
encourageant c’est que la spintronique nous permet de fabriquer des appareils
plus efficaces, plus puissants et moins consommateurs d’énergie.

Ce concept de spintronique est relativement nouveau, et il y a donc beaucoup
de travail de recherche à faire pour comprendre tous les phénomènes physiques
qui sont impliqués. Comment peut-on interagir avec cette propriété de spin
? Comment pouvons nous détecter et contrôler ce spin ? Ces questions,
elles sont au cœur de ma thèse. Au cours de mes recherches, j’ai utilisé
des techniques avancées de simulations numériques pour tenter d’y répondre.
Ces techniques sont très pratiques puisqu’elles nous permettent d’analyser des
matériaux très rapidement et à moindre coûts.

Grâce à mes simulations, j’ai scruté à la loupe ces phénomènes fondamen-
taux au développement de technologies spintroniques. Les deux phénomènes
les plus intéressants à ce jour se nomment “l’effet Hall de spin” et “l’effet
Rashba-Edelstein de spin”. Ces effets, au nom qui peut en effrayer plus
d’un, sont une des clés pour contrôler et détecter le spin de l’électron dans
des appareils spintroniques. Durant mes travaux, j’ai aussi montré que des
phénomènes très liés, “l’effet Hall d’orbite” et “l’effet Rashba-Edelstein d’or-
bite” jouent un rôle fondamental. Il y a évidemment encore énormément de
travail à faire pour bien comprendre ces phénomènes. Les travaux que j’ai
réalisés ont, je l’espère, contribué à l’avancée de notre compréhension des
fondamentaux de spintronique. Il n’y a aucun doute que des découvertes
passionnantes sont là et n’attendent qu’à être mises en lumière.
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