
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2022

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2138

Heterotic Compactifications in the
Era of Data Science

ROBIN SCHNEIDER

ISSN 1651-6214
ISBN 978-91-513-1477-8
URN urn:nbn:se:uu:diva-471719



Dissertation presented at Uppsala University to be publicly examined in Häggsalen, 10132,
Ångström, Lägerhyddsvägen 1, Uppsala, Friday, 20 May 2022 at 09:00 for the degree of
Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Professor Yang-Hui He (Royal Institution, London Institute for Mathematical Sciences and
City University of London, Department of Mathematics and University of Oxford, Merton
College and NanKai University, School of Physics).

Abstract
Schneider, R. 2022. Heterotic Compactifications in the Era of Data Science. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 2138. 105 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1477-8.

The goal of this thesis is to review and investigate recent applications of machine learning
to problems in string theory. String theory, the leading candidate for a unification of gravity
and the standard model of particle physics, requires the introduction of additional space-time
dimensions. To match experimental observations of our universe, these additional dimensions
need to be curled up on a compact space. The most common choice to describe this compact
space are manifolds of Calabi-Yau type. These manifolds come with favourable mathematical
and phenomenological properties.

In the first half of this thesis Calabi-Yau manifolds, which are complex Kähler manifolds
admitting a Ricci-flat metric, are introduced. The popular construction as complete intersections
in products of complex projective space is explained and the necessary mathematical machinery
to compute their topological quantities presented. This part is followed by a review of machine
learning applications to study their Hodge numbers and the cohomologies of line bundles. In a
next step the new Python library cymetric is presented for modeling numerical approximations
of the unknown Ricci-flat metric. The metric tensor is a required component in the calculation
of Yukawa couplings. It is learned by a neural network trained against a custom loss function,
that encodes all the necessary mathematical properties.

In the second half Calabi-Yau manifolds are used to compactify the heterotic string and
con-struct standard model like vacua. Those are vacua which match the particle content
and gaugegroup of a supersymmetric extension of the standard model. First, the popular
compactificationprocedure utilising line bundle sums is reviewed and applied to the newly
discovered construc-tions of generalized complete intersection Calabi-Yau manifolds. Second,
an exploration ofsuch models is initiated in so far uncharted territories. This includes
two Calabi-Yau manifoldswith more than 7 Kähler moduli, which are beyond systematic
computational reach. In total19538 new models are found by using Actor-Critic agents from
deep reinforcement learning.
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1. Introduction

The standard model of particle physics is arguably the most successful theory
matching experimental observations. For example the best precision measure-
ment of the fine-structure constant is within 10−8 of the theoretical prediction
[1]. The standard model describes three of the four fundamental forces. Those
are, the electromagnetic, the weak, and the strong force. Its mathematical de-
scription is encoded as a quantum field theory, realising particles as excitations
of quantised fields and their interactions via exchange of gauge bosons.

The fourth and last fundamental force is gravity. It is mathematically de-
scribed by Einstein’s theory of general relativity. It accurately predicts the
physics of our universe at large scale, such as the movement of planets in our
solar system. It accounts for the mysterious dark energy responsible for the ex-
pansion of the universe by introducing a tiny positive cosmological constant.
Moreover, when introducing additional mass via dark matter it accurately de-
scribes the dynamics of galaxies.

Together the two theories yield good predictions at their respective scales.
A problem, however, arises when trying to combine the theories in a unifying
framework. This is not only desired from an aesthetical point of view, but also
necessary to solve the mysteries and inconsistencies of black holes, such as
the information paradox. A combined theory of quantum gravity is needed to
explain how information is preserved when a black hole emits energy through
Hawking radiation. General relativity without serious modifications can not
be quantised in four dimensions, which is a necessary step for unification of
the four forces.

String theory is the leading candidate for a unifying theory of gravity and
particle physics. Infinities plaguing the quantisation of gravity in four dimen-
sions cancel exactly in string theory by introducing one-dimensional objects
called strings. It is then possible to write down a consistent theory of quantised
gravity, but at the costs of string theories own caveats.

These caveats include the introduction of additional space-time dimensions.
The bosonic string requires a total of 26 dimensions. Fermions are realised
by introducing an additional symmetry, called supersymmetry, matching a
fermionic superpartner to any boson. A supersymmetric string theory is only
consistent in ten dimensions. These additional dimensions are usually treated
as a tiny, smaller than the energy range probed by the Large Hadron Collider,
compact manifold. Consistency with low energy observations then puts sev-
eral restricting constraints on the shape of this compact space. Nevertheless,
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there are billions of manifolds which can still lead to semi-realistic compactifi-
cations. A second problem is the positive sign and small size of the cosmolog-
ical constant, which does not naturally arise in the string theory context. There
exist proposals for resolving and fine-tuning this problem, but also arguments
why de Sitter space can not be realised straightforwardly in supergravity ap-
proximations of string theory. This active research direction goes under the
name of the swampland program.

Research in string theory has not only led to progress in theoretical physics,
but also in various areas of mathematics. The study of compact manifolds
is one of those and will be the main focus of this thesis. Physical and phe-
nomenological constraints such as the requirement of minimal supersymme-
try or the existence of three fermion generations have strong implications on
the topology of the compact manifold. The most successful compactifications
are based on so called Calabi-Yau manifolds, which are studied in the first
part of this thesis. In the second part these manifolds are utilised to construct
string compactifications, which match the particle content and gauge group
of the standard model. In both parts algorithms from machine learning are
used to gain new insights of the physics on these manifolds. Machine learning
can simplify resource expensive computations and find efficient algorithms to
parse different string vacua generated by the various possibilities for the com-
pact space. In the context of this thesis I will use these tools to shed new light
on the old problem of finding interesting string theory compactifications.

1.1 Calabi-Yau compactifications
The journey to the first appearance of Calabi-Yau manifolds in physics starts
with the heterotic string [2–4]. They also naturally arise when starting from
other superstring theories, but the main physics applications of this thesis will
be dealing with the heterotic string so we will follow the original historical
records. Consider the heterotic string with gauge group E8 × E8. The La-
grangian of this theory is given by coupling N = 1 supergravity to N = 1 super
Yang-Mills theory in 10 dimensions:

e−1L =− 1
2κ10

R− 1
4g2φ

trF2
MN − 1

κ2
10
(∂Mφ/φ)2 − 3κ2

10
8g4φ 2 H2

MNP

+ fermion terms . (1.1)

Here g is the Yang-Mills coupling constant, φ the dilaton, R encodes the cur-
vature of space-time, F is the field strength of the non-abelian gauge group,
and H is the field-strength of the antisymmetric B-field. H has to satisfy the
modified Bianchi identity

dH =
α ′

4
(tr(R∧R)− tr(F ∧F)) , (1.2)
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where α ′ is the only free parameter and given in terms of the string length
ls =

√
α ′. The heterotic sting is interesting because a single of the E8 fac-

tors already contains the most common Grand Unified Theory (GUT) gauge
groups E6, SO(10) and SU(5). The supersymmetry transformations of the
fermionic fields λ ,χ,ψ are given by [4]

δψM =
1
κ

DMη +
κ

32g2φ
(ΓNPQ

M −9δ N
MΓPQ)ηHNPQ +(fermi)2 = 0 (1.3a)

δ χa =− 1
4g
√

φ
ΓMNFa

MNη +(fermi)2 = 0 (1.3b)

δλ =− 1√
2φ

(Γ ·∂φ)η +
κ

8
√

2g2φ
ΓMNPηHMNP +(fermi)2 = 0 (1.3c)

where η is the ten-dimensional Majorana-Weil spinor of the supersymmetric
variation and ΓMN = 1

2(Γ
MΓN − ΓNΓM) are antisymmetric products of ten-

dimensional gamma matrices. To make the connection to our four dimensional
universe we decompose the ten-dimensional space-time into a direct product
M10 = M4 ×X of a four-dimensional maximally symmetric space M4 and a
compact manifold X . As a consequence the ten dimensional spinor η splits
into six and four dimensional parts. Imposing the further simplifying assump-
tions1, that H vanishes, and that the dilaton φ is constant, one arrives at the
following supersymmetric transformations in six dimensions [7]:

0 = δψi = Diη6 (1.4)

0 = δ χa = Γi jFa
i jη6 (1.5)

where i, j are the compact indices and run from 1, . . . ,6 and η6 is the six-
dimensional supersymmetry generating spinor. The spinor fields must have a
complex representation to match our experimental observations and thus al-
lows for at most N = 1 supersymmetry. N = 1 supersymmetry comes with
some desirable properties, such as natural dark matter candidates, the uni-
fication of gauge coupling constants at high energy scales, and solving the
hierarchy problem. Nevertheless it has not been observed yet and hence if
it exists must be broken at unprobed energy scales. In the rest of this thesis
we will investigate low energy vacua of N = 1 supersymmetry and leave the
questions of breaking supersymmetry unanswered for future work. The first
equation (1.4) says that the supersymmetry generator η6 has to be covariantly
constant, which in turn implies the integrability condition

ΓkRikη6 = 0. (1.6)

The ten-dimensional version of this equation combined with the assumption
that M4 is maximally symmetric, implies the vanishing of the cosmological

1Not imposing these assumptions leads to a different system of more complicated equations
called the Strominger-Hull system [5, 6].

11



constant2. The condition (1.6) also states that there has to be exactly one spinor
which is covariantly constant in order to preserve N = 1 supersymmetry.
The spin connection ω on X is an SO(6) ∼= SU(4) gauge field. In general a
field parallel transported around a contractible curve γ is acted on by some
group element U of the holonomy group H, i.e. ψ →Uψ, with U ∈ H. Now
in order for Uη6 = η6, we need to look for a subgroup of SU(4) which leaves
η6 invariant. Since η6 is a spinor field it transforms as 4 or 4̄ depending on its
chirality. Acting with an SU(4) transformation on η6 it can be brought into
the following form

η6 =

⎛
⎜⎜⎝

0
0
0

η0

⎞
⎟⎟⎠ . (1.7)

This makes it obvious that an SU(3) transformation acting on the first three
components leaves η6 invariant, so if the holonomy group is H = SU(3)
there exists exactly one covariantly constant spinor. Complex, compact, Käh-
ler manifolds of dimension n with holonomy group SU(n) are commonly
called Calabi-Yau manifolds. Calabi-Yau manifolds are not only interesting
for physicists, but come with fascinating properties studied by mathematicians
such as mirror symmetry [9].

1.2 Outline
The outline of this thesis is as follows: In chapter 2 the usage of machine
learning to tackle problems in modern string theory is motivated. A short non
exhaustive overview of recent progress at the intersection of these two fields
is given in section 2.1. The next section 2.2 provides an introduction to neural
networks and in section 2.3 the setting of reinforcement learning is explained.

In part I we cover all things Calabi-Yau (CY) related. These manifold are
defined in chapter 3 which contains a brief discussion of their most common
constructions. The defining property of a CY manifold is their unique Ricci-
flat metric tensor, which is discussed in section 3.1. Complete Intersection
Calabi-Yau (CICY) manifolds will be the targets of most studies presented in
this thesis. They are introduced in section 3.2, a discussion of their topologi-
cal invariants is included in section 3.2.1, the necessary machinery to compute
these quantities can be found in section 3.2.2 and their recent generalised con-
struction (gCICY) is given in section 3.2.3.

The next chapter 4 compares various studies investigating the Hodge num-
bers of tangent space cohomologies of CICYs in section 4.1. It includes a

2There are proposals for obtaining a small positive constant [8].
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review of Inception-blocks (section 4.1.1) used in paper IV which set the state-
of-the-art in learning Hodge numbers of three and four-folds. The next sec-
tion 4.2 shows that analytic equations for line bundle cohomologies can be
learned. It is based on the results of paper I.

Chapter 5 discuses recent progress in learning Calabi-Yau metrics using
neural networks. The cymetric package published alongside paper V is pre-
sented in section 5.1. The learning of Ricci-flat metrics, requires a point sam-
pling procedure (section 5.1.1), finding a good Ansatz for the metric tensor
(section 5.1.3), and encoding all the necessary mathematical properties in a
custom loss function presented in section 5.1.4. A couple new examples not
discussed in the literature so far are presented in section 5.2.

In the second part II Calabi-Yau manifolds are utilised to construct standard
like models (SLM) from the heterotic E8 ×E8 string theory. In particular the
popular line bundle sum construction, introduced in section 6.1 of chapter 6,
is used to construct several new examples. The next section 6.2 reviews the
results of paper III for constructing such models on gCICYs.

The subsequent chapter 7 introduces reinforcement learning for effective
parsing of heterotic line bundle configurations. Actor-Critic agents are re-
viewed in section 7.1 and the gymCICY-package developed for paper II is pre-
sented in section 7.2. New SLMs are found with deep reinforcement learning
in section 7.2.1 on so far unexplored CICYs .

The thesis wraps up with a summary and conclusion in chapter 8 and gives
a popular science summary in Swedish in chapter 9.
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2. String theory meets machine learning

Machine learning and its modern applications based on deep learning under-
went a meteoric rise in popularity over the past decade. It has itself established
as an integral part and toolkit for many disciplines in the physical sciences,
often leading to surprisingly accurate results and predictions [10]. Theoreti-
cal physics is no exception and researchers are beginning to utilize these new
algorithms more regularly in their work [11]. In the context of string compact-
ifications there are several obvious problems which can benefit from smart and
more efficient algorithms.

Many string theoretical computations are (NP-) hard [12, 13]. In some cases
they are even undecidable, for example when finding solutions to Diophantine
equations. In other cases they scale double exponentially with the input, e.g.
when computing Gröbner bases an often necessary computation in heterotic
compactifications. Computations that take seconds to finish on a local machine
might take hours or won’t finish at all for minor modifications of the input
data. Hence it is desirable to find short-cuts and good approximations to these
computations.

There are also situations for which no exact solution is known as is the
case for the Calabi-Yau metric tensor. In those instances one has to resort to
numerical approximations. This is an application, where deep learning really
shines as a universal function approximator with highly optimised hardware
and software libraries.

On the other hand computations are plentiful. The largest dataset of Calabi-
Yau three-folds compromises 473×106 reflexive polytopes [14]. Each poly-
tope can have several triangulations, in the worst case leading up to 10428

distinct Calabi-Yau manifolds coming from a single polytope [15]. There
are even more configurations to consider, when accounting for the vector
bundle data on each Calabi-Yau. Starting from F-theory requires Calabi-
Yau four-folds for which the upper bounds of flux vacua are estimated to be
10272000 [16]. Thus, string theory is in dire need of smart ways to parse this
landscape of different vacua.

Machine learning can be categorized into four related subfields depending
on the problem formulation and kind of learning algorithms involved. They
are presented in fig. 2.1. Each of these subfields is again connected via deep
learning which is responsible for the majority of state-of-the-art algorithms.

Supervised machine learning denotes the problem of training a model
on a labelled dataset. Typical problems include image recognition in which
a dataset of images exists with labels of the content. A neural network is
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then trained to classify the images based on their labels. Machine learning re-
searchers test the performance of their algorithms on established benchmarks,
such as ImageNet [17]. Deep neural network revolutionised the field of im-
age and pattern recognition [18] which started the recent artificial intelligence
boom.

Unsupervised machine learning is often used in studying clusters of some
unlabelled data. The other main application is dimensional reduction. Un-
supervised learning algorithms utilise similarity metrics between data sam-
ples, such as their difference in feature space, to group samples. Typical ex-
amples based on neural networks are autoencoders to detect anomalies in a
dataset. Variational Autoencoders [19] are employed to generate new syn-
thetic data. Other generative algorithms are based on Generative Adversial
Networks (GAN) [20] which also initially started as unsupervised learning
techniques.

Self-supervised learning is a relatively new emerging subfield in between
supervised and unsupervised learning. It gained traction in natural language
processing (NLP) when training large models at scale against masked unla-
beled data to recover the original input. In this way the neural networks are
able to learn good generalisable representation of the data from which it is
possible to quickly fine tune to related tasks. A famous example exhibiting
these generalisation properties is GPT-3 [21] which was at its publication the
largest neural network.

Reinforcement learning does not strictly rely on datasets. Instead it stud-
ies the design of algorithms looking for the optimal solution of a complicated
environment. The algorithms are agents, which can explore a problem via
interactions with the environment and get rewarded or punished for their per-
formed actions. They have to balance exploration and exploitation to find an
optimal strategy parsing the different states. Utilizing self-play it is possible
to train these models at large scale and reach superhuman performance in a
variety of settings. The most famous example is probably AlphaZero which
outperformed the best humans in games such as shogi, chess, and Go [22].

There have been applications of algorithms from three of the four subfields
within the string theory community. A non exhaustive list1 of these is given
in section 2.1. The main part of this chapter introduces neural networks and
deep learning in section 2.2, while section 2.3 covers the basics of reinforce-
ment learning. A more thorough review with a theoretical physics reader in
mind has been written by Ruehle [11]. The reader familiar with these topics
may skip these sections.

1The literature of machine learning applications to string theory has grown significantly over the
last two years, making every attempt at a somewhat exhaustive list quickly fruitless. I apologise
for all the papers that have not been mentioned.
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Figure 2.1. Different subfields of machine learning based on the available data and
problem. Self-supervised learning lies in between supervised and unsupervised learn-
ing. The main training is done in an almost unsupervised manner against the input
data. The final networks are subsequently fine tuned in a more supervised setting.

2.1 Related work
Most applications in string theory have been in the context of supervised learn-
ing. A popular target of these learning algorithms are topological quantities of
Calabi-Yau manifolds due to well established existing datasets [23].

For example, He initiated studies learning the Hodge numbers of Calabi-
Yau manifolds [24]. This was followed by applications of tree methods, sup-
port vector machines, and neural networks to predict the Hodge numbers of
complete intersection Calabi-Yau (CICY) three-folds [24–28] and four-folds
in [24, 29] as well as in paper IV. The elliptic fibrations of CICYs were stud-
ied in [30]. Calabi-Yau manifolds constructed as hypersurfaces in toric vari-
eties were investigated with neural networks in [15, 31–33]. Furthermore, line
bundle cohomologies have been predicted with deep learning and tree based
methods [24, 34–37].

Calabi-Yau volumes were learned directly in [38]. They have also been
computed as a necessary check when learning the unique Ricci-flat Calabi-Yau
metric directly in [39–43] and in paper V. While there exists no labeled dataset
for Calabi-Yau metric tensors, the neural network optimisation is done in a su-
pervised manner by minimizing the Monge-Ampère equation and Ricci tensor
directly. These numerical solutions have been used to investigate the swamp-
land distance conjecture [43] and construct line bundle connections [44].
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Other applications of supervised learning techniques were in string theory
conjecture generation [45] and learning the volumes of knot invariants [46,
47]. Moreover, there exists a whole program to learn various kinds of math-
ematical structures [48], such as Lie structures [49], the Sato–Tate conjec-
ture [50], number fields [51], arithmetic curves [52], and graph laplacians [53].
This program demonstrated that many advanced mathematical structures can
be learned with accuracies of over 90% by throwing dense neural networks
at the problem. These initial results suggest that there still remains a lot of
hidden structure to be uncovered even in pure mathematics.

Popular applications of unsupervised learning are autoencoders to find clus-
ters of SLMs in string theory compactifications [54–56]. The clusters are often
identified with KMeans-clustering which has also been successfully applied
to determine cones in the charge lattice of line bundle cohomology compu-
tations [36]. Persistent homology has been used to study the distributions of
type IIB flux vacua [57].

Deep reinforcement learning is a popular tool to parse the string landscape
in the search for interesting physics vacua. Initial studies using Actor-Critic
agents considered intersecting brane configurations in the type IIA setting [58]
and have been extended to heterotic line bundle models on complete intersec-
tion Calabi-Yau manifolds in paper II. More reinforcement learning applica-
tions of physics model building can be found in [59–61], of solving the unknot
problem in [62], and of solving conformal field theories in [63, 64].

The other popular approach to search for physics models are genetic al-
gorithms [65]. These algorithms have been employed in the same settings
described above [66] which led to studies comparing bias and performance
between genetic algorithms and reinforcement learning [67, 68]. It was found
that genetic algorithms generally converge much faster and find solutions ear-
lier, but the variance of solutions is larger for reinforcement learning leading
to a broader class of different interesting physical models. Genetic algorithms
have also been used to solve the tadpole problem [69, 70].

Finally, techniques from theoretical physics, such as perturbation theory
and renormalisation group flow, are being used to study the properties of neu-
ral networks [71, 72]. A NN-QFT correspondence has been proposed [73] to
describe the properties of neural networks at initialisation. This dictionary was
refined in [74]. An effective theory of deep learning before and after training
has been worked out in [75].

2.2 Deep learning
Deep learning describes algorithms which are based on neural networks. Neu-
ral networks have been known for a long time and they come with favourable
theoretical properties such as the universal function approximation theorem
[76]. In paraphrased language it states that a sufficient deep (or wide) neural
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network can approximate any function with negligible error. Unfortunately it
does not tell us how to find the correct neural network parameters θ .

The rise in popularity of deep learning over the last decade is due to techno-
logical improvements in computational power, larger datasets, and improved
software libraries. These days deep learning is responsible for the majority
of progress attributed to artificial intelligence. Neural networks are predictors
in the case of supervised learning, for example when guessing the labels of
image data. They are realistic data generators in the form of variational au-
toencoders [77] or generative adversial networks [20] in unsupervised learn-
ing. They are also function approximators for policy and action-value func-
tions [78] in reinforcement learning. Finally, the large foundation models [79]
developed in the context of self-supervised learning are deep neural networks
based on the transformer architecture [80]. There is a vast literature intro-
ducing neural networks to the interested reader. The canonical introduction is
due to Bishop [81], more recent books can be found by Goodfellow et al. [82]
or Zhang et al. [83]. The latter includes freely available well curated jupyter
notebooks. Introductions to the topic from a (theoretical) physics perspective
can be found in Refs. [11, 84].

Linear Regression

In this section we will briefly introduce neural networks and their optimisation
in the context of supervised learning. It will be good to fix some notation.
Consider a labelled dataset D = (X,y) with observation variables X and labels
y. A linear regression model, f (x;θ) = x ·w+ b, maps a single observation
x to a label y, f : x → y. It can be understood as a trivial neural network
consisting of a single output layer with no hidden layers. The neural network
parameters θ have been decomposed into weights w and bias b. How does one
find the optimal parameters θ̂? Statistics comes to the rescue. The likelihood
p(D |θ) is the probability of observing D given θ . The goal is to find the
optimal parameters θ̂ that maximise the likelihood of observing y given an
input x. This procedure is denoted as Maximum Likelihood Estimation (MLE).
Since p(D |θ) is a probability distribution and strictly positive applying the
logarithm does not change the position of the maximum. The optimal values
are then found by optimising the log-likelihood

θ̂MLE = argmax
θ

log p(D |θ). (2.1)

To make this problem more explicit assume that the dataset D contains N
independent and identically distributed random variables with some random
Gaussian noise ε (με = 0 and σ2 = fixed). The regression model depends
on the input variables x with K features and its parameters θ . It learns a
distribution for y. Assuming that this distribution is Gaussian then

p(y|x,θ) = N (y|μ(x),σ2(x)) (2.2)
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where the mean is given by μ = x ·w and the variance is taken to be constant
σ2(x) = σ2. The log-likelihood l(θ) becomes

l(θ) =
N

∑
i

log p(yi|xi,θ)
(2.2)
= − 1

2σ2

N

∑
i
(yi −xi ·w)2 + const (2.3)

and one recovers the well-known formula for least-square fitting of a regres-
sion model. The optimal weights are found by finding the minimum of the
negative log-likelihood. This objective function is commonly denoted as loss
or cost function for neural networks.

The current description of the problem has taken a very data centric view.
From a Bayesian perspective one would like to incorporate our prior beliefs
p(θ) of the parameters θ into the analysis. The prior and likelihood together
can be used to compute the posterior distribution p(θ |D) via Bayes theorem

p(θ |D) =
p(D |θ)p(θ)∫

dθ ′p(D |θ ′)p(θ ′)
. (2.4)

The posterior distribution is often of particular interest, because it contains
all the information about the wanted parameters θ given the initial dataset D .
Unfortunately the denominator tends to be intractable in everything but the
simplest toy examples. Hence, in order to draw samples from the posterior one
has to rely on approximations such as Markov Chain Monte Carlo (MCMC)
methods [81].

Ignoring the overall initialisation due to the denominator it is possible to
consider a different loss function, maximum a posteriori probability (MAP).
In this approach the log-likelihood is replaced with the log-posterior in (2.1)
and leads to

θ̂MAP = argmax
θ

log p(D ,θ)+ log p(θ). (2.5)

Depending on the prior believes this introduces further regularization terms
for the parameters θ . For example take a Gaussian prior with mean zero and
variance σ ′ then equation (2.5) leads to so-called L2 or Ridge regularisation of
the form

θ̂MAP = argmax
θ

[
− 1

2σ2

N

∑
i
(yi −xi ·w)2 − 1

2σ ′2
K

∑
k

w2
k + const

]
(2.6)

where K are the total number of features and weights in the linear regression
model. The squared weights in the loss function lead to an overall decay of
the weights controlled by the parameter σ ′.

Fully connected networks

Neural networks are based on repeated linear regression chained to some non-
linearities called activation functions. In supervised learning tasks the output
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of a neural network can be either a set of scalar predictions (regression) or
a vector of zeros and ones (classification) representing each label. The in-
termediate nh layers between input and output layer are called hidden layers.
If there is more than one hidden layer, such a neural network is referred to
as deep. As in the previous section a neural network learns the likelihood of
observing f (y;θ)� p(y|x,θ):

f : Rin →
{
R

nout regression
R

nlabels classification
. (2.7)

At each hidden layer the following tensor manipulations are carried out

H1 : a1 = σ1(z1 = W1x+b1)

...
Hnh : anh = σnh(Wnh

anh−1 +bnh
) (2.8)

where σi is a non-linear function. Typical activation functions and their deriva-
tives are shown in figure 2.2. The outputs of the neural network are

anh+1 =

{
Wnh+1anh

+bnh+1, regression
softmax(Wnh+1anh

+bnh+1) classification
. (2.9)

Within the context of this thesis neural networks are frequently used to solve
different problems. Figure 2.3 depicts a fully connected, also called dense,
neural network of a regression task with a single scalar output. In order to find
the optimal weights2 one again has to introduce a loss function which will
be minimized. Common choices for these loss functions are the mean-square
loss, which was introduced in (2.3), for regression models, and the categorical
cross-entropy for a classification task with P-labels:

Lmean-square =
1
N

N

∑
i
(yi − f (xi;θ))2 (2.10)

Lcross-entropy =−
N

∑
i

P

∑
j

yi j log f (xi;θ) j +(1− yi j) log [1− f (xi;θ)) j] .

(2.11)

The derivatives of the loss functions ∂L
∂θ are computed with automatic differ-

entiation. In practice most neural network optimisations rely on modifications

2Optimal is a bit of a stretch. While it is possible for the linear regression model to find optimal
weights minimizing the least-square loss, the weights of deep neural networks will only find
some local minimum in the parameter landscape. Empirical evidence shows though that these
local minima often generalise very well beyond the training data [85].
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Figure 2.2. Typical activation functions: ReLU, tanh, sigmoid and GELU in blue,
their derivatives in orange.

of a procedure called gradient descent. Gradient descent starts with initialis-
ing the weights with some non zero prior p(θ) for example a Gaussian. The
weights are then subsequently updated with gradient updates while iterating
over the whole dataset

gt =
∂L (θt)

∂θt
, θt+1 = θt −ηtgt . (2.12)

The parameter ηt is called the learning rate and determines the step-size of the
updates. The updates are computed by backpropagating the gradients through
each layer, e.g. for the parameters in layer N one applies the chain rule and
finds

∂L

∂θ i =
∂L

∂aN
∂aN

∂ zN
∂ zN

∂θ N . (2.13)

In that way all gradients are found by repeated application of the chain rule.
The whole process is efficiently implemented in modern machine learning li-
braries simplifying the day-to-day life of machine learning researcher signif-
icantly. Standard gradient descent has some disadvantages: it is sensitive to
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Figure 2.3. A fully connected neural network with two hidden layers and a single
output of a regression problem.

the size of the gradient steps and choice of learning rate, it is computationally
expensive to calculate gradients over the whole dataset, and the final results
is highly sensitive to the initial starting position. There are common improve-
ments which are used in practice.

SGD: Stochastic Gradient Descent is a modification of regular gradient de-
scent by considering random mini-batches of n samples and summing over
those in the loss functions (2.10) and (2.11). There are then N/n gradient
updates, denoted as one epoch, when iterating over the whole dataset once.
The more frequent updates reduce the computation time to find a minimum.
A consequence of the stochastic updates is a lower chance of getting stuck in
some isolated bad local minima. SGD is often further modified by adding an
additional momentum contribution with hyperparameter γ

gt = γgt−1 +
∂L (θt)

∂θt
θt+1 = θt −ηtgt (2.14)

which takes values γ ∈ [0,1]. Adding momentum to the gradient updates im-
proves convergence in relatively flat directions, while at the same time regu-
larising directions with a high curvature.

RMSprop: Root Mean Squared propagation further refines standard gra-
dient descent by keeping track of the second moment st = E[g2

t ] [86]. Intro-
ducing the hyperparameter β (= 0.9, default value if not otherwise specified),
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which controls the averaging of st , the gradient updates become:

gt =
∂L (θt)

∂θt
, st = β st−1 +(1−β )g2

t , θt+1 = θt −ηt
gt√

st + ε
,

(2.15)

where ε is a numerical stabilisation parameter. As the name suggest, the gradi-
ent updates are normalised with respect to the root of the mean square moment
st . This reduces the learning rate in directions with a large gradient and allows
the usage of a larger initial learning rate leading to faster convergence.

Adam: Adaptive moment estimation further improves RMSprop [87]. It
keeps track of running averages of first and second moments mt ,st . They are
used for adaptive changes to the learning rate

gt =
∂L (θt)

∂θt
, mt = β1mt−1 +(1−β1)gt , st = β2st−1 +(1−β2)g2

t ,

m̂t =
mt

1−β t
1
, ŝt =

st

1−β t
2
, θt+1 = θt −ηt

m̂t√
ŝt + ε

.

(2.16)

Two hyperparameters β1(= 0.9) and β2(= 0.999) controlling the momentum
decay are introduced. The default values result in a momentum at initialisation
close to zero, which is why the actual algorithms performs a bias correction
to m̂t , ŝt . Adam will be the default optimisation algorithm used in this thesis if
not stated otherwise.

More advanced building blocks

So far only fully connected building blocks have been discussed. However,
there are many more possibilities for the hidden layers. In this section a cou-
ple different building blocks which have been used in the experiments of this
thesis are introduced. Most of these layers are fairly standard in modern deep
neural network architectures and improve performance significantly.

Convolutional layer: A convolutional layer consists of 2d filters with shape
(width, height). Generalisation to higher dimensional filter is straightforward.
They scan with a specified stride-size over the two-dimensional input, e.g.
an image. This procedure is significantly more parameter efficient than fully
connected neural networks and better in extracting characteristic features from
the input data. It introduces a bias towards local features. Much of the initial
progress in the recent AI revolution can be attributed to convolutional neural
networks [18]. The repeated linear transformations are highly optimised on
modern graphical processing units and make it possible to scale computations
to much larger and deeper neural networks than plain fully connected ones.

Dropout layer: Dropout is used to combat overfitting [88]. A dropout
layer includes a single hyperparameter, the dropout rate p ∈ [0,1]. At each
iteration step during the training process every neuron has a chance of p to be
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disabled. As a consequence signals have to be propagated via several neurons
through the network, introducing a regularising effect. On the downside, the
disabled neurons will not receive a gradient update and the additional signal
propagation through different neurons takes additional training time. In the
validation and test step all neurons are activated and the network is scaled
appropriately to account for the additional signals.

Residual blocks: Residual blocks became very popular after their intro-
duction in ResNet, which won the 2015 ImageNet competition [89]. Residual
connections propagate the input signal ak directly into the deeper layer. Con-
sider any building block and denote its transformation as F (ak). This can be a
dense or convolutional layer and their activation functions. The residual block
then takes the form

ak+1 = F (ak)⊕h(ak) (2.17)

where h is often chosen to be the identity map or an equivalent projection to
match the output shapes of F . This operation allows for much better gradient
propagation into the earlier layers in very deep neural networks. Due to resid-
ual blocks it was possible to efficiently train networks with over a thousand
layers in ResNet [89].

Attention Mechanism: The attention mechanism [90] has revolutionised
NLP in the form of the flexible transformer architecture [80]. It is used to
train deep neural networks at scale largely in a self-supervised manner. Fine-
tuning on a specific downstream tasks often achieves state-of-the-art perfor-
mance on a variety of problems, such as translations from English to Ger-
man or French [91]. The attention mechanism works with tokenised data and
no longer has the local bias of convolutional layers, but instead allows for
global interactions of the input signals. The success in NLP tasks has mo-
tivated the use in other domains, such as image recognition via the vision-
transformer [92].

2.3 Reinforcement learning
Reinforcement learning describes the process of goal-oriented learning in an
environment, E [93]. The environment is explored with algorithms, denoted
as agents, which observe a state St of the environment and interact via actions
At . Each action is followed by a reward signal Rt and the transition into a new
state St+1 of the environment. The purpose of reinforcement learning is to
study and possibly solve the environment by using different strategies for the
agents that maximise the accumulated reward.

To name a few examples: the environment can be a board game such as
chess or Go. The observation states are the board positions while the possible
actions are the figures or tokens the two players can move and place. The
reward signal might be zero for any move and ±1 if an agent has won or lost
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the game. These game settings have gotten a lot of attention in the past few
years, when artificial intelligence agents modelled by neural networks were
able to beat the world champions in both chess and Go. The neural networks
were trained in self-play against different instances of each other at scale [22,
94]. This is a remarkable feat, as the observation space of Go admits 10178

possible configurations. It provides hope for the string theory community that
such algorithms can also be utilized to find realistic compactifications in the
huge configuration spaces described in the beginning of this chapter.

In the rest of this section the setting of reinforcement learning will be for-
malised and some necessary notation introduced. By using results from dy-

namic programming a simple toy example is solved from which we gen-
eralise to the application of neural networks. In chapter 7 deep reinforce-
ment learning is revisited to study compactifications of the heterotic string
on Calabi-Yau manifolds. For that purpose Actor-Critic agents are employed,
which will further be introduced in section 7.1. The interested reader is re-
ferred to [93] for the standard textbook on reinforcement learning and the
lecture series by Silver [95] on which this section is based.

A reinforcement learning environment is usually based on a Markov deci-
sion process.

Definition 1. A Markov decision process (MDP) is a 4-tuple (S,A,Pa,Ra),
where

• S is a set of states called the state space,
• A is a set of actions called the action space,
• Pa(s,s′) = Pr(St+1 = s′|St = s,At = a) is the probability of transitioning

into state s′ given s and a,
• Ra(s,s′) is the immediate reward for state transition s → s′ due to action

a.

A Markov decision process satisfies the Markov property, that is each state
St contains all relevant information and is independent of the trajectory and
history of past actions.3 Note that Pa(s,s′) governs the whole dynamics of the
environment. The agent selects an action according to some strategy, which
from now on will be denoted as policy.

Definition 2. A policy π is a distribution over actions given states,

π(a|s) = P[At = a|St = s]. (2.18)

3Recent results have demonstrated that deep reinforcement learning is also capable of solving
environments, which do not satisfy the Markov property with superhuman performance, for
example in games such as DotA2 [96, 97] and StarcraftII [98].
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The goal of reinforcement learning is to determine a policy that maximises
the accumulated reward. To this end it is helpful to introduce the discounted
return Gt .

Definition 3. The return Gt is the total discounted reward for time-step t.

Gt = Rt+1 + γRt+2 + ...= ∑
k

γkRt+k+1, with γ ∈ [0,1] (2.19)

This is a useful objective to be maximised by any policy. The parameter γ
controls the long-term thinking of the deployed strategy. Note that there exists
a recursive relationship

Gt = Rt+1 + γGt+1. (2.20)

In order to measure the value of a given action under policy π one introduces
two further definitions.

Definition 4. The action value function qπ(s,a) of an MDP is the expected
return starting from state s, using action a, and then following policy π

qπ(s,a) = Eπ [Gt |St = s,At = a]. (2.21)

The value of any state under policy π is given by the state value function.

Definition 5. The state value function vπ(s) of an MDP is the expected return
starting from state s and following policy π

vπ(s) = Eπ [Gt |St = s]. (2.22)

With these definitions out of the way, it will be illuminating to solve a MDP
using dynamic programming in a model based way. It is possible to write
down recursive relationships for the state and action value functions. Those
are called Bellman equations. They read

vπ(s) = Eπ [Gt |St = s] = Eπ [Rt+1 + γRt+2 + ...|St = s]
= Eπ [Rt+1 + γvπ(st+1)+ ...|St = s] (2.23)

and

qπ(s,a) = Eπ [Rt+1 + γqπ(St+1,At+1)|St = s,At = a]. (2.24)

This leads to the definition of the optimal state and action value functions.

Definition 6. The optimal state-value function v∗(s) for all s ∈ S is the maxi-
mum value function over all policies

v∗(s) = max
π

vπ(s). (2.25)
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The optimal action-value function q∗(s,a) for all s ∈ S and a ∈ A(s) is

q∗(s,a) = max
π

qπ(s,a). (2.26)

The Bellman equations (2.24) and (2.23) can be used to find v∗ and q∗
yielding the Bellman optimality equations

v∗(s) = max
a ∑

s′,r
p(s′,r|s,a)[r+ γv∗(s′)] (2.27)

q∗(s,a) = ∑
s′,r

p(s′,r|s,a)[r+ γmax
π

q∗(s′,a′)]. (2.28)

Finally, it is possible to obtain an optimal policy by picking actions in such
a way that the state value function is equivalent to the optimal one found in
equation (2.27).

Theorem 1. Define a partial ordering over policies

π ≥ π ′ if vπ(s)≥ vπ ′(s) ∀ s. (2.29)

Then for any Markov decision process
• exists an optimal policy π∗ that is better than or equal to all other poli-

cies, π∗ ≥ π ∀ π ,
• all optimal policies achieve the optimal value function vπ∗(s) = v∗(s).

The whole process of applying the Bellman equations and finding an opti-
mal policy is demonstrated with an example.

Example 1. Consider the MDP depicted in fig. 2.4 showing the somewhat
simplified life cycle of a graduate student at Uppsala University. It starts with
a state S0 at the beginning of the PhD studies and the student has two possible
actions: either they are productive and do research leading to a publication
or they sit back and watch the latest season of their favourite show on Net-
flix. Research is fun, but also exhausting giving a reward of R = −1, while
watching Netflix is fun and not exhausting yielding a reward of R =−0.5. The
latter, however, doesn’t result in any progress and the student remains in the
same state at the beginning of their studies. If they researched and managed to
publish their work, the less fun part of writing their thesis begins. This action
returns a reward of R =−2, meanwhile watching Netflix only incurs a penalty
of R =−0.5. In the third possible thesis-state the student only has to (success-
fully) defend their work, which does not only give them a PhD but also R = 10
reward points. Postponing the defense to watch Netflix on the other hand gives
the usual reward of R =−0.5.

The Bellman equations (2.24) and (2.23) are used to compute action and
state value function for a policy π . Starting from a uniform policy which does
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Figure 2.4. MDP of starting graduate studies in theoretical physics. In each state there
are two possible actions, first performing research activities and second laying back
and watching Netflix.

not discriminate between watching Netflix and doing research and discount
factor of γ = 1 the Bellman equation (2.23) yields

vπ(Thesis) =
1
2
·10+

1
2

[
−1

2
+ vπ(Thesis)

]
⇔ vπ(Thesis) = 9.5

vπ(Paper) =
1
2
[−2+ vπ(Thesis)]+

1
2

[
−1

2
+ vπ(Paper)

]
⇔ vπ(Paper) = 7

vπ(Start) =
1
2
[−1+ vπ(Paper)]+

1
2

[
−1

2
+ vπ(Start)

]
⇔ vπ(Start) = 5.5 .

These values show that doing graduate studies is quite a rewarding (MD) pro-
cess. An equal probability for watching Netflix and performing research might
be a realistic reflection of the real world, but it is hardly the optimal policy.
Solving the Bellman optimality equations (2.27) gives

v∗(Thesis) = max
(

10,−1
2
+ v∗(Thesis)

)
⇔ v∗(Thesis) = 10

v∗(Paper) = max
(
−2+ v∗(Thesis),−1

2
+ v∗(Paper)

)
⇔ v∗(Paper) = 8

v∗(Start) = max
(
−1+ v∗(Paper),−1

2
+ v∗(Start)

)
⇔ v∗(Start) = 7 .

In summary the optimal policy π∗ to obtain a PhD is to never watch Netflix
but focus on research instead.
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This example benefited from the fact that we had perfect information about
the MDP, knew all transition functions, and the state space was quite small. In
most real world applications those conditions are not always satisfied. For ex-
ample when exploring the string landscape there are more possible states than
can be stored on any hard drive and that doesn’t even account for state-action
pairs. Hence, model based approaches are less useful in solving these environ-
ments. So what should one do when the state space becomes too large and it
is not possible to look up all future rewards? Neural networks come to the res-
cue. There are two common approaches, policy based ones learning a policy
π directly, or value based ones learning the action-value function qπ(s,a) di-
rectly. In the rest of this section a brief summary is given on how deep learning
algorithms are applied in reinforcement learning. A more detailed derivation
of the here presented algorithms can be found in [93].

Value based algorithms attempt to find the optimal state or action value
function. The optimal value function is found by following a policy that bal-
ances exploring new states and accumulating the largest return. A typical
policy example is the ε-greedy policy, selecting random actions with prob-
ability ε and otherwise performing the optimal action. Popular value based
algorithms are SARSA [93], and Q-learning and its variations [99, 100]. In
Q-learning q∗(s,a) is learned via iterative off-policy updates at each time step
t for an episode with fixed length:

q(st ,at)← q(st ,at)+η
[
Rt+1 + γ max

a
q(st+1,a)−q(st ,at)

]
(2.30)

This algorithm is off-policy because it uses the greedy policy prediction select-
ing the action that maximises q(st+1,a) in its value update, even though the
actual followed policy need not necessarily pursue the same action at+1. The
correction to q(st ,at) is usually denoted as TD error δt+1. Deep Q-learning
introduces a function approximation in the form of a neural network with pa-
rameters θ for the optimal action value function q∗(st ,a) ≈ Q(st ,a;θ) rather
than storing the values in a look-up table. It is optimised with gradient descent
by minimizing the least-square loss of the update rule (2.30)

Li(θ) = δ 2
t+1 =

(
Rt+1 + γmax

a
Q(st+1,a;θ)−Q(st ,at ;θ)

)2
(2.31)

at each time step t. There are further variations, based on adding a baseline,
delaying the updates, or learning two state-value functions simultaneously,
which allow for faster convergence and training.

Policy based methods of reinforcement learning learn a policy

π(a|s,θ) = eh(s,a,θ)

∑b eh(s,b,θ) (2.32)

directly by applying a softmax activation over the possible actions from a nu-
merical function approximator h(s,a,θ) which is usually a neural network de-
pending on the parameters θ . The most famous example is the REINFORCE
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algorithm [101]. It learns a policy by gradient ascent with respect to a perfor-
mance measure J. This performance measure is given by the (optimal) state
value function J(θ) := vπθ (s0) where s0 is the initial state of a finite episode.
The policy gradient theorem [93] allows to re-express the gradients in terms
of derivatives with respect to the original policy:

∇J(θ) ∝ Eπ

[
∑
a

qπ(St ,a)∇θ π(a|St ,θ)
]

= Eπ [Gt∇θ ln(π(At |St ,θ))] (2.33)

This gives the following gradient updates for the parameters θ with discount
factor γ

θt+1 ← θt +ηγ tGt∇θ ln(π(At |St ,θ)) (2.34)

Note, that the computation of Gt requires full reward information of the whole
episode making REINFORCE a Monte-Carlo method with gradient updates
after the episode ends. This often leads to somewhat slower convergence then
online algorithms.

Modern approaches combine these two methods and have one neural net-
work learn the policy and another learn the state or action value function.
These algorithms are commonly denoted as Actor-Critic models and will be
further discussed in section 7.1.
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Part I:
Calabi-Yau geometries
The first part of this thesis discusses Calabi-Yau manifolds and their topologi-
cal properties in more details. It starts with a review of Complete Intersection
Calabi-Yau manifolds and their generalised construction. For the purpose of
studying CICYs and their topological properties the package pyCICY has been
developed. This review is followed by a discussion of some recent results in
learning their Hodge numbers and the cohomologies of line bundles. The sec-
ond half focuses on learning the local metric tensor of Calabi-Yau manifolds
directly using neural networks. This is a very promising and new field of re-
search which finally allows to get accurate numerical approximations within a
reasonable computation time. To that purpose the Python package cymetric
is presented, which allows for computation of the metric tensor at specific
points in complex and Kähler moduli space.





3. Calabi-Yau manifolds

This chapter introduces Calabi-Yau manifolds and fixes the notation for the
rest of the thesis. The main part is centered around the well studied construc-
tions of Complete Intersection Calabi-Yau manifolds in section 3.2. Calabi-
Yau manifolds are defined as follows.

Definition 7. A Calabi Yau n−fold is an n−dimensional compact complex
Kähler manifold with trivial canonical bundle.

There are several equivalent definitions, such as vanishing Ricci form or
Chern class, requiring that the holonomy group of the metric g is contained
in SU(n) or that the manifold admits a globally defined nowhere vanishing
holomorphic n-form. In this thesis only compact manifolds with these prop-
erties are considered. Calabi-Yau manifolds are named after E. Calabi [102]
and S.T. Yau [103].

Conjecture 1. Calabi [102]. Let X be a compact complex manifold X with
Kähler form J′ and corresponding Kähler metric g′. Suppose that ρ is a real,
closed (1,1)-form on X with [ρ] = 2πc1(X). Then there exists a unique Kähler
metric g on X with Kähler form J, such that [J] = [J′]∈ H2(X ,R) and we have
that the Ricci form of g is ρ .

The existense of this unique Ricci flat metric was proven over twenty years
later by Yau [103]. While this is great news for physicists and mathematicians
alike, the proof does not include a method for constructing the metric. The
problem of finding an analytic expression for the metric remains unsolved to-
day almost half a century later. Only for ’trivial’ CY examples such as tori,
there are known closed form expressions.1 On the other hand many global
properties are known of Calabi-Yau manifolds. We have good control of topo-
logical quantities, such as Hodge numbers and Chern classes, and have devel-
oped several successful ways of constructing a wide set of different examples.
The three main constructions of Calabi-Yau geometries are:

• Complete Intersection Calabi-Yau manifolds, in short CICY [106]. They
are built from intersecting polynomial equations in products of projec-
tive spaces. They have been classified in three and four dimensions [107,

1There has been progress recently in constructing K3-metrics [104, 105]. This construction,
however, requires Kähler properties unique to two dimensions and can not be straightforwardly
extended to arbitrary n-folds.
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CICY

elliptic fibration

Kreuzer-Skarke list

Schoen

Quintic

P
123 ↪→ P

2

Bicubic

Figure 3.1. Venn diagram of the three most common Calabi-Yau three fold construc-
tions with popular examples at the intersections.

108] and were recently generalised to incorporate even more examples
by considering negative degrees in the defining polynomials [109].

• Three dimensional Calabi-Yau hypersurfaces in toric varieties given by
reflexive polytopes have been classified by Kreuzer and Skarke [14].
There are a total of 473 million of them and they make up the largest
class of CY manifolds. The construction can in general be extended
to more than one hypersurface [110, 111] with first initial studies try-
ing to classify such systems performed in [112]. Moreover, it is also
possible to incorporate negative degrees in the toric hypersurface con-
struction [113].

• Elliptic fibrations over weak Fano manifolds are popular constructions
in the context of F-theory [114, 115]. 61539 smooth toric bases that
support elliptic fibrations have been classified in [116, 117].

These different constructions are presented by the Venn diagram in fig-
ure 3.1 with some famous selected examples. There is an overlap of the three
methods as some manifolds can be realized in only one way and others in
all three. The study of Calabi-Yau manifolds is worthy a book by itself and
such books have been written [9, 118, 119]. In this chapter the most impor-
tant details about some common constructions and the computation of relevant
(topological) quantities for physics are stated. It requires basic knowledge of
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complex geometry on the level of [120, 121]. The more interested reader is
referred to [118, 119] for proofs and proper derivation of the results stated in
the following.

3.1 Ricci-flat metrics
This section discusses the Calabi conjecture 1 in more detail and fixes no-
tation. It is based on [119]. Assume X is a compact complex manifold of
dimension n. A Kähler form J is a nowhere vanishing real (1,1)-form on X .
If J is closed, i.e.

dJ = (∂ + ∂̄ )J = 0, (3.1)

X is said to be a Kähler manifold and one can define the cohomology class
[J]∈H1,1(X). The Kähler form J further defines a metric g with non vanishing
components

J = igab̄dza ∧dzb̄ (3.2)

where za are the homogeneous coordinates on X . On any Kähler manifold the
metric tensor is given locally by taking partial derivatives with respect to a
Kähler potential K

gab̄ = ∂a∂̄b̄K. (3.3)

The Ricci curvature Rab̄ and Ricci form ρ on a Kähler manifold are given by

Rab̄ =−∂a∂̄b̄ logdetg (3.4)

ρ =−i∂ ∂̄ logdetg. (3.5)

The Ricci scalar is obtained from the curvature by contraction with the inverse
metric gab̄. ρ is a real (1,1)-form, but also a closed 2-form with cohomology
class [ρ] = 2πc1(X) ∈ H2(X ,R). By definition 7 a Calabi-Yau manifold has
vanishing first Chern class and thus vanishing Ricci curvature and scalar.

Example 2. Consider the complex projective space P
n. Pn is a complex com-

pact Kähler manifold with a single Kähler class [J]. It has n+1 homogeneous
coordinates z0, . . . ,zi, . . . ,zn. The Kähler potential is given by

K =
1
π

ln
n

∑
i=0

|zi|2 (3.6)

and its corresponding metric is the so called Fubini-Study metric

gFS := gi j̄ = ∂i∂ j̄

[
1
π

ln
n

∑
i=0

|zi|2
]
=

1
π

∑i |zi|2δi j̄ − ziz j̄

∑i |zi|4 . (3.7)
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The Ricci form is

ρ = 2πc1(P
n) =−(n+1)J (3.8)

Thus Pn is not a Calabi-Yau manifold.

Computing the Ricci curvature in equation 3.4 gives rise to a fourth order
partial differential equation with respect to the Kähler potential. Fortunately,
it is possible to reduce the expression to a second order Monge-Ampère equa-
tion. Consider the closed (1,1)-form J associated to the Ricci-flat metric g. J
and J′, which is any Kähler form on X , are in the same Kähler class and are
thus related by an exact correction from a scalar function φ :

J = J′+∂ ∂̄φ . (3.9)

There are two ways to build the unique top-form on a CY. It is unique up to
some complex constant number because hn,n(X) = 1. The first construction
considers the anti-symmetric product J∧J∧J and the alternative relies on the
nowhere vanishing holomorphic volume form Ω. This gives rise to

J∧ J∧ J = κΩ∧ Ω̄ (3.10)

a non linear second order partial differential equation, where κ is a constant
complex number.

3.2 Complete Intersection Calabi-Yau manifolds
A Complete Intersection Calabi-Yau manifold, X , is constructed as the van-
ishing loci of K homogeneous polynomial equations in products of projec-
tive spaces A = Πr

i=1P
ni . In the rest of this section it is assumed that the

Calabi-Yau manifold is of dimension three, i.e. ∑r
i ni−K = 3, but the methods

explained here generalise straightforwardly to other dimensions. The intersec-
tions of hypersurfaces commute and are encoded in a so called configuration
matrix:

X ∈

⎡
⎢⎣ n1 q1

1 · · · qK
1

...
...

. . .
...

nr q1
r · · · qK

r

⎤
⎥⎦

h(1,1),h(2,1)

χ

. (3.11)

Each qa
i ∈ Z≥0 corresponds to the degree of the a-th polynomial in the homo-

geneous coordinates of the i-th complex projective space. The super and sub
script denote Hodge numbers (h(1,1),h(2,1)), and the Euler number χ which
are topological invariants of the manifold and uniquely determined from the
configuration matrix. There are certain conditions which need to be satis-
fied which will be derived in section 3.2.1. The procedure for computing the
Hodge numbers is presented in section 3.2.2.
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3.2.1 Topological quantities
A Calabi-Yau manifold has vanishing first Chern class. The Chern class of a
sub-manifold X embedded in some ambient space A can be obtained from the
adjunction formula

0 −→ T X −→ TA |X −→ NX −→ 0 (3.12)

where N is the normal bundle defining the embedding hypersurface(s). From
this short exact sequence one finds the following formula for the total Chern

class, c, of each bundle

c(T X) =
c(TA |X)

c(NX)
. (3.13)

The right hand side can be expanded in terms of Kähler forms Ji spanning the
ambient space

c(X) = ci
1Ji + ci j

2 JiJj + ci jk
3 JiJjJk. (3.14)

Explicit calculation of the quotient in (3.13) yields

ci
1 =

[
ni +1−

K

∑
a=1

qa
i

]
!
= 0 (3.15)

ci j
2 =

1
2

[
−δi j(ni +1)+

K

∑
a=1

qa
i qa

j

]
(3.16)

ci jk
3 =

1
3

[
δ i j(ni +1)−

K

∑
a=1

qa
i qa

jq
a
k

]
. (3.17)

Equation (3.15) is a condition on each row of the configuration matrix (3.11),
only if it is satisfied a configuration matrix represents a Calabi-Yau manifold.
This condition is not sufficient in bounding the number of possible CY config-
uration matrices. Finiteness of CICY manifolds can be shown by considering
identities between different matrices [118]. The Euler characteristic is found
by integrating the top (third-) Chern class

χ =

∫
X

ci jk
3 Ji ∧ Jj ∧ Jk = ci jk

3 di jk, (3.18)

where the integration over the CY three-fold is done by contraction with the
triple intersection numbers, di jk. The triple intersection numbers are com-
puted by lifting the integral to the ambient space

di jk =
∫

X
Ji ∧ Jj ∧ Jk =

∫
A

μ ∧ Ji ∧ Jj ∧ Jk

=
∫

A

K∧
a=1

(
∑

l
qa

l Jl

)
∧ Ji ∧ Jj ∧ Jk. (3.19)
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It is common practice to contract the second Chern class with the triple inter-
section numbers to have an easily comparable vector representation

c2,i = ck j
2 di jk. (3.20)

Let’s consider a simple example.

Example 3. Quintic. Take the CY given by a single homogeneous polynomial
constraint of degree five in P

4. The configuration matrix reads

Q ∈ [4||5]1,101
−200 (3.21)

and it clearly satisfies equation (3.15). The single triple intersection number
is by equation (3.19), d111 = 5. The third Chern class is computed with equa-
tion (3.17) to be c111

3 =−40. Contraction of those two tensors yields the Euler
characteristic in equation (3.18):

χ = di jkci jk
3 =−200. (3.22)

The Hodge numbers of the quintic manifold are computed in the next section,
after introducing some more machinery.

3.2.2 Sequence chasing
Computation of the Hodge numbers requires additional machinery from alge-
braic geometry. This section is based on results derived in [122, 123] with
notation borrowed from the physics literature [118, 124]. The adjunction for-
mula (3.12) expresses the tangent space cohomologies T X in terms of line
bundle cohomologies NX and ambient tangent bundle cohomologies TA . The
two latter cohomology groups can be computed with the introduction of two
further exact sequences.

• The Koszul resolution expresses the cohomology of a vector bundle V
on X in terms of cohomology groups on A by tensoring V with

0 →∧KN ∗ → ...→ N ∗ → OA → OA |X → 0 . (3.23)

• The Euler sequence states that for an ambient space A given by a K-
fold product of ni-dimensional projective spaces there exists a short ex-
act sequence

0 → O⊕k
A → O⊕n1+1

A (1,0, ...,0)⊕ ...⊕O⊕nk+1
A (0,0, ...,1)→ TA → 0.

(3.24)

Combining these three sequences (3.12), (3.23) and (3.24) it is possible to
compute H•(T X) by appropriately splitting the Koszul resolution (3.23) into
short exact sequences. After some cumbersome computations one is able to
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express tangent space cohomology groups of X in terms of line bundle coho-
mology groups over the ambient space H•(A ,L). Such cohomology groups
over direct products of projective spaces are computed with a theorem due to
Bott-Borel-Weil [118, 124].

Theorem 2. Bott-Borel-Weil. Let F be a flag space and V ∼ (a1, . . . ,an0 |
. . . |d1, . . . ,dnr) a holomorphic homogeneous vector bundle over F. Then:

1. Homogeneous vector bundles V over F are in 1-1 correspondence with the
U(n1)×·· ·×U(nr) representations.

2. The cohomology Hi(A ,V ) is non-zero for at most one value of i, in which case
it provides an irreducible representation of U(N), Hi(F,V )≈ (c1, . . . ,cN)C

N.
3. The bundle (a1, . . . ,an0 | . . . |d1, . . . ,dnr), determines the cohomology group

(c1, . . . ,cN), according to the following algorithm:
1) Add the sequence 1, . . . ,N to the entries in (a1, . . . ,an0 | . . . | d1, . . . ,dnr).
2) If any two entries in the result of step 1 are equal, all cohomology van-

ishes; otherwise proceed.
3) swap the minimum number (= i) of neighbouring entries required to

produce a strictly increasing sequence.
4) Subtract the sequence 1, . . . ,N from the result of previous step, to obtain

(c1, . . . ,cN).

Without going into too much detail, the ambient space of any CICY consists
of direct products of projective spaces, which can be written as ’generalised
flag varieties’ P

ni =
(

U(n+1)
U(1)×U(n)

)
[124]. The line bundles then take repre-

sentations of U(1)×U(n) expressed as Young diagrams and the cohomology
dimension is computed from their dimension. It is clear from step 3 that the
majority of ambient space cohomologies are going to vanish. The whole pro-
cedure of splitting the Koszul resolution and expressing H•(X ,L) in terms of
ambient space cohomologies H•(A ,L) is summarised in a Leray tableaux.

Definition 8. A Leray tableaux is given by

E j,k
i+1 =

Ker(di : E j,k
i (L)→ E j−i+1,k−i

i (L))

Im(di : E j+i−1,k+i
i (L)→ E j,k

i (L))
(3.25)

where the first page is defined as

E j,k
1 (L) := H j(A ,L⊗∧kN ∗

X ),

with k = 0, . . . ,K; j = 0, . . . ,dim(A ). (3.26)

This is a complex defined by differential maps di : E j,k
i → E j−i+1,k−i

i .

There are a few comments in order about the construction of the differen-
tial maps di. A complete discussion is out of the scope for this review and the
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reader is referred to [118, 124]. From the Bott-Borel-Weil theorem 2 it is pos-
sible to express the ambient space cohomologies in terms of Young diagrams,
which one can map to a basis of monomials. Starting at the first page i = 1, d1

maps from one monomial basis E j,k
1 to the next E j,k−1

1 . The explicit maps are
generated from the defining polynomial equations and in that way complex
structure dependent. Images, kernel and the rank of these maps are computed
with computer algebra systems. The computation takes a considerable amount
of time, because the number of monomials representing the ambient space co-
homologies grow factorial with the line bundle charges. To summarize, if there
are non trivial maps after splitting all sequences the computations can only be
carried out with efficient computer implementations.

There are several theorems which can make our life easier. They improve
the computation time significantly by relating Hodge numbers or constraining
them.

Theorem 3. Kodaira vanishing theorem. For any Kähler manifold, X, and
positive line bundle L � O(�q) the cohomology groups

Hi(X ,L⊗KX) = 0 ∀i > 0 (3.27)

vanish.

Note that for any Calabi-Yau manifold the canonical bundle KX is trivial,
such that the above theorem simplifies to ∀L � O(�q) with�q > 0 : hi(X ,L) =
0, ∀i > 0. Another strong vanishing theorem relies on the computation of the
slope. The slope of a vector bundle V is given by

μ =
∫

X
c1(V )∧ J∧ J = ci

1(V )t jtkdi jk (3.28)

and has to vanish for polystable Hermitian Yang-Mills bundle [125]. These
kind of bundles are also the ones physicists are mostly interested in when
studying heterotic string compactifications. There exists a strong vanishing
theorem due to Kobayasha [126] for such bundles. It is paraphrased here as
stated in [127].

Theorem 4. Kobayasha. A poly-stable, zero slope bundle V on a Calabi-Yau
manifold X admits no global holomorphic sections, i.e. H0(X ,V ) = 0.

This statement can be made even stronger by invoking Serre duality.

Theorem 5. Serre duality. On any n−dimensional Kähler manifold X with
vector bundle V the following holds true:

Hi(X ,V )� Hn−i(X ,V ∗ ⊗KX). (3.29)
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Thus on any Calabi-Yau three fold with a poly-stable vector bundle with
vanishing slope one finds that also H3(X ,V ) = 0. Finally, the index of a vec-
tor bundle V can be computed by either summing up the individual Hodge
numbers or integrating the wedge product between Chern characters and Todd
class

ind(V ) = ∑
i
(−1)ihi(X ,V ) =

∫
X

ch(V )∧Td(X). (3.30)

This expression further simplifies for line bundles with L � O(�q) on Calabi-
Yau manifolds to

ind(L) = di jk

(
1
6

qiq jqk +
1

12
qic2(X) jk

)
. (3.31)

It will be illuminating to apply this whole machinery and get some feeling for
the sequence chasing done in heterotic string compactifications.

Example 4. Revisiting Quintic. In example 3 we considered the Quintic man-
ifold. The Hodge numbers are computed from the adjunction formula (3.12),
which leads to long exact sequence in cohomology

0 H0(X ,T X) H0(X ,TA |X) H0(X ,NX)

H1(X ,T X) H1(X ,TA |X) H2(X ,NX)

H2(X ,T X) H2(X ,TA |X) H2(X ,NX)

H3(X ,T X) H3(X ,TA |X) H3(X ,NX) 0.

Applying Kodairas vanishing theorem 3 and the index formulae for line bun-
dles in (3.31) yields for the right column

hi(X ,NX) =

{
ind(NX) = 125 for i = 0
0 else

.

In a next step one has to consider the tensor product of Koszul sequence (3.23)
and the ambient tangent space cohomology group

0 → N ∗ ⊗TA → TA → TA |X → 0 (3.32)

The first two columns in the long exact cohomology sequence diagram are
computed on the ambient space. The ambient space cohomologies of TA are
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found from the Euler sequence (3.24)

0 → OA → O⊕5
A (1)→ TA → 0 (3.33)

The Bott-Borel-Weil theorem 2 reduces the long exact sequence in cohomology
to

0 → 1 → 5 ·5 → h0(A ,TA )→ 0 (3.34)

which reproduces the result found by the Bott formula for a single projective
space [124]. Next ones computes H•(A ,N ∗⊗TA ) by tensoring the normal
bundle with the Euler sequence (3.33) leading to

0 → h3(A ,N ∗ ⊗TA )→ 1 → 0

such that

h0(A ,TA ) = 24 and h3(A ,N ∗ ⊗TA ) = 1.

Plugging this back into the Koszul sequence (3.32) shows that

h0(X ,TA |X) = 24 and h2(A ,TA |X) = 1.

Collecting these intermediate results and inserting them into the long exact
cohomology sequence of the adjunction formulae one finds that

0 → h0(X ,T X)→ 24 → 125 → h1(X ,T X)→ 0

and

0 → h2(X ,T X)→ 1 → 0.

This gives in combination with the Euler characteristic (3.18) the well known
result that

h(1,1)(X) = 1 and h(2,1)(X) = 101.

This example of the simplest CICY demonstrates how involved the pro-
cedure of computing Hodge numbers becomes even for the most trivial ex-
amples. In the calculation above we did not have to make use of the Leray
spectral sequence, nor did we have to compute any differential maps on the
ambient space cohomologies. As mentioned earlier this procedure requires al-
gorithmic implementation on a computer for when the cohomology sequences
do not split back into short exact sequences and one has to compute the rank
of these maps. For that purpose the pyCICY-package has been developed. It
can be found on

https://github.com/robin-schneider/CICY
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and contains routines for the computation of Hodge numbers of tangent and
line bundles, triple intersection numbers, and Chern classes.

An interesting and so far unanswered question is to ask whether the number
of Calabi-Yau manifolds is finite. Given the vast number of possible config-
uration matrices (3.11) and constructions outlined in the introduction of this
chapter, it is important to know whether two different constructions of Calabi-
Yau manifolds are equivalent.

Theorem 6. Walls [128]. Two Calabi-Yau manifolds are said to be equiva-
lent as six-dimensional real manifolds if the following set of their topological
invariants match

di jk,h•,c. (3.35)

While this theorem appears to be rather straightforward to check, this is not
actually the case. In particular, one has to consider the triple intersection num-
bers up to non trivial basis transformation of the Kähler forms Ji. Checking
for all possible transformations of the shape

di jk = Λl
iΛ

m
j Λn

kdlmn with Λ ∈ SL(r,Z) (3.36)

is impossible. Nevertheless a finite set of CICY manifolds has been classi-
fied by utilising identities between different configuration matrices [118]. The
topological data of this classification is visualised in fig. 3.2, which shows the
distribution of Hodge numbers for h(1,1) and h(2,1). The shape of these two
distribution differs quite significantly. This is an interesting observation with
respect to mirror symmetry of Calabi-Yau manifold. Mirror symmetry of CY
three-folds relates manifolds with opposite Hodge numbers and is naturally
manifest in the construction of toric hypersurfaces, but not so in the CICY con-
struction. CICY mirror pairs can in principle be constructed via nef-partitions
in higher dimensional toric varieties [129]. The mean, maximum and mini-
mum values for the Hodge numbers are

〈h(1,1)〉= 7.4419
1 , 〈h(2,1)〉= 28.83101

15 , 〈χ〉=−42.770
−200 . (3.37)

3.2.3 Generalised constructions
It is possible to extend the construction of CICY manifolds to also incorporate
negative degrees in the configuration matrices. This requires a careful tuning
of the complex structure, such that the poles of the denominators are missing
the other hypersurface equations [109]. Hence, these new generalised CICYs
are constructed in a two-step manner. First, similar to CICYs, one considers a
subvariety M constructed from K hypersurfaces in some ambient space A =
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Figure 3.2. Histogram plot of a) h(1,1) and b) h(2,1) for all CICY three folds which are
not direct products of lower dimensional manifolds.

P
n1 ×P

n2 ...×P
ns . In a second step one adds L further constraints such that the

first Chern class vanishes and arrives at a complete intersection X . Note, that
these additional constraints have negative degrees and are built from sections
of the previous constraints. The total variety X is still the common zero locus
of a number of homogeneous equations. In contrast to the CICY construction
the latter hypersurfaces do no longer commute. The whole information is
again encoded in a configuration matrix:

X ∈

⎡
⎢⎣ n1 a1

1 . . . aK
1 b1

1 . . . bL
1

...
...

. . .
...

...
. . .

...
nr a1

r . . . aK
r b1

r . . . bL
r

⎤
⎥⎦

h(1,1),h(2,1)

χ

. (3.38)

Following the previously introduced notation one has the degrees ni for each
projective space. The integers ai

j ∈ Z≥0 describe the first subvariety M and
bi

j ∈ Z encode the hypersurfaces with rational sections and negative degrees.
The construction of these rational sections is highly non trivial and will not
be further discussed in this thesis, for explicit examples and more detailed
information see the theory section in paper III or for a more general treatment
consult the original paper [109]. Computing topological invariants also has to
be done in a two-step manner, first relating to quantities on the subvariety M
and then back to the ambient space A .
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4. Learning Hodge numbers

Cohomology computations are an integral part of string theory. In the con-
text of heterotic string compactifications the Euler characteristic χ of the em-
bedded polystable vector bundle determines the number of massless fermion
generations [4]. χ is given by the difference in dimensions of the first and
second cohomology group, each respectively counting the number of families
and anti-families. These cohomology computations rely on spectral sequences
introduced in section 3.2.2. They are important ingredients of the dictionary
between geometry and physical observables. This connection will be further
investigated in chapter 6.

In chapter 3 the steps required to find the dimension of cohomology groups
were introduced by studying the Leray tableaux of definition 8. The down-
side of this algorithmic procedure lies in the computation time required to
determine the rank of the complex structure dependent differential maps on
the ambient space. The size of these maps scales factorially with the input
parameters. In this chapter recent work utilizing machine learning algorithms
to compute the Hodge numbers of tangent and line bundle cohomologies is
reviewed. This line of research has been initiated by He in Ref. [24]. He
learned the Hodge numbers of CICY three- and four-folds, and line bundle
cohomologies using fully connected neural networks. These initial bench-
mark studies have been extended to more systematic treatments of the two
CICY datasets [24–29]. Moreover, they motivated the use of deep learning to
determine line bundle cohomologies over toric varieties and other CY mani-
folds [34–37].

The next section 4.1 compares the accuracy of different supervised machine
learning approaches in learning the Hodge numbers of Calabi-Yau manifolds.
The focus is on CICYs for which the necessary topological information is
encoded in a configuration matrix (3.11). The state-of-the-art results rely on
so called inception blocks, which will be introduced in section 4.1.1. These
blocks are also the main building components of the CICYMiner developed
in the context of paper IV. In section 4.2 the cohomologies of line bundles
will be further investigated. It has been postulated that their Hodge numbers
on Calabi-Yau n-folds are described by polynomials of degree n [130]. The
charge lattice can be divided into cones with each following an analytic expres-
sion. In paper I we learned these expressions on the set of CICY manifolds
with Picard group two and two defining hypersurfaces.

45



Figure 4.1. Two CICYs plotted as 2d-image: to the left the CICY with index 123 in the
CICY list and to the right a CICY studied in a later chapter for model building and
defined by the configuration matrix (7.7).

4.1 Learning tangent bundle cohomologies
CICYs are a natural starting point for testing the performance of machine
learning algorithms in solving problems of algebraic geometry. All topologi-
cally distinct CICY three- and four-folds have been compiled in two separate
datasets [106–108, 131]. The three-folds contain 7890 data samples which
can be efficiently parsed on a laptop, while the roughly 106 four-folds are
large enough to test more complicated architectures requiring larger amounts
of training data. These datasets form the basis of several supervised learning
studies and accuracy benchmarks in learning their Hodge numbers. The orig-
inal motivation initiating these benchmark studies was to see whether deep
learning can be utilised to study various topological quantities required in
string compactifications [24].

In case of the three-folds, the maximal dimensions of a configuration ma-
trix (3.11) are 13 projective spaces and 15 hypersurfaces. Hence, to have a
dataset with uniform shape all configuration matrices with matrix dimensions
smaller than (13,15) are padded with zeros to the bottom and right.1 An exam-
ple of this padding is presented in fig. 4.1, which contains two CICYs, X123 of
the CICY list to the left and another CICY with Hodge numbers X [8,29] given
by the configuration matrix (7.7) to the right. As evident from the colorbar of

1Note that in this 2d-image representation of the configuration matrix the first column contain-
ing the dimension of the projective space has been omitted. This information is redundant due
to the Calabi-Yau condition ni +1 = ∑K

a qa
i . For some algorithms it was shown to improve the

performance when the information was kept in the training data [28].
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h(i, j) accuracy (%) training (%) method Ref.

3-folds h(1,1) 37 63 reg. FCNN [24]
h(1,1) 75 70 reg. FCNN [25]
h(1,1) 85 70 class. CNN [25]
h(1,1) (55,68) (30,80) SVM [25]
h(1,1) (97,98,99) (30,50,80) Inception-NN [27, 28]
h(2,1) (50,50,50) (30,50,80) Inception-NN [27, 28]

4-folds h(1,1) 78 2 FCNN [24]
h(1,1) 96 10 FCNN [29]
h(3,1) 27 10 FCNN [29]
h(1,1) (99,100,100,100) (10,30,50,80) Inception-NN Paper IV
h(2,1) (87,91,94,95) (10,30,50,80) Inception-NN Paper IV
h(3,1) (59,67,68,70) (10,30,50,80) Inception-NN Paper IV
h(2,2) (62,73,75,75) (10,30,50,80) Inception-NN Paper IV
h(1,1) (100,100,100,100) (10,30,50,80) CICYMiner Paper IV
h(2,1) (90,97,99,100) (10,30,50,80) CICYMiner Paper IV
h(3,1) (62,81,92,96) (10,30,50,80) CICYMiner Paper IV
h(2,2) (36,49,66,83) (10,30,50,80) CICYMiner Paper IV

Table 4.1. Accuracies for various experiments investigating Hodge numbers of CICY
three- and four-folds from the literature. FCNN denotes fully connected neural net-
works, CNN convolutional neural network, and SVM support vector machine.

the pictures, the CICYs have a single color channel making them suitable for
the application of standard techniques from image recognition.

The accuracies of different studies have been summarized in table 4.1. The
best performing algorithms are based on Google’s Inception network architec-
ture [132], which is introduced in section 4.1.1. Using this architecture Erbin
and Finotello were able to achieve an accuracy of 97% in predicting h(1,1) for
CICY three-folds [27, 28] at different training ratios. Their work involved
detailed ablation studies and feature enhancement of the images. Since the
triple intersection numbers can be computed with combinatorics (3.19), an ac-
curacy of 97% almost exactly solves the problem of predicting all non-trivial
Hodge numbers. Finding a good direct predictor of h(2,1), however, has been
unsuccessful so far.

The CICY four-folds allow for more detailed studies and experimentation
due to the larger dataset. The histograms for the four Hodge numbers given
in figure 1 of paper IV shows four distinct distributions. The histograms of
h(3,1) and h(2,2) have significantly longer tails than h(2,1) has in the histograms
shown in fig. 3.2. h(2,1) in the four-fold case has an interesting shape with
roughly 70% of the values being zero, while h(1,1) is comparable to the h(1,1)
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histogram of the three-folds. In paper IV a new multi-task deep neural net-
work based on inception modules was designed. It learns the four distinct
Hodge number distributions of CICY four-folds simultaneously. The archi-
tecture labeled CICYMiner is inspired from state-of-the-art image recogni-
tion techniques [133] and achieves almost perfect accuracy on two of the four
Hodge numbers. CICY four-folds admit a further linear constraint relating the
different values [108]

44 =−4h(1,1) +2h(2,1)−4h(3,1) +h(2,2), (4.1)

such that with the Euler characteristic these almost perfect results extend to
the prediction of all four Hodge numbers.

Related work

The clustering of CICY three- and four-folds was studied with Siamese neural
networks [134]. These networks map the higher dimensional input space of
the images from Z

13 ×Z
15 → R

3. Thus, significantly reducing the problem
of finding similar manifolds. The similarity criterion was implemented with
respect to h(1,1). The authors are able to show that drawing on respectively
2.67% and 0.62% training samples the networks can few-shot learn a majority
of the test dataset.

The CICYs are not the only target of machine learning algorithms. The
dataset of toric Fano three-folds has been analysed for their volume and reflex-
ivity of the underlying polytopes [33]. An exploration study of the Kreuzer-
Skarke dataset of reflexive 4d polytopes was initiated in [31]. It revealed two
surprising linear equations for the Hodge numbers and an almost perfect fit
to the training data. The triangulation dependent triple intersection numbers
of selected polytopes have been predicted with deep residual style neural net-
works [15]. Finally, the subset containing a single hypersurface in weighted
projective space of dimension four was studied with supervised and unsuper-
vised learning techniques with almost perfect accuracy in [32].

In the next subsection we will review Inception modules and summarize the
results found in paper IV.

4.1.1 Inception modules
GoogLeNet scored first place in the 2014 ImageNet competition [132] with
a missclassification rate of 6.67%. It compromises 22 layers with a total of
6.7×106 parameters. It introduced new building blocks, called inception, util-
ising concatenated convolutional kernels to learn features at different scales in
the image data. These blocks have been further refined by introducing batch
normalisation [132, 135–137]. The ImageNet dataset contains 14×106 sam-
ples and over 21000 classes. Hence, it is roughly one order of magnitude
larger in both samples and classes than the CICY four-folds. Motivated by
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Figure 4.2. An Inception module can be decomposed into the different convolutional
kernels scanning over the width (W) and height (H) with filters (F). They are sub-
sequently concatenated (C) and followed by a batch normalization (BN) layer. The
Inception module is the main building block of both the CICYMiner and the classifi-
cation architectures. The figure is taken from paper IV.

these similarities and the promising results by Erbin and Finotello [27, 28]
it seems suggestive to use similar inception blocks in the analysis of CICY
four-fold data.

The architecture of an inception block is presented in fig. 4.2. It consists
of three different operations. In a first step different convolutional kernels are
applied in parallel to extract different features of the input. These blocks are
then concatenated to a single output onto which batch normalisation (BN) is
applied.

Batch normalisation: BN is a new building block for neural networks. It
was initially proposed to reduce the internal covariate shift, that is the change
in signal distributions at each layer [135]. Empirically it has been found to
allow for better gradient propagation into the earlier layers in very deep neural
networks and to introduce minor regularisation. This in turn allows for faster
and more stable training.

Consider the signal ai,k at the layer k with sample index i of some mini-
batch B = {x1, . . . ,xm}. BN learns the statistics for a fixed batch size and
normalises the output. Suppressing the index k these statistics read

μB ← 1
m

m

∑
i=1

ai σ2
B ← 1

m

m

∑
i=1

(ai −μB)
2 (4.2)

âi ← ai −μB√
σ2

B + ε
yi ← γ âi +β ≡ BNγ,β (ai) (4.3)

γ and β are learnable parameters and ε a constant stabilisation hyperparameter.
During the training process the mini-batch mean and variance are used for the
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signal propagation through the neural network. In inference mode of a batch
Bin a moving average of the training statistics (μ̂, σ̂) are used. These are
updated during training after every mini-batch Bt with momentum α

μ̂t+1 ← μ̂tα +μBin(1−α), σ̂t+1 ← σ̂tα +σBin(1−α). (4.4)

The re-scaling gives best performance if the inference data has similar statis-
tics as the training data.

In later studies it was revealed that the reduction of the internal covariate
shift is not responsible for the advantages of BN. In fact BN does not nec-
essarily lead to a reduction. The main benefit of BN is instead a smoothing
of the loss landscape [138], making the gradient updates more predictive and
allowing for higher learning rates during the training process.

Results

The results of paper IV are two fold: in a first exploratory step we considered
deep neural networks based on chained inception blocks classifying the possi-
ble values of the Hodge numbers. In a second step we used a multi-task archi-
tecture with four arms predicting each Hodge number as a regression task. We
proceeded as in earlier studies [27, 28] by considering different train:val:test
splits with respectively 10 %, 30 %, 50 % and 80 % training and 10 % valida-
tion data to analyse the performance on limited training data. The results of
these experiments are presented in table 4.1 and set the new state-of-the-art
benchmarks for predicting Hodge numbers using machine learning.

Classification: The hyperparameters of the classification architectures have
been optimized using Bayesian Optimisation HyperBand (BOHB) [139, 140]
when predicting h(3,1) on 80% training data. The same hyperparameters were
subsequently used in experiments on the three other Hodge numbers at the four
training ratios. The neural network is built from five inception modules, con-
taining two convolutional kernels scanning over the projective spaces (W=16)
and hypersurfaces (H=20) as visualised in fig. 4.2. These kernels are then
concatenated and followed by a batch normalisation layer. There are two more
hidden dense layers before a softmax activation function over {h(i, j)min , . . . ,h

(i, j)
max}

classes predicts the output. Optimisation is done with Adam optimizer (2.16)
and an initial learning rate of 10−4 on a mini-batch size of 128. The results im-
proved initial studies of h(1,1) [24, 29] and demonstrated that it is also possible
to learn the other Hodge numbers without feature engineering.

CICYMiner: Motivated by the success of using shared hyperparameters
we designed the CICYMiner. This architecture contains a shared body of
inception blocks with four arms each predicting one of the four non trivial
Hodge numbers. Ablation studies revealed that introducing auxiliary loss
branches improved the feature representation in the shared body. Moreover
the introduction of a Huber loss [141] improved accuracies and robustness
significantly. For a larger percentage of the training data the CICYMiner did
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not only perform better than the classification network trained on a single task,
but it also reached an accuracy of 100% on predicting h(2,2). When accounting
for the linear relation (4.1) and the Euler characteristic which can be computed
by integrating the fourth Chern class with the quadruple intersection numbers,
it implies perfect accuracy for all Hodge numbers.

4.2 Learning line bundle cohomologies
In this section recent results in finding the cohomologies of line bundles over
Calabi-Yau manifolds are presented. Monad, extension, and sum of line bun-
dles are the most common choices for constructing vector bundles used in
heterotic string compactifications. They all require the computation of line
bundle cohomhologies with any possible charge combination. Theorems such
as Kodaira (3) and Serre duality (5) in combination with the analytic formu-
lae for the index (3.31) suggest that the Hodge numbers can be divided into
cones within the charge lattice qi ∈ Z. Each such cone follows a simple n-fold
polynomial description. These polynomials have been known for a long time
in the case of a single projective ambient space. It will be useful to derive the
polynomials for our favourite example.

Example 5. Revisiting the quintic (again). Take the Calabi-Yau manifold
given by a generic quintic polynomial in P

4 encoded by the configuration ma-
trix defined in (3.21). Consider any line bundle L � O(q). The Koszul se-
quence (3.23) and the Bott-Borel-Weil theorem 2 determine that only h0(X ,L)
and h3(X ,L) can be non zero. Applying the index formulae (3.31) to compute
the cohomology dimensions, one finds that

h0(X ,O(q)) = max
(

δq,0 +
5
6

q3 +
25
6

q,0
)

(4.5)

and h3 is given via Serre duality in theorem 5.

Further evidence of these polynomial descriptions has been collected for all
the K = 1 CICYs [130], for the tetra-quadric manifold [142], and finally for
all CICYs with K = 2 = h(1,1) in paper I. The analysis of these papers relied
on a combination of explicitly computing the Hodge numbers for a large set
of possible charges, subdividing the charge lattice into cones depending on the
structure of the underlying spectral sequence and fitting a degree three polyno-
mial through the lattice points with linear regression. Rewriting the problem
in terms of a monomial basis with degrees 0 to 3 the weights can be computed
exactly with the maximum likelihood method in (2.3). For CICYs the line bun-
dle comhomologies are computed with the pyCICY package [143], specifically
developed for this purpose. For manifolds coming from the Kreuzer-Skarke
list cohomcalc comes with the required functionality [144].
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The analysis of paper I revealed that there exist recursive equations for some
of the cones. Similar recursive patterns were afterwards rigorously proven in
the case of two dimensional toric surfaces [145]. Finding such recursive re-
lationships has very promising implications for future studies involving large
scans over line bundle charges. The computations scale factorially with the
absolute value of the charges and the total number of charges. It is, how-
ever, often relatively straightforward to find the Hodge number for line bun-
dles close to the origin of the charge lattice. In that region many of the ambient
space cohomologies vanish and the maps in the Leray spectral sequence (8)
are between spaces of lower degree and computational feasible. Thus having
recursive relationships connecting vectors with large norm to ones with small
norm allows for significant computation time improvement.

Related work

The difficulties in computing the Hodge numbers motivate the use of more
advanced tools from machine learning. In first exploratory studies the Hodge
numbers of line bundles were predicted with neural networks trained on a
small dataset of line bundle charges [24, 34]. Both papers demonstrated that
neural networks are capable in learning the majority of the Hodge numbers.
These results have been further supported by the capability of reinforcement
learning agents to solve cohomology constraints as demonstrated in paper II.

Systematic scans of the landscape, however, require almost perfect accuracy
since each potential model undergoes several cohomology checks. Hence, al-
ternative machine learning applications focused on classifying and fitting the
polynomial cones. The authors of [36] used the cohomcalc [144, 146] pack-
age to generate Hodge values on hypersurfaces of toric varieties. They showed
that neural networks fail to compute the Hodge numbers with reliable accuracy
at large charges. Instead they compute derivatives according to a degree three
central difference scheme and then apply the unsupervised KMeans cluster-
ing algorithm to find the polynomial cones. This avoids the manual sequence
chasing and fitting to determine the borders of the different polynomial cones.

In [35] the authors further tested the capabilities of deep learning to pre-
dict the Hodge numbers directly. They came to similar conclusions that the
accuracy of dense neural nets to predict Hodge numbers is not sufficient for
large scale systematic scans relying on these results. To circumvent this prob-
lem they designed a neural network architecture, in part relying on residual
connections and feature enhanced input to learn the different cones and the
polynomials at once. This neural network was shown to reproduce the same
expressions found in paper I and also reproduced a master formula for del
Pezzo surfaces [145].

Finally, decision trees have been employed to study the zeroth cohomology
group of line bundles over del Pezzo surfaces [37]. In addition to previous
studies the authors were interested in finding jumps in the dimension of the
cohomology group by engineering the complex structure. It was shown that
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decision trees are capable of predicting jumps in the spectrum with 95% accu-
racy when fed with the appropriate topological training data.
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5. Learning Calabi-Yau metrics

Compactifications of the heterotic string on Calabi-Yau manifolds have led to
a large amount of interesting standard-like-models [130]. To further reduce
the number of possible models arising from string theory one has to compute
the physical Yukawa couplings of these vacua. There exist topological argu-
ments [147–150] and algebraic methods [151] to compute the vanishing of
many Yukawa couplings (for more recent results see also paper VI and [152]).
The physical Yukawa couplings, however, require the CY metric tensor di-
rectly in their normalisation and indirectly for determining an expression of
the gauge-enhanced Laplacian.

Unfortunately there are no known analytic expressions for the metric ten-
sor of Calabi-Yau manifolds with dimensions n > 2. For K3-surfaces recent
progress allows for the expression of the metric in terms of a perturbative ex-
pansion around "semi-flat metrics" [104, 105]. These "semi-flat metrics" are
derived by studying dualities between different string theories compactified
on tori and orbifold geometries. They then arise as the metric of the moduli
spaces in these different pictures, and can be computed by the counting of BPS
states.

In dimensions larger than two one has to resort to numerical approxima-
tions. The first such approximations were based on the the Donaldson algo-
rithm [153]. It approximates the Kähler potential with an iterative fixed-point
method in terms of monomials with increasing degree 2k, akin to a Fourier ex-
pansions. This method has been used extensively in the past to find numerical
expressions on the Fermat quintic and quotients of the Schoen manifold [154–
159]. The Donaldson algorithm comes with its own caveats. Instead of learn-
ing the metric directly, one has to work with the proxy quantity of fitting an
expansion of the Kähler potential. This process requires exponential compu-
tation time and data samples for increases in accuracy.

More efficient fitting algorithms for finding an approximation of the Käh-
ler potential are based on energy functionals [160]. These functionals are
bounded from below and can be optimised to represent the Ricci-flat metric.
They give an expression in terms of algebraic metrics derived from a Käh-
ler potential with degree k monomials. These methods have been shown to
scale exponentially in accuracy with the degree of the polynomial and thus
are far more performant than the Donaldson algorithm. There are also more
recent studies investigating the metric constructed from energy functionals at
the conifold point [161].

Motivated by their role as universal function approximators, more recently
neural networks have been employed to model the metric tensor [41, 42] and
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the Kähler potential [40]. Applications of such neural network approximations
already exist. They include studies of the swampland distance conjecture [43],
random matrix theory [162], and the learning of a Hermitian Yang-Mills con-
nection for line bundles [44]. An alternative approach learning the determinant
of the metric based on a combination of machine learning methods and curve
fitting is given in [39].

In paper V we developed a tensorflow [163] library, cymetric, to learn
the metric tensor, and also the Kähler potential directly. It, furthermore, gen-
eralises to all CICYs and toric hypersurfaces, while preexisting papers were
hard coded for the (Fermat) Quintic manifold. The library is written in a com-
bination of Python and Mathematica and has been open sourced at:

https://github.com/pythoncymetric/cymetric

In addition to containing different metric Ansätze we proposed an architecture
which gives the metric at the same point in Kähler moduli space as a reference
metric, such as the Fubini-Study metric.

In the rest of this chapter the reader is introduced to the cymetric package
and more generally how to model the metric tensor with the help of neural
networks in section 5.1. The second half in section 5.2 contains additional
results on a so far unstudied CICY.

5.1 Metrics as neural networks
In this section the implementation of the metric tensor as a neural network is
reviewed. The training pipeline requires training data in the form of points
on the manifold, which we will discuss in section 5.1.1, a neural network to
model the metric tensor with possible Ansätze outlined in section 5.1.3, and a
custom loss function introduced in section 5.1.4.

5.1.1 Point sampling
The training points for the neural network will be given in terms of the ho-
mogeneous ambient space coordinates zi. To sample points on the CY one
has to solve the defining hypersurface equations(s). That requires to initialise
all but K ambient space coordinates and solve for the remaining ones. Each
solution yields a point on the CY. The random starting points, drawn from
some prior p(z) will introduce a bias in the distribution of the points and not
cover X uniformly. To find an unbiased distribution one should make use of
Markov Chain Monte Carlo (MCMC) methods sampling with respect to the
top form Ω∧Ω̄. Modern MCMC algorithms have shown to work well in high-
dimensional spaces [164, 165] avoiding pitfalls of conventional methods such
as rejection sampling. They are, however, often an art by themselves requir-
ing an extensive burn-in period, finding a good balance between rejection and
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acceptance rate and anti-correlating all accepted solutions. Moreover, such an
implementation tosses all but one solution of the defining hypersurface equa-
tions and thus becomes very sample inefficient.

A more elegant approach is to sample points using a theorem due to Shiff-
man and Zelditch [166]. The theorem studies the distribution of zeros from
random sections over a complex compact space that can be mapped to P

N .
This theorem has been generalised to ambient spaces containing several pro-
jective spaces by Braun et al [155] and its application will be described in what
follows.

Consider a CICY, given by K hypersurfaces defined in an ambient space
A = P

n1 × ·· ·×P
nr . Introduce free parameters ti ∈ {t1, . . . , tK}, that restrict

the projective ambient space factors to subspaces and define a sub-manifold
Y . In a next step one samples points by solving for the intersection with the
defining polynomials of the CICY. The distribution of these random sections is
then given by considering the anti-symmetric product of pullbacked ambient
space measures restricted to the Calabi-Yau. It will be illuminating to illustrate
this process with an example.

Example 6. Consider the Calabi-Yau given by a homogeneous degree (2,2,3)
polynomial, P223, in A = P

1
1 ×P

1
2 ×P

2
3. Then there is a single free parameter

t1 living in any of the three factors. Assuming that the parameter lives in the
third projective space, one can define a three dimensional subspace Y

Y = P
1
1 ×P

1
2 ×{p3,0 + t1 · p3,1} ⊂ A (5.1)

where p3, j are points living ∈ P
2
3 and distributed according to the Fubini-

Study metric. It is then straightforward to find points on the CY by studying
the intersections(

P
1
1 ×P

1
2 ×{p3,0 + t1 · p3,1}

)∩X = {3 pts.}. (5.2)

Since the defining polynomial in the third projective space is of degree three
there will be three solutions for generic points of Y defined in equation (5.1).
The random points sampled from each P

1 are also distributed with respect
to the Fubini-Study measure. There are then three (1,1)-forms given by the
pullbacks of the Fubini-Study metrics of each ambient space factor to the CY

g(l)ab̄ := i∗(ω
P1

l
) = Pi

ag
P

1
l

i j̄ P̄ j̄
b̄ (5.3)

The pullback tensors are defined as

Pi
a =

(
∂ zi

∂xa

)
(5.4)

where zi are the homogeneous ambient space coordinates and xa three local
’good’ Calabi-Yau coordinates. Those three coordinates are selected from the

56



ambient space coordinates by going to a patch, where all the three scaling
relations set the largest ambient coordinates to max(zi) = 1 + 0 j and then
removing the coordinate with the largest value of

∣∣∣∂P223
∂ zi

∣∣∣ with the defining
polynomial P223. Following this procedure one arrives in general at(

r

∑
l=1

nl +1−1

)
−K = n

good local coordinates. The distribution of zero loci is then given by wedging
the remaining degrees of freedom

dA ∼ i∗(ω
P1

1
)∧ i∗(ω

P1
2
)∧ i∗(ω

P2
3
) = εaceε b̄d̄ f̄ g(1)ab̄ g(2)cd̄ g(3)e f̄ . (5.5)

If one had taken the free parameter to be in one of the P
1-factors, say l = 1

leading to a different subspace Y ′, the zeros would have been distributed with
respect to

dA ∼ i∗(ω
P1

2
)∧ i∗(ω

P2
3
)∧ i∗(ω

P2
3
) (5.6)

instead. Moreover, the intersection (5.2) would have only led to two rather
than three solutions per points sampled from Y ′.

This example illustrates how to sample points on the Calabi-Yau which will
be further investigated in section 5.2. A more general treatment on how to ex-
tend this algorithm to also toric hypersurfaces will appear in the future [167].

5.1.2 Error measures
There are two performance measures on which numerical approximations of
Ricci-flat metrics on CY manifolds are evaluated. They have been introduced
in the context of the Donaldson algorithm and are respectively called sigma
and Ricci measure [157, 158]. The sigma measure is computing the failure of
the Monge-Ampère equation (3.10) integrated over the whole manifold:

σ =
1

VolCY

∫
X

∣∣∣∣∣∣1−
J3

VolK
Ω∧Ω̄
VolCY

∣∣∣∣∣∣dVolCY. (5.7)

The Ricci measure integrates the Ricci-scalar (3.4)

||R||= Vol
1
n
K

VolCY

∫
X
|R|dVolK. (5.8)

In the rest of this section we will discuss, first how the integration is carried out
in the above equations and second how the two different volumes are defined.
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The numerical nature of our solutions makes it impossible to carry out the
integration analytically Instead we will continue numerically by Monte-Carlo
integrating any quantity f over randomly sampled points on the manifold:∫

X
dVolCY f =

∫
X

dVolCY

dA
dA f =

1
N

N

∑
l

wl f |pi (5.9)

In the above step integration weights wl have been introduced which depend
on the auxiliary measure dA coming from the distribution of points in the
ambient space (in the example above this was given by equation (5.5)). There
are two ways to compute the volume of the manifold, either with respect to
Ω∧ Ω̄, which one finds by setting f = 1:

VolCY =
∫

X
dVolCY =

∫
X

Ω∧ Ω̄ =
1
N

N

∑
l

wl (5.10)

or by integrating with respect to the Kähler forms tiJi:

VolK =
∫

X
∧3tiJi =

1
N

N

∑
l

det(g)
Ω∧ Ω̄

∣∣∣∣
pl

wl
!
= di jktit jtk =: V (t) (5.11)

where g is the CY metric and di jk the triple intersection numbers (3.19). Note
that with equation (3.10) these two volumes are equivalent up to the factor κ

κ =
VolK
VolCY

. (5.12)

Hence the appropriately normalised integration weights for each point sam-
pled by the procedure introduced in example 6 is given by evaluating V at
Kähler moduli ti = 1∀i:

wi =V (1)
dVolCY

dA

∣∣∣∣
pi

. (5.13)

5.1.3 Neural network ansatz
The CY metric tensor is given by a Hermitian (n,n) matrix. A naïve Ansatz
is to let a neural network predict the n2 components of the metric. The studies
in paper V revealed that more efficient approximations are based on physi-
cal domain knowledge by learning corrections to some already known Kähler
metric. Hence, in this thesis only metrics of the form

gpr = g̃FS + correction (5.14)

are considered. Here g̃FS is the pullbacked metric tensor of the direct product
of Fubini-Study ambient spaces metrics

g̃FS := i∗
(
∂i∂ j̄KFS

)
(5.15)
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Ansatz

free gpr = gNN
addition gpr = g̃FS +gNN

mult-elementwise gpr = g̃FS + g̃FS �gNN
mult-matrix gpr = g̃FS + g̃FS ·gNN

φ -model gpr = g̃FS +∂ ∂̄φ

Table 5.1. Different Ansätze involving neural networks for the metric tensor.

with

KFS =
1
π

log
r

∏
l

etl
nr

∑
i
|zli|2 (5.16)

This bias is motivated by the Monge-Ampère equation eq. (3.9). Table 5.1
shows five different Ansätze studied in paper V. The experiments conducted in
paper V demonstrated that an exact correction in the form of eq. (3.9), dubbed
the φ -model, gives the best results. The explicit Ansatz reads:

gpred := g̃FS + i∗(∂i∂̄ j̄φ) (5.17)

where φ is a patch invariant scalar function modeled by an underlying neural
network. The learned metric remains in the same Kähler class as the reference
metric g̃FS as long as we consider exact corrections. This Ansatz has the fur-
ther advantage of being Kähler by construction. The two derivatives are taken
with automatic differentiation efficiently implemented in the tensorflow li-
brary. In contrast to the other models, it no longer requires to enforce kählerity
which normally introduces another derivative in the training process.

5.1.4 Custom loss function
By the theorems due to Calabi and Yau there exists a unique Ricci-flat Kähler
metric on the Calabi-Yau which satisfies the Monge-Ampère equations 3.9
and 3.10. Hence, the neural network has to solve the complex second-order
non linear partial differential equation. It has been shown in the past that
neural networks are capable of learning solutions to high dimensional non-
linear PDEs [168–170]. These PDEs are solved by customising a loss function
capturing the evolution of the system.

In similar vein cymetric implements a custom loss function encoding all
the geometrical properties of the metric tensor. This loss function is then op-
timised with stochastic gradient descent and its cousins, introduced in sec-
tion 2.2. The total loss is given by summing up the different contributions. It
reads

L = α1LMA +α2LdJ +α3Ltransition +α4LRicci +α5Lvol-K (5.18)
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where αi are hyperparameters (by default set to αi = 1.0) scaling the various
terms. The equations and conventions presented in this section are compatible
with version v-0.2alpha1. They are subject to changes in the future [167].
Some of these changes will be discussed at the end of section 5.2.

The first term

LMA =

∣∣∣∣
∣∣∣∣1− 1

κ
detgpr

Ω∧ Ω̄

∣∣∣∣
∣∣∣∣
n

(5.19)

encodes that eq. (3.10) needs to hold at every point on the manifold. || · ||n
refers to the Fröbenius norm of degree n (not to be confused with the dimen-
sion n of the CY). The metric has to be Kähler

dJ = 0 ⇒ ci j̄k = ∂kgi j̄ −∂igk j̄ = 0 (5.20)

which is captured by the Kähler-loss

LdJ = ∑
i, j,k

∣∣∣∣Re (ci j̄k)
∣∣∣∣

n + ∑
i, j,k

∣∣∣∣Im (ci j̄k)
∣∣∣∣

n . (5.21)

Moreover, the metric should be well defined over all patch transitions s → t.
Therefore the transition-loss has to vanish

Ltransition =
1
d ∑

(s,t)

∣∣∣∣∣∣g(t)pr −T(s,t) ·g(s)pr ·T †
(s,t)

∣∣∣∣∣∣
n

(5.22)

where T(s,t) =
∂�z(s)
∂�z(t)

are the transition matrices between two patches (s, t) and d
is the total number of patch transitions. The φ -model has a different transition-
loss. The correction (5.17) has to be globally exact, which implies that the
scalar function φ is scale invariant. Hence, for each batch we draw ten vectors
of random numbers for each projective scaling relation, εs

l ∈Uniform(0.1,0.9),
and compute

Lφ−transition =
1
10

10

∑
s=1

∣∣∣∣gpr(�z)−gpr(�zεs)
∣∣∣∣

n (5.23)

where �zεs := (εs
1, . . . ,ε

s
1︸ ︷︷ ︸

n1

, . . . ,εs
r , . . . ,ε

s
r︸ ︷︷ ︸

nr

)��z.

The fourth term

LRicci = ||R||n =
∣∣∣∣∣∣gi j̄

pr∂i∂̄ j̄ lndetgpr

∣∣∣∣∣∣
n

(5.24)

enforces the Ricci-scalar to vanish. It is by default disabled, but can be acti-
vated for manifolds where training against the MA-loss (5.19) is not sufficient.

1accessed 2022-03-14, commit: fa15b967b49c51113a911559bd7cec4e5e2c20ca.
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The computation requires two additional derivatives with respect to the input
coordinates, thus increasing computation time significantly. Finally, the met-
ric should stay at the same overall volume as some reference metric. This is
enforced by the vol-k loss

Lvol-K =

∣∣∣∣
∣∣∣∣∫ det g̃FS −

∫
detgpr

∣∣∣∣
∣∣∣∣
n
, (5.25)

where the integral is taken over the whole mini-batch.2

5.2 Experiments
This section contains the results of different experiments performed on a generic
member of the CICY given by the following configuration matrix

X7880 =

⎡
⎣ 1 2

1 2
2 3

⎤
⎦3,75

−144

. (5.26)

Motivated by the results of paper V only the two multiplicative ansätze and
the φ -model presented in table 5.1 are used in the experiments. There are five
experiments conducted for each Ansatz. The backbone neural network archi-
tecture consists of three fully connected hidden layers, initialised according to
a normal distribution with σθ = 0.01, GeLU-activation function, 128 hidden
units and optimised with the Adam optimizer defined in eq. (2.16). The initial
learning rate is η = 0.001 and the tensorflow default values for the momenta
β1/2 = {0.9,0.999} are used. A learning rate decay schedule after 30 epochs
of no improvement on the validation loss is initiated with a decay factor of
0.3.Training is done with a batch size of 64.3 As a consequence of this small
batch size the vol-k loss (5.25) has been disabled.

The experimental setup consists of 430000 points in the training set and
respectively 20000 points in validation and test set. The validation data is used
to track the training metrics, control the learning rate decay, examine the set-
up for overfitting, and some minor hyperparameter optimisation. The test data
is a separate dataset on which the final performance is evaluated by computing

2The batch dependency makes this loss a bit more complicated to work with. The MC integral
is not very sensible for small batch sizes, which in our experience work better in navigating the
loss landscape. It is recommended to use an optimiser with momentum when training against
this loss or employ a manual training loop which uses more points to compute the integral.
3While larger batch sizes better utilise the computation power of GPUs, such experiments
showed a worse performance and often got stuck in bad local minima. This observation is in line
with systematic studies of the batch size as a hyperparameter on image recognition tasks [171].
A batch size of 64 already gains computation time improvements from access to a GPU and still
comes with favourable performance.
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Figure 5.1. Experiments on X7880 defined in (5.26). The four subplots show a) Monge-
Ampère loss on training b)+c)+d) Monge-Ampère, transition and Kähler loss on vali-
dation data.

the established benchmarks of sigma measure (5.7) and Ricci measure (5.8).
The loss contributions of every sample in a mini-batch is scaled with respect
to the integration weights (5.13).

In fig. 5.1 the loss contributions of five experimental runs for the differ-
ent physical models are plotted against the training time of 100 epochs. ’phi’
denotes the φ -model, ’mult’ the element-wise multiplication and ’matrix’ the
matrix multiplication Ansatz. The y-axis uses a logarithmic scale in all four
sub-plots. A comparison of the Monge-Ampère loss for the training data in
subplot a) and for the validation data in subplot b) shows that the experiments
are not overfitting to the training data. The φ -model outperforms both multi-
plication models. This observation matches the experiments in paper V.

Subplot c) shows the transition loss on the validation data. We recall that
this loss is computed differently between the φ -model and the two multipli-
cation models. Hence, only the latter two can be compared directly. The
matrix model consistently decreases over the training process and has a lower
transition loss than the element-wise multiplication. The latter remains ap-
proximately constant over the training. The φ -model first increases and then
decreases again roughly to the same size it had at the beginning of the training
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Figure 5.2. Experiments on X7880 defined in (5.26). The four subplots show a) σ -
measure b) volume and c) R-measure on test data and in d) the linear relationship
between improvement in σ -measure and R-measure.

process. Finally, subplot d) shows the Kähler loss for the two multiplication
models: the matrix model is significantly better and also the only one that de-
creases over the training period. The φ -model is by construction Kähler such
that this loss becomes trivial.

Figure 5.2 shows the σ - and Ricci-measure performance of the three models
on a separate test set. The Monge-Ampère loss from the previous figure is
mirrored in subplot a), which displays the σ -measure. Subplot b) shows the
volume (5.11) computed from the test set over the course of the training. We
observe that even though the volk-loss has been disabled the expected volume
VolK = 30 is preserved simply by enforcing the Monge-Ampère equation with
the correct κ value.

Subplot c) shows the Ricci measure on the test set. It comes with some
surprising results. On the one hand the multiplication and φ -model become
closer to the Ricci flat metric over the training process. On the other hand
the matrix model does the opposite and increases its Ricci scalar over the
training process. In fact even though the σ -measure is decreasing the Ricci
measure increases monotonically as visible from the straight line in subplot
d). Subplot d) plots the two benchmark measures against each other. Overall

63



we observe that the linear relation found in paper V does no longer describe
the minimisation relationship between σ - and Ricci-measure accurately.

Outlook

The results displayed in fig. 5.1 and fig. 5.2 uphold that neural networks can
be used to find numerical approximations of the unique Ricci-flat Calabi-Yau
metric. Finding the right neural network weights is a multi-objective opti-
misation problem between the different loss contributions. This is an active
area of research in machine learning. The Kähler and transition loss plots on
the validation set in fig. 5.1 show that the experiments have not always been
successful in minimizing all the different loss contributions individually. It
would be interesting to test more modern approaches from the deep learning
literature in handling the different optimisation objectives [172].

The increase in Ricci-measure for the matrix model further confirms that
the loss landscape is highly non trivial. This is a new observation, which
was absent for the Calabi-Yau manifolds investigated in paper V. It strongly
suggests that future numerical experiments, which are not based on a formal
convergence proof such as the Donaldson algorithm, have in addition to the
σ -measure also keep track of the Ricci scalar. It also hints that optimisation
against the Monge-Ampère loss (5.19) is not always sufficient in finding the
Ricci-flat metric. Instead one has to also train against the Ricci-loss (5.24) for
these models.

Overall our numerical solutions are closer to the Ricci-flat metric by factors
of three to five compared to the Fubini-Study metric depending on benchmark
and model. This is significantly worse than the improvements found in paper
V. The discrepancy can in part be explained by the more complicated Calabi-
Yau manifold investigated here. The chosen generic member of (5.26) does not
admit a freely acting symmetry and contains significantly more complex struc-
ture moduli. With h(1,1) = 3 it also comes with more Kähler moduli. Hence,
one would expect that the underlying neural network also requires more pa-
rameters to accurately fit the Ricci-flat metric.4

It would be interesting to study scaling laws of the different models with
respect to the number of parameters and dataset size. Scaling laws of neu-
ral networks have recently been investigated for natural language processing
models, and different neural network architectures in image and speech recog-
nition [173–177]. These studies revealed that the generalisation errors follow
exact power-laws with respect to the neural network parameters if the experi-
ments were not resolution limited by a too small dataset size.

Another promising approach for performance improvement is to modify the
underlying neural network architecture. There are several modifications one
could imagine, such as introducing feature engineering by adding monomials

4Doubling the width of the neural network to 256 units does lead to improved performance in
some initial experiments not reported here.
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of a fixed degree into the architecture or using more building blocks based on
residual connections, batch normalisation or the attention mechanism. As de-
scribed later in chapter 6 Calabi-Yau manifolds with a freely acting symmetry
are particular important for physicists. Building architectures which respect
these symmetries in the spirit of geometric deep learning [178] promise to be
much more parameter and thus training efficient. Finally, it would be interest-
ing to see whether one could find approximate analytic solutions via symbolic
regression. Here, one should utilise methods presented in the context of AI
Feynman [179] to generate these expressions which have a proven track record
of learning symbolic equations.

In the experiments of this section the vol-k loss (5.25) has not been utilised.
In the future [167] we intend to change the vol-k loss to also train against the
slope of various line bundles (3.28). This modification fixes the Kähler class of
the multiplicative models. Finally, the plan is to include new customised train-
ing loops which evaluate the Monte-Carlo integrals with a sensible number of
points. These loops will then run concurrently over two different batch-sizes,
one for the MC integral and another smaller one for the other loss contribu-
tions.
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Part II:
Heterotic model building
The second part of this thesis covers heterotic model building. It focuses on
so called heterotic line bundle models, which are the underlying construction
of the largest class of SLMs. First, their basic construction is reviewed and
demonstrated with an explicit example. This is followed by a summary of
recent results obtained on gCICY manifolds. In the last chapter deep rein-
forcement learning is applied to the problem. In particular Actor-Critic agents
are trained on so far unexplored CICYs discovering 19538 new SLMs.





6. Heterotic model building

String theory model building has a long history since the introduction of the
heterotic string [2, 3]. The first construction used the Quintic Calabi-Yau
manifold (3.21) as compactification space and standard embedding of its tan-
gent bundle into one of the E8-factors to arrive at four generation E6 GUT
model [180]. This approach has been quickly refined to generate models
with three fermion generations and further GUT breaking to the standard
model [181–183]. Over the years more phenomenological constraints have
been incorporated in fine tuned selected examples [184–186].

The process of finding semi-realistic string vacua, which match the gauge
group and particle content of (minimal) supersymmetric extensions of the
standard model, follows an established cooking recipe. In a first step one se-
lects their favourite Calabi-Yau manifold X , which admits a freely acting sym-
metry Γ. Algorithmic classifications of freely acting symmetries on CICYs are
found in the literature [187, 188]. In the next step one considers slope stable
vector bundles V with vanishing first Chern class and rank rk(V ) = {3,4,5}
to break one of the E8-factors into the GUT groups G = {E6,SO(10),SU(5)}.
This vector bundle has to satisfy mathematical and phenomenological consis-
tency requirements, such as anomaly cancellation and the existence of three
massless fermion generations. In a last step one breaks the GUT group G via
a Wilson line utilising Γ to the gauge group of the standard model.

This cooking recipe allows for systematic exploration of different vacua by
considering a set of Calabi-Yau manifolds and scanning over different geomet-
ric configurations for the vector bundle. The scanning algorithm is depicted
in algorithm 1. Early results yielded datasets of 300 phenomenological con-
strained MSSM models in Z6− II orbifolds [189, 190] and 91 standard models
using the positive Monad construction [191] over CICYs. The latter models
turned out to not admit the precise particle content of the standard model after
Wilson line breaking. This negative results led to the consideration of line bun-
dle sums V = ⊕La, which would turn out to be the most successful approach
for heterotic compactifications [192].

Large scale systematic scans of heterotic line bundle models over Calabi-
Yau manifolds have led to the largest explicit dataset of semi-realistic string
theory compactifications [192]. They have been performed over all CICYs
with h(1,1) = {1, . . .7} leading to 1428856 models [127, 192–194]. Further
scans were carried out over all known hypersurfaces in toric varieties ad-
mitting a freely acting symmetry [195], and elliptically fibered Calabi-Yau
manifolds [196]. In this chapter the line bundle sum construction is reviewed
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Algorithm 1 Pseudo algorithm to find realistic heterotic compactification.
Require: X is a CY three-fold and X̃ = X/Γ s.t. π(X̃) = Γ �= 0.

V s ←construct_all_V(p)
good ← []
while ∃V in V s do

if V satisfies consistency conditions then

if V satisifes phenomenological conditions then

good ← [V ]
end if

end if

end while

in section 6.1. The next section 6.2 presents recent developments in finding
such models on gCICYs based on paper III. The final chapter 7 uses deep re-
inforcement learning to explore new CICYs, which are out of computational
reach for systematic studies with h(1,1) ≥ 7.

Heterotic model building is not the only subfield of string theory in which
semi-realistic compactifications have been constructed. It has been estimated
that one in a billion intersecting D6-brane models in the IIA setting leads to
realistic particle content [197, 198]. Moreover, recently it was shown that
there are F-theory compactifications which allow for a quadrillion realisations
of the standard model. This feat was accomplished by finding vacua with the
correct particle content on a Calabi-Yau four-fold admitting that many distinct
triangulations [199].

6.1 Heterotic line bundle models
This section reviews the construction of heterotic standard like models (SLM)
via line bundle sums as introduced in [127, 193, 194]. These heterotic line
bundle models satisfy a set of different mathematical consistency checks and
phenomenological constraints. In large scale scans they are implemented algo-
rithmically as shown in algorithm 1 to collect all physical interesting models.
The starting point is a smooth Calabi-Yau manifold X admitting a freely acting
symmetry Γ. From this upstairs manifold one can get a downstairs manifold
X̃ with a non-trivial fundamental group π(X̃) = Γ by considering the quo-
tient X̃ = X/Γ. The cooking recipe presented in this section also generalises
straightforwardly to elliptic and toric constructions [195, 196]. The vector
bundle V is constructed as a sum of five line bundles La:

V =
5⊕

a=1

La =
5⊕

a=1

OX(q1
a, ...,q

r
a) (6.1)
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The charges qi
a need to satisfy ci

1(V ) = ∑5
a=1 qi

a = 0 such that c1(V ) = 0 van-
ishes. Then V has structure group S(U(1)5), which gives after embedding into
one of the heterotic E8-factors the intermediate GUT group

E8 ⊃ SU(5)×S(U(1)5)∼= SU(5)×U(1)4. (6.2)

The SU(5) GUT group will be further broken with a Wilson line to the stan-
dard model. This leaves additional U(1) vector bosons coming from the
Abelian split-locus. They can become massive via the Green-Schwarz mech-
anism [193] and have the following mass matrix

Mab =−ci
1(La)c

j
1(Lb)∂i∂ j ln(K) (6.3)

where K is the Kähler potential of the CY [193]. Hence, there are 4− rank(V )
additional non-anomalous massless U(1)-charges that have to acquire mass by
switching on VEVs of the vector bundle moduli [127].

The 10D Bianchi identity introduces further integrability constraints in the
form of anomaly cancellation. This anomaly cancellation is encaptured in a
condition on the second Chern class for slope zero stable bundles

0 < c2(V )≤ c2(X) (6.4)

with: c2 i(V ) =−1
2

di jk

5

∑
a=1

q j
aqk

a (6.5)

where di jk are the triple intersection numbers (3.19) and c2 i is to be com-
pared with the vectorised second Chern class (3.20) of the underlying CICY.
The lower bound arises by Bogomolov [200] and a direct matching is not
required, since NS-5 branes can be added to the theory to cancel out the re-
maining anomalies [201]. These constraints hold for slope stable bundles.
Slope stability is furthermore required by the Donaldson-Uhlenbeck-Yau the-
orem [125, 202] in order to preserve supersymmetry in the lower dimensional
theory. Hence, at some supergravity compatible point in the Kähler cone the
slope of V needs to vanish. This condition is expressed in terms of the Kähler
moduli ti as

∃ t1, t2, ..., th(1,1) > 1 : μ(La)
!
= 0,∀a ∈ {1, ...,5} (6.6)

and the slope is defined as in equation (3.28). As a consequence of this condi-
tion most CICYs with h(1,1) ≤ 4 won’t admit any realistic line bundle models.
For CICYs with h(1,1) > 4 equation (6.6) is satisfied for generic values of the
charges.

The 248 adjoint representation of E8 decomposes under G×H = SU(5)×
SU(5) into

(1,24)⊕ (5,10)⊕ (5̄, 1̄0)⊕ (1̄0,5)⊕ (10, 5̄)⊕ (24,1) (6.7)
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multiplet l.b. cohomologies counting multiplicities contained in

10 h1(X ,La) V
1̄0 h1(X ,L∗

a) V ∗
5 h1(X ,La ⊗Lb) V ∧V
5̄ h1(X ,L∗

a ⊗L∗
b) V ∗ ∧V ∗

1 h1(X ,La ⊗L∗
b) and h1(X ,L∗

a ⊗Lb) V ⊗V ∗

Table 6.1. Relevant particle content of the SU(5) GUT theory and their multiplicities
given by the dimensions of line bundle cohomology groups [193].

The multiplicity of the particle representations is given by the Hodge numbers
of certain line bundles as presented in table 6.1. Since the fundamental group
Γ of the quotient manifold X̃ = X/Γ is non zero one can use a Wilson line to
further break down the gauge group to the standard model [4]. The invariant
part of H1(X ,V )⊗RW , with RW a Wilson line representation, determines the
particle multiplicities in the downstairs theory. Thus, for each La ∈V

χ(La) mod |Γ|= 0 (6.8)

where χ(La) = di jk

(
1
6

qi
aq j

aqk
a +

1
12

qi
ac jk

2 (X)

)
(6.9)

has to hold for there to exist an equivariant structure on the quotient. The
downstairs particle content is then

#fermion generations =−χ(V )

|Γ| . (6.10)

Phenomenological observations impose the existence of exactly three fermion
generations and no anti-families. This requirement translates to a constraint
on the dimension of the cohomology groups

h•(V ) = (0,3|Γ|,0,0). (6.11)

Moreover, the MSSM particle content requires the existence of at least one
pair of Higgs doublets, but no Higgs triplets. These conditions give rise to the
following topological constraints [193]

doublet: h2(∧2V )> 0, triplet: χ(La ⊗Lb)≤ 0 ∀a,b. (6.12)

In principle one could impose more constraints, such as moduli stabilisation
and the matching of Yukawa couplings. However, each additional constraint
adds further computational complexity to the problem and at parts relies on
technology which hasn’t been sufficiently developed yet. For example, com-
putation of the physical Yukawa coupling requires the Calabi-Yau metric and
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solutions to the Hermitian Yang-Mills equation. The necessary toolkits for
these computations are only now getting developed as outlined in chapter 5.
Stabilisation of the moduli requires expensive Gröbner basis computations and
additional scans over suitable vector bundle configurations in the hidden sec-
tor [203, 204]. To the best of my knowledge no analysis of SLMs with respect
to their full moduli stabilisation and physical Yukawa couplings has been done
yet. There are, however, promising initial results studying jumping spectra re-
quired for moduli stabilisation and topological constraints for the vanishing of
Yukawa couplings in heterotic line bundle models [205].

Example 7. Consider the following configuration matrix

X7447 ∈

⎡
⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎥⎥⎦

5,45

−80

(6.13)

belonging to the CICY with number 7447. It admits freely acting Z2,Z2 ×
Z2,Z5,Z10 and Z10 ×Z2 symmetries [187]. The triple intersection numbers
and second Chern class are

di jk = 2 · |εi jk| and ci
2 = (24,24,24,24,24). (6.14)

We want to study the low energy physics of the vector bundle given by a sum
of five line bundles [193]

V = (0,1,0,−2,1)⊕ (0,1,−2,1,0)⊕ (0,0,1,1,−2)
⊕ (0,−1,1,0,0)⊕ (0,−1,0,0,1). (6.15)

This vector bundle has vanishing first Chern class and we can show that the
slope (6.6) vanishes simultaneously for all line bundles at e.g.:

ti = 1 ∀i (6.16)

Hence, it is poly-stable. The Bianchi identity in equation (6.4) is checked by
comparing the second Chern class of the manifold in (6.14) and the second
Chern class of V

c2(V ) = (22,14,10,10,10)≤ c2(X7447) = (24,24,24,24,24). (6.17)

The index of V is computed with equation (3.31) to be

χ(X7447,V ) = ∑
a

χ(X7447,La) =−4−4−4+0+0 =−12. (6.18)

Thus leading to a three generation model when quotienting out with a discrete
symmetry of rank |Γ| = 4 = |Z2 ×Z2|. In fact the cohomology computations
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reveal that there are no antigenerations as required by constraint (6.11). The
Hodge numbers of only the first and fourth line bundle are required as the
others are permutations of those under which the configuration matrix is in-
variant. Applying the Koszul resolution (3.23) and splitting the long exact
sequence into short exact sequences via the Leray tableaux 8 one finds

h•(X7447,O(0,1,0,−2,1)) = (0,4,0,0) (6.19)
h•(X7447,O(0,−1,1,0,0)) = (0,0,0,0) (6.20)

which shows that there are no anti-generations. Finally the number of Higgs
doublets and triplets are computed. The indices of all line bundle products
reveal that the triplet condition is satisfied. There exists a single line bundle
L1 ⊗L5 for which the second cohomology group does not vanish

h•(X7447,O(0,0,0,−2,2)) = (0,3,3,0). (6.21)

leading to at least one pair of Higgs doublets. In summary, the proposed line
bundle sum in (6.15) satisfies all conditions outlined before.

6.2 Model building on gCICY manifolds
In paper III we constructed heterotic line bundle models on gCICYs intro-
duced in section 3.2.3. We proceeded as follows: First we identified two
promising gCICY manifolds X with favourable configuration matrices and
h(1,1) > 4. The manifolds are given by

X1g ∈

⎡
⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1
1 1 1
1 3 −1

⎤
⎥⎥⎥⎥⎦

5,45

−80

and X2g ∈

⎡
⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1
1 0 2
1 3 −1

⎤
⎥⎥⎥⎥⎦

5,29

−48

. (6.22)

A comparison of topological quantities identifies X1g to be equivalent to two
CICY realisation, which have been studied in the past

X7447 ∈

⎡
⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎥⎥⎦

5,45

−80

and X7487 ∈

⎡
⎢⎢⎢⎢⎣

1 0 2
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎥⎥⎦

5,45

−80

, (6.23)

where X7447 is the same manifold as studied in example 7. X2g on the other
hand has no CICY realisation with the same Hodge numbers. There are four
polytopes in the Kreuzer-Skarke list with a total of 19 triangulations match-
ing h(1,1) and h(2,1). None of these four polytopes is known to admit a freely
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acting symmetry and thus they haven’t been utilised in the context of the het-
erotic line bundle program [195]. Moreover, a simple comparison of triple
intersection numbers needed for Walls theorem 6 suggests that X2g is indeed a
topological new manifold not appearing in any of the standard CY datasets.

In a second step freely acting symmetries on the two gCICYs leading to
smooth quotient manifolds were identified. Both geometries admit a freely
acting Z2 symmetry generated by

g : zi, j → (−1) j+1zi, j (6.24)

acting on the homogeneous coordinates, zi, j, of the P1
i for i = 0, . . . ,4, j = 0,1

and also acting on the constraints with

gconstr : pi → (−1)i pi. (6.25)

We then implemented an algorithm to compute the cohomology dimensions on
X1/2g by relating them to the embedding hypersurfaces M1/2g. This allowed us
to scan over vector bundles in an iterative manner for all possible line bundles
with a given maximal charge qmax. The scan was aborted when the number of
allowed line bundles hadn’t changed for three increases in qmax [194].

In total 99 and 33 models were found on X1g and X2g respectively. A com-
parison of the number of the Higgs doublets, anomaly cancellation conditions,
and vector bundle singlets suggests that the 99 models on X1g, and also the pre-
viously found models on X7447 are different realisations of the models found
on X7487. The 33 models on X2g are genuinely new SLMs and the first con-
structed models on a gCICY manifold. In summary, we were able to show
that gCICY manifolds can be used for model building, but might be less suit-
able for it, due to significantly more involved computations and less abundant
number of models.
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7. Exploring new heterotic line bundle models

Finding string theory solutions that match the particle content of the observ-
able universe has been one of the main motivations for string phenomenology.
However, the vast choices of possible configurations from selecting a Calabi-
Yau manifolds to flux, brane or vector bundle data puts severe challenges on
identifying the correct data describing our universe. Moreover, the Calabi-Yau
landscape is dominated by manifolds with large values of h(1,1) [15], which
makes it impossible to perform systematic exhaustive scans.

An alternative approach is to study the statistics of known realistic config-
urations to make some general statements. It requires a representative set of
solution generated by some means. As brute force scans are not possible and
random selection of configurations is highly unfeasible1 string theorists are in
looking for smart ways to find relevant configurations. The currently two most
popular approaches to identify new SLMs are genetic algorithms [65, 67–70,
206] and reinforcement learning [58, 60, 61, 67, 68].

In the previous chapter a fruitful compactification scheme in the form of
heterotic line bundle models has been introduced. The data on known solu-
tions suggest that the number of SLMs scale exponentially with h(1,1) [192].
This is not surprising as the line bundle configurations to be scanned over
also scale exponentially with h(1,1). Hence, for even relatively small values
of h(1,1) it becomes impossible to perform systematic scans. In this chapter
new SLMs are found with the help of deep reinforcement learning introduced
in section 2.3.

The reinforcement learning experiments are implemented in an environ-
ment given by the gymCICY package. The package is build on the OpenAI
gym [207] standard and has been designed and developed in the context of
paper II. It is available on GitHub

https://github.com/robin-schneider/gymCICY

Reinforcement learning agents are tasked to explore the setting of heterotic
line bundle models introduced in section 6.1 and find interesting configura-
tions. After fixing an initial manifold, the agents observe an random line bun-
dle sum (6.1). They interact with the environment by manipulation of the line
bundle charges. They get punished or rewarded for finding increasingly more
realistic configurations.

1The search for semi-realistic configurations can be compared to finding the needle in a haystack
(or worse). Estimates for the occurrence of SLMs in string theory start at one in a billion [198].
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In paper II Actor-Critic agents have been used to re-discover known SLMs
on selected manifolds [194]. Advantage Actor-Critic agents are introduced
in section 7.1. It was found that the experiments scale well with h(1,1), thus
opening up the venue for studies on so far unexplored manifolds. Such exper-
iments on CICYs with h(1,1) ≥ 7 are presented in section 7.2. Moreover, the
experiments of paper II suggested that transfer learning can be used to speed-
up the training process. This line of research is not further pursued in this
thesis, as it was limited to CICYs of the same h(1,1) value.

7.1 Actor-Critic agents
In this section Actor-Critic agents are reviewed in the popular form of (Asyn-
chronous) Advantage Actor-Critic agents denoted as A2/3C [78, 208]. The
actor is given by a neural network that learns the policy function π(at ,st ;θ a)
while the critic network learns the state value function vπ(st ;θ c). Both net-
works interact with each other. The gradient updates for the actor depend
on the prediction of the critic and the observed state for the critic is deter-
mined from the actions taken by the policy. Actor-Critic agents outperform
most conventional reinforcement learning methods while being significantly
more sample efficient and stable. The asynchronous variant runs efficiently on
a multi-core CPU, while the synchronised version can utilise the computation
power of a GPU. In the following the RL setting is fixed to have a finite episode
length and gradient updates occur after tmax-steps or at a terminal state.

The gradient updates are computed backwards from state t to t − tmax. For
each time step i = t − 1, . . . , t − tmax the gradient errors dθ are accumulated.
The final gradient update is done with RMSprop, a variation of stochastic
gradient descent introduced in section 2.2. Define

Ri+1 ← ri + γRi (7.1)

with Rt = v(st ;θ c). The accumulated gradients for the critic are simply given
by the squared difference between observed and expected reward

dθ c
i+1 ← dθ c

i +
∂ (Ri − v(si;θ c))2

∂θ c . (7.2)

In contrast to the REINFORCE algorithm from section 2.3 the policy is also
updated every tmax steps. The loss function introduces two modifications. First
a baseline in the form of the advantage function

A(ai,si;θ c) := Ri − v(si;θ c) (7.3)

is used. Second the entropy over actions (2.11) is added to the loss to further
encourage exploration. The accumulated gradients are then

dθ a
i+1 ← dθ a

i +∇θ a (logπ(ai|si;θ a)A(ai,si;θ c)+βH(π(ai|si;θ a))) (7.4)
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condition reward

vanishing first Chern class trivial
vanishing line bundle slope (3.28) 2

index constraint, three fermion generations (6.8) 102

Bianchi identity (6.4) 105

no Higgs triplets (6.12) 105

existence of Higgs doublets (6.12)* 106

no antigeneration (6.11)* 107

full stability (6.6) 107

Table 7.1. Consistency checks for a line bundle sum and their rewards in gymCICY.
Constraints marked with a (*) require lengthy cohomology computations and have
been disabled for the experiments in section 7.2.

where the hyperparameter β regulates the entropy contribution. There are mul-
tiple agents exploring different instances of the environment. The accumulated
gradient updates are then averaged in the synchronous setting or alternatively
they asynchronously update a global set of parameters for the two networks.
This exploration of multiple instances makes the learning process more robust
and further helps exploration if the initial state or the actions are chosen non
deterministically.

7.2 Exploring uncharted territories
This section reports the results of RL studies investigating heterotic line bun-
dle models on three CICYs with freely acting Z3-symmetry and h(1,1) ≥ 7.
These CICYs have not been searched for SLM previously as their configura-
tion matrices are not part of the regular CICY list. Furthermore, h(1,1) ≥ 8
is beyond systematic reach [192] which includes two of the CICYs consid-
ered in this section and is hence an interesting region for exploration with
RL agents. The favourable configuration matrices investigated here admit
Z3−symmetries, which are found by applying repeated effective splitting from
the starting configuration matrix

X [3,48] =

[
2 1 1 1
2 1 1 1
2 1 1 1

]3,48

−90

. (7.5)

This manifold in turn is just an effective split away from the bi-cubic manifold
from which the initial Z3−symmetry descends. This web of splitting has been
studied extensively in Refs. [209, 210].

The A2C agents will explore the flipping environment of the gymCICY li-
brary. In paper II it was shown that this environment allows for an exploration
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of a wider class of solutions. The RL agents manipulate the charges of each
line bundle in the line bundle sum (6.1) by either increasing or decreasing a
value with ±1. Cyclic boundary conditions are applied when going beyond
some maximal charge qmax. The fifth line bundle is fixed in such a way that
c1(V ) = 0 is always satisfied to improve the initial learning. The observation
state is independent of the history and contains all necessary information, thus
satisfying the Markov property of an MDP. There are a total of

(2 ·qmax +1)4·h(1,1) (7.6)

observation states.
The default rewards for satisfying the different consistency conditions are

presented in table 7.1. The constraints involving cohomology computations
have been disabled in the following experiments. These take an extraordi-
nary amount of time at larger h(1,1) values. In particular when using the syn-
chronous version of A2C-agents it would result in plenty idle time, where the
other agents are waiting on one agent to finish such a computation. Hence, all
cohomology constraints have to be checked manually afterwards and the mod-
els presented here are less restrictive than what was investigated in paper II.

7.2.1 Experiments
This section presents results of five averaged runs with different seeds utilizing
A2C agents implemented in stable-baselines [211]2. The experimental
configurations are as follows: the update rate is tmax = 5, two separate hidden
layers are used for both policy and value function with nh = 128 and ReLU
activation function. The exploration parameter is β = 1. and a learning rate
of η = 5×10−4 with double linear decay is used for the RMSprop optimiser.
Gradients are clipped with respect to five times the norm and a weight decay
of 10−2 with momentum α = 0.99 is used. Finally, the numerical stabilisation
value is chosen to be ε = 10−4. The max episode length is 300 for a total of
3.2×106 steps.

Hyperparameter optimisation was done with a combination of initial ran-
dom and box search to bound the priors. Many of the default values used
in stable-baselines [211] already provided good results. The exploration
parameter β required more careful fine tuning, which was done with BOHB
[139]. While hyperparameter optimisation was performed on all three mani-
folds, the results presented here share the same experimental configurations.
Performance was not notably different between different configurations, which
suggests that the selected values are relatively stable and should also work on
other manifolds.

2Experiments with newer algorithms such as ACER [212] and ACKTR [208] had similar per-
formance at the cost of increased training time.
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run all unique

1 3576 2863

2 9577 4451

3 2296 1973

4 3554 2759

5 220071 9289

total - 14374

Figure 7.1. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.7). Note the logarith-
mic scaling on the y-axis. The plots shows the total number of found models plotted
against a global step counter.

X[8,29]

Consider the CICY given by the following configuration matrix

X [8,29] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 1 0
2 1 0 0 1 0 0 0 0 0 1
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 0 0 1 0 0 0 1
2 0 0 0 1 1 1 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

8,29

−42

(7.7)

Figure 7.1 shows the found models at the global time step t for five experi-
mental runs with different seeds. The plot has a logarithmic y-axis because of
a large discrepancy in models found between the different runs. Four of the
experiments find less than 104 models while the last one discovers 2.2×105.
The majority of these models are, however, not unique as shown in the table
to the right. After removing duplicates and permutations of the line bundles
the last experiment still finds more SLMs than the other experiments but now
at the same order of magnitude. The majority of models found by the other
agents are unique.

The agent corresponding to the fifth seed has developed a strategy to recover
successfully memorised solutions. The observed discrepancy in performance
for the same hyperparameters is often criticised in deep reinforcement learning
experiments [213]. It is the reason why experimental runs consisting of a set
of at least five experiments are reported rather than showing the results of a
single fortunate run [214, 215].
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run all unique

1 705 571

2 263 246

3 452 413

4 363 344

5 321 305

total - 1643

Figure 7.2. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.8). The plots shows
the total number of found models plotted against a global step counter.

In total 14374 new SLMs have been found in 5 ·3.2×106 time steps. This
is vastly more performant than the one-in-a-billion thumb rule. Note, that
the total number of unique models also removes duplicates occurring in the
other runs. To compare the performance of the RL agents a set of five further
experiments was initiated with a uniform random policy. These random walk-
ers were not able to detect a single SLM underlining the success of the A2C
agents.

X[9,21]

The next CICY to be studied is

X [9,21] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 1
2 1 0 0 1 0 0 1 0 0 0 0 0
2 0 1 0 0 1 0 0 1 0 0 0 0
2 0 0 1 0 0 1 0 0 1 0 0 0
2 0 0 0 1 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 1 0 0 0
2 0 0 0 0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9,21

−24

. (7.8)

A similar plot of the results of five experimental runs can be found in fig. 7.2.
The experiments are less successful than on the previous manifold. The per-
formance of all five agents is comparable and they mostly find unique models
in the search for viable vacua. The plot shows that the agents need a brief
exploration period of 0.2×106 steps before they begin to consistently identify
solutions. Afterwards the increase in models appears to be linear for the not so
good performers and slightly more accelerated for the better agents. In total
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run all unique

1 808 778

2 288 283

3 825 783

4 1275 1205

5 843 809

total - 3521

Figure 7.3. Results of five experiments with same hyperparameter configurations but
different seed on the manifold given by configuration matrix (7.9). The plots shows
the total number of found models plotted against a global step counter.

1643 new SLMs were discovered on this CICY. Again five random walkers
running for the same number of total steps were unable to discover a single
model.

X[7,37]

The last CICY investigated is

X [7,37] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0
2 1 0 0 0 0 0 1 1
2 0 1 0 0 0 0 1 1
2 0 0 1 0 0 0 1 1
2 0 0 0 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

7,37

−60

(7.9)

which has a smaller h(1,1)-value still in the range of large distributed scans
on a cluster [192]. The results are plotted in fig. 7.3. They show a sharp
initial increase in found models at roughly 0.1×106 and slightly sub optimal
performance afterwards with an approximated linear increase in found models
per passed time. The agents predominantly find unique models, leading to
a total of 3521 new SLMs. As was the case for the two previous manifolds
random walkers were unable to identify a single good solution.

Summary

In this chapter the success of deep RL agents in finding interesting string the-
ory compactifications was reported. These studies build up on the explorations
initiated in paper II and showed that deep RL also works well in regimes with
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larger values for h(1,1). In total 19538 new SLMs have been found. Compar-
ing the results to the plots of paper II A2C-agents appear to be more stable
in their performance than A3C agents. This improved stability could, how-
ever, also be a consequence of the missing cohomology computations. These
introduce computation time delayed rewards for good configurations in the
asynchronous updates, which might break stable policies. Another difference
is the larger h(1,1) values which in principle should allow for more models.

In this thesis CICYs with Z3-symmetries have been investigated. The re-
sults from systematic scans in the literature suggest, that configurations with
Z3-symmetry are less suitable for finding SLMs [194]. Nevertheless, the
agents were able to identify plenty of the solutions. While the results pre-
sented here do not account for a systematic analysis, they support the trend of
increasing SLMs for larger Hodge numbers.
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8. Conclusion

This thesis makes a case for using machine learning to solve problems in string
theory compactifications. Three distinct problems with applications of deep
learning have been discussed: first the learning of topological quantities, such
as the Hodge numbers of Calabi-Yau manifolds, second the learning of the
local metric tensor of Calabi-Yau manifolds and third using agents from deep
reinforcement learning to find SLMs.

The multi-task CICYMiner demonstrated that deep neural networks are
able to accurately predict dimensions of vector bundle cohomologies over a
compactification space. These computations conventionally require advanced
tools from algebraic geometry and topology. Using deep learning has the po-
tential to improve computation time significantly. The success in learning
Hodge numbers leads to the following question: which kind of topological
invariants can a deep neural network learn? A natural follow up question to
investigate is whether it is possible to identify identical representations of the
triple intersection numbers. This would lead to new insights into the connected
web of CY manifolds and possible vacua arising in string theory, possibly lim-
iting the vast configuration space that need to be studied.

The cymetric package simplified the problem of finding Ricci-flat metrics
to a straightforward machine learning task of finding good hyperparameters
and a working neural network architecture. Deep learning is directly used to
find numerical approximations of unknown quantities with much greater ac-
curacy than previous methods in the literature. It would be interesting to study
how this framework can be extended to more general SU(3)-structure met-
rics [42, 216] or to other manifolds of special holonomy. The modularity of
cymetric allows for other use cases, such as learning symbolic approxima-
tions of the metric tensor or finding an expression of the Kähler potential. For
the future it is planned to expand the functionality to also include solutions
to the Hermitian Yang-Mills equation, which is the next step in computing
heterotic Yukawa couplings. A regular user can already now use the pack-
age to test conjectures from the swampland program [217, 218] or probe the
SYZ-conjecture [219].

In the last chapter deep reinforcement learning was used to find new SLMs.
19538 such models have been found on three so far unexplored manifolds. In
this process neural networks efficiently learned to solve a long list of reward
constraints including undecidable Diophantine equations. While RL will not
find all possible models like a systematic scan does, this approach is neverthe-
less useful to get statistics over broad classes of manifolds which are out of

84



reach for systematic studies. Statistics of compactifications at very large h(1,1)

have been collected previously in the literature [220].
To make generalisable predictions from datasets found by RL agents it is

important to study the bias of these solutions. Initial studies in that directions
were done by comparing them to the results found with genetic algorithms [67,
68]. In the first paper, the authors found that the solutions appear to be from
quite different distributions and thus not necessarily generalisable to all real-
istic vacua. In the second paper though the authors found evidence for the
opposite and an overwhelming match in the solutions. Certainly more com-
parison studies are required in the future to resolve this disagreement.
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9. Svensk Sammanfattning

De fyra fundamentala naturkrafterna beskrivs av två extremt framgångsrika
teorier. Partikelfysikens standardmodell redogör för de elektromagnetiska,
svaga, och starka krafterna. Den beskriver partiklarnas interaktion på en mikro-
skopisk skala och förklarar atomers och molekylers sammansättning. Å andra
sidan förklarar Einsteins allmänna relativitetsteori gravitationen och stjärnors
och galaxers rörelser och universums expansion.

Dessvärre är dessa teorier inte direkt kompatibla med varandra, och fysiker
har länge försökt hitta en förenande teori för alla fyra krafter. Strängteori
ger ett sådant förenande ramverk för gravitationen och kvantfältteorier, såsom
standardmodellen, på bekostnad av att introducera sex ytterligare rumsdimen-
sioner. För att passa vara experimentella observationer, t.ex. att vi i verk-
ligheten enbart upplever fyra rumtidsdimensioner, måste de övriga sex våra
ihoprullade i ett mycket litet kompakt rum. Storleken på detta rum måste vara
mindre än vad våra bästa experiment, t.ex. Large Hadron Collider-experimentet
vid CERN, kan observera.

Det finns en uppsjö av möjliga beskrivningar av detta kompakta rum, fler
än det finns atomer i universum. Genom att kräva matematisk följdriktighet
och introducera fysikaliska villkor som motsvarar våra experimentella obser-
vationer kan antalet tillåtna konfigurationer skäras ned med många storleksor-
dningar. Dock är det inte enbart beräkningsmässigt dyrt att införa dessa vil-
lkor, det måste också göras på ett smart sätt eftersom det är beräkningsmässigt
omöjligt att gå igenom alla tillåtna konfigurationer.

Nyligen har fysiker börjat använda maskininlärning för att ta sig an båda
dessa problem. Till exempel används algoritmer från förstärkningsinlärning
för att hitta smarta sätt att utforska möjliga strängkompaktifikationer. Jag har
bidragit till denna forskning i artikel II genom att undersöka den heterotiska
strängen kompaktifierad på en viss klass av mångfalder som kallas Calabi-
Yau-rum. På så sätt kunde jag hitta flera intressanta modeller som passar vissa
av våra experimentella observationer med avseende på exempelvis partikelin-
nehåll eller kraftförmedlare.

Än så länge kan inte alla experimentella villkor införas eftersom det matem-
atiska maskineri som krävs inte är tillräckligt utvecklat eller eftersom beräkn-
ingsmässigt ofördelaktiga skalningslagar innebär att nya superdatorer är nöd-
vändiga. I artiklarna I och IV använde jag övervakad maskininlärning för att
hitta numeriska och snabbare analytiska lösnngar som ersätter de dyra ko-
homologiska beräkningarna som krävs i strängteoretiska kompaktifikationer.
Hittills har det varit omöjligt att hitta strängvakua som ger korrekta Yukawakop-
plingar och massor för standardmodellens partiklar eftersom det kräver att vi
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känner till det kompakta rummets metriska tensor som inte är analytiskt känd.
I artikel V designade jag ett paket som uppskattar denna metriska tensor med
djupa neurala nätverk och som i framtiden förhoppningsvis gör det möjligt att
beräkna partikelmassor numeriskt i heterotiska strängkompaktifikationer.

På det hela taget bidrar denna avhandling och min forskning främst till den
beräkningsmässiga sidan av strängteori. Totalt har jag designat fyra paket med
öppen källkod som förbättrar och etablerar nya algoritmer för att hantera de
ofta svåra beräkningar som uppstår i strängteoretiska kompaktifikationer.
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Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021. DOI: 10.
48550/ARXIV.2104.13478. URL: https://arxiv.org/abs/2104.
13478.

[179] S.-M. Udrescu and M. Tegmark. “AI Feynman: A physics-inspired method for
symbolic regression”. In: Science Advances 6.16 (2020), eaay2631.

[180] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten. “Vacuum Con-
figurations for Superstrings”. In: Nucl. Phys. B 258 (1985), pp. 46–74. DOI:
10.1016/0550-3213(85)90602-9.

[181] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross. “A Superstring In-
spired Standard Model”. In: Phys. Lett. B 180 (1986). Ed. by S. C. Loken,
p. 69. DOI: 10.1016/0370-2693(86)90137-1.

[182] B. R. Greene, K. H. Kirklin, P. J. Miron, and G. G. Ross. “A Three Generation
Superstring Model. 1. Compactification and Discrete Symmetries”. In: Nucl.
Phys. B 278 (1986), pp. 667–693. DOI: 10.1016/0550-3213(86)90057-X.

[183] J. A. Casas and C. Munoz. “Three Generation SU(3) x SU(2) x U(1)-Y x
U(1) Orbifold Models Through Fayet-Iliopoulos Terms”. In: Phys. Lett. B 209
(1988), pp. 214–220. DOI: 10.1016/0370-2693(88)90935-5.

[184] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev. “A Heterotic standard model”.
In: Phys. Lett. B 618 (2005), pp. 252–258. DOI: 10.1016/j.physletb.
2005.05.007. arXiv: hep-th/0501070.

[185] V. Bouchard and R. Donagi. “An SU(5) heterotic standard model”. In: Phys.
Lett. B 633 (2006), pp. 783–791. DOI: 10.1016/j.physletb.2005.12.042.
arXiv: hep-th/0512149.

[186] R. Blumenhagen, S. Moster, and T. Weigand. “Heterotic GUT and standard
model vacua from simply connected Calabi-Yau manifolds”. In: Nucl. Phys.
B 751 (2006), pp. 186–221. DOI: 10.1016/j.nuclphysb.2006.06.005.
arXiv: hep-th/0603015.

[187] V. Braun. “On Free Quotients of Complete Intersection Calabi-Yau Mani-
folds”. In: JHEP 04 (2011), p. 005. DOI: 10.1007/JHEP04(2011)005. arXiv:
1003.3235 [hep-th].

[188] J. Gray and J. Wang. “Free Quotients of Favorable Calabi-Yau Manifolds”. In:
(Dec. 2021). arXiv: 2112.12683 [hep-th].

[189] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vau-
drevange, and A. Wingerter. “A Mini-landscape of exact MSSM spectra in
heterotic orbifolds”. In: Phys. Lett. B 645 (2007), pp. 88–94. DOI: 10.1016/
j.physletb.2006.12.012. arXiv: hep-th/0611095.

[190] O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vau-
drevange. “Heterotic mini-landscape. (II). Completing the search for MSSM
vacua in a Z(6) orbifold”. In: Phys. Lett. B 668 (2008), pp. 331–335. DOI:
10.1016/j.physletb.2008.08.054. arXiv: 0807.4384 [hep-th].

102



[191] L. B. Anderson, J. Gray, Y.-H. He, and A. Lukas. “Exploring Positive Monad
Bundles And A New Heterotic Standard Model”. In: JHEP 02 (2010), p. 054.
DOI: 10.1007/JHEP02(2010)054. arXiv: 0911.1569 [hep-th].

[192] A. Constantin, Y.-H. He, and A. Lukas. “Counting String Theory Standard
Models”. In: Phys. Lett. B 792 (2019), pp. 258–262. DOI: 10 . 1016 / j .
physletb.2019.03.048. arXiv: 1810.00444 [hep-th].

[193] L. B. Anderson, J. Gray, A. Lukas, and E. Palti. “Two Hundred Heterotic Stan-
dard Models on Smooth Calabi-Yau Threefolds”. In: Phys. Rev. D 84 (2011),
p. 106005. DOI: 10 . 1103 / PhysRevD . 84 . 106005. arXiv: 1106 . 4804
[hep-th].

[194] L. B. Anderson, A. Constantin, J. Gray, A. Lukas, and E. Palti. “A Compre-
hensive Scan for Heterotic SU(5) GUT models”. In: JHEP 01 (2014), p. 047.
DOI: 10.1007/JHEP01(2014)047. arXiv: 1307.4787 [hep-th].

[195] Y.-H. He, S.-J. Lee, A. Lukas, and C. Sun. “Heterotic Model Building: 16 Spe-
cial Manifolds”. In: JHEP 06 (2014), p. 077. DOI: 10.1007/JHEP06(2014)
077. arXiv: 1309.0223 [hep-th].

[196] A. P. Braun, C. R. Brodie, and A. Lukas. “Heterotic Line Bundle Models on
Elliptically Fibered Calabi-Yau Three-folds”. In: JHEP 04 (2018), p. 087. DOI:
10.1007/JHEP04(2018)087. arXiv: 1706.07688 [hep-th].

[197] R. Blumenhagen, F. Gmeiner, G. Honecker, D. Lust, and T. Weigand. “The
Statistics of supersymmetric D-brane models”. In: Nucl. Phys. B 713 (2005),
pp. 83–135. DOI: 10.1016/j.nuclphysb.2005.02.005. arXiv: hep-
th/0411173.

[198] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust, and T. Weigand. “One
in a billion: MSSM-like D-brane statistics”. In: JHEP 01 (2006), p. 004. DOI:
10.1088/1126-6708/2006/01/004. arXiv: hep-th/0510170.
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