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Abstract

Analyzing Cell Painting images using different CNNs
and Conformal Prediction variations

Anna Hillver

Microscopy imaging based techniques, such as the Cell Painting assay, 
could be used to generate images that visualize the Mechanism of Action 
(MoA) of a drug, which could be of great use in drug development. In 
order to extract information and predict the MoA of a new compound from 
these images we need powerful image analysis tools. The purpose with 
this project is to further develop a Deep Learning model to predict the 
MoA of different drugs from Cell Painting images using Convolutional 
Neural Networks (CNNs) and Conformal Prediction. The specific task was 
to compare the accuracy of different CNN architectures and to compare 
the efficiency of different nonconformity functions. 

During the project the CNN architectures ResNet50, ResNet101 and 
DenseNet121 were compared as well as the nonconformity functions 
Inverse Probability, Margin and a combination of them both. No 
significant difference in accuracy between the CNNs and no difference 
in efficiency between the nonconformity functions was measured. The 
results showed that the model could predict the MoA of a compound with 
high accuracy when all compounds were used both in training, validation 
and test of the model, which validates the implementations. However, it 
is desirable for the model to be able to predict the MoA of a new 
compound if the model has been trained on other compounds with the same 
MoA. This could not be confirmed through this project and the model 
needs to be further investigated and tested with another dataset in 
order to be used for that purpose.
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Populärvetenskaplig sammanfattning

Inom läkemedelsframtagning och forskning så är det viktigt att förstå och analy­
sera verkningsmekanismen hos ett specifikt läkemedlet, vilket innebär den effekt som
läkemedlet har i en cell. Med hjälp av mikroskopibilder av celler som har utsatts för ett
läkemedel så kan dessa effekter visualiseras och analyseras och på så sätt ge information
om hur ett läkemedel fungerar. För att effektivisera analysprocessen av dessa bilder be­
hövs program som automatiskt tar fram information ur bilderna och kan ge användaren
information om vilken verkningsmekanism som förekommer hos läkemedlet. Detta kan
göras med hjälp av djupinlärning, vilket är en variant av Artificiell Intelligens som au­
tomatiskt hämtar information från data och lär sig skilja på olika typer av klasser inom
datan som den analyserar.

Detta projekt går ut på att vidareutveckla ett program för att analyseramikrosopibilder av
celler som utsatts för olika läkemedel för att kunna prediktera dess verkningsmekanism.
Det dataset som används i detta projekt innehåller bilder på celler som utsatts för olika
läkemedel och till varje bild finns även information om vilken verkningsmekanism just
det läkemelet har vilket programmet använder som facit när den försöker hitta skillnader
mellan de olika verkningsmekanismerna. En del av bilderna används för att träna algo­
ritmen, d.v.s. algoritmen använder dessa bilder för att hitta vad som utmärker de olika
verkningsmekanismerna. En del av bilderna hålls utanför själva träningen för att sedan
kunna användas för att testa hur väl programmet presterar när nya bilder introduceras.
Utöver själva djupinlärningsmodellen användes dessutom en metod som kallas för Con­
formal Prediction. Den metoden går ut på att per test­exempel prediktera vilken eller
vilka klasser exemplet hör till med en viss noggrannhet. Ibland kan det till exempel
vara svårt för en djupinlärningsmodell att avgöra mellan två olika klasser. En vanlig
modell hade då ändå gett endast en klass som prediktion, men med hjälp av Conformal
Prediction kan man istället få svaret ”med 80 % säkerhet tillhör objektet klass A eller
B”. Detta ger då en extra nivå av säkerhet till resultatet och kan vara av stor nytta för att
inte utesluta vissa klasser.

Ursprungligen testades programmet genom att alla bilder på celler som utsatts för vissa
läkemedel hölls utanför under träningen och användes exklusivt för testning. Detta gav
resultatet att programmet i sig uppnådde en hög noggrannhet i träningen, men den hade
svårt för att koppla nya läkemedel till de redan introducerade verkningsmekanismerna.
För att sedan bekräfta att de ändringar och tillägg som gjorts under projektet var korrekta,
testades även en annan uppdelning av bilderna där alla läkemedel var med i både träning
och test av programmet. Detta gav en hög nogrannhet och kunde verifiera att själva
funktionerna i programmet är giltiga.



Slutsatsen av detta är att det program som utvecklats kan analysera och förutspå verkn­
ingsmekanismer hos läkemedel utifrån bilder, men att det utifrån detta dataset är svårt
att koppla ihop olika läkemdel med samma verkningsmekanism, vilket gör det svårt att
applicera på nya läkemedel där verkningsmekanismen är okänd.
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Abbreviations

AI Artificial Intelligence
avgC Average number of predicted labels per prediction set
CNN Convolutional Neural Network
CP Conformal Prediction
DL Deep Learning
ICP Inductive Conformal Prediction
IP Inverse Probability
IP_M Combination of Inverse Probability and Margin
M Margin
MICP Mondrian Inductive Conformal Prediction
ML Machine Learning
MoA Mechanism of Action
oneC Fraction of singleton predictions





1 Introduction

The Mechanism of Action (MoA) is the biochemical process in which a drug works
within a cell and through which the drug causes a pharmacological effect (Salters­
Pedneault 2020). The understanding of a drug’s MoA is important when discovering
new drugs as well as in drug repurposing which makes it an important field to study and
requires powerful tools to generate correct information.

It is possible to visualize the MoA of a drug through microscopy imaging of the cells
using fluorescent dyes by following a phenotypic profiling assay such as Cell Painting
(Bray et al. 2016). Since these types of experiments can generate a large amount of
images it is also desirable to have powerful and effective tools to analyze them with
high accuracy.

Deep learning is a powerful tool when it comes to extracting features and make predic­
tions from a large amount of data and convolutional neural networks (CNN) in particular
can automatically learn features from images (Alzubaidi et al. 2021). In combination
with deep learning (DL), you can also apply Conformal Prediction (CP), which is an
algorithm that can asses uncertainty in the predictions (Alvarsson et al. 2021).

1.1 Previous work

This project builds on the previous work of Ebba Bergman at the Department of Phar­
maceutical Biosciences at Uppsala University. She had built a program that uses a CNN
to analyse the MoA on the same dataset (BBBC012) and had implemented CP. The pro­
gram also provided scripts to make k­folds and sort the files into folders before use. The
initial premise of the project was that the original code worked correctly and that the
BBBC021 dataset was well suited for this task. During the project, some errors were
found in the original code that changed the premise of the project.

1.2 Aim and purpose of the project

The task of this project was to further develop this program and try to optimize it by
testing different types of CNNs and variations of conformal prediction. The goal of the
project was to validate CP as a method applied to different CNNs trained on a dataset
containing microscopy images of cells, and also to measure differences in efficiency
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using different nonconformity functions. The purpose of this is to develop tools to per­
form better data analysis of cell painting data, which can be used to analyze the MoA
of a specific drug when a cell is exposed to it. The product of the project will be tools
including CNNs and CP that can be used for this purpose. In the long term, the aim of
this project is to find a powerful tool to use in drug development and to find information
on how drugs could be repurposed. For the program to be useful for this purpose, it has
to be able to predict the MoA of a new potential drug compound that has not been used
in the training of the model, if the model has been trained on other compounds with the
same MoA.

2 Background

2.1 Cell Painting

The dataset that will be used in this project has been produced using a Cell Painting
assay, which is a specific type of morphological profiling assay. Cell Painting is a high­
content image­based assay that uses fluorescent dyes to identify biological information
(Bray et al. 2016). This means that by using the Cell Painting assay, you can produce
images of cells that has been stained with fluorescent dyes to visualize the cellular mor­
phology. This enables a wide range of applications, for example to visualize the mor­
phological changes in a cell when it is exposed to a drug. The advantage of using Cell
Painting instead of other screening assays is that Cell Painting enables us to measure a
very large number of features instead of focusing on a few features selected based on
known biological relevance (Bray et al. 2016).

2.2 Mechanism of Action

One application that Cell painting can be used for is to analyze the mechanism of action
(MoA) of different drugs. The MoA of a drug is the specific biochemical process that a
drug causes within the cell (Salters­Pedneault 2020). It is through its MoA that a drug
has an effect.
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2.3 Deep Learning

Deep Learning (DL) is a subset of the field Machine learning (ML), which in turn is a
subset of Artificial Intelligence (AI), see Figure 1 for visualization of the relation. AI
is the overall concept of a program that is able mimic the intelligence of humans which
means that it is able to reason and adapt to a situation (Alzubaidi et al. 2021). ML on
the other hand, is a kind of AI, where the algorithm is able to adapt and improve as it is
exposed to more training data (Alzubaidi et al. 2021).

DL is a framework based on multilayered neural networks which learn features from a
large amount of data (Alzubaidi et al. 2021). This means that DL learns from the data and
does not need the human input in form of rules to learn. DL is therefor a good solution
to problems where the human expertise is not enough for example due to the size of the
problem. Although all DL algorithms consists of multilayered neural networks, there are
a lot of different models designed for different purposes (Alzubaidi et al. 2021). One
group of neural network models are Convolutional Neural Networks (CNNs), which is
the kind of DL models that will be used in this project.

Figure 1: Visualization of the differences and connection between Artificial Intelligence, Machine
Learning and Deep Learning

2.3.1 Supervised and unsupervised learning

When talking about ML and DL it is usual to divide the techniques into two different
types of algorithms: supervised and unsupervised learning. The difference between
the two is whether the algorithm is provided with labeled data or not. In supervised
learning, the algorithm is trained on labeled data and it is able to adapt and improve the
estimate according to the true class labels (Alzubaidi et al. 2021). On the other hand
in unsupervised learning, the DL algorithm is trained on data without labels. In these
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cases, the algorithm learns to identify relationships and structures in the data (Alzubaidi
et al. 2021). In this project supervised learning will be used.

2.3.2 Convolutional Neural Networks

Because of the large amount of data Cell Painting experiments produce and the large
amount of features that can be extracted from the images, we need powerful tools to
analyze them. CNNs is a type of DL algorithm that is the gold standard in image analysis
with DL since it automatically learns features from images (Hofmarcher et al. 2019).

A CNN model consists of an input layer, in this case the cell painting images, an output
layer containing the prediction, and in between a number of hidden layers (Alzubaidi
et al. 2021). The significance of CNNs is that among the hidden layers there are convo­
lution layers that perform convolutional operations on the input (Alzubaidi et al. 2021).
The input images can be described as a n x n dimensional matrix of pixel­values with
one channel if it is a gray­scale image and three channels if it is a RGB­image. If we for
example have an input image with the dimensions 6 x 6 with pixel values at each position
and a convolution layer, also called kernel, with the dimension 3x3 with randomweights
at each position. The kernel will then slide over the input image both horizontally and
vertically and at each position calculating the dot product between the input and the filter
and then added together it gives the result for the next position in the output of that layer
(Alzubaidi et al. 2021). This is repeated until no more slides are possible. There are a
lot of different CNN models, where the architecture vary a bit between them, and the
models that will be used in this project are ResNet50, ResNet101 and DenseNet121.

2.3.3 Epochs and Batch size

When training the networks, the training data is passed through the network, first with
a forward pass (called forward propagation) and then with a backward pass (back prop­
agation) to adjust the weights in the hidden layers to fit the data (Alzubaidi et al. 2021).
An epochs means one pass of the entire training data through the network including both
forward and back propagation (Brownlee 2018). The user then decides how many times
the entire training dataset should be passed through the network, i.e. how many epochs.
If you use all the training data at the same time one epochs require just one iteration,
but you can also divide the training data into smaller batches (Brownlee 2018). This
means that if you have 1000 data points and you set the batch size to 1000, one epoch
will require 1 iteration, but if you set the batch size to 10, you require 100 iterations per
epoch.
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2.3.4 Transfer learning

Transfer Learning is used to take amodel that has been trained for one task and repurpose
it for another task (Brownlee 2017). So for example, you can take a CNN that has been
trained on one dataset with one type of images and then use the information that this
model has learned as a start when training for a new task. In this project, the CNN
models were implemented using the Keras applications framework in combination with
the TensorFlow backend framework. This extension offers building blocks of neural
networks and the user can choose if you want the network to be pre­trained or not, and
in this case pre­trained models were used. The models had then been pretrained on
ImageNet which is an image database containing over 14 million images of different
objects divided into over 20000 categories (Deng et al. 2009). When using the pretrained
networks, you include the weights from the pretraining when applying your model to
your new task, and in that way apply transfer learning. It is also common in transfer
learning to freeze layers during a part of the training. This means that you can freeze the
layers imported from the pretrained network, add trainable layers that will convert the
features into prediction on the current dataset, and then unfreeze the layers to fine­tune
them to the new data.

2.4 Conformal Prediction

In this project, CP will be used as a complement to the CNNs, in order to determine the
confidence in the predictions. CP is a method that you can apply on top of a machine
learning model, which calculates prediction regions for each predicted object (Shafer &
Vovk 2007). If you work with a classification problem the prediction region will be a set
of labels and in the case of regression problems the prediction region will be an interval
(Alvarsson et al. 2021). In this project, classification is used whichmeans that prediction
sets will be produced. The true label should be in the predicted region with a probability
of a confidence set by the user. For example in the case of a binary classification problem
with the classes Cat and Dog the possible outcomes is as followed:

1. {cat}

2. {dog}

3. {dog, cat}

4. {}
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If the outcome is both classes, it means that the model is unable to distinguish between
the classes at the specified confidence level. The alternative ”empty” means that the
model can’t connect the predicted compound to any of the classes at the specified con­
fidence level. In the case of non­binary classification, where the classes included in the
problem is more than two, there can be more than these four outcomes.

To decide which classes should be included in the prediction set for a specific object,
the conformal predictor calculates a nonconformity score (α­value) and rank it against
examples from the training data and then calculates a p­value for each class. If the p­
value is greater than the significance level (1­confidence) the class will be included in
the prediction set. (Alvarsson et al. 2021)

Inductive conformal prediction (ICP) is the most common approach for CP and it divides
the training set into a proper training set and a calibration set. In Mondrian Inductive
Conformal Prediction (MICP), the predictor uses class dependent calibration sets, i.e.
calculates alpha values for each class separately before ranking it against the training
data (Alvarsson et al. 2021). In this project, MICP will be used and the procedure is
described below (Johansson et al. 2017).

Training procedure:

1. Divide the training set (Z) into a proper training set (Zt) and a calibration set (Zc)

2. Use the training set and apply the learning algorithm H (in the case of this project
the CNN), which will generate the underlying model h

3. Use the chosen nonconformity function to calculate the nonconformity for each
example in the calibration set, which generates a list of α­values.

For each test object (xk+1), the prediction region is generated using the following steps:

1. Specify a significance level ϵ ∈ (0,1)

2. Generate the predictions h(xk+1) where h is the underlying model and (xk+1) is
the test example

3. Assign one of the labels ỹ ∈ Y, where Y is the set of all possible labels, as the
output label for the test example and calculate the nonconformity score for that
pattern by applying the chosen nonconformity function
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4. Calculate a p­value for that pattern using the formula

pỹk+1 =

∣∣∣{zi ∈ Zc : αi ≥ αỹ
k+1

}∣∣∣+ 1

q + 1

where pỹk+1 is the p­value for the specific pattern of test example and possible label,
zi ∈ Zc is the set of examples in the calibration set that belong to the possible label,
αi is the α­values corresponding to zi, αỹ

k+1 is the nonconformity score for the test
pattern and q is the total number of α­values for that class.

5. Check if pỹk+1 > ϵ, and in that case include it in the prediction set Γϵ
k+1, otherwise

reject it.

6. Repeat step 3­5 for all possible labels. ỹ ∈ Y

2.4.1 Nonconformity measure

When working with CP you implement a nonconformity function to calculate a non­
conformity score, which is a measurement of how dissimilar a new object is compared
to the object the model has been trained on (Alvarsson et al. 2021). This can be done
in some different ways by implementing different nonconformity functions (Alvarsson
et al. 2021). The choice of nonconformity function can affect the efficiency of the pre­
dictor.

2.4.2 Efficiency of a conformal predictor

In a classification problem, two metrics are often used to measure the efficiency of a
conformal predictor. The first one is oneC, which measures the fraction of singleton
predictions produced by the conformal predictor (Johansson et al. 2017). The other
metric often used is avgC, which measures the average number of predicted labels in
each prediction set produced by the conformal predictor (Johansson et al. 2017). The
goal is to produce a low avgC and on the same time achieve a high oneC (Aleksandrova
& Chertov 2021).
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3 Material and Method

3.1 Computational setup and resources

During the project, I was provided with a computer from the Pharamceutical Bioin­
formatics research group at the Department of Pharamceutical Biosciences at Uppsala
University and a pod on their cluster with one GPU where I could run the scripts. The
project is written in Python using Visual Studio Code (VSC) as Integrated Development
Environment (IDE).

In this project GitHub was used for version control. The existing code was already
collected in a GitHub repository whichmade it easy to clone the original work. Branches
were then used for the new implementations.

3.2 Dataset

The specific dataset that was used in this project is a subset of the image set BBBC021v1
(Caie et al. 2010), available from the Broad Bioimage Benchmark Collection (Ljosa
et al. 2012). This dataset was produced to be used for testing image­based profiling
methods. They used MCF­7 breast cancer cells that they treated with a set of cytotoxic
compounds at different concentrations. To image the cells, the wells had been fixed and
labeled for B­tubulin, F­actin and DNA and then they used fluorescent microscopy. This
can then can be used to train and test image­based methods to predict the MoA of the
specific drugs. Figure 2 shows some examples of images from the dataset.

3.2.1 Metadata

With the dataset comes a file containing the metadata of each image. For each image,
the metadata file provides information about image number, compound, concentration,
MoA, plate, well and replicate.

3.2.2 Preprocessing of data

Before starting this project, the dataset had been preprocessed by Kensert et. al. (2019).
The dataset originally contains 13200 images from 55 microtiter plates. Each plate con­
tains 60 wells and 4 fields of view per well. Each well contained samples of the cells that
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(a) Actin disrupter (b) Aurora kinase inhibitor

(c) Tubulin destabilizer (d) Tubulin stabilizer

Figure 2: Example images from the BBBC021v1 dataset (Caie et al. 2010), available from the
Broad Bioimage Benchmark Collection (Ljosa et al. 2012).

each had been treated with a compound for 24 hours. This means that were imaged each
well had been treated with one compound and at one concentration. From the 13200 im­
ages in the original dataset, they extracted 1208 images labeled with 12 different MoAs
from 38 compounds at a total of 103 different compound­concentration treatments. Af­
ter normalization and transformation, each image were then cropped into 4 images to
increase the number of samples. This resulted in 4832 images in total. (Kensert et al.
2019)

3.2.3 Train, validation and test

For this setup, the data has to be divided into three different sets: train, valida­
tion/calibration and test. The training dataset is used to train the model while the val­
idation dataset is used to evaluate how well the model performs on the training data.
Since we use conformal prediction, the validation dataset is also used as the calibra­
tion set to generate the list of α­values (see section 2.4). Then the test set is used as
an independent validation of the final model. Since this project needed a training set, a
validation/calibration set and a test set, we needed enough data to be sure that all sets
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contained images with all MoAs. In order to achieve that, we only included the MoAs
that had 3 or more compound resulting in 10 MoAs. This resulted in 3938 images in to­
tal. The 10 MoAs, the number of images used per MoA and the number of compounds
per MoA is presented in Table 1.

Table 1: The different MoAs represented in the dataset and number of images used per MoA.

Class Number Mechanism of Action Images Compounds
0 Actin Disruptors 239 3
1 Aurora kinase inhibitors 576 3
2 DNA damage 432 4
3 DNA replication 365 4
4 Epithelial 347 3
5 Kinase inhibitors 159 3
6 Microtubule destabilizer 672 4
7 Microtubule stabilizer 430 3
8 Protein degradation 334 4
9 Protein synthesis 384 3

3.2.4 K­folds and file sorting

Since this dataset contains a limited sample of images, K­fold cross validation was used
to evaluate the model and to get as much use of the data as possible. K­fold cross vali­
dation means that you divide the data into K different subsets, and then hold one of the
subsets out during training to be used for testing or validation. Then this is repeated K
times to make sure all subsets are held out once. 3­fold cross validation was used in
this project, meaning that the data was first divided into 3 subsets. One of the subsets
was used as test set while the other two were merged and then divided into train and
validation sets. Figure 3 shows a visualization of the dataflow into K­folds and then
train, validation and test sets. During the project, three different ways of dividing the
the images into K­folds were used. The different partitions will be described below.

3.2.5 K­fold partition 1

The data was divided into 3 groups, making sure allMoAswere represented in all groups.
To make sure all MoAs were represented in all groups, one compound per MoA was as­
signed to one group. Since some of the MoAs had 4 compounds one of the groups
contained 2 compounds for some of the MoAs. See Table 1 for number of compounds
perMoA. Then one of the group were held out while training the model on the remaining
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Figure 3: Visualization of the dataflow into K­folds and then train, validation and test sets

two groups. The group that was held out was then used to test the model. Then this was
repeated 3 times, so each group had been held out once. As previously mentioned, for
each fold one of the groups were held out as a test set. From the remaining samples, 20
% of was used as a validation set and the remaining for training. The reason for sepa­
rating the compounds in one k­fold each is because we want to investigate the programs
ability to analyze and predict the MoA of a new compound that has not been seen during
training.

This partition was given by the original code. Unfortunately an error was found resulting
in duplicated images that existed in more than than one K­fold which invalidated the
results. This error will be further described in section 5.2.1.

3.2.6 K­fold partition 2

The second K­fold partition was identical as partition one, except that the error resulting
in duplicated images was removed. The results from this K­fold partition was used to
validate the model scientifically.

3.2.7 K­fold partition 3

To validate that the implementations were made correctly, a third K­fold partition was
tested. Instead of keeping all images of a specific compound in the same k­fold, the
images of the same compound was divided equally between all three k­folds. This was
to make sure all compounds were represented in all k­folds and therefore would be rep­
resented during both training, validation and testing. This would validate the implemen­
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tations since we assume that the model can predict the MoA with high accuracy if it has
been trained on images with the same compound.

3.3 CNN

When starting this project, the program was only able to use one specific CNN­model
which was ResNet50, but prepped to include more CNNs. The program imported the
model from Tensorflow ­ Keras, which provides a model that is pretrained on ImageNet.
The first step was to test this model and make sure that everything works before making
further implementations.

The second step was to edit the code so that the user can easily specify which CNN
model they want to use. This can be done in a file called ”config.py” where the user
defines different parameters of the program. Then a second model was implemented,
which was ResNet101, which is of the same type as ResNet50 but deeper, i.e. more
layers. The ResNet101 model was also imported from Tensorflow­Keras and pretrained
on ImageNet.

At last the CNN model DenseNet121 was implemented and like the previous models it
was imported from Tensorflow­Keras and pretrained on ImageNet.

The choice of CNN models to implement was based on what was available in the
Tensorflow­Keras framework and that had been shown in literature to perform well on
similar problems (Hofmarcher et al. 2019). ResNet101 was chosen to compare with
ResNet50 if the depth of the network had any impact on the performance. The three
different models were tested on the dataset and compared to each other regarding their
accuracy of the predictions.

3.3.1 Hyperparameters

The hyperparameters used for training the CNNs are presented in Table 2. These param­
eters were already set in the original code and tested to work well with this setup and
therefor no changes were made to the hyperparameters.

Table 2: Hyperparameters used for training the CNNs

Epochs frozen 10
Epochs unfrozen 30
Batch Size 24
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3.4 Nonconformity functions

When working with CP you implement a nonconformity function to calculate a noncon­
formity measure, which is a measurement of how dissimilar a new object is compared
to the object the model has been trained on. This can be done in some different ways
by implementing different nonconformity functions (Alvarsson et al. 2021). The choice
of nonconformity function can affect the efficiency of the predictor, and in the second
part of this project some different non­conformity functions was implemented and eval­
uated. The nonconformity functions were implemented in the way that the user can
define which function to use in the config.py file.

3.4.1 Inverse probability

The first nonconformity function that was used is called Inverse Probability (IP), or
hinge, and considers only the probability estimate for the correct class label y, according
to equation 3.4.1 (Johansson et al. 2017). According to literature, Inverse Probability
generally results in lower avgC than the Margin nonconformity function (Aleksandrova
&Chertov 2021). This nonconformity function was already implemented in he program.

∆[h(xi), yi] = 1− P̂h(yi|xi)

3.4.2 Margin

The second nonconformity function that was implemented is called Margin (M). This
measure takes two probability estimates into account, i.e. the true class label and the
incorrect class label with the highest probability estimate, see equation 3.4.2 (Johansson
et al. 2017). According to literature, Margin generally results in higher oneC than the
IP nonconformity function (Aleksandrova & Chertov 2021).

∆[h(xi), yi] = max
y ̸=yi

P̂h(y|xi)− P̂h(yi|xi)
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3.4.3 Combination of Inverse Probability and Margin

When both Inverse Probability and Margin nonconformity functions were implemented
and tested, the possibility to use a combination of the two were implemented accord­
ing to a protocol described in ”Impact of Model­Agnostic Nonconformity Functions on
Efficiency of Conformal Classifiers: an Extensive Study” by Alexandrova & Chertov
(2021). This combination uses Inverse probability as the baseline, but extended with
singleton predictions produced by Margin to improve the efficiency. The user sets a
significance level ϵ, which is used for the conformal predictor with inverse probability.
Then the significance level for the conformal predictor that uses margin is set to ϵ/2.
For every instance, both conformal predictors is used to produce predictions. If mar­
gin produces a singleton prediction and IP does not, the prediction from margin is used.
Otherwise the prediction produced by IP is used.

In the worst case the performance of the combination is the same as for the conformal
predictor with Inverse Probability. Hopefully some non­singleton predictions will be
replaced by singletons produced by the conformal predictor with Margin and therefore
avgC and oneC will be improved. This means that IP alone is almost never the best
choice of nonconformity function. IP_M is an improvement of IP and M can in some
cases be the best choice (Aleksandrova & Chertov 2021).

3.5 Troubleshooting

While working with the implementations, continuously controls were made to validate
the results and to confirm that the program worked as it was supposed to. The built in
debugging function in Visual Studio Code was used to find errors in the code. When
running the scripts, a number of files were produced, containing statistics and other
parameters and plots which was continuously checked to validate the models.
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4 Results

4.1 Comparing different CNNs

4.1.1 Confusion matrix

For each CNN that was used, confusionmatrices were produced to visualize the accuracy
per class. The confusion matrices produced by ResNet50, ResNet101 and DenseNet121
are presented in Figure 4. These were produced per well, meaning that the average
accuracy per well is used for calculating the accuracy per class.

Figure 4: Well Confusion Matrix for ResNet50, ResNet101 and DenseNet121 respectively using
K­fold partition 2

4.1.2 Model Loss and Model Accuracy

For each CNN that was implemented, graphs was created to visualize the model loss and
model accuracy during training. The model loss graph visualize the error loss during the
training and the model accuracy visualize how the accuracy change during training. The
graphs for each CNN that were produced using K­fold partition 2 are represented in
Figure 5. The model loss and model accuracy that was produced for the different CNNs
using K­fold partition 3 can be found in Appendix 1.
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(a) ResNet50

(b) ResNet101

(c) DenseNet121

Figure 5: Model Loss and Model Accuracy plots for a) ResNet50, b) ResNet101 and c)
DenseNet121 using K­fold partition 2
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4.1.3 Train, validation and test accuracy

The train, validation and test accuracy for the different CNNs produced by using the K­
fold partition 2 and K­fold partition 3 are presented in Table 3 and Table 4 respectively.
The test accuracy is presented both per image and per well, where one well contains
several images of the same compound and concentration. Since there were no significant
difference between the CNNs, the rest of the results that will be presented and discussed
have been trained on ResNet50, but some results with the other CNNs can be found in
the Appendix.

Table 3: Training, Validation and test accuracy for the different CNNs using K­fold partition 2

CNN Training Validation Test (image) Test (well)
ResNet50 0.999 0.980 0.862 0.931
ResNet101 1.0 0.982 0.874 0.952
DenseNet121 0.997 0.981 0.867 0.961

Table 4: Training, Validation and test accuracy for the different CNNs using K­fold partition 3

CNN Training Validation Test (image) Test (well)
ResNet50 0.993 0.968 0.969 0.992
ResNet101 1.0 0.973 0.974 1.0
DenseNet121 0.991 0.974 0.970 0.992

4.2 Comparing different nonconformity functions

4.2.1 Calibration plots

For each combination of CNN and nonconformity function, aggregated calibration plots
were created. The calibration plots shows the error rate against the significance. The
goal is to have a result as close to the straight line as possible, meaning that if you have
a significance of 0.2 you also have an error rate that is 0.2. If the curves lies above the
straight line it means that the error is greater than the significance. If the curves on the
other hand is below the straight line it means that you have a lower error rate than the
significance, which could be misleading when making decisions. Figure 6 shows the
aggregated calibration plot for ResNet50 with IP nonconformity function when using
the K­fold partition 2. The different colors represent the different classes 0­9 of MoAs.
What number corresponds to which MoA can be found in Table 1. The black curve
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shows the average result among the different classes. The aggregated calibration plots
for ResNet50 with M and IP_M nonconformity function when using K­fold partition 2
can be found in Appendix 2.

Figure 6: Calibration plot for K­fold partition 2. ResNet50 and IP nonconformity function was
used

4.2.2 Validation of implementation

After changing the K­folds into K­fold partition 3, to validate the implementation, new
calibration plots were created for each nonconformity function, see Figure 7. Bubble
plots for each run are also presented in Figure 7. The bubble plots show the distribution
of the predictions from using Conformal Prediction. The y­axis represents all possible
prediction sets including ”Empty”, ”Correct multi set” and ”Incorrect Multi­set”. The
x­axis represents the true classes, where the corresponding MoAs to classes 0­9 can be
found in Table 1. The numbers in the plots show howmany examples has been predicted
to with that specific prediction set and what true class they belong to. The calibration
plots and bubble plots for the different nonconformity functions applied on ResNet101
and DenseNet121 using K­fold partition 3 can be found in the Appendix 3.
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(a) Calibration Plot using IP (b) Bubble Plot using IP

(c) Calibration Plot using M (d) Bubble Plot using IP

(e) Calibration Plot using IP_M (f) Bubble Plot using IP_M

Figure 7: Calibration plots and Bubble plots for IP (subfigure a­b), M (sunfigure c­d) and IP_M
(subfigure e­f) nonconformity functions applied on ResNet50 using K­fold partition 3
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4.2.3 Efficiency of the different nonconformity functions

When running the program with the different nonconformity functions, the oneC and
avgC was measured. The result for each nonconformity function using K­fold partition
3 is presented in Table 5.

Table 5: Efficiency of the different nonconformity functions, presented as the measurements
oneC and avgC

Nonconformity function oneC avgC
IP 0.797 0.797
M 0.793 0.793
IP_M 0.784 0.784

4.3 Example images

Some example are presented in Figure 8. Subfigure a), b) and c) all belong to Protein
Synthesis, but c) got predicted to belong to Epithelial. Subfigure d), e) and f) all belong
to Epithelial but f) got predicted to belong to Protein Synthesis. All examples with the
same MoA has also been treated with the same compound.
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(a) Protein Synthesis ­> Protein Synthesis (b) Protein Synthesis ­> Protein Synthesis

(c) Protein Synthesis ­> Epithelial (d) Epithelial ­> Epithelial

(e) Epithelial ­> Epithelial (f) Epithelial ­> Protein Synthesis

Figure 8: Example images. a), b) and c) all belong to the class Protein Synthesis but c) got
predicted to belong to Epithelial. d), e) and f) all belong to Epithelial but f) got predicted to
belong to Protein Synthesis
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5 Discussion

5.1 Comparing different CNNs

When comparing the performance of the different CNNs that was used in this project
(ResNet50, ResNet101 and DenseNet121) the accuracy was evaluated. In Figure 5 as
well as Table 3 we can see the accuracy of the training and validation when using K­fold
partition 2. We can conclude that the different CNNs perform very similar and there is
no major improvement that can be made by changing the architecture of the CNN to the
ones implemented in this project. They all perform above 99% on training and above
98% on validation. When looking at Figure 5, we can also see that the curves have
stabilized before finishing training which means that the number of epochs was enough.

From the confusion matrices for the different CNN architectures, see Figure 4, we can
see the accuracy for each class instead of just the total accuracy. These Figures visualize
the accuracy for each class per well, which could show if one class performed worse than
other classes. From these figures we can conclude that the accuracies are high for all the
classes, which was expected since the total accuracy was high. We can also conclude
that there does not seem to be any significant difference between the different CNNs.

The training and validation accuracy when using partition 3 can be found in Table 4 as
well as in Figure 9­11 in Appendix 1. Here we can conclude that there is no significant
difference in accuracy during training and validation when using K­fold partition 2 and
3.

5.2 The different K­folds

5.2.1 K­fold partition 1

The first K­fold partition that was used in this project was K­fold partition 1 as described
in section 3.2.5. This partition divided the data so that all images of one compound were
placed in the same K­fold. This implementation was given by the original code and the
purpose of this partition was to validate themodel scientifically and to see how themodel
performs when it is tested on a new compound that has not been seen during training.
Unfortunately an error was found in the scripts resulting in duplicated images that existed
in more than one fold. This invalidates the results produced with this partitions in some
different ways. Either, if the duplicated image exist in both training and test, it means
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that the the model is tested on an image that has already been seen during training which
makes it easier for the model to predict. Therefore it results in a higher accuracy, but not
necessarily a better performance. If it exists in validation and test, it means that more
images will end up in training since the validation size is fixed to 20 % of the data when
the test set is removed which also benefits the training procedure without necessarily a
valid improvement. When this error was found, all results produced before this were
therefore invalidated.

5.2.2 K­fold partition 2

The K­fold partition 2 was identical as K­fold partition 1 except that the duplicated rows
were deleted, as described in section 3.2.6. When deleting the duplicated examples, the
test accuracy per image was around 86­87 % for the different CNNs, see Table 3. This
was around 10 % lower than the validation accuracy for the same K­fold partition and
also about 10 % lower than the test accuracy per image before removing the duplicated
rows. This is an indication that the previous accuracy was based on duplicated images
that existed in both the training and test set which made it easier for the model to predict
since it was not new data. When deleting them, the images in the test set were only new
images, which is what it should be, but it made it harder for the model to predict. This
probably means that the examples in the training set for some of the classes were too few
and and the examples in the test set were too different from the images in the training
set in order to achieve high accuracy.

As mentioned in section 3.2.6 the reason for the setup of K­fold partition 2 with all
images of the same compound were placed in the same K­fold was to validate the model
scientifically. With this partition we keep one compound (or two compounds for some
MoAs) exclusively for testing which could be used to validate how the model performs
when a new compound is tested. The goal with this project was to investigate if this
kind of tool could be used for predicting the MoA of new drugs and potentially be used
in drug discovery and development. In order to be used for that purpose, it has to be
possible to add new compounds that it has not been trained on to potentially see if it has
the same MoA as some other drug that has been a part of the training. By keeping one
compound exclusively for testing, it could verify that the model works for this purpose.

The result from the K­fold partition 2 shows that when testing the model on a new com­
pound it was not able to connect it with the MoA of the compounds that was used while
training the model as well as it should. This can both bee seen by the test accuracy shown
in Table 3 and in the calibration plot shown in Figure 6. The calibration plot shows that
the error rate is higher than the significance level meaning that we get a higher error than
expected.

23



5.2.3 K­fold partition 3

To validate that the implementations were made correctly and gave valid results, the
K­fold partition 3 was tested as described in section 3.2.7. This partition divided all
compounds into all K­folds to make sure all compounds were a part of both Training,
validation and test. This file sorting allow us to verify that the implementations works
correctly and are valid, based on the assumption that the model can predict theMoAwith
high accuracy if it has been trained on all compounds. However this does not validate
the model scientifically for the purpose of predicting the MoA of a new compound.

The training, validation and test accuracy from this K­fold partition are presented in
Table 4. Here we can conclude that the training and validation are comparable to K­fold
partition 2 (Table 3). The test accuracy however have increased using this partition and
result in a test accuracy per image above 96 % for all CNNs. Looking at the calibration
plots in Figure 7, we can see that the average error rate follows the significance well
which confirms that the implementations are valid.

5.3 Comparing different nonconformity functions

5.3.1 Calibration plots and bubble plots

To compare the performance of the different nonconformity functions, calibration plots
were produced for each function. Figure 7 shows the calibration plots for IP, M and
IP_M respectively applied on ResNet50. Here we can see that the average error rate
between the classes follows the significance well meaning that they all perform well
and give accurate results. However if you look at the bubble plots, see Figure 7, we
can see that none of the nonconformity functions result in any multi class predictions.
All predictions made are either single or empty. This indicates that using this dataset
the examples of different MoAs are too different from each other which means that the
model is able to distinguish between the different MoAs. This means that the MoAs
in general are too different from each other to include more than one class label in the
prediction set. It also indicates that the some of the test examples are too different from
the examples in the calibration set to be able to include any class label in the prediction
set at the specified significance level.

We can also find some single predictions that have been predicted incorrectly, but the
majority are either correct single predictions or empty predictions. A question one could
ask is why the errors are not picked up as multi­class predictions. If the p­values of the
incorrect predicted class and true class for those examples are both within the confidence
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level, theywould both have been included in the prediction set, but in these cases it seems
that the images were too different from the examples of the same class in the training
resulting in an incorrect predicted class instead.

5.3.2 Efficiency of the different nonconformity functions

Looking at the efficiency of the nonconformity functions in Table 5 we can see that
there is no difference in oneC and avgC for any of the nonconformity functions due
to no multi set predictions. The avgC value is below 1 since some of the predictions
were empty, but all of the non­empty predictions were singletons so the avgC measure
is hard to use to find differences between the nonconformity functions. We can see
that IP has a slightly higher fraction of singleton prediction than M and IP_M, but it
is not a significant difference. This means that this model with this dataset was not
optimal for measuring the difference in efficiency between the nonconformity functions.
Therefore the difference in efficiency between the nonconformity functions that has been
mentioned in the literature, see section 3.4.3 could not be confirmed.

5.4 Biological interpretation

The question is, why does it work better when the compounds are divided into all sets
instead of keeping some compounds exclusively for testing? This indicates that the
difference between the compounds are too big for the program to be able to connect
them even though they have the sameMoA. This indicates that the Morphological effect
on the cells vary too much between the compounds for the model to be able to connect
them. It could for example be side effects that result in a difference in the cell. However
this has to be investigated further in order to make valid conclusions.

When looking at the example images presented in Figure 8, we can see that there seem
to be some differences between the images belonging to different classes. However it is
hard to know what parameters in the images affected how the program chose to predict
them. In subfigure f) we can see some small green spots that are similar to the ones in
a), b) and c) which might have cased the program to predict it wrong, but on the other
hand a similar spot can be seen in Figure e) which did not get predicted wrong.
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5.5 Future Work

For the produced model to be used for the purpose of predicting the MoA of unknown
compounds and potentially be used in drug discovery some further work is required.
As a start, the implementations has to be tested with another dataset to confirm the va­
lidity. Also, the possibility to exclude compounds for testing to be able to predict new
compounds has to be further investigated.

6 Conclusion

The results from this project shows that the tools that has been developed are power­
ful for predicting the MoA of a specific drug from cell painting images, if the specific
compound has been used in the training of the model. This concludes that the implemen­
tations that have beenmade are valid. However, the goal of the project was to investigate
whether these tools could be used to predict the MoA of new compounds and in the long
term potentially be a complement in drug development. This is not confirmed through
this project since the performance decrease when the models were tested on new com­
pounds. Therefore some further work is required for these tools to be able to be used
for that purpose. Even though the implementations in this project did not validate the
model for the original purpose and with this dataset, the work could be of good use for
further work within the research group.

7 Ethics and conflict of interest

This project has no need for an ethical approval and does not involve any conflict of
interests.

Regarding ethical aspects of this project, there are always some questions that could be
asked when it comes to implementations of AI. In this project, the implementations are
made for a research purpose in the field of image analysis of cell painting images with
the long term goal to potentially be used in drug discovery, which could be argued is
a good cause. However, there is no guarantee that the product produced in this project
will not be used for other purposes in the future, which is hard to regulate. There is an
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ethical debate regarding AI. Many believe that AI can be a powerful tool to automate
and make processes more effective, but there are also questions raised regarding what
happens if powerful AI tools ends up in the wrong hands. Regarding this project, the
product is quite specific for this purpose and therefore the assessment is that the risk of
this project contributing to AI being used for the wrong purpose is insignificant.
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9 Appendix 1

Model loss and model accuracy for the different CNNs using K­fold partition 3 are pre­
sented in Figure 9­11 respectively.

Figure 9: Model loss and Model accuracy for ResNet50 using K­fold partition 3

Figure 10: Model loss and Model accuracy for ResNet101 using K­fold Partition 3
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Figure 11: Model loss and Model accuracy for DenseNet121 using K­fold partition 3
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10 Appendix 2

Aggregated calibration plots for ResNet50 with M and IP_M nonconformity functions
using K­fold partition 2 can be found in Figure 12 and 13

Figure 12: Aggregated calibration plots for ResNet50 with M nonconformity functions using K­
fold partition 2
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Figure 13: Aggregated calibration plots for ResNet50 with IP_M nonconformity functions using
K­fold partition 2
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11 Appendix 3

Calibration plots and bubble plots for the different nonconformity functions trained on
ResNet101 and DenseNet121 using partition 3 Are presented in Figure 14 and 15 re­
spectively.

(a) Inverse Probability (b) Inverse Probability

(c) Margin (d) Margin

(e) Combination (f) Combination

Figure 14: Calibration plots and Bubble Plots for the different nonconformity functions applied
on ResNet101
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(a) Inverse Probability (b) Inverse Probability

(c) Margin (d) Margin

(e) Combination (f) Combination

Figure 15: Calibration plots and Bubble Plots for the different nonconformity functions applied
on DenseNet121
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