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Abstract
Tominec, I. 2022. Oversampled radial basis function methods for solving partial differential
equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty
of Science and Technology 2142. 48 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-1486-0.

Partial differential equations (PDEs) describe complex real-world phenomena such as weather
dynamics,  object deformations, financial trading prices, and fluid-structure interaction.  The
solutions of PDEs are commonly used to enhance the understanding of these phenomena and
also as leverage to make technological improvements to consumer products. In the present
thesis, we  develop numerical methods for solving PDEs using computers. The focus is on
radial basis  function (RBF) methods that are appreciated for their high-order accuracy and
ease of implementation in higher dimensions, but can  sometimes face numerical stability
challenges.  To circumvent the stability issues, we use an oversampled approach to discretize
PDEs as opposed to the more commonly used collocated approach.  Throughout the thesis,
we mainly use the RBF-generated finite difference (RBF-FD) method, but we also use the
RBF partition  of unity method (RBF-PUM) and Kansa's global RBF method in one part of
the thesis.  The first two methods are local in the sense that the underlying discretization
matrices are sparse,  while the third method is global, leading to dense discretization matrices.
In Paper I we improve the stability properties of the RBF-FD method through an oversampling
approach  when solving an elliptic model problem with derivative-type boundary conditions,
and provide a theoretical analysis.  In Paper II we develop an unfitted RBF-FD method and
by that simplify the handling of complex  computational domains by relaxing the requirement
that  the set of nodes has to conform to the boundary of the domain. We make the first steps
toward a simulation of the thoracic diaphragm in Paper III,  where we use an unfitted RBF-
FD method to solve a linear elastic PDE and employ data smoothing to leverage high-order
convergence of the numerical solution. In Paper IV we explore the stability properties behind
the RBF-FD method, Kansa's method, and RBF-PUM  when they are applied to a  linear time-
dependent hyperbolic PDE. We find that Kansa's method and RBF-PUM can become stable
under sufficient oversampling of the system of equations.  On the other hand, the insufficient
regularity of the numerical solution prevents the RBF-FD method from being stable in time,
no matter the oversampling.  In Paper V we use the residual viscosity stabilization framework
to locally stabilize the Gibbs phenomenon present in the RBF-FD solutions  to shock-inducing
nonlinear time-dependent conservation laws such as the compressible Euler system of equations.
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1. Introduction

Mathematical models can describe natural phenomena. These models repre-
sent a relationship between a quantity possible to observe and a quantity that
we would like to obtain knowledge about and we cannot make observations
on. As a crude example, consider measuring the velocity of a car driving by as
time passes, using a device that only displays the car’s velocity. Say that we
would also like to know the distance the car traveled, at each point in time t > 0
from t = 0 onwards. To recover the unknown distance function s(t) we first
have to find a relation between s(t) and the known velocity function v(t). This
relation is called a mathematical model, and is in the present case given by:
v(t) = ∂t s(t), where t is time, and ∂t s(t) is a very small change of the distance
function in time (a derivative in time). This mathematical model is called an
ordinary differential equation: ”differential” as the equation contains a deriva-
tive and an ”ordinary” because the involved functions only depend on one
variable (time). When a differential equation contains unknown functions that
depend on several variables, the equation is called a partial differential equa-
tion. Both ordinary and partial differential equations (PDEs) are generally not
trivial (and sometimes impossible) to solve by pen and paper, depending on
the complexity of the mathematical model. A branch of mathematics called
numerical mathematics (or numerical analysis or computational mathematics,
or scientific computing) deals with approximations of solutions to differen-
tial equations by breaking one differential equation down into many simpler
algebraic equations, which a computer knows how to solve. ”Many simpler
equations” means, for example, a set of millions of simpler equations. Typical
mathematical questions are whether the solution to the ”many simpler equa-
tions” can be uniquely determined and whether such a unique solution gives a
good approximation to the exact solution of the differential equation. Another
critical question is whether the algorithm to convert a differential equation to
”many simpler equations” and then to solve those equations with a computer
is feasible to use in terms of the required computational time. A side question
is whether the computer implementation requires significant efforts in terms
of human labor.

From here on we start using mathematical terminology to provide an in-
troduction to the papers included this thesis. A function Φ(y) : Rd → R,
d = 1,2,3, . . ., is called radial when Φ(y) = Φ(‖y‖2), i.e., when the argument
of the function only depends on the distance measured from the origin. Here

‖y‖2 =
√

y2
1 + y2

2 + ...+ y2
d is the Euclidean (radial) distance function. These
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functions are commonly used for multivariate data approximation (interpola-
tion) or for computing solutions to PDEs. We refer to the functions as radial
basis functions (RBFs). RBF methods for solving PDEs are different from
the other available methods because they do not require the domain Ω to be
split into small geometrical elements. A collection of these elements is called
a mesh. Instead, RBF methods work with a set of points scattered through-
out Ω. A set of points is in some cases also subdivided into many local point
sets, but the local point sets do not have to conform to a predefined geometri-
cal shape. The RBF methods are many times called meshfree (also meshless)
methods. They give numerical solutions with high-order convergence when
the PDE data is smooth, and are simple to implement on a computer, espe-
cially in higher dimensions. A disadvantage of using meshfree methods can
be that the approximate solution is prone to different kinds of numerical insta-
bilities when solving PDEs.

The present dissertation focuses on RBF methods to solve PDEs. We pro-
vide new insights in terms of the stability properties of the RBF methods.
We make method improvements based on these findings and method improve-
ments related to simplifying the handling of complex geometries. We use the
improved methods for applications in biomechanics and fluid mechanics. In
the following sections of this introduction, we provide an overview of the ra-
dial basis function research directions relevant to the context of this thesis.

1.1 Interpolation using radial basis functions with
global support

To be able to interpolate a function is an essential step when developing a
method for solving PDEs. In paper [32] from 1971, Hardy was the first re-
searcher to use a sequence of radial functions Φk(y) = Φ(y− xk), k = 1, ..,N,
to construct a multivariate interpolation problem where the interpolation data
fk = f (xk) was a topographic surface. Here y is an evaluation point and xk is
the node where Φk is centered at. Hardy was looking for a representation of a
topographic surface s(y) using an ansatz:

s(y) =
N

∑
k=1

ck Φk(y), (1.1)

where ck, k = 1, ..,N, were determined by solving the problem:

s(xi) = fi, i = 1, ..,N.

Hardy used the multiquadric type of RBFs, Φk(y) =
√

1+ ε2‖y− xk‖2, where
ε is a so-called shape parameter. The shape parameter decides how flat an
RBF is, see Figure 1.1. There exist many different radial basis functions. We
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Figure 1.1. Three different types of radial functions in one dimension, centered around
the origin.

provide a few of them in the table below. RBFs can be subdivided into two
groups. The first group consists of RBFs dependent on a shape parameter ε .
The second group consists of RBFs with no dependence on ε .

A few types of radial functions
Gaussian Φ(y) = e−ε2‖y‖2

2

Multiquadric (MQ) Φ(y) = (1+ ε2‖y‖2
2)

1
2

Inverse MQ Φ(y) = (1+ ε2‖y‖2
2)

− 1
2

Polyharmonic spline Φ(y) = ‖y‖k
2, k = 1,3,5, . . .

In the present thesis we use RBFs that have no dependence on ε .

1.2 An overview of partial differential equation
discretizations using radial basis functions

This section provides an overview of the existing RBF discretization methods
for solving PDEs. We subdivide those into a group of methods that construct
a sequence of cardinal (interpolatory) basis functions with global support and
a group of methods that construct the cardinal (interpolatory) basis functions
with local support. Another subdivision is the residual minimization frame-
work that is used, such as the collocation approach, the Galerkin approach or
an oversampled approach (often referred to as a least-squares approach).

Discretizations of partial differential equations using radial basis
functions with global support
An ever-present justification for using RBFs for discretizations of PDEs has
been that RBF interpolants are easy to implement and work well for scattered
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data approximation in high dimensions. By using RBFs, we are not limited
to computing PDE solutions over tensor grid domains, as in the classical fi-
nite difference setting or a pseudospectral setting, but it is possible to compute
solutions over complex domains discretized by scattered points. A direct com-
petitor have always been the finite element methods, where an argument for
RBF methods has been that an engineer is not required to compute a mesh
discretizing a complex domain. Instead, it is possible to work only with sets
of points scattered throughout the computational domain. Among the justifi-
cations are also the ease of implementation of the RBF methods, where two
significant contributions add to the simplicity: (i) each basis term of an RBF
interpolant is only a translate of the same RBF, where any derivatives of that
term are then easy to obtain, while, for example, each term of the multivariate
monomial basis takes a different form (for example, a few terms in 2 dimen-
sions are: 1,x,y,xy,x2,y2, ..) which then requires an investment of additional
effort when it comes to implementing the basis in higher dimensions and eval-
uating its derivatives, (ii) typically, RBF methods discretize PDEs by collocat-
ing the derivatives at nodes (collocation), avoiding the variational framework,
which requires the implementation of quadrature rules in high dimensions.

The beginnings of PDE discretizations using RBFs go back to 1986 when
Kansa in [37] used Hardy’s multiquadric interpolant [32] to approximate spa-
tial derivatives in a time-dependent PDE hydrodynamics model (coupled den-
sity, momentum, pressure, and energy), and then advance the solution in time
using a classical explicit Runge-Kutta 4 method. The spatial derivatives were
evaluated at node locations without employing any variational principles. Thus,
the PDE discretization was of collocation type. A few years later, in 1990,
Kansa evaluated the approximation errors of multiquadric interpolation and
derivative approximation [38], and also used multiquadrics in a collocation
setting to compute solutions to elliptic, parabolic and hyperbolic PDEs [39].
In both papers, he found a good agreement with exact solutions and faster
convergence of the approximation error compared with the (low-order) finite
difference methods. The method that Kansa used is commonly referred to as
Kansa’s global RBF method.

Kansa’s papers then gave a rise to further usage of the RBF collocation
methods, and also to their analysis [27, 28, 16]. The discrete well-posedness
of the discretizations made by using RBF collocation methods is still an open
question. Instead of using collocation, researchers have, in a few papers, used
a variational form through the Galerkin projection [73, 40, 35], where discrete
well-posedness and convergence have been proved. However, those methods
generally require quadrature algorithms exact for integrating the basis func-
tions that span the approximation space. These algorithms add to the complex-
ity when implementing the algorithm, especially in higher spatial dimensions.

A middle ground between a fully variational projection (employing exact
integration) and collocation is the so-called oversampling (also overtesting)
approach, where the derivatives in the PDE are discretized pointwise just as
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in the collocation case, but the set of these points is larger than the set of
nodes that correspond to the unknown nodal values. The result is a rectan-
gular system of equations which is then reformulated into a square system
of equations by employing a discrete projection either onto the system’s own
column space or onto the column space of another matrix. Due to the pro-
jection, it is then easier to establish well-posedness results for some PDEs
[58, 47, 42, 14]. There is no need to employ quadrature exact for integrating
the basis functions that span the approximation space, so the overall algorithm
implementation efforts are similar to the collocation case.

The oversampling approach is used to discretize PDEs within the present
thesis.

Discretizations of partial differential equations using radial basis
functions restricted to local supports
At first, PDE discretizations using RBFs were global, i.e., the radial basis
functions had a global support throughout the computational domain. As a
consequence, the resulting systems of equations were dense. Computations
using dense systems of equations are expensive. In the 2000s two major local-
ization approaches emerged that led to sparse systems of equations: the radial
basis function generated finite difference (RBF-FD) method due to Tolstykh
[66, 21] and the radial basis function partition of unity method (RBF-PUM)
due to Lazzaro and Montefusco in [46] and due to Wendland in [74]. The
partition of unity method was initially introduced by Babuška and Melenk [2].
Both, the RBF-FD method and RBF-PUM, employ a sequence of interpola-
tion problems to discretize derivatives, where the interpolation problems are
restricted to many small regions covering the computational domain. The dif-
ference between the methods can, roughly speaking, be understood from the
fact that the RBF-FD method uses one local interpolation problem per node,
where the solution at the node is evaluated directly from its corresponding
local interpolation problem. At the same time, RBF-PUM uses one local in-
terpolation problem per several nodes, where each local interpolation problem
is in addition multiplied by a compactly supported partition of unity weight
function, and a sum over all local problems is needed to evaluate the solution
at one node. In [59] Shankar evolved the RBF-FD method to an overlapped
RBF-FD method, by reducing the number of local interpolants from one lo-
cal interpolant unique to one node, to one local interpolant unique to several
nodes, which is in a sense, similar to RBF-PUM, but there is no utilization
of an additional multiplication by a compactly supported partition of unity
weight functions and a sum over all local interpolants, as in RBF-PUM. The
RBF-FD method and RBF-PUM have mainly been used in a collocation set-
ting to convert a PDE into an algebraic system of equations [18, 29]. In [45]
the authors were the first to formulate an oversampled (least-squares) RBF-
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PUM and experimentally studied its stability and convergence properties for
an elliptic model problem.

A significant milestone is when the properties of the RBF-FD method were
enhanced by basing the local interpolation problems on the PHS basis aug-
mented with a high-order polynomial basis. The combination of the PHS basis
and the polynomial basis is surveyed in Section 1.3.

In this thesis, we formulate an oversampled (least-squares) RBF-FD method
for solving elliptic and hyperbolic PDEs and study the method’s stability and
convergence properties from a theoretical and an experimental point of view.

1.3 Stabilization challenges in the radial basis function
methods

Radial basis function methods can be prone to different instabilities, some of
which have already been resolved by different researchers. In this section, we
provide an overview of a few different kinds of instabilities and give references
to the existing stabilization techniques.

Stabilization of the radial basis function interpolants in the flat
limit ε → 0
Even if we do not use ε-dependent RBFs in the present thesis, it is relevant
to mention a fascinating phenomenon related to the shape parameter, which
is that when ε-dependent RBFs are on their way to becoming flat (flat limit:
ε → 0), the RBF interpolant becomes increasingly ill-conditioned. However,
the error of the interpolation is often smaller in this regime compared with
the regime when ε is large, and the RBF interpolant is well-conditioned [57].
There are two main approaches for choosing ε . The first is to fix ε to a number
where ill-conditioning is not preventing the interpolation problem from being
uniquely solvable on a computer, and then gradually increase the number of
nodes N to converge the interpolant towards the true function that is interpo-
lated. As N increases, the fixed ε is effectively becoming smaller relative to
the internodal distance, and then the conditioning of the interpolation prob-
lem increases. Consequently, the interpolant converges for a while, but then
when the conditioning becomes too large, the round-off errors make the con-
vergence curve diverge. The second approach is to scale ε with N such that
ε N−1/d = constant as N → ∞. At some point, as N → ∞, the shape parameter
then becomes large, and the radial basis function may lose the ability to im-
prove the interpolation of a function. In this case, there is a saturating effect
in the convergence of the approximation error from a point where N is large
enough.
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In the 1990s, researchers thought of the above behavior as an uncertainty
principle that is impossible to circumvent. However, in 2002, it was shown in
[15] due to Driscoll and Fornberg that a one-dimensional multiquadric RBF
interpolant takes a polynomial basis form in the limit ε → 0. Since it is known
that the polynomial basis is generally well behaved, it no longer made sense
to assume that RBF interpolants were convicted to severe ill-conditioning in
the flat limit. This observation, along with its generalization to other types of
RBFs [26, 43], created momentum for developing stable algorithms for com-
puting RBF interpolants in the flat limit. The first stable algorithm created was
presented in [25] (RBF-CP) in 2004 due to Fornberg and Wright, with many
stable algorithms to follow in later years: RBF-QR [24, 22, 44] respectively
in 2007, 2011 and 2013, RBF-RA [76] in 2017, RBF-QR method based on
HermiteGF expansion [41] in 2019, to name a few.

Augmentation of radial basis function interpolants using
polynomials
Throughout the years, researchers started to augment RBF interpolants using
multivariate monomial basis functions p̄k, k = 1, ..,m, of degree Dm, where
m =

(Dm+d
d

)
. The objective was to enforce exactness of the interpolant for

both RBFs and the monomial basis functions. An RBF interpolant augmented
by monomial basis functions is given by:

s(y) =
N

∑
k=1

ck Φk(y)+
m

∑
k=1

λk p̄k(y)

subject to
N

∑
k=1

ck p̄r(xk) = 0 r = 1, ..,m.

(1.2)

Here λk, k = 1..,m, are Lagrange multipliers. The result of using (1.2) to con-
struct an interpolation problem at nodes xi, i = 1, ..,N, is an indefinite system
of equations. For all RBFs that are conditionally positive definite of order
smaller than Dm−1, the system has a unique solution, as long as the nodes are
distinct and not located on lower dimensional manifolds [11, 17].

Initially, in the 1990s, certain RBF interpolants were augmented with a
low-order monomial basis for theoretical reasons [17]. For example, an inter-
polation problem constructed using multiquadrics was always well-posed in
practice, but it was hard to show that theoretically. The reason is that the in-
terpolation matrix had one eigenvalue that was positive, while all others were
negative. To theoretically explore the invertibility of the matrix A, it was ben-
eficial to work with a definite A because such a matrix can form an inner
product cT Ac ≤ 0 for any vector c. In other words, all eigenvalues need an
equal sign (negative in our case), and the question then is whether the inner
product is always negative/positive (A invertible), or whether the inner product
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allows for 0 values when a vector c �= 0 (A not invertible). Researchers have
found that the multiquadric interpolation matrix is made strictly definite under
an augmentation using a constant monomial term (monomial basis of degree
Dm = 0), and then the well-posedness of the interpolation problem was easier
to establish [50, 52]. Analogously, an interpolation matrix formed by using a
polyharmonic spline of degree k = 1,3,5, .. is made strictly definite under an
augmentation with polynomials of degree Dm = k−1 [17].

Polyharmonic splines are a particularly interesting case of RBFs, as they are
ε-invariant. As opposed to many other RBF types, polyharmonic splines have
a finite smoothness, i.e., a PHS of an odd degree k belongs to Ck−1. The condi-
tion numbers of the interpolation matrices constructed using PHS are typically
well behaved for a fixed k, and only increase algebraically as N → ∞, as op-
posed to for example interpolation matrices constructed using Gaussian RBFs
or multiquadric RBFs of which the condition number increases exponentially
as N → ∞ [4] . The convergence trend as N → ∞ when interpolating a smooth
function using PHS is of order k

2 +1 [34].
During the second half of the 2010s, it became a standard to augment a

low-order PHS (normally k = 3) with monomials of high degree (large Dm)
[3, 19, 8, 7, 5]. The main reason for that was to employ the high-order poly-
nomial exactness that essentially controls the order of the convergence. At the
same time, the PHS basis helps to reduce the approximation error by a con-
stant, compared to the local polynomial interpolation [19]. Additional ben-
efits are reduced oscillations of the interpolation close to the boundary [8],
and improved stability properties of RBF collocation discretizations of some
PDEs when PHS and polynomials are used to generate finite difference stencil
weights with scattered nodes [7].

Throughout the present thesis, PHS of degree k = 3, augmented with a
high degree monomial basis, is the local interpolation setting that we use to
construct the global function spaces where we look for numerical solutions to
PDEs.

Stabilization of radial basis function methods applied to
time-dependent hyperbolic partial differential equations
Hyperbolic time-dependent partial differential equations are used to describe
transport phenomena, i.e., their solutions propagate an initial condition func-
tion without change in the energy of the initial condition function. This thesis
considers first-order hyperbolic time-dependent problems, which contain first
derivative in time and first derivatives in space. There are two types of insta-
bilities for many of the numerical discretization methods that can occur as the
numerical solution is advanced in time.

The first type of instability is implicitly related to the spurious eigenvalue
spectra of a linear discrete divergence operator. The spectrum of the linear
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discrete divergence operator supplied by inflow boundary conditions must not
contain positive eigenvalues, as that would cause an unbounded growth of
the numerical solution as time goes to infinity. While some of the numerical
methods are, in this sense, stable by construction, for example, Galerkin finite
element methods or summation-by-parts finite difference methods, the RBF-
FD method and RBF-PUM were experimentally found unstable and require
the addition of stabilization terms. One of the standard stabilization terms
for the collocation RBF methods is to apply an upwinding viscosity operator
[69], which only allows the numerical solution to have a first-order accuracy,
no matter how smooth the initial condition is. Hyperviscosity (high-order vis-
cosity operator) is another common stabilization term [23], which allows the
numerical solution to have a higher-order accuracy if the initial condition is
smooth enough.

The second type of instability is specific to nonlinear hyperbolic PDE prob-
lems. As time goes to infinity, the exact solutions to these problems develop
a shock (discontinuity). Each continuous finite-dimensional approximation of
a shock induces an overshoot over the shock, also referred to as the Gibbs
phenomenon.

In this thesis, we explain why some RBF methods are subject to instabili-
ties of the first type. Furthermore, we use a residual-based viscosity method
borrowed from the finite element community [53, 65] to locally ameliorate the
instabilities of the second type.

1.4 Applications addressed using radial basis function
methods

Radial basis function methods have been used to solve PDE problems arising
from various types of applications. Examples include: ice sheet models [13,
1], financial engineering models [56, 60, 51], metal casting models [70, 33],
geophysical models [75, 20, 21, 6, 49], phononic crystal models [78], contact
models [63], combustion models [9], benchmark elasticity models [67, 62]
and many others.

In this thesis, we apply the RBF-FD method to a benchmark linear elastic-
ity model where the computational domain is the thoracic diaphragm which is
the primary muscle of the respiratory system in a human being. Another ap-
plication that we consider is a benchmark model of compressed gas dynamics,
governed by the Euler system of equations.

1.5 Novel contributions of the present thesis
The main thread of the present thesis is the RBF-FD method for solving PDEs.
We present advances within the method development and the theoretical anal-

17



ysis of the method, and solve applications in biomechanics and fluid mechan-
ics. We also discuss RBF-PUM and Kansa’s global RBF method in one of the
papers.

In Paper I we make developments of the RBF-FD method in terms of sta-
bility properties when solving an elliptic model problem with derivative-type
boundary conditions in combination with Dirichlet boundary conditions. We
highlight that the basis functions spanning the RBF-FD function space over a
computational domain are only piecewise continuous. Another contribution is
an associated theoretical study.

In Paper II we develop an unfitted RBF-FD method and solve an elliptic PDE
on highly complex domains such as the thoracic diaphragm. The key benefit
is that the computational nodes do not need to conform to the boundary of the
domain, but instead, extend outside of the domain, enabling a simpler node
generation handling. We observed a smaller approximation error around the
boundaries of the domain when the order of the method is large, compared
with the approximation error when using a classical, fitted RBF-FD method.
We also provide a computational study evaluating different criteria to ensure
the linear independence of the basis functions over the interior of the domain,
a common problem of the unfitted type of methods.

In Paper III we use the unfitted RBF-FD method to compute solutions over a
simplified thoracic diaphragm geometry, Furthermore, we employ data smooth-
ing and boundary condition smoothing for obtaining high-order convergence
when solving an elastic system of PDEs. We provide a numerical convergence
study, where the finite element method is used to provide a reference solution.

In Paper IV we explore the stability properties behind the RBF-FD method,
Kansa’s method, and RBF-PUM when they are used to solve a linear time-
dependent hyperbolic PDE. We theoretically show that Kansa’s method and
RBF-PUM can be stable under a sufficient oversampling of the system of
equations. We also show that the RBF-FD numerical solution’s insufficient
regularity prevents the RBF-FD method from being stable in time, no matter
the amount of oversampling. Numerical experiments confirm the theoretical
observations.

In Paper V we use the residual viscosity method to locally stabilize the Gibbs
phenomenon present in the RBF-FD solutions to shock-inducing nonlinear
time-dependent conservation laws. We solve benchmark problems involving
the linear advection equation, Burger’s equation, and the compressible Euler
system of equations.
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2. Partial differential equation models

In this thesis we focus on two types of PDE problems. The first is a linear
stationary PDE problem formulated over a domain Ω ⊂ R

d , d = 2,3:

L u(y) = f (y), y ∈ Ω
Bu(y) = g(y), y ∈ ∂Ω,

(2.1)

where L is a linear differential operator with a corresponding data function
f (y), and B is a linear boundary operator with a corresponding boundary data
function g(y). We consider the problem in the scalar and the system setting,
where the first setting corresponds to a Poisson equation and the second to
a linear elasticity problem. We use either purely Dirichlet boundary condi-
tions or mixed boundary conditions, i.e., a Dirichlet boundary condition and a
Neumann-type boundary condition imposed on two disjoint parts of ∂Ω, that
is, ∂Ω0 and ∂Ω1 respectively.

We also solve a time-dependent hyperbolic PDE problem:

∂tu(y, t) =−∇ ·F(u(y, t), t), y ∈ Ω
u(y, t) = g(y, t), y ∈ Γinflow,

u(y,0) = u0(y), y ∈ Ω̄,

(2.2)

where t > 0 is time, F is a (non)linear flux that does not include any physical
viscous forces, and the second and the third constraint are an inflow boundary
condition and an initial condition respectively. We again consider the problem
in the scalar setting and the system setting, where the first corresponds to a
linear advection equation, and the second to the Euler system of equations.
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3. Constructing an RBF function space

RBF methods are often explained through a sequence of steps that directly
lead to the construction of differentiation matrices which then replace the ex-
act derivatives in a PDE. Each row of a differentiation matrix is referred to as
a set of (differentiation) weights. In the present thesis, we take a slightly more
general approach and describe the RBF methods by providing a sequence of
steps that lead to a set of cardinal basis functions which span an RBF function
space. The line of thinking is then to seek a solution to a PDE within the con-
structed RBF function space enabling a broader perspective when addressing
the stability properties of the RBF methods.

A numerical solution uh to a PDE over an open and bounded domain Ω ⊂
R

d , d = 1,2,3, . . ., is computed using an ansatz:

uh(y) =
N

∑
k=1

u(xk)Ψk(y), uh(y, t) =
N

∑
k=1

u(xk, t)Ψk(y), (3.1)

where the first ansatz is used for stationary PDE problems and the second
ansatz is used for time-dependent PDE problems. Here Ψk(y), k = 1, ..,N, are
the cardinal basis functions constructed in different ways depending on the
choice of the RBF method, and u(xk) or u(xk, t), k = 1, ..,N, are the unknown
nodal values at the nodes xk ∈ Ω, and y ∈ Ω is an evaluation point. We use

Point set X Point sets X and Y

Figure 3.1. Left: an example point set X (blue markers). Right: an example point
set X (blue markers) together with the evaluation point set Y (red markers), where the
oversampling parameter is set to q = 4.

two types of point sets: the nodal point set X = {xi}N
k=1 and the evaluation
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point set Y = {y j}M
j=1 = YΩ ∪Y∂Ω with M = qN, q ≥ 1, where q is referred to

as the oversampling parameter, and where YΩ and Y∂Ω correspond to sets of
evaluation points placed in the interior of the domain, and on the boundary of
the domain respectively. The nodal point set is used to construct the cardinal
basis functions. The evaluation point set is used to sample the PDE with the
intention to convert the PDE into either a square or a rectangular system of
algebraic equations, which we solve for the unknown nodal values. The in-
ternodal distances in the two point sets are defined as the radius of the largest
ball that fits inbetween the points:

h = sup
x∈Ω

min
x j∈X

‖x− x j‖2, hy = sup
y∈Ω

min
y j∈Y

‖y− y j‖2. (3.2)

In this chapter, we focus on constructing the cardinal basis functions Ψk,
k = 1, ..,N, that span the function space within which we are seeking a numer-
ical solution of the form (3.1). We use three commonly used RBF methods to
construct the cardinal basis functions: Kansa’s RBF method, the RBF partition
of unity method (RBF-PUM), and the RBF generated finite difference (RBF-
FD) method. The methods are different to each other in terms of (i) the support
of the cardinal basis functions and (ii) the continuity of the cardinal basis func-
tions. In this thesis, we focus on the RBF-FD method, but we also consider
Kansa’s RBF method and RBF-PUM in one of the papers. The methods are
described in the sections that follow. To make the discussion general enough,
we allow time dependence of the unknown coefficients. However, when using
the methods for stationary PDE problems, the time dependence can simply be
dropped, and the derivation remains identical. We first show how to form the

Kansa’s method RBF-PUM RBF-FD

Figure 3.2. Nodes (blue points) and different node supports (black points with red
edges) specific to three RBF methods: Kansa’s RBF method (global support), the
RBF partition of unity method (patch support) and the RBF generated finite differ-
ence (RBF-FD) method (stencil support). The green area in the RBF-FD method case
illustrates the region to which the stencil approximation is further restricted when
evaluating the numerical solution.

cardinal basis functions using Kansa’s method, and then extend that to RBF-
PUM and the RBF-FD method. We also provide a discussion about the global
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regularity properties of the cardinal basis functions constructed using each of
the methods.

3.1 Kansa’s global RBF method
In Kansa’s method case we form an interpolant over Ω using radial basis func-
tions φl(x), l = 1, ..,N and (potentially) the monomial basis, p̄k(x), k = 1, ..,m:

uh(y, t) =
N

∑
l=1

cl(t)φl(y)+
m

∑
k=1

λk(t)p̄k(y),

subject to
N

∑
l=1

cl(t)p̄k(xl) = 0, k = 1, ..,m,

(3.3)

where cl(t) are the unknown interpolation coefficients, λk(t) the unknown La-
grange multipliers, and where the number of monomial terms is m =

(Dm+2
2

)
,

where Dm is the degree of the monomial basis. We use the cubic polyharmonic
spline (PHS) radial basis functions φl(x) = ‖x−xl‖3

2. Requiring the interpola-
tion conditions uh(xi, t) = u(xi, t), i = 1, ..,N, to hold, where xi ∈ X and u(xi, t)
are the unknown nodal values, gives a system of equations on matrix-vector
form:(

A P
PT 0

)
︸ ︷︷ ︸

:=Ã

(
c(t)
λ (t)

)
=

(
u(X , t)

0

)
⇔

(
c(t)
λ (t)

)
= Ã−1

(
u(X , t)

0

)
. (3.4)

Here A jl = φl(x j) for indices j, l = 1, ..,N and Pjk = p̄k(x j) for indices k =
1, ..,m and u j = u(x j, t). Reusing the computed coefficients inside (3.3), only
keeping the first N terms, and disregarding the N +1, ..,N +m terms, gives:

uh(y, t) =
(
φ1(y), ..,φN(y), p̄1(y), .., p̄m(y)

)︸ ︷︷ ︸
:=b(y)

(
c(t)
λ (t)

)
=
(
b(y)Ã−1)

1:N u(X , t)

=
N

∑
k=1

u(xk, t)
[
b(y,X) Ã−1(X ,X)

]
k ≡

N

∑
k=1

u(xk, t)Ψk(y).

(3.5)
The cardinal basis functions Ψi, i = 1, ..,N, constructed by using Kansa’s
method are then given through (3.5).

3.2 The RBF partition of unity method (RBF-PUM)
When using RBF-PUM the computational domain is subdivided into overlap-
ping patches ∪Np

j=1Ω( j) ⊃ Ω, where an interpolation problem as in (3.4) is then
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solved on each patch, instead of on the whole Ω. The local solution over each
patch, u( j)

h , is spanned by a set of local cardinal basis functions ψ( j)
k formed

analogously to (3.5), where:

u( j)
h (y, t) =

n( j)

∑
k=1

u(x( j)
k , t)

[
b(y,X ( j)) Ã−1(X ( j),X ( j))

]
k
≡

n( j)

∑
k=1

u(x( j)
k , t)ψ( j)

k (y).

(3.6)
Here n( j) is the number of nodes X ( j) ⊂ X contained in the patch with index
j. To further define the solution over all of Ω, we then blend the local solu-
tions over the patches together by using compactly supported partition of unity
weight functions:

uh(y, t) =
Np

∑
j=1

w j(y)u
( j)
h (y, t), (3.7)

where each w j(y) is constructed using Shepard’s method [61] employing Wend-
land’s compactly supported functions [72]. We now introduce: (a) the set J(i)
of all patches that contain xi, (b) an index operator κ( j, i), which gives the
local index of xi inside the patch Ω( j). The global RBF-PUM solution is then:

uh(y, t) =
Np

∑
j=1

w j(y)
n( j)

∑
k=1

u(x( j)
k , t)ψ( j)

k (y)

=
N

∑
i=1

u(xi, t) ∑
j∈J(i)

w j(y)ψ
( j)
κ( j,i)(y)≡

N

∑
i=1

u(xi, t)Ψi(y).

(3.8)

3.3 The RBF-generated finite difference (RBF-FD)
method

In the RBF-FD case each node xi ∈ X is associated with a neighborhood of
the n closest nodes X (i) ⊂ X (a stencil), see Figure 3.2. The interpolation
problem (3.4) is then solved on each stencil. The local solution over a stencil
is formulated analogously as in the RBF-PUM case over a patch (3.6). In this
case, ψ(i)

k are the RBF-FD local cardinal basis functions that span the local
function space over each stencil. To get a globally defined function space, each
u(i)h is restricted to a small non-overlapping region (a Voronoi cell) centered
around the corresponding xi ∈ X , see Figure 3.2:

uh(y, t) = u(ρ(y))h (y, t), i = 1, ..,N, (3.9)

where ρ(y) is an index mapping defined by:

ρ(y) = arg min
i∈[1,N]

‖y− xi‖2. (3.10)
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An equivalent form to (3.9), which uses the global RBF-FD cardinal basis
functions, is:

uh(y, t) =
N

∑
i=1

u(xi, t)ψ(ρ(y))
κ(ρ(y),i)(y)≡

N

∑
i=1

u(xi, t)Ψi(y),

where κ(ρ(y), i) is an index operator that gives the local index of xi inside
the stencil point set X (ρ(y)). A MATLAB code for generating differentiation
matrices (derivatives of the evaluated RBF-FD cardinal basis functions) and
evaluation matrices (the evaluated RBF-FD cardinal basis functions) is pro-
vided in [68]. An algorithm for generating the matrices is provided in Paper
III, Section 4.

3.4 Regularity of the cardinal basis functions, and the
associated function spaces

A cardinal basis function constructed using three methods

Kansa’s method RBF-PUM The RBF-FD method
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Figure 3.3. Three examples of cardinal functions centered at a node in the middle of
the domain, where each cardinal function is constructed either using Kansa’s method,
RBF-PUM or the RBF-FD method. The first row of plots shows a full cardinal basis
function. The second row shows the corresponding close-ups. Nodes colored in red
mark the region where a cardinal basis function has non-zero support.

When deriving stability and convergence estimates for a numerical solution
using a discretization, it is important to understand what regularity properties

24



the constructed cardinal basis functions have. This way, we can recognize
which space of functions the cardinal basis functions belong to, and then pre-
pare the theoretical analysis accordingly. Since our numerical solution is com-
puted as (3.1), our finite dimensional function space Vh is Vh = span({Ψi}N

i=1).
The regularity properties of Vh are then given by the regularity of Ψi, i =
1, ..,N. However, these functions are constructed differently depending on the
RBF method of choice, as described in the sections above. As discussed in
Paper IV and in Paper I we have the following spaces per each RBF method.
Kansa’s method and RBF-PUM construct Vh ⊂ W k+1

2 (Ω), k ≥ 0, where the
smoothness order k for Kansa’s method is governed by the regularity of the
radial basis functions, whereas in the RBF-PUM case, k is governed by the
minimal regularity of the partition of unity weight functions and the radial
basis functions. In the RBF-FD case we only have a piecewise continuous
space:

Vh = {uh ∈ L2(Ω)
∣∣uh ∈W k+1

2 (Ki), ∪N
i=1Ki = Ω}, k ≥ 0. (3.11)

Here Ki is a Voronoi cell centered around the corresponding xi ∈ X . The local
regularity degree k, over a Voronoi region, is governed by the regularity of the
radial basis functions. It is very important to emphasize that even if the RBF-
FD cardinal basis functions are discontinuous, all cardinal basis functions still
share degrees of freedom with each other, which for example, is not the case
for the discontinuous Galerkin (DG) function spaces that are also in a subset
of L2(Ω). Examples of cardinal basis functions constructed using all three
RBF methods are plotted in Figure 3.3, from where it is possible to observe
that the RBF-FD cardinal basis functions contain jumps, while Kansa’s and
the RBF-PUM cardinal basis functions are smooth.
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4. Collocated and oversampled discretizations
of PDEs

A collocation type of PDE discretization is the standard type to use when
searching for numerical solutions using RBFs. In the present thesis, we in-
stead use an oversampled type of PDE discretization. In this chapter, we dis-
cretize two scalar PDE problems using both types. In addition, we outline the
properties of the oversampled setting that make it possible to perform a theo-
retical analysis of the RBF discretizations utilizing the estimation techniques
normally used in the finite element community.

4.1 Discretization of a stationary PDE problem
Consider the PDE problem from (2.1). Using the first ansatz from (3.1) in
(2.1), and then sampling the PDE at the evaluation point set of size M = MΩ+
M∂Ω, we have:

β (yk)
N

∑
i=1

uh(xi)L Ψi(yk) = β (yk) f (yk), yk ∈ YΩ,

β (yk)
N

∑
i=1

uh(xi)Ψi(yk) = β (yk)g(yk), yk ∈ Y∂Ω,

(4.1)

where we also multiplied all equations by a scaling factor β (y), defined by:

β (y) =

{
h−

1
2 h

d−1
2

y , y ∈ ∂Ω,

h
d
2
y , y ∈ Ω,

(4.2)

where h and hy are defined in (3.2). These scaling factors were derived by
relating the discrete least-squares projection of (4.1) which employs �2 in-
ner products, to a continuous least-squares projection which employs L2 inner
products.

The matrix-vector form of (4.1) is D̄h uh = F̄ . When Y = X , then D̄h is
square by construction, and the solution is given by uh = D̄−1

h F̄ . Here the
resulting residual minimizing framework is called collocation, i.e., after the
solution is computed, the pointwise residual at point set X = Y of the dis-
cretized PDE is 0. In this case the scaling β (y) does not play any role in the

26



properties of the system of equations. When Y �= X and M > N then the re-
sulting system of equations is rectangular, the solution is in this case given
by uh = D̄+

h F̄ , where D̄+
h = (D̄T

h D̄h)
−1 D̄T

h is the pseudo-inverse of D̄h defined
by employing a discrete least-squares projection. The resulting residual at the
point set Y is in this case non-zero, and β (y) now plays a significant role in
terms of the stability properties of the numerical solution and also the overall
approximation properties of the numerical solution.

4.2 Discretization of a time-dependent PDE problem
Now we consider the PDE problem from (2.2). Using the second ansatz from
(3.1) inside (2.2), and then sampling the PDE at the evaluation point set of size
M, we first discretize the PDE in space to arrive at a system of ODEs:

β (yk)
N

∑
i=1

∂tuh(xi, t)Ψi(yk) =−β (yk)
N

∑
i=1

(
F(i)

1 ∇1 +F(i)
2 ∇2

)
Ψi(yk),

k = 1, ..,M,

(4.3)

where ∇r, r = 1,2 is the derivative with respect to the r-th component of y, and
F(i)

r = Fr(uh(xi, t), t), r = 1,2, are the two components of the flux term F eval-
uated at xi ∈ X and t > 0. The matrix-vector form of (4.3) is Ēh∂tuh = D̄huh.
When Y = X (collocation case) then Ψi(yk) = 1 when k = i, and thus Ēh is a
scaled identity matrix. In this case we directly use classical explicit Runge-
Kutta 4 methods to advance the solution of the ODE system in time. When
Y �= X and M > N, then the involved matrices are rectangular. We then project
(4.3) onto the column space of Ēh by multiplication with ĒT

h which gives
ĒT

h Ēh∂tuh = ĒT
h D̄h uh. To recover an explicit dependence on the time deriva-

tive of uh, we invert the mass matrix and obtain ∂tuh =(ĒT
h Ēh)

−1 (ĒT
h D̄h)uh. In

practice, however, we do not invert the mass matrix directly but instead com-
pute the solution to the system of ODEs by the conjugate gradient iterative
method in each timestep of the classical Runge-Kutta 4 method.

The boundary condition from (2.2) is enforced exactly by removing the
unknown nodal coefficient values corresponding to the location of the inflow
boundary condition.

4.3 Properties of the oversampled PDE discretizations
from a variational point of view

Consider a stationary PDE (2.1). The discretized PDE is the system of equa-
tions D̄huh = F̄ given through (4.1) and a further discussion in Section 4.1.
Let M > N, so that D̄h is rectangular. We are now going to demonstrate that
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the rectangular system of equations arising from the oversampled PDE dis-
cretization (4.1) is very closely related to a variational problem, in which the
integrals are replaced by weighted sums, and where the weighted sums rep-
resent an inexact quadrature rule. To make an illustration, we project our
rectangular system of equations onto the column space of Dh, resulting in the
normal equations:

D̄T
h D̄h uh = D̄T

h F̄ , (4.4)

where the new system size is N ×N. We note that looking at the components
of the matrices involved in (4.4) by using (4.1) and (4.2) where we set d = 2,
we have:

(D̄T
h D̄h)i j = h2

y ∑
y∈YΩ

L Ψi(y)L Ψ j(y)+h−1 hy ∑
y∈Y∂Ω

Ψi(y)Ψ j(y)

≡ (L Ψi,L Ψ j)�2(Ω) +h−1(Ψi,Ψ j)�2(∂Ω),

(4.5)

and also:

(D̄T
h F̄) j = h2

y ∑
y∈YΩ

f (y)L Ψ j(y)+h−1 hy ∑
y∈Y∂Ω

g(y)Ψ j(y).

≡ ( f ,L Ψ j)�2(Ω) +h−1(g,Ψ j)�2(∂Ω),

(4.6)

thus, discrete inner products are governing our system of equations. Each
equation of the system in (4.4) is then:

N

∑
i=1

u(xi)(L Ψi,L Ψ j)�2(Ω) +h−1
N

∑
i=1

u(xi)(Ψi,Ψ j)�2(∂Ω) =

= ( f ,L Ψ j)�2(Ω) +h−1(g,Ψ j)�2(∂Ω)

j = 1, ..,N,
(4.7)

where we further denote that the associated bilinear form and the associated
linear functional are defined by:

ah(uh,vh) = (L uh ,L vh)�2(Ω) +h−1(uh,vh)�2(∂Ω),

l(vh) = ( f ,L vh)�2(Ω) +h−1(g,vh)�2(∂Ω).
(4.8)

The PDE problem equivalent to (4.4) then reads. Find uh with vh = Ψ j, j =
1, ..,N, such that:

ah(uh,vh) = l(vh).

Here we note that the second term of ah(uh,vh) and l(vh) is a penalty that
weakly imposes the Dirichlet boundary condition. We have that uh,vh ∈ Vh,
where a discussion about the properties of Vh depending on which RBF meth-
ods construct Ψi, i = 1, ..,N, is provided in Section 3.4

Showing well-posedness of a discrete problem through the Riesz represen-
tation theorem for a symmetric ah [10] or through the Lax-Milgram lemma for
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Integration error relating �2 and L2 inner products
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Figure 4.1. Integration error relating a discrete �2 inner product to an L2 inner product,
measured as a function of the inverse mean internodal distance in the point set Y , for
two different integrands: a Gaussian function (left plot) and a discontinuous function
concatenated from local trigonometric functions (right plot). Three different point sets
Y are used to compute the integration error.

a non-symmetric ah [10] is more convenient when the bilinear form is employ-
ing inner products over an L2 space instead of a finite-dimensional �2 space, as
in our case (4.7). The convenience is attributed to a vast amount of inequalities
available for making estimates using the L2 inner products, such as Poincare’s
inequality, trace inequalities, inverse inequalities, and other inequalities [10].
However, in (4.8), we can relate the �2 inner products to L2 inner products
and then perform the analysis on those L2 inner products, as is clasically done
in those finite element methods that are employing variational principles. A
piecewise L2 inner product is defined by:

(uh,vh)L∗2(Ω) = ∑
Ki∈Ω

∫
Ki

uh vh dKi,

where Ki ∈ Ω is a Voronoi cell centered around a node xi, i = 1, ..,N, such that
∪N

i=1Ki = Ω. In Paper IV we derived a relation between the two inner products
in two spatial dimensions for a point set Y with a Cartesian distribution over a
complex geometry and for uh,vh ∈ L2(Ω) as:

(uh,vh)�2(Ω) ≤C∫ h−1hy max
i

‖uh vh‖L∞(Ki) + (uh,vh)L∗2(Ω)

≡ eI(uh vh)+(uh,vh)L∗2(Ω),
(4.9)

where eI(uh vh) is an integration error term. At least a linear convergence in hy
is also expected for quasi-uniform point sets Y , as we experimentally demon-
strated in the same paper, see Figure 4.1. Coercivity of ah, i.e. ah(uh,uh) ≥
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α2‖uh‖2
L∗2(Ω) for α > 0, is one of the important properties when it comes to

the invertibility of the ”stiffness” matrix, in our case D̄T
h D̄h. Combining (4.8),

(4.7) and an established coercivity property, it is possible to show that:

ah(uh,uh) = uT D̄T
h D̄hu ≥ α2‖uh‖2

�2(Ω) > 0 ⇒ inf
uT u=1

uT D̄T
h D̄hu > 0.

The last equality involving the infimum of a discrete inner product is a defi-
nition of the smallest eigenvalue of a matrix. Coercivity then implies that the
smallest eigenvalue of D̄T

h D̄h is larger than 0, thus, the matrix has an inverse.
However, the simplicity of proving the coercivity property heavily depends on
the regularity properties of Vh (see Section 3.4).

Similar arguments as for a stationary oversampled problem can also be used
for an oversampled discretization of a time-dependent problem described in
Section 4.2. In two dimensions, a form equivalent to (4.7) is:

N

∑
i=1

∂tu(xi, t)(Ψi,Ψ j)�2(Ω) =
N

∑
i=1

([F1(u(xi, t))∇1 +F2(u(xi, t))∇2]Ψi,Ψ j)�2(Ω)

j = 1, ..,N.
(4.10)

By using the relation (4.9) in (4.10), this time only for the right-hand-side
inner product, it is then possible to make a semi-discrete stability estimate of
type:

∂t‖uh‖2
�2(Ω) ≤ boundary data︸ ︷︷ ︸

physics

+potential spurious terms︸ ︷︷ ︸
numerics

.

The estimate is also referred to as the linear stability estimate, since it is a
sufficient resource to establish the stability of numerical solutions to linear
time-dependent problems with smooth data. In a nonlinear setting, the lin-
ear stability estimate is still required, but it is not sufficient to establish the
overall stability of a numerical scheme. If a semi-discrete stability estimate is
established, this then means that the energy of the numerical solution is only
allowed to grow in time when the physical inflow boundary conditions also
grow in time. Even if the semi-discrete stability setting is not covering the
fully discrete case, where the time dimension is discretized in addition, it is
informative enough to discover potential spurious terms coming from the spa-
tial discretization. In Paper IV we show that for the RBF-FD method, there are
two spurious terms related to the spatial discretization: (i) the jump term due
to the discontinuous function space Vh, (ii) the inexact integration error term.
For Kansa’s RBF method and RBF-PUM, the inexact integration error term is
the only spurious term.
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4.4 Benefits when using an oversampled discretization
over a collocated discretization, from a numerical
point of view

In Paper I we constructed a function space using the RBF-FD method and
used an oversampled stationary PDE discretization. We used Dirichlet and
Neumann boundary conditions imposed on two disjoint parts of the compu-
tational domain, and measured the stability norm and the convergence of the
approximation error under node refinement, respectively defined by:

Stability norm = ‖Ēh‖2 ‖D̄+
h ‖2, ‖e‖�2(Ω) =

‖uh(Y )−uref(Y )‖�2(Ω)

‖uref(Y )‖�2(Ω)
.

(4.11)
An ideal stability norm stays constant independent of the internodal distance
h, while the approximation error, in the Poisson problem case, decays with
at least an order p− 1, if the polynomial degree used to construct the local
interpolation problems is p. Numerical results for the most basic colloca-

Collocation versus oversampling, the RBF-FD method (Poisson eq.)
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Figure 4.2. The stability norm (left) and the convergence of the approximation er-
ror under node refinement, for an oversampled RBF-FD discretization of the Poisson
equation with mixed boundary conditions. The polynomial degree p = 4 is used to
construct the stencil based approximation. The oversampling parameter is fixed to
q = 3. The label ”LS” indicates results related to the oversampled RBF-FD method,
while the label ”Collocation” indicates results related to the collocation RBF-FD
method.

tion RBF-FD method and the most basic oversampled RBF-FD method are
provided in Figure 4.2. The stability norm is nearly constant for the over-
sampled RBF-FD method, while it is oscillating for the collocation RBF-FD
method. The convergence curve for the oversampled RBF-FD method follows
a prescribed trend, which is not the case for the collocation RBF-FD method.
Similar behavior was observed throughout Paper I.
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Collocation versus oversampling, RBF-PUM (lin. advection)

Collocation q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

Figure 4.3. Eigenvalue spectra (black dots) of the advection operator with 0 inflow
boundary conditions, when RBF-PUM is used on randomly perturbed DistMesh X
points (h = 0.03), as the oversampling parameter q is gradually increased. The green
line is the entire stability region (q = 1 case) or its boundary (q > 1 cases), of the
classical explicit Runge-Kutta 4 method. The red dots are the eigenvalues that are not
inside the stability region.

In Paper IV we numerically studied the effect of oversampling on the eigen-
value spectra of a linear advection operator with inflow boundary conditions.
An ideal eigenvalue spectrum contains eigenvalues in the interior of the sta-
bility region of an explicit time-stepping method. In Figure 4.3 we show the
eigenvalue spectrum in the RBF-PUM case, for different value of the over-
sampling parameter. Collocation gives many spurious eigenvalues, while the
oversampling approach shifts the eigenvalues to the interior of the stability re-
gion, as q is increased. Similar behavior was also observed for Kansa’s method
and the jump-stabilized RBF-FD method. Oversampling did not improve the
time-stability properties of the RBF-FD method if the jumps in the cardinal
basis functions were not stabilized separately.
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5. Unfitted radial basis function methods for
solving PDEs

To illustrate the difference between a classical, fitted method for solving a
PDE, and an unfitted method, we start with Figure 3.1 where the node set
X is conforming to the shape of the boundary of the computational domain
Ω. Constructing such a point set, with an approximately uniform internodal
distance around the boundary, can already be demanding in two dimensions,
and gets increasingly more demanding as the number of dimensions grow.
At the same time, it is many times the case that the approximation error is
smaller when the internodal distance distribution is nearly smooth. A pos-
sible alternative to construct X , visualized in Figure 5.1, is to place a node
template into a box that encapsulates Ω, remove the points too far away from
the boundary of Ω, and discretize the PDE at an evaluation point set Y that
conforms to Ω. The internodal distance in the point set Y does not have to
vary smoothly across the domain and around the boundaries. Unfitted meth-
ods are also referred to as immersed methods. The first method of this kind
emerged in 1972 due to Peskin [55]. From then on, researchers developed
many such methods, for example a Cartesian cut-cell method [77] or cut fi-
nite element (CutFEM) methods [12, 64, 31]. In Paper II, we were first to

Point set X Point sets X and Y

Figure 5.1. Left: a template point set is distributed over a box enclosing the boundary
of the 2-dimensional diaphragm (black curve). Points more than half a stencil size
away from the boundary (grey) are removed. The remaining points (blue) form the
point set X . Right: A close-up onto a segment of the diaphragm, where blue points are
from the point set X (unfitted to the boundary), and red points are from the evaluation
point set Y (fitted to the boundary).

develop an unfitted RBF-FD method over an unfitted point set X (the steps are
described in Section 3.3), and then discretized a stationary PDE (an elliptic
model problem) as described in Section 4.1 by means of oversampling using a
fitted point set Y . The unfitted point set X was constructed such that each sten-
cil (local interpolant) had at least half of its support inside the computational
domain, which was important for achieving a reasonable condition number
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for the discretization matrices. Condition numbers when following the stencil
support criterion were well behaved as h → 0, and no other stabilization due
to the extended point set was needed. Additional stabilizations are otherwise
many times essential to use for other unfitted methods. We did not impose the
Dirichlet boundary conditions strongly, but we instead used a weak approach
through the oversampled discretization (see Section 4.1). A benefit that we
numerically observed for several test cases was that when using a high-order
polynomial basis to construct the local interpolation problems, the approxima-
tion error with the unfitted RBF-FD method was smaller compared with the
fitted RBF-FD method. This was attributed to the shape of the stencils close to
the boundary, which are less skewed in the unfitted setting compared with the
fitted setting (see Figure 5.3). The developed method was then used in Paper

Unfitted Fitted

Figure 5.2. Spatial approximation error distribution in log10 scale, for a solution of the
Poisson equation with mixed boundary conditions, when using two high-order over-
sampled RBF-FD methods. Black arrows correspond to locations where the Neumann
boundary condition was imposed.

III to solve an elastic model over a two-dimensional slice of a thoracic di-
aphragm geometry obtained from a 3D computerized tomography (CT) scan,
where the geometry is displayed in Figure 5.1.

Figure 5.3. A conforming node set X with skewed stencils (left) and a non-conforming
node set X with less skewed stencils (right).
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6. Shock-stabilized radial basis function
methods for solving time-dependent
nonlinear conservation laws

Time-dependent PDE problems of type (2.2), where the flux F is nonlinear and
does not contain any viscous forces, are difficult to solve numerically, as their
exact solutions become discontinuous as t → ∞. The discontinuities are also
referred to as shocks. When solutions which include shocks are approximated
by means of, at least locally continuous, cardinal basis functions, such as the
ones defined in Section 3, then the approximation exhibits oscillations over the
shock, see Figure 6.1. The oscillations do not vanish as h → 0. This numerical
effect is in the literature referred to as the Gibbs phenomenon [30]. To damp

Figure 6.1. Numerical piecewise continuous approximation of a discontinuous func-
tion exhibiting the Gibbs phenomenon (left). A corresponding exact discontinuous
function (right).

the oscillations across a shock, von Neumann and Richtmyer in 1950 [71]
supplemented the PDE problem (2.2) with an artificial viscosity term. The
PDE problem then became:

∂tu(y, t) =−∇ ·F(u(y, t), t)+∇ · (γ∇u(y, t)), (6.1)

with appropriate boundary conditions and initial conditions. In the limit γ → 0,
the solution of (6.1) converges to the exact solution of (2.2). When γ > 0
is fixed, then the solution of (6.1) is called a viscous solution. One of the
possibilities to choose γ that makes the viscosity term to vanish as h → 0 is
γ = γUW, where γUW is referred to as first-order viscosity parameter defined
by:

γUW(xi, tn) =
1
2

hloc(xi)
√

(F ′
1(u(xi, tn), tn))2 +(F ′

2(u(xi, tn), tn))2. (6.2)
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Here hloc(xi) is the minimum pairwise distance among the set of the 5 points
closest to xi. The h-dependence makes the artificial viscosity term vanish to
0 as h → 0. The effect of the first-order artificial viscosity operator is that
it diffuses the solution throughout the computational domain, and not only
in the regions with shocks. While this is sufficient to stabilize the Gibbs phe-
nomenon, it can lead to a loss of relevant waves in the numerical solution when
h is fixed, for example a contact discontinuity or a rarefaction. A possibility to
localize the action of the viscosity term only to regions that contain shocks, is
to modify γ according to a residual-based artificial viscosity (RV) term [53].
In each time step, and at each point xi ∈ X , γ is:

γ(xi, tn+1) = min(γRV(xi, tn), γUW(xi, tn)) , n = 2,3, ...
γ(xi, tn+1) = γUW(xi, tn), n = 1.

(6.3)

Here γUW is already defined in (6.2). The coefficient γRV is defined by:

γRV(xi, tn+1) =CRV h2
loc(xi)max

y j∈Ki
|R(y j, tn)| 1

n(xi, tn)
, (6.4)

where n(xi, tn) is a normalization term, CRV is a user-defined O(1) constant,
Ki is a Voronoi cell centered around xi, and R(y j, tn) is the PDE residual eval-
uated at y j ∈ Y . The PDE residual is a shock indicator: the residual values
are expected to be very large in the regions of shocks, where the numerical
solution has an overshoot, but very small in the regions where the solution
is smooth. The viscosity coefficient γ from (6.3) is then set to a very small
number in the smooth regions, and to γUW in the regions with shocks, which
is desired. RV has its roots in the finite element community. At first, it was

The KPP problem: viscosity coefficients

Figure 6.2. The images display the spatial variation of the first-order viscosity coeffi-
cient γUW (left), and the viscosity coefficient γ = min(γUW,γRV) (right) when solving
the Kurganov-Petrova-Popov problem.

used to improve the stabilization effects of the streamline diffusion stabiliza-
tion method in [36]. In [53] the streamline diffusion terms were removed and
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only the RV term was kept. That provided a sufficient stabilization effect in
practice [54]. In [53] the RV stabilization framework was also proven to stabi-
lize numerical solutions with shocks, when the numerical solution comes from
a finite element space, and where the numerical solution is advanced in time
by an implicit time stepping algorithm.

In Paper V we stabilize the RBF-FD solutions to nonlinear hyperbolic time-
dependent problems by using the RV term to localize the effect of the artifi-
cial viscosity term to regions with shocks. We solve a number of benchmark
problems, where the governing PDEs are: Burger’s equation, the Kurganov-
Petrova-Popov (KPP) problem, and the Euler system of equations. An exam-
ple of the spatial variation of the viscosity coefficients γUW (6.2) and γ (6.3)
are given in Figure 6.2. The displayed coefficients correspond to the numerical
solution of the KPP problem from Figure 6.3.

The KPP problem: stabilized numerical solution

First-order viscosity RV

Figure 6.3. A numerical solution to the Kurganov-Petrova-Popov problem from a top
perspective (first row) and a side perspective (second row), when two different shock
stabilizations are added to the oversampled RBF-FD discretization.
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7. Towards the simulation of a thoracic
diaphragm

The thoracic diaphragm is the muscle that drives the respiratory system of a
human being. The action of the diaphragm affects the volume of the thorax
cavity, such that the lungs can inflate and deflate, enabling a human to breathe.
The diaphragm geometry is a thin volume which is also highly non-convex
(see Figure 7.1). One of the goals of the present thesis is to develop compu-

Figure 7.1. A reconstructed diaphragm geometry displayed from two different angles.
The colors over the surface represent a sinusoidal scalar field.

tational methods that can solve a mathematical (PDE) model defined over the
diaphragm geometry. A wider context is to enable medical researchers to per-
form computational studies on ventilator induced diaphragm disease (VIDD)
[48]. VIDD can many times occur as a secondary disease while a patient is
mechanically ventilated in an intensive care unit due to some primary disease,
such as for example an infection with covid-19. It is important that com-
putational studies are performed using methods that are robust and accurate,
but the methods also have to be computationally inexpensive, so that the re-
searchers can continuously modify physiological parameters of the model and
quickly obtain a new computational result. High-order methods are a resource
for improving the computational cost. Their benefit is that they give numerical
solutions with a given accuracy for a smaller computational cost, compared to
low-order methods. A requirement for high-order methods to be applicable
is, however, that the PDE model has sufficiently smooth data such as: the
forcing data, the boundary condition data and the boundary of the computa-
tional domain. Most common problems in solid mechanics do not have data
and boundary conditions with a sufficient smoothness. For example, a linear
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elasticity problem in displacement form:

−μ∇2u− (λ +μ)∇(∇ ·u) = f on Ω, (7.1)

is equipped by displacement boundary conditions and traction boundary con-
ditions, imposed on two disjoint parts of ∂Ω:

u = g on ∂Ω0,([
λ (∇ ·u) I +μ

(
(∇u)T +∇u

)]
·n
)
= h on ∂Ω1.

(7.2)

Here ∂Ω = ∂Ω0 ∪∂Ω1, u is a vector of displacements, n is the outwards nor-
mal from Ω, the coefficients λ ,μ are the elastic Lamé parameters, and I is an
identity matrix. An equivalent, more compact, form of the mixed boundary
conditions (7.2) is:

uκ0 +
([

λ (∇ ·u) I +μ
(
(∇u)T +∇u

)]
·n
)

κ1 = gκ0 +hκ1 on ∂Ω,

where κ0,κ1 are discontinuous coefficients such that κ0 = 1 on ∂Ω0 and κ0 =
0 on ∂Ω1, while κ1 = 0 on ∂Ω0 and κ1 = 1 on ∂Ω1. If we construct the
coefficients κ0 and κ1 such that they have a smooth transition between 0 and
1, then we can leverage high-order convergence to improve the computational
cost. Here we also have to assure that the boundary functions g and h are
sufficiently smooth at each point of ∂Ω0 and ∂Ω1, and that the forcing function
f from (7.1) is smooth over the whole Ω, and also that the representation of
∂Ω is smooth. Smoothing of data can introduce modeling errors, however,
in the diaphragm case, the real problem already entails smooth data, which
additionally justifies smoothing of the data used in the computational model.

In Paper III we used an unfitted RBF-FD method to solve a linear elastic
problem on a two-dimensional slice of the diaphragm (Figure 5.1). The slice
was extracted from a real 3D CT scan. We developed a framework by which
we constructed smooth κ0 and κ1, smoothed the boundary data functions f and
g, smoothed the boundary of the 2D diaphragm geometry, solved two model
test cases, and observed high-order convergence of the numerical solution to a
reference solution obtained by the finite element method.
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8. Final discussion

Throughout the present thesis, we use PDE discretizations that utilize an over-
sampled approach. This provides control over the stability properties of the
RBF methods that are applied to stationary PDE problems and time-dependent
PDE problems. Admittedly, controlling the stability properties through over-
sampling is suboptimal, as a large number of evaluation points have to be
employed to make the solutions stable, especially for time-dependent (nearly)
hyperbolic PDE problems. Using quadrature rules exact for integrating car-
dinal basis functions, instead of employing oversampling, would have been
much better from a stability perspective, as the stability estimates would never
entail a spurious integration error term. The latter is a clear advantage of fi-
nite element methods for example. However, a mesh is required to construct
such quadrature rules which is — in the meshfree community — many times
avoided to keep the method implementation simple. In this sense, the oversam-
pled type of discretizations is an excellent middle ground between the colloca-
tion framework, where it is not possible to control the stability properties with-
out adding additional stabilization terms, and the fully variational framework
employing quadrature rules. Oversampled discretizations also allow a theo-
retical insight into the stability properties by employing a variational point of
view. The variational point of view, for example, enabled us to investigate why
RBF-FD methods are not stable by construction when solving a linear time-
dependent hyperbolic PDE with a smooth initial condition. The oversampling
approach also made it possible to develop an unfitted RBF-FD method with
significant simplifications of the node placing over the computational domain
and an improved approximation error near the boundary of the domain. On the
other hand, it is vital to acknowledge that collocated RBF discretizations have
been successfully used for many applications in the last decades. Collocation
methods are also computationally cheaper, especially when they are used for
time-dependent PDE problems. To conclude, oversampled RBF methods link
to a theoretical framework with controllable stability properties, are therefore
easier to motivate in terms of their relevance to the scientific computing com-
munity, and can perform better compared with the basic collocation methods
when discretizing PDEs that entail derivative-type boundary conditions, a sce-
nario faced many times in solid mechanics and fluid mechanics.
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Sammanfattning på svenska

Partiella differentialekvationer (PDE) beskriver komplexa fenomen i verklig-
heten såsom väderförändringar, deformation av olika objekt, prisutvecklingen
på finansmarknaden och den ömsesidiga påverkan mellan vätskor och solida
föremål. Lösningarna till PDE:er används ofta för att öka förståelsen av dessa
fenomen och även som ett verktyg för att göra tekniska förbättringar av kon-
sumentprodukter. I den här avhandlingen, utvecklar vi numeriska metoder för
att lösa PDE:er med hjälp av datorer. Fokus ligger på radiella basfunktions-
metoder (RBF) som uppskattas för sin höga noggrannhet och för att de är lätta
att implementera i högre dimensioner, men som ibland kan ha problem med
den numeriska stabiliteten. För att kringgå stabilitetsproblemen använder vi
ett översamplat ramverk för att diskretisera PDE:er i motsats till det mer van-
ligen använda kollokationsramverket. Genom hela avhandlingen använder vi
huvudsakligen den RBF-genererade finita differensmetoden (RBF-FD), men
vi använder också en RBF-enhetsuppdelningsmetod (RBF-PUM) och Kansas
globala RBF-metod i en del av avhandlingen. De två första metoderna är
lokala i den meningen att de underliggande diskretiseringsmatriserna är glesa,
medan den tredje metoden är global, vilket leder till fyllda diskretiserings-
matriser. I Paper I förbättrar vi stabilitetsegenskaperna för RBF-FD-metoden
genom översampling vid lösning av ett elliptiskt modellproblem med randvil-
lkor av derivatatyp samt genomför en teoretisk analys. I Paper II utvecklar vi
en oanpassad RBF-FD-metod och förenklar därmed hanteringen av komplexa
beräkningsområden genom att släppa kravet på att noduppsättningen måste
ansluta till randen av området. Vi tar de första stegen mot en simulering av di-
afragman i Paper III, där vi använder en oanpassad RBF-FD-metod för att lösa
en linjär elastisk PDE och använder datautjämning för att kunna åtnjuta högre
ordningens konvergens i den numeriska lösningen. I Paper IV utforskar vi sta-
bilitetsegenskaperna hos RBF-FD-metoden, Kansas metod och RBF-PUM när
de tillämpas på en linjär tidsberoende hyperbolisk PDE. Vi finner att Kansas
metod och RBF-PUM kan bli stabila under tillräcklig översampling av ekva-
tionssystemet. Å andra sidan förhindrar den otillräckliga kontinuiteten hos den
numeriska lösningen att RBF-FD-metoden blir stabil i tiden, oavsett översam-
pling. I Paper V använder vi ett residualviskositetsstabiliseringsramverk för
att lokalt stabilisera Gibbs fenomen som finns i RBF-FD-lösningarna till olin-
jära tidsberoende konserveringslagar med stötar såsom kompressibla Eulers
ekvationer.

Genom hela avhandlingen använder vi PDE-diskretiseringar som använ-
der ett översamplat tillvägagångssätt. Detta ger kontroll över stabilitetsegen-
skaperna hos RBF-metoderna, som tillämpas på stationära PDE-problem och
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tidsberoende PDE-problem. Visserligen är det suboptimalt att kontrollera sta-
bilitetsegenskaperna genom översampling, eftersom många evalueringspunk-
ter måste användas för att göra lösningarna stabila, särskilt för tidsberoende
(nästan) hyperboliska PDE-problem. Att använda exakt integration istället för
översampling skulle ha varit mycket bättre ur ett stabilitetsperspektiv, eftersom
stabilitetsuppskattningarna inte skulle innehålla en integrationsfelterm. Det
senare är en tydlig fördel med till exempel finita elementmetoder. Emellertid
krävs ett nät för att konstruera en exakt integration, vilket—bland forskare som
arbetar med nätfria metoder—många gånger undviks för att göra metodimple-
menteringen enkel. I det avseendet är den översamplade typen av diskretis-
eringar en utmärkt kompromiss mellan kollokationssramverket, där det inte
är möjligt att kontrollera stabilitetsegenskaperna utan att lägga till ytterligare
stabiliseringsvillkor, och variationsramverket med exakt integration. Över-
samplade diskretiseringar tillåter också en teoretisk insikt i stabilitetsegen-
skaperna genom att anlägga ett variationsperspektiv. Variationsperspektivet
gjorde det till exempel möjligt för oss att undersöka varför RBF-FD-metoder
inte är stabila genom sin konstruktion när man löser en linjär tidsberoende hy-
perbolisk PDE med ett glatt initialtillstånd. Översamplingsmetoden gjorde det
också möjligt att utveckla en oanpassad RBF-FD-metod med betydande fören-
klingar av nodpunkternas placering över beräkningsområdet och ett förbättrat
approximationsfel nära områdets rand. Å andra sidan är det viktigt att un-
derstryka att kollokerade RBF-diskretiseringar har använts framgångsrikt för
många tillämpningsproblem under de senaste decennierna. Kollokationsme-
toder är också beräkningsmässigt billigare, speciellt när de används för tids-
beroende PDE-problem. Sammanfattningsvis, översamplade RBF-metoder är
kopplade till ett teoretiskt ramverk med kontrollerbara stabilitetsegenskaper
och är därför lättare att motivera när det gäller deras relevans för det beräkn-
ingsvetenskapliga området och kan prestera bättre jämfört med de grundläg-
gande kollokationsmetoderna vid diskretisering av PDE:er som har randvil-
lkor av derivatatyp, ett scenario som är vanligt inom solidmekanik och fluid-
mekanik.
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[33] Vanja Hatić, Boštjan Mavrič, Nejc Košnik, and Božidar Šarler. Simulation of
direct chill casting under the influence of a low-frequency electromagnetic field.
Appl. Math. Model., 54:170–188, 2018.

[34] Armin Iske. On the approximation order and numerical stability of local
Lagrange interpolation by polyharmonic splines. In Modern developments in
multivariate approximation, volume 145 of Internat. Ser. Numer. Math., pages
153–165. Birkhäuser, Basel, 2003.

[35] Mozhgan Jabalameli and Davoud Mirzaei. A weak-form RBF-generated finite
difference method. Comput. Math. Appl., 79(9):2624–2643, 2020.

[36] Claes Johnson, Anders Szepessy, and Peter Hansbo. On the convergence of
shock-capturing streamline diffusion finite element methods for hyperbolic
conservation laws. Math. Comp., 54(189):107–129, 1990.

[37] Edward J. Kansa. Application of Hardy’s multiquadric interpolation to
hydrodynamics. NASA STI/Recon Technical Report N, October 1985.

[38] Edward J. Kansa. Multiquadrics—a scattered data approximation scheme with
applications to computational fluid-dynamics. I. Surface approximations and
partial derivative estimates. Comput. Math. Appl., 19(8-9):127–145, 1990.

[39] Edward J. Kansa. Multiquadrics—a scattered data approximation scheme with
applications to computational fluid-dynamics. II. Solutions to parabolic,
hyperbolic and elliptic partial differential equations. Comput. Math. Appl.,
19(8-9):147–161, 1990.

[40] Katharina Kormann and Elisabeth Larsson. A Galerkin radial basis function
method for the Schrödinger equation. SIAM J. Sci. Comput.,
35(6):A2832–A2855, 2013.

[41] Katharina Kormann, Caroline Lasser, and Anna Yurova. Stable interpolation
with isotropic and anisotropic gaussians using hermite generating function.
SIAM J. Sci. Comput., 41(6):A3839–A3859, 2019.

[42] Ting-On Kwok and Leevan Ling. On convergence of a least-squares Kansa’s
method for the modified Helmholtz equations. Adv. Appl. Math. Mech.,
1(3):367–382, 2009.

[43] Elisabeth Larsson and Bengt Fornberg. Theoretical and computational aspects
of multivariate interpolation with increasingly flat radial basis functions.
Comput. Math. Appl., 49(1):103–130, 2005.

[44] Elisabeth Larsson, Erik Lehto, Alfa Heryudono, and Bengt Fornberg. Stable
computation of differentiation matrices and scattered node stencils based on
Gaussian radial basis functions. SIAM J. Sci. Comput., 35(4):A2096–A2119,
2013.

[45] Elisabeth Larsson, Victor Shcherbakov, and Alfa Heryudono. A least squares
radial basis function partition of unity method for solving PDEs. SIAM J. Sci.
Comput., 39(6):A2538–A2563, 2017.

[46] Damiana Lazzaro and Laura B. Montefusco. Radial basis functions for the
multivariate interpolation of large scattered data sets. In Proceedings of the 9th
International Congress on Computational and Applied Mathematics (Leuven,

46



2000), volume 140, pages 521–536, 2002.
[47] Cheng-Feng Lee, Leevan Ling, and Robert Schaback. On convergent numerical

algorithms for unsymmetric collocation. Adv. Comput. Math., 30(4):339–354,
2009.

[48] Monica Llano-Diez, Guillaume Renaud, Magnus Andersson, Humberto
Gonzales Marrero, Nicola Cacciani, Henrik Engquist, Rebeca Corpeño,
Konstantin Artemenko, Jonas Bergquist, and Lars Larsson. Intensive care unit
muscle wasting : mechanisms and intervention strategies. Critical Care,
16:R209, 2012.

[49] Nathaniel H. Mathews, Natasha Flyer, and Sarah E. Gibson. Solving 3d
magnetohydrostatics with rbf-fd: Applications to the solar corona, 2021.

[50] Charles A. Micchelli. Interpolation of scattered data: distance matrices and
conditionally positive definite functions. Constr. Approx., 2(1):11–22, 1986.

[51] Slobodan Milovanović and Lina von Sydow. A high order method for pricing of
financial derivatives using radial basis function generated finite differences.
Math. Comput. Simulation, 174:205–217, 2020.

[52] Francis J. Narcowich and Joseph D. Ward. Norms of inverses and condition
numbers for matrices associated with scattered data. J. Approx. Theory,
64(1):69–94, 1991.

[53] Murtazo Nazarov. Convergence of a residual based artificial viscosity finite
element method. Comput. Math. Appl., 65(4):616–626, 2013.

[54] Murtazo Nazarov and Johan Hoffman. Residual-based artificial viscosity for
simulation of turbulent compressible flow using adaptive finite element
methods. Internat. J. Numer. Methods Fluids, 71(3):339–357, 2013.

[55] Charles S. Peskin. Flow patterns around heart valves. In Proceedings of the
Third International Conference on Numerical Methods in Fluid Mechanics
(Univ. Paris VI and XI, Paris, 1972), Vol. II, pages 214–221. Lecture Notes in
Phys., Vol. 19, 1973.

[56] Ulrika Pettersson, Elisabeth Larsson, Gunnar Marcusson, and Jonas Persson.
Improved radial basis function methods for multi-dimensional option pricing. J.
Comput. Appl. Math., 222(1):82–93, 2008.

[57] Robert Schaback. Error estimates and condition numbers for radial basis
function interpolation. Adv. Comput. Math., 3(3):251–264, 1995.

[58] Robert Schaback. Convergence of unsymmetric kernel-based meshless
collocation methods. SIAM J. Numer. Anal., 45(1):333–351, 2007.

[59] Varun Shankar. The overlapped radial basis function-finite difference (RBF-FD)
method: a generalization of RBF-FD. J. Comput. Phys., 342:211–228, 2017.

[60] Victor Shcherbakov. Radial basis function partition of unity operator splitting
method for pricing multi-asset American options. BIT, 56(4):1401–1423, 2016.

[61] Donald Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM National
Conference, ACM ’68, page 517–524, New York, NY, USA, 1968. Association
for Computing Machinery.

[62] Stanislav Simonenko, Víctor Bayona, and Manuel Kindelan. Optimal shape
parameter for the solution of elastostatic problems with the RBF method. J.
Engrg. Math., 85:115–129, 2014.

[63] Jure Slak and Gregor Kosec. Adaptive radial basis function-generated finite

47



differences method for contact problems. Internat. J. Numer. Methods Engrg.,
119(7):661–686, 2019.

[64] Simon Sticko, Gustav Ludvigsson, and Gunilla Kreiss. High-order cut finite
elements for the elastic wave equation. Adv. Comput. Math., 46(3):Paper No.
45, 28, 2020.

[65] Vidar Stiernström, Lukas Lundgren, Murtazo Nazarov, and Ken Mattsson. A
residual-based artificial viscosity finite difference method for scalar
conservation laws. J. Comput. Phys., 430:110100, 2021.

[66] Andrei I. Tolstykh. On using RBF-based differencing formulas for unstructured
and mixed structured-unstructured grid calculations. In Proceedings of the 16th
IMACS World Congress on Scientific Computation, Applied Mathematics and
Simulation, Lausanne, Switzerland, 2002.

[67] Andrei I. Tolstykh and D. A. Shirobokov. On using radial basis functions in a
“finite difference mode” with applications to elasticity problems. Comput.
Mech., 33(1):68–79, 2003.

[68] Igor Tominec. Rectangular and square RBF-FD matrices in MATLAB.
https://github.com/IgorTo/rbf-fd, 2021.

[69] Siraj ul Islam, Rrobert Vertnik, and Božidar Šarler. Local radial basis function
collocation method along with explicit time stepping for hyperbolic partial
differential equations. Appl. Numer. Math., 67:136–151, 2013.

[70] Robert Vertnik and Božidar Šarler. Simulation of continuous casting of steel by
a meshless technique. International Journal of Cast Metals Research,
22(1-4):311–313, 2009.

[71] John Von Neumann and Robert D. Richtmyer. A method for the numerical
calculation of hydrodynamic shocks. J. Appl. Phys., 21:232–237, 1950.

[72] Holger Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Adv. Comput. Math.,
4(4):389–396, 1995.

[73] Holger Wendland. Meshless Galerkin methods using radial basis functions.
Math. Comp., 68(228):1521–1531, 1999.

[74] Holger Wendland. Fast evaluation of radial basis functions: methods based on
partition of unity. In Approximation theory, X (St. Louis, MO, 2001), Innov.
Appl. Math., pages 473–483. Vanderbilt Univ. Press, Nashville, TN, 2002.

[75] Grady B. Wright, Natasha Flyer, and David A. Yuen. A hybrid radial basis
function-pseudospectral method for thermal convection in a 3-d spherical shell.
Geochemistry Geophysics Geosystems, 11, 2010.

[76] Grady B. Wright and Bengt Fornberg. Stable computations with flat radial basis
functions using vector-valued rational approximations. J. Comput. Phys.,
331:137–156, 2017.

[77] G Yang, DM Causon, DM Ingram, R Saunders, and P Battent. A cartesian cut
cell method for compressible flows part a: Static body problems. The
Aeronautical Journal, 101(1002):47–56, 1997.

[78] Hui Zheng, Chuanzeng Zhang, Yuesheng Wang, Jan Sladek, and Vladimir
Sladek. A meshfree local RBF collocation method for anti-plane transverse
elastic wave propagation analysis in 2D phononic crystals. J. Comput. Phys.,
305:997–1014, 2016.

48





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2142

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-472096

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2022


	Abstract
	List of papers
	Contents
	1. Introduction
	1.1 Interpolation using radial basis functions with global support
	1.2 An overview of partial differential equation discretizations using radial basis functions
	Discretizations of partial differential equations using radial basis functions with global support
	Discretizations of partial differential equations using radial basis functions restricted to local supports

	1.3 Stabilization challenges in the radial basis function methods
	Stabilization of the radial basis function interpolants in the flat limit ε → 0
	Augmentation of radial basis function interpolants using polynomials
	Stabilization of radial basis function methods applied to time-dependent hyperbolic partial differential equations

	1.4 Applications addressed using radial basis function methods
	1.5 Novel contributions of the present thesis

	2. Partial differential equation models
	3. Constructing an RBF function space
	3.1 Kansa’s global RBF method
	3.2 The RBF partition of unity method (RBF-PUM)
	3.3 The RBF-generated finite difference (RBF-FD) method
	3.4 Regularity of the cardinal basis functions, and the associated function spaces

	4. Collocated and oversampled discretizations of PDEs
	4.1 Discretization of a stationary PDE problem
	4.2 Discretization of a time-dependent PDE problem
	4.3 Properties of the oversampled PDE discretizations from a variational point of view
	4.4 Benefits when using an oversampled discretization over a collocated discretization, from a numerical point of view

	5. Unfitted radial basis function methods for solving PDEs
	6. Shock-stabilized radial basis function methods for solving time-dependent nonlinear conservation laws
	7. Towards the simulation of a thoracic diaphragm
	8. Final discussion
	Acknowledgments
	Sammanfattning på svenska
	References



