

Civilingenjörsprogrammet i teknisk fysik

Uppsal a universitets l ogotyp

UPTEC F 22002

Examensarbete 30 hp

Januari 2022

Embedded GUI Library
Development

Sofia Dreborg
Civilingenj örspr ogrammet i teknisk fysik

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala

Handledare: Johan Sundqvist Ämnesgranskare: Uwe Zimmermann

Examinator: Tomas Nyberg

Uppsal a universitets l ogotyp

Embedded GUI Library Development

Sofia Dreborg

Abstract

This project aimed to create a simple open-source embedded graphical user interface library

that could be used on more or less any microcontroller platform. The programming language

was intended to be C++ for the GUI but as the project evolved C was chosen above C++. This

was a decision based primarily on the fact that STM's development environment, STMCubeIDE,

is less compatible with C++. The IDE offers great hardware support which in the end was more

important than the advantages given by C++.

The hardware used in this project was an STM32F469 microcontroller. It has an ARM Cortex

M4 processor core and 2 Mbyte of flash memory and 384 Kbytes of RAM. Wrapper functions for

the Board Support Package, BSP, were written as a part of the library to allow easy access to

the BSP needed for the hardware configuration.

The first part of the project goal was achieved, a simple GUI library was created. The resulting

GUI library supports user interaction through buttons, it can display the current time and

visualizes given data in graphs. The graph function can display the data live, as a scatter plot, a

bar plot and a line plot. The library also supports an alarm function that allows the user to

decide what will happen after the alarm time is up. However, even though the GUI library was

written to be device-independent, the product has not been tested on other platforms.

For further development, this GUI library could be tested on another microcontroller. This would

provide answers to how much software changes are needed to make the product as hardware

independent as possible. To make the library lighter and faster, there is a possibility of

optimizing the GUI core.
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . Utgivningsort U ppsal a. H andl edare: Johan Sundqvis t, Ämnesgranskare: Uwe Zimmerm ann, Examinator: Tom as Nyberg

Populärvetenskaplig sammanfattning
Grafiska användargränssnitt är idag integrerade i alla delar av samhället. De an-
vänds i allt från persondatorer och mobiltelefoner till inbyggda system i industrin.
Användargränssnitten vi ser är inte bara estetiskt tilltalande utan även homogena
i utseendet och enkla att använda. I takt med att tekniken blir allt mer komplex
ökar kraven och förväntningarna från allmänheten på enkla och tilltalande gränss-
nitt som gör det lätt och intuitivt att använda avancerad teknik.

Grafiska användargränssnitt har använts i industrin länge även om dessa gränssnitt
ofta har haft ett enklare utseende än ett gränsnitt för kommersiellt bruk. Kraven
på användarens upplevelse har varit lägre då tekniken i industrin främst är ett
hjälpmedel för de industrianställda. En interaktiv display inom industrin presen-
terar ofta viss data på ett mycket tydligt och avskalat vis, till skillnad från till
exempel en mobiltelefon där kunden ibland kräver att användargränssnittet inte
bara är tydligt utan även estetiskt tilltalande och responsivt. [15]

De flesta som arbetar med mjukvaruutveckling använder externa bibliotek dagli-
gen. Dessa bibliotek kan exempelvis vara samlingar av funktioner skapade av ett
programmeringsspråks grundfunktioner och bidrar till att påbygga språket inom
ett visst område. Speciellt inom utveckling av inbyggda system är det viktigt
att lämna ett så litet avtryck som möjligt i både arbetsminne och programminne
vilket leder till att bibliotek tjänar på att vara så oberoende som möjligt av an-
dra bibliotek. Detta benämns ofta som att vara fri från dependencies. Det här
projektet hade som avsikt att bygga ett enkelt GUI-bibliotek från grunden och
publicera det som öppen källkod. Tanken med biblioteket var även att det skulle
kunna användas på olika typer av hårdvara.

Biblioteket består av en fil innehållande alla kärnfunktioner som styr hur inter-
aktionen med användaren sker, samt flera så kallade widgets. Widget betyder
gränssnittskomponent och det är helt enkelt funktioner som utför en viss uppgift.
Ett exempel är plotfunktionen som visar data på skärmen i grafer. Hårdvaran som
används i projektet är en Discovery board från STMicroelectronics. Kortet har en
32-bitars mikrokontroller och en inbyggd 4.3" LCD display med pekskärm.

Det resulterande biblioteket uppfyller det första projektmålet och kan visa data
grafiskt på LCD-displayen, visa vad klockan är och interagera med användaren
genom knappar. Biblioteket är oberoende av externa bibliotek och bygger på det
nödvändiga abstraktionslagret mellan mjuk och hårdvara. Mer finns dock att ön-
ska av slutprodukten där den mest uppenbara förbättringspunkten är att testa
biblioteket på en annan plattform och modifiera koden för att göra den mer hård-

varuoberoende. Utöver att undersöka portabiliteten kan GUI-kärnan med fördel
optimeras för att göra bilblioteket lättare och snabbare.

Acknowledgements
I would like to thank several people who in one way or another have been involved
in this master’s thesis. Firstly I would like to thank my brilliant supervisor Johan
Sundqvist, for your support, encouragement and patience. Your great knowledge
of embedded development together with your willingness to teach has been a great
asset to me. I could not have done this without you.

Secondly I would like to thank Uwe Zimmermann, my subject reader, for great
support along the way, always being available for questions. Thirdly, I would like
to thank Mattias Abelsson, my group manager at Knightec, for showing interest
and continuously making sure I had everything I needed.

I also want to thank my friends and family for supporting me both through this
thesis and through the almost 6 years of study that predeceased it. Special thanks
to my partner August Forsman, not only for excellent daily support but for a
heroic rescue of my laptop and microcontroller when I accidentally dropped my
bag in the ocean.

List of Abbreviations
ADC - Analog-to-Digital Converter
AHB - Advanced High-performance Bus
APB - Advanced Peripheral Bus
BSP - Board Support Package
DAC - Digital-to-Analog Converter
GPIO - General-Purpose Input/Output
GPL - GNU General Public License
GUI - Graphical User Interface
HAL - Hardware Abstraction Layer
I/O - Input/Output
IC - Integrated Circuit
I2C - Inter-Integrated Circuit
LCD - Liquid-Crystal Display
LGPLv3 - GNU Lesser General Public License version 3
PWM - Pulse Width Modulation
RNG - Random Number Generator
RTC - Real-Time Clock
SPI - Serial Peripheral Interface
stderr - Standard Error Stream
TFT - Thin-Film-Transistor

Contents
1 Introduction 1

1.1 Problem formulation . 1

2 Background 2
2.1 Design aspects . 2
2.2 Choice of programming language 3
2.3 Embedded GUI libraries that already exist 3

3 Theory 5
3.1 Liquid Crystal Displays - LCD . 5
3.2 Touch displays . 6
3.3 Memory . 6
3.4 STM32 . 8
3.5 Board Support Package - BSP . 9
3.6 Graphical user interface - GUI . 11
3.7 Portability . 14

4 Method 16
4.1 The GUI core . 16
4.2 Graphics and BSP drivers . 19
4.3 The GUI widgets . 19
4.4 The demo implementation . 22

5 Result 24
5.1 Graphics and BSP drivers . 24
5.2 GUI widgets . 24
5.3 GUI demo application . 27

6 Discussion and further development 29
6.1 Portability . 29
6.2 Risk assessment . 30
6.3 Optimization of the GUI core . 30
6.4 Develop the GUI layer function . 31
6.5 Layout and scaling . 32
6.6 Widget development . 32

7 Conclusion 33

1 Introduction
Today we assume that all interaction between humans and machines will happen
effortlessly. The old way of manually controlling a machine through a complex
Human Machine Interface, HMI, is replaced by touchscreens displaying advanced
graphics. The pace of development is fast and people now demand these kinds
of accessible interfaces for all applications. To meet this demand, knowledge and
experience of Graphical User Interfaces, GUIs, is not only necessary for smartphone
developers but for developers of embedded industrial applications in all areas where
the human and the machine interact.

1.1 Problem formulation

The aim of this project is to create a GUI library that can be used on more or less
any microcontroller platform. The hardware used in the development process will
be a discovery board with an STM32F469 microcontroller from STMicroelectron-
ics. The microcontroller has been chosen both because of the relatively generous
amount of memory and because of its ARM Cortex-M processor architecture. The
processor is commonly used in several industries so the platform is a good repre-
sentation of the kind of hardware the GUI could operate on. [9]

The primary goal is to make a lightweight GUI library that is simple but efficient.
The library should support simple functions such as displaying the current time
and user data on the screen. Additionally, functions that allow the user to display
data live are preferable since it is a required feature when using a GUI for mon-
itoring purposes. An ideal portable library is completely platform-independent,
which means that the library can be used on any platform. Instead of trying to
make such a library, a delimitation of the project is made to suit its scope. The
goal will instead be to create a library that can be ported from one microcontroller
platform to another. The GUI library is intended for industrial applications rather
than home devices and consumer electronics.

The objectives can be summarized in the following thesis goals:

1. To create a simple GUI library that is independent of external libraries.

2. To design this library so that it can be used on more or less any microcon-
troller platform.

1

2 Background
STMicroelectronics, STM, is a company that is enthusiastic about embedded GUIs
and has introduced a concept called HMI of things. An HMI in this context can
be both a GUI, voice control, a touch screen as well as gesture and VR. The
development of these techniques will meet the demand from society for a better
user experience in all applications. In addition to an improved user experience,
there is a belief that this will contribute to safer data management. [7]

2.1 Design aspects

A product that will be used in the industry usually has fewer requirements re-
garding layout and more connected to reliability and readability. A product that
is intended for a home needs to blend in with the environment and hence needs
a more elegantly designed user interface. Since this GUI library is addressing the
industry as the end customer, a user that handles the final embedded application
including this GUI library, usually has a little more experience with technology
than the average person. This might make them more forgiving, to some extent,
if the user interface is not perfect. One of the fundamental differences between a
GUI for a smartphone and a GUI for other embedded devices is that the smart-
phone is updated several times a year while the embedded device often is left
untouched for several years. Hence, the design choices tend to differ when design-
ing an embedded GUI. For other implementations, current design trends could be
important to take into consideration, but for a GUI that is intended for an embed-
ded device the durability of the design over time could be a much better focus. [12]

Another thing to take into consideration is whether or not the end product, in
this context meant an embedded device that has the GUI implemented, will be
stationary or portable. A portable device is less sensitive to font size since the
user can move the screen closer to his or her eyes if the font size is too small. If
the font size should be changeable for the end-user, i.e. the one interacting with
a device that has the GUI implemented, it is important to make this task easy
to make the customer experience enjoyable and avoid unnecessary irritation. It
is nevertheless important to let the developer using the library have easy access
to the font size tools to enable customized applications and broaden the library’s
field of application.

Several embedded GUIs exist on the market that already fulfills the requirement
specified above and this project will not reinvent the wheel. However, under-
standing and writing GUIs for embedded applications is a useful competence since
good-looking, easy-to-use GUIs are crucial for many technical areas.

2

2.2 Choice of programming language

The original strategy was to use C++ for the GUI software and C for all the
hardware configuration files. C++ is fairly low level but still object-oriented which
makes it suitable for an embedded GUI. However, the IDE used, STMCubeIDE,
did not support C++ to the same extent as it supports C when auto-generating
GNU Makefiles with the provided drivers. The IDE is a tool developed by ST
for pure embedded applications and it works best with plain C for all code. The
IDE provides useful hardware support that turned out to be more essential to
the project than keeping C++ for its benefits in being object-oriented. As a
consequence, the choice of programming language fell upon C for both the drivers
and the GUI library. [13]

2.3 Embedded GUI libraries that already exist

Several embedded GUIs exist on the market but the demand for customized simple
GUIs is still present. The three GUI libraries listed below are written in C ++
and all are well suited for different types of embedded graphic design.

• TouchGFX

• Qt

• GuiLite (open source)

TouchGFX is the STM32 family’s own GUI toolkit that enables smartphone-like
GUIs for embedded applications. The toolkit is written in C++ and developed
specifically for STM32 by ST themselves which naturally makes the optimization
for their own hardware hard to compete with. ST describes TouchGFX as a com-
plete graphics software solution. It is memory-optimized and has high performance
that makes it suitable for embedded graphics development. A lot of consideration
has been put into making the software easy to use and it is also free of charge for
all ST customers. ST recommends this tool and also simplifies the development
process by offering support for costumer using TouchGFX together with ST hard-
ware. [2] The RAM footprint of the library is improved and updated continually
and at the time of writing the required internal MCU RAM to allow a simple GUI
is only 16-20KB. [5]

Another famous library is Qt. It is an extensive and popular library written
in C++ that can do advanced user interfaces including both 2D and 3D graphics.
The drawback of this library is its size and that the license is quite expensive.
Qt supports anything from desktop applications to embedded systems and is also
compatible with a wide variety of operating systems like Mac OS, Windows, and

3

Linux as well as smartphone platforms as iOS, Android. It also supports smaller
OS like Embedded Linux, QNX, and VxWorks. [4]

Qt has one commercial license that allows developers to create and distribute
software without limitations set by open source agreement. The library is also
available under GPL and LGPLv3 open source licenses. [17] GPL stands for GNU
General Public License which is a series of free software licenses that guarantee
end users the freedom to run, study, share, and modify the software [18]. LGPLv3
stands for GNU Lesser General Public License version 3 which is an open source
license similar to GPL [19]. The central difference between the two is that it is
allowed to include programs licensed under LGPL in a new program, without the
new program being covered by LGPL [19]. The open source licensing is intended
for students, hobby projects and similar applications where the developer has no
intention to distribute the code [17].

The only GUI library that can be found completely open to the public on GitHub
is the library called GuiLite. It is an open-source lightweight GUI library written
in C++. It is available free on Github and also comes with some support. GuiLite
is licensed under Apache License 2.0 which is described on GitHub as
"A permissive license whose main conditions require preservation of copyright and
license notices. Contributors provide an express grant of patent rights. Licensed
works, modifications, and larger works may be distributed under different terms
and without source code." [6]

4

3 Theory
A GUI differs from an HMI as it requires an interface, which typically is a screen
with or without touch. An HMI can be practically anything that enables the com-
munication between a human and a machine. In this context, the GUI is a way
for a user to interact with the microcontroller through an LCD touchscreen. This
means that the code must be written to handle interaction, not only execute some
sequential predefined pattern.

The main goal is to create an operational GUI and not to optimize the code
for performance. Some optimization may be done at the end of the project, but in
the first stage of the project, the hardware is selected to make it as easy as possible
to start the implementation. The choice fell on a discovery board with a built-in
LCD. The board has an Arm Cortex-M processor architecture which is preferable
since they are commonly used in several industries. [3]

3.1 Liquid Crystal Displays - LCD

LCD stands for liquid crystal display and it is a technique for displays with or
without colour support. The technique dominates the display market and is used
both for computer displays, cell phones as well as embedded devices. The display
is very thin and uses liquid crystal and polarizing filters to render colours. [10]

LCD technology is based on unpolarized light being controlled to the desired in-
tensity by letting it pass through several filters. The first filter is a polarizing filter
and the second layer is a twisted nematic liquid crystal that twists the polarized
beam with 90 degrees. After the twisted nematic liquid crystal, there is a polar-
izing filter that is 90 degrees from the first polarizing filter. Without the nematic
liquid crystal, the beam would be completely blocked by the second polarizing
filter since the light’s vibrations are not aligned with the polarization axis. The
nematic liquid crystal helps the light to change its vibrations by 90 degrees so that
it can pass through the second filter. [10]

The nematic liquid crystal can be changed to let through different amounts of
light by applying a voltage to the twisted nematic liquid crystal. When a volt-
age is applied, the liquid crystal untwists. This means that the beam of light is
stopped by the second filter since its polarization is unchanged and hence can’t pass
through the second polarization filter. By applying different amounts of voltage
to the liquid crystal the amount of light that is let through can be regulated. [10]

To make a colour LCD, every pixel that builds the LCD has three sub-pixels

5

containing a colour filter. The colour filter is placed between the liquid crystal
and the last polarization filter. The technique is called additive RGB since the
colours used are red, green, and blue. By regulating the light passing through each
sub-pixel and combining them, any colour in the 32-bit space can be displayed on
the screen. [10]

3.2 Touch displays

A touchscreen is an electronic subsystem that can detect a user’s touch and trans-
late the information in that touch so that a computer can understand it. All kinds
of touchscreens consist of some variation of these three components: A touch sen-
sor that recognizes a touch, a controller that translates between the sensor and
PC or microcontroller, and a computer interface. [14]

There are two main types of touch screens on the market. Resistive and capaci-
tive touchscreens. Resistive touchscreens are commonly used for counters, vending
machines, and other machines commonly found in public spaces. This screen re-
quires that you press on the screen hard enough to make it bend to trigger a touch
event. This kind of screen is common but it can only handle one touch event at
a time and hence it is not used for advanced applications such as smartphones. [14]

Multiple touch input, zoom and swipes can be done using a capacitive touch-
screen. When a human finger touches a capacitive touchscreen it causes a change
in capacitance. This change in capacitance triggers a touch event signal which
is handled by the software drivers. More about the software drivers in section
3.5. Capacitive touch screens can be divided into projective and surface capacitive
touch screens. Both use the same technique for recognizing a touch event but the
hardware differs. [14]

3.3 Memory

Any embedded system requires three main hardware components: The Central
Processing Unit, CPU, the system memory, and a set of input-output ports. The
system memory can be divided into program memory and data memory. The
program memory stores the software programs and the data memory stores data
that is processed. As in a PC, the software programs are executed by the CPU. [16]

The memory used in an embedded system can be split into storage permanence and
write-ability. Storage permanence means the ability of memory to keep its contents
intact. Write-ability is a classification of how easily these memory contents can
be modified. Storage permanence can be divided further into two sub-categories,

6

volatile and non-volatile. Non-volatile memory means a memory that can keep its
content even when unpowered. Volatile memory means the opposite, the memory
loses its contents when the power is lost. [16]

Three commonly used memory types in microcontrollers are flash memory, SRAM
and EEPROM. The most important memory of all for an embedded system is the
flash memory which is the memory used for the firmware. This memory is usually
read-only and non-volatile to avoid corruption of code or text segments and to
ensure that the executable program is intact even when the power is lost. [16]

In figure 1 the memory distribution of a STM32F469 microcontroller is shown. In

Figure 1: System architecture of STM32F469

the bottom left of the figure, the three SRAM components are grouped together. [1]

Flash

The flash memory is non-volatile, used as program memory and is a subset of
EEPROM. The flash memory can only be erased a block at a time. NOR flash,
as in the NOR logic gate, is the most common kind of flash memory used in
microcontrollers and it can support either word-wise or byte-wise read and write
operations. [16]

7

SRAM

SRAM stands for Static Random Access Memory. The SRAM is volatile memory
where each memory cell consists of 6 transistors. Two of them are used for control
purposes and four are used to store the data. SRAM is used because they are
energy efficient and also easy to use. SRAM has a fast read-and-write speed, hence
the SRAM is used as a cache memory both in computers and in microcontrollers.
Since the memory is volatile all data inside the SRAM will get lost when the power
is turned off. [16]

EEPROM

The EEPROM is a non-volatile memory and stands for Electrically Erasable Pro-
grammable Read-Only Memory. It is possible to erase the data stored in a single
register at a time. Since the EEPROM memory is non-volatile, all data inside the
EEPROM will be stored even when the power is off. [16]

3.4 STM32

The platform used is a discovery board from STMicroelectronics with an STM32F469
microcontroller. The microcontroller has an Arm Cortex-M4 32-bit RISC core
which can operate at a frequency of up to 180 MHz. It has 2 Mbytes of Flash
memory, 384 Kbytes of SRAM and up to 4 Kbytes of backup SRAM. [9]

The device has a large set of IOs and peripherals connected to two Advanced
High-performance Buses, AHB, two Advanced Peripheral Buses, APB, and a 32-
bit multi-AHB bus matrix. The device offers two digital-to-analog converters
(DAC), three 12-bit analog-to-digital converters (ADC), twelve general-purpose
16-bit timers which include two pulse width modulation (PWM) timers for motor
control. It also has a true random number generator (RNG), two general-purpose
32-bit timers, and a low-power real-time clock (RTC). [9]

The discovery board has a built-in 4” touch screen. The LCD has a thin-film-
transistor (TFT) controller. [9]

When the microcontroller is started seven steps are executed regardless of what
task the controller should perform.

1. HW configuration loading

2. Code execution area selection

3. HW stack pointer initialization

8

4. Reset vector fetching

5. SystemInit() function call

6. Memory environment setup

7. Jump to Main()

The first three steps are all purely hardware configuration and the latter involves
software. [12]

3.5 Board Support Package - BSP

The aim is to create a GUI from scratch that is independent of any third-party
code apart from the Hardware Abstraction Layer (HAL). This means that a lot
of code must be written apart from the development of the actual GUI core. The
hardware configurations are extended from the BSP drivers to the GUI files, using
wrapper functions, to enable an easier software update if the platform is changed.

A Board Support Package is a customized operating system for an embedded de-
vice that enables a user to interact with the hardware through written code. The
drivers are composed of several files containing supporting software for particular
part of the hardware. In this project, the STM BSP drivers will be used. They
contribute with a set of high-level APIs relative to the hardware components and
features on the Discovery board.

The wrapper functions works as a link between STMs own BSP drivers and the
GUI files where only the necessary configurations for the GUI library are included.
BSP stands for Board Support Package and the drivers are included in one of the
STM example projects named BSP. Reuse of STM BSP drivers is allowed as long
as their work is acknowledged. Below is the copyright notice that follows with all
software provided by STM.

"Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

9

3. Neither the name of STMicroelectronics nor the names of its contributors
may be used to endorse or promote products derived from this software with-
out specific prior written permission."

The drivers are based on HAL and are delivered with the STMCubeIDE MCU
environment, customized for the selected development board. The link between
HAL and the external components is made independently within the BSP drivers.
The organization of the HAL, BSP and user files can be seen in figure 2. The
driver files can be used directly by a user by adding the files with the required
services to the workspace. [11]

The STM BSP drivers are divided into four main parts.

1. Function drivers

2. Common driver

3. Component drivers

4. Bus I/O driver

Function drivers supply several high-level APIs for a specific class or functionality.
An API is an interface that enables the developer to access an external service
using a set of commands. In this project, especially the LCD and Touchscreen
drivers are essential. Figure 2 is a block diagram of the STM BSP drivers where
function drivers, common drivers, component drivers and bus input/output (I/O)
drivers are specified. [8]

The common driver also provides a set of friendly APIs but for HMI. In this
project the LEDs and the user button have been the most used components, for
testing purposes, but the drivers also include joysticks and COM services. [8]

Component drivers are generic driver that can be portable on any board. They
are used for an external device on the board that is independent of the HAL. They
provide specific APIs to the external integrated circuit (IC) component. The com-
ponent driver includes component core files, option configuration files and compo-
nent register files. [8]

The fourth and final component is a bus I/O driver. This is a generic bus in-
terface to supply the transport layer for components like Inter-Integrated Circuits
(I2C) or Serial Peripheral Interfaces (SPI). [8]

10

Figure 2: STM BSP driver from STM BSP driver user manual. [8]

The aim is to use the STM BSP drivers to create wrappers that makes porting the
GUI code to another architecture easier. This will allow the GUI code to run on
the microcontroller independent of any third part code apart from HAL libraries.
The required files that will need to be modified will be function drivers like LCD
and touchscreen as well as common drivers for LEDs and the user button.

3.6 Graphical user interface - GUI

A GUI differs from an HMI as it requires an interface, which typically is a screen
with or without touch, whereas an HMI can be practically anything that enables
communication between a human and a machine. A GUI is a way for a user to
interact with a device using graphic icons such as buttons and figures instead of
using traditional text based systems like the command line. In the context of this
project, a GUI is a way for a user to interact with the microcontroller through the
LCD. This means that the code must be written to handle interaction, not only
execute some sequential predefined pattern.

This particular GUI has three main functions which build the GUI core. These

11

functions are named GUI_Init(), GUI_Add() and GUI_Refresh(), and they are
described in detail below. The calling hierarchy of these functions can be seen in
figure 3.

The GUI_Init() function initializes everything from HAL and the system clock,

Figure 3: Calling hierarchy

to the background colour of the GUI. Right now the user is not able to set the
background colour but this would be easy to change by adding a GUI struct in
the main file and removing the colour settings from the init-function.

The add function is specific for every GUI object. To add a button to the GUI
the GUI_AddButton() is used. This function is located in the button file where all
other button-related functions are stored. The same follows for other objects like
plots etc. The primary purpose of the add function is to register and track how
many objects are added to the GUI. The function adds the pointer to the struct
of a widget to an array where all widgets of that type are stored.

The refresh function is the engine of the GUI and it handles all actual interactions

12

Figure 4: Event processing

between the user and the machine. The refresh function checks for touch screen
interrupts triggered by a user touching the screen. As described in section 3.2, a
sensor recognizes a touch on the screen. A controller translates between the sensor
and the software drivers which in turn generates the touch as the coordinates on
the screen on which the touch took place. The refresh function uses these touch
drivers to get the coordinates. If the touch occurred where the user has placed
a button the refresh function sends this information onward so that the user im-
plemented callback function is executed. Figure 4 shows a flowchart of this process.

It is important that the code executed in the refresh function operates correctly
because problems here will have great effect on the user experience. If there is
a problem in the refresh functions that results in an unwanted delay, everything
that is put on screen will be affected.

13

Figure 5: The hierarchy of the user code, the GUI library, the BSP drivers, HAL
and the hardware.

The GUI is supposed to act as a middleware between the platform BSP drivers and
the user code. To make it possible to use the GUI library on any microcontroller
platform the aim is to make the entire GUI build upon a function that draws a
pixel on the display. Figure 5 shows a block diagram of the hierarchy of the user
code, the GUI library, the BSP drivers, HAL and the hardware.

3.7 Portability

A goal for this thesis is to make the GUI library that can operate on any microcon-
troller device. When the GUI is sufficiently developed the aim is to move the code
to another platform to test the software on another architecture. A Raspberry Pi
is more advanced than an STM 32 but they have some similarities since both op-
erates on Arm cores. Another interesting board to use would be a board with less
RAM than the STM32F469 with 324 kB of RAM. To change hardware to another
32-bit ST microcontroller would be relatively simple since the BSP drivers should
follow the same naming convention and general pattern as the BSP drivers used
for the STM32F469.

14

To evaluate how well the current library can operate in a different environment the
BSP drivers needs to be rewritten and the HAL libraries need to be changed to
match the new architecture. The GUI files will stay essentially intact apart from
hardware initialization that will need to be updated.

15

4 Method
The GUI is built upon three parts, the GUI core which handles all user interaction,
the wrapper functions which enables easy access to the hardware, and the GUI
objects called widgets that are added to the GUI.

4.1 The GUI core

The GUI core is dependent on the GUI_Init() function together with the GUI_Add()
and GUI_Refresh(). The GUI_Init() function, which can be seen in listing 2,
is called in main once to initialize everything that the GUI needs for startup
and GUI_Add(), see listing 3, adds the widgets to the GUI. The refresh function,
GUI_Refresh(), see listing 5, then keeps track of the user interactions and draws
the active widgets on to the LCD. The calling hierarchy of the GUI is shown in
figure 3. Some of the properties defined in the GUI struct, shown in listing 1, is
predefined in the initialization function and some set by the user.

typedef struct
{

uint32_t BackgroundColour;
uint32_t TextColour;

sFONT *pFontG;
uint32_t last_refresh;
uint32_t update_interval;

}gui_t;

Listing 1: GUI struct

void GUI_init ()
{

GUI1.mfx_toggle_led = 0;
GUI1.lcd_status = GUI_LCD_OK;
GUI1.lcd_status = GUI_HW_LCD_Init ();
GUI_TEST_APPLI_ASSERT(GUI1.lcd_status != GUI_LCD_OK);

GUI_HW_Init ();
GUI1.BackgroundColour = GUI_LCD_COLOR_WHITE;
GUI1.TextColour = GUI_LCD_COLOR_LIGHTGREEN;
GUI_HW_LCD_SetFont (& GUI_LCD_LOG_TEXT_FONT);
GUI_HW_LCD_SetBackgroundColour(GUI1.BackgroundColour);
GUI_HW_LCD_ClearBackground(GUI1.BackgroundColour);
GUI_HW_LCD_SetTextColour(GUI1.TextColour);
GUI1.last_refresh = GUI_GetTick ();

16

}

Listing 2: This function initializes the GUI core.

GUI_Add() will be called after GUI_Init() in main. An example of the add func-
tion is the GUI_AddButton(), see listing 3, which takes a pointer to a struct, here
the button struct, as an input and adds this button to an array of buttons. All
widgets have a similar add function which takes a pointer to a relevant struct as
input and adds the pointer to an array. A variable called nr_of_buttons stores the
number of buttons and whenever a new button is added to the GUI this counter
gets incremented.

void GUI_Button_AddButton(gui_button_t *button)
{

if(nr_of_buttons < GUI_MAX_NR_BUTTONS)
{

ADDED_BUTTONS[nr_of_buttons ++] = button;
}

}

Listing 3: The add function adds a pointer to a button struct to an array. The
array holds pointers to all buttons that are added to the GUI.

The array called ADDED_BUTTONS[] will be accessible using a get function shown
in listing 4.

gui_button_t *GUI_Button_GetButton(uint8_t i)
{

return ADDED_BUTTONS[i];
}

Listing 4: This function returns a pointer to a button with index i.

The refresh function, GUI_Refresh(), is called in the while true loop in main.
At the moment the buttons handle all direct user interaction since that is the
only widget, apart from the alarm clock, having a callback function. The callback
function of a button can be observed in listing 9 and the refresh function in listing
5

void GUI_refresh ()
{

for(int i = 0; i < GUI_Button_GetNrOfButtons (); i++)
{

gui_button_t *current_button =
GUI_Button_GetButton(i);

17

if(current_button ->layer == 1)
{

GUI_Button_DrawButton(current_button);
if(TS_StateSofia.touchDetected)
{

if(GUI_Button_PushButton(
current_button , x_click ,
y_click , current_button ->layer)
== 1)

{
GUI_HW_LCD_ClearBackground

(GUI1.BackgroundColour)
;

}
}

}
}
for(int i = 0; i < GUI_Plot_GetNrOfPlots (); i++)
{

gui_plot_t *current_plot = GUI_Plot_GetPlot(i);

if(current_plot ->time_until_next_draw <= 0)
{

if(current_plot ->layer == 1) // >=1
{

GUI_Plot_DrawPlot(current_plot);
}

}
else
{

current_plot ->time_until_next_draw =
current_plot ->time_until_next_draw -
time_elapsed;

}
}
for(int i = 0; i < GUI_Clock_GetNrOfClocks (); i++)
{

gui_clock_t *current_clock = GUI_Clock_GetClock(i)
;

if(current_clock ->layer == 1)
{

if(timer >= current_clock ->alarm_time)
{

GUI_Clock_AlarmClock(current_clock
);

}
}

}
GUI1.last_refresh = GUI_GetTick ();

18

}

Listing 5: The refresh function is the engine of the GUI.

The GUI library has its own layer function that controls what is displayed on the
screen. The current implementation has two layers. One that means the object is
not visible, represented by 0, and one that makes the object visible, represented
by 1.

4.2 Graphics and BSP drivers

To obtain a GUI library without third party dependencies, a selected part of the
STM BSP drivers must be integrated into the library. Instead of using drivers
containing all possible hardware support wrappers are created only for the drivers
that contain support for the tasks performed by the GUI.

An important part to access are the LCD files where all code connected to draw-
ing on the screen is configured. Here are everything from colour definitions to
functions that allows to write complete strings on the screen. Listing 6 shows an
example of a wrapper function, here one that sets the text colour.

void GUI_LCD_SetTextColour(uint32_t Colour)
{

void BSP_LCD_SetTextColour(uint32_t Colour);
}

Listing 6: An example of a wrapper function. Here is a function that sets the text
colour, called GUI_LCD_SetTextColour()

Other important drivers are the touchscreen drivers which handles the touch screen
interrupts. Here are functions that identifies if a touch has happen as well as where
the touch occurred. These drivers are crucial for the refresh function shown in
listing 5.

4.3 The GUI widgets

All the widgets are built upon the add function that keeps track on how many
widgets are added and a draw function that draws the actual graphics. The plot
function currently supports scatter plots, bar plots and a line plot. It is also
possible to display the data live. Below the plot struct is shown which holds all
plot properties.

19

typedef struct
{

uint16_t nr_of_data_points;
uint16_t *x_data;
uint16_t *y_data;
uint16_t origo [2];
char *x_label;
char *y_label;
char *title;
uint16_t x_axis_length;
uint16_t y_axis_length;
uint8_t layer;
plot_type_t type;
uint16_t refresh_ms;
int16_t time_until_next_draw;

}gui_plot_t;

Listing 7: Plot struct

The plot is drawn using a draw function that adapts to the set plot type, origo,
axis length and data length.

A button is defined as a struct with properties defined by the user. Listing 8
shows the button struct.

typedef struct
{

uint16_t x_position;
uint16_t y_position;
uint16_t width;
uint16_t height;
uint32_t text_colour;
uint32_t frame_colour;
char *text_string;
sFONT *button_font;
uint8_t layer;
void (* callback_function)(void);

}gui_button_t;

Listing 8: Button struct

The buttons are a crucial connection between the user and the platform. The
developer defines what will happen when a button is pushed by defining callback
functions in the user code. An example of a callback function for a button is
shown in listing 9. In this example, there are four buttons and two plots added
to the GUI. By setting the start button layer to 0 the start button will no longer

20

be visible on the screen. The same follows for the exit and back button and the
second plot. The next button and the first plot will be visible to the user in the
next refresh since their layers are set to 1.

static void Start_Button_Callback(void)
{

start_button.layer = 0;
next_button.layer = 1;
exit_button.layer = 0;
back_button.layer = 0;
plot1.layer = 1;
plot2.layer = 0;

}

Listing 9: Button callback example

The clock struct is defined as a struct with basic properties set by the user. Apart
from position and other straightforward properties the clock struct contains a
pointer to a callback function. This callback function is called after a certain time
has passed and works as an alarm clock. The clock will display the time on the
screen starting with the start_time set by the user. If no start time is set the
clock starts ticking at zero. The implemented alarm callback function is shown in
listing 12.

typedef struct
{

uint16_t x_position;
uint16_t y_position;
uint8_t hours;
uint8_t minutes;
uint8_t seconds;
uint32_t start_time;
uint8_t layer;
uint32_t alarm_time;
void (* clock_callback_function)(void);

}gui_clock_t;

Listing 10: Clock struct

int GUI_Clock_AlarmClock(gui_clock_t *clock)
{

clock ->callback_function ();
return 1;

}

Listing 11: Alarm function

21

As shown in listing 11 the alarm function simply calls the callback function of the
current clock. The callback function shown below switches to the start page when
the alarm is set of by setting the start button layer to 1 and all other widget layers
to 0.

static void Alarm_Clock_Callback(void)
{

start_button.layer = 1;
next_button.layer = 0;
exit_button.layer = 0;
back_button.layer = 0;
plot1.layer = 0;
plot2.layer = 0;

}

Listing 12: Alarm callback function

4.4 The demo implementation

When developing a GUI library, it is essential to test the functions along the way
in a demo application. The current demo is a main file that defines the desired
GUI objects and adds them to the project. The GUI_Init() function is called
in main. This function manages all system initiations including both necessary
hardware and software configuration. All the widgets, which can be a plot or a
button etc. are added to the GUI using a function called GUI_Add(). This function
keeps track of the added widgets and their properties. In the while(1) loop the
final core function, GUI_Refresh(), is called. How the user code is linked to the
GUI functions can be seen in a flowchart in figure 3.

while (1)
{

if (mfx_toggle_led == 1) {
GUI_HW_LEDToggle(LED1);
GUI_HW_LEDToggle(LED2);
GUI_HW_LEDToggle(LED3);
GUI_HW_LEDToggle(LED4);
mfx_toggle_led = 0;

}

GUI_Clock_DrawClock (& clock1);

// update y_data live
for(int i = 0; i < plot1.data_length; i++)
{

22

y_data_1[i] = (uint16_t)(50* sin(j)+100);
j = j + 30*pi/2;

if(j%(30*7* pi/2) == 0)
{

j = 0;
}

}

plot2.y_data [1] = (plot2.y_data [1] + 10) %200;
GUI_refresh ();
HAL_Delay (50);

}

Listing 13: While true loop in main() calling the refresh function and updating
the data to demonstrate the plot function displaying live data.

To demonstrate how the plot function can display live data, the data for the two
plots are updated in the while(1) loop before the refresh function is called. Apart
from that, the platform’s four LEDs are toggled.

23

5 Result
The resulting GUI can interact with a user through buttons, it is able to plot both
live and static data, it can display the present time and it has an alarm function
where the user can decide what should happen after a certain time has elapsed.

5.1 Graphics and BSP drivers

The BSP driver files support a lot of colour presets. The LCD drivers support a
wide variety of colours and some example colour themes are shown in figure 6.

(a) Orange and green (b) Blue and red

(c) Light and dark magenta

Figure 6: Colour themes displayed on the current demo homepage.

5.2 GUI widgets

The plot function supports scatter plots, bar plots and a line plot which all can
be seen in figure 7. The plot is drawn using a draw function that adapts to the
set plot type, origo, axis length and data length. It is possible to display live data
like shown in the series of scatter plots in figure 8, but the user can also choose to

24

display still data only by setting struct property live to 0.

(a) Scatter plot (b) Bar plot

(c) Line plot

Figure 7: Plot types.

25

(a) (b)

(c) (d)

Figure 8: Subfigures 8a, 8b, 8c and 8d shows four freeze frames of live data dis-
played on screen in a scatter plot.

Figure 9 shows a start button in the red and blue colour theme.

Figure 9: Button in blue and red colour theme.

The clock widget is displayed as digital numbers shown in figure 10.

26

(a) (b)

(c)

Figure 10: Sub-figure 10a, 10b and 10c shows the simple digital clock in different
colour themes.

5.3 GUI demo application

The current demo of the GUI shows two categories of plots, four buttons and it
displays a digital clock. Pictures of the demo are shown in figure 11. From the start
page in sub-figure 11a the next page is reached by pushing the start button in the
left corner. Once the push of the start button is recognized by the refresh function
the start button layer is set to 0 by the corresponding callback function. Hence
the start button will no longer be visible on the screen. The callback function also
sets a plot and a button labeled "Next" to visible by changing both layers from 0
to 1. As a consequence a new page showing a scatter plot is shown, see sub-figure
11b. By pressing this "Next"-button the final page is displayed. The final page is
shown in sub-figure 11c, which shows a bar plot and two buttons. The left button
is labeled "Back" and leads back to the previous page. The right button is labeled
"Exit" and leads to the front page shown in sub-figure 11a. All buttons use the
same principle with callback functions as the start button described above.

27

(a) Start page (b) Scatter plot

(c) Bar plot

Figure 11: From the start page in sub-figure 11a the next page is reached by
pushing the start button in the left corner. A new page showing a scatter plot is
shown like in sub-figure 11b. In the topmost right corner is a button labeled next.
This button leads to the final page of the demo which shows a bar plot and two
buttons, shown in sub-figure 11c. The left button, labeled "Back", leads back to
the previous page and the right button, labeled "Exit", leads back to the front
page shown in sub-figure 11a.

28

6 Discussion and further development
At the beginning of the project, it was time-consuming to find resources since a
lot of ST documentation, as well as forum discussions, assumed previous knowl-
edge in both embedded C/C++ combined with GUI library development. Quite
a bit of time was spent on trying to make simple C++ files to compile in the
IDE. It turned out to be too complicated to meet the possible benefit of using an
object-oriented language for the GUI. There are obvious advantages to using an
object-oriented language such as C ++ for a GUI, but since this particular GUI
was quite simple, these advantages did not outweigh the difficulties with compati-
bility and a decision was made to change the language to C. This decision turned
out to be good since it lowered the threshold for getting started with the actual
library and increased the development pace a lot. It also became evident that the
disadvantages that were expected to come with C did not appear to some crucial
extent in this particular project.

The GUI library can be improved and developed in several ways. General op-
timization of the library should result in a GUI perceived as more responsive to
the user, which contributes to a better user experience. Development of the layer
function and the library’s portability are two other parts that would enhance the
quality of the library. The list below shows some suggested improvements to the
library.

1. Increase the portability of the library

2. Update the GUI core to reduce number of draws

3. Develop the GUI layer properties

4. Develop the layout and introduce size scaling

5. Refine current widgets and add widgets to make the GUI more rich

6.1 Portability

The original idea was to write the GUI library on the STM32F469 microcontroller,
create wrapper functions for using the BSP drivers, and then move the project to
another platform. The process would involve writing wrappers for the BSP drivers
for this other platform and integrating these drivers into the GUI library.

The software is built upon a function that writes pixels and all GUI code that
is writing to the display is using this function. This is done so that adjustments

29

of the code can be kept to a minimum when moving the software to another plat-
form. However, all the software drivers mentioned in section 3.5 would need to
be modified to work on another architecture. Figure 5 shows how both the GUI
library and the user code are connected to the BSP drivers but it also illustrates
graphically how the entire lowest part of the system, including BSP, HAL and
hardware, can be changed.

If another ST microcontroller were to be used as the next platform, it would
be quite easy to update the code as the naming convention is the same for the
BSP drivers. However, if you want to use a development board from another man-
ufacturer, there is a risk that the HAL and BSP are significantly different and
therefore makes the integration more complex and time-consuming.

6.2 Risk assessment

To further improve the library, another crucial point is to avoid errors by handling
incorrect instructions from the developer. The current implementation does not
handle these kinds of errors at all, hence it is guaranteed to cause problems for
both the developer and the end-user. For example, there is nothing that prevents
the developer from plotting a million data points in the plot function. Another
typical error is that the x and y axes are initiated to different lengths by the de-
veloper by mistake. This error neither causes any warning to the developer.

There are occasional simple preventive measures in some places in the code, such as
in the Add_Button() function in listing 3 where a new button is added only if the
number of buttons in the GUI has not yet reached the GUI_MAX_NR_OF_BUTTONS
value. However, if the button is not added, a printed-out error message would be
preferable so that the developer will have any chance of figuring out what has gone
wrong. The non-existent or deficient error handling is consistent throughout the
library and that needs to change if the library is to be used in any real-life context.

One way to correct this issue is to use the assert function that allows a de-
veloper to control error messages. The assert function takes an expression as an
argument. If this expression evaluates to true, nothing happens. If the expres-
sion evaluates to false the assert function exits the code running and writes a
predefined error message to the standard error stream (stderr).

6.3 Optimization of the GUI core

Apart from making the GUI more portable and improving the error handling, a lot
can be done for optimization of the GUI-core. The GUI core is implemented in such

30

a way that the entire screen is redrawn in each iteration. The contents of the screen
are erased when the user presses a button to switch pages. Clearing the screen
and redrawing is of course necessary when the user wants to switch from one page
to another, but to call the draw functions in each iteration regardless of whether
something has been updated on the screen is unnecessary. A better approach from
an optimization perspective would have been to apply a function that checks if
something is updated on the screen. If the check shows that nothing has changed,
nothing needs to happen, ie. the screen is neither cleared nor redrawn but remains
as the previous iteration. If it turns out that something has been updated, the
screen must be cleared and redrawn with the new update.

6.4 Develop the GUI layer function

The GUI layers are a part of the GUI library that keeps track of what is displayed
on the screen. All widgets have a layer property and the value is assigned by the
user and changed in the callback functions. At present time only two layers are
supported, 0 for not visible and 1 for visible. This is sufficient for the current
implementation but, presumably, as the complexity of the GUI increases the max-
imum number of GUI layers have to be increased. To be able to implement some
sort of hierarchy in the display of objects a third layer could be added so that 0
still represents not visible, 1 represents visible and 2 represents visible above the
1st layer.

To have the option of overlaying several objects is a necessary prerequisite for
building a generic GUI library. An apparent way to implement this is to draw the
objects in the order they should appear on the screen. Since the last object drawn
ends up at the top of the other objects by itself, it should be relatively easy to
implement such a solution.

With the current implementation, the refresh function goes through a certain type
of object in the order in which they are entered in the array of pointers. The
array is filled with pointers to the objects that end up in the order in which the
user chooses to enter them. It would be possible, for example, to update the add
function so that it instead places the object with the lowest layer value first in the
array and the one with the highest value last. Each new item would need to be
sorted and added according to the objects already added to the array, but once
this is done the refresh function would need little or no modification. It would
then be possible to add any number of layers without having to update the code
significantly.

31

6.5 Layout and scaling

The focus of this project was not on layout nor scaling but it would be interesting
to investigate these aspects further. To make the GUI adaptable for different
environments it would be great to be able to change the font size as the end
user. As soon as the font size can be changed using a BSP wrapper, it should
be relatively easy to make it accessible to the end user using the existing button
function. Another example where scaling could be improved is for the button
widget. It would be preferable that the frame of the button always follows the size
of the button label. For the current implementation however, the button size is
defined by the user who needs to figure out a frame size that fits the button label
length.

6.6 Widget development

Adding widgets would be relatively straightforward as it is possible to use previ-
ously added widgets as a template for implementation. Some widgets that could
be added:

1. Display a picture

2. A live audio amplitude plot

To show pictures on the display should be quite uncomplicated. It would only
need some frame definition so that the developer can decide where to place the
picture.

It would be fun to be able to use audio as input data and display audio am-
plitude as a function of time. The current plot function can display live data but
it would be necessary to add the audio files to the GUI integrated BSP drivers and
create some additional wrappers since they are not yet implemented.

32

7 Conclusion
The usability of this library in the industry at this point is a bit limited and the
user experience is somewhat unsatisfactory, but the GUI works. There is a lot left
to develop before the library could be launched as a finished product to a potential
customer. It is more of a prototype than a finished product, but this prototype
still fulfills its most basic purpose which is to interact with a user. There are more
elegant and optimized GUI options on the market against which this GUI library
can not yet compete. However, since it is open-source and small it is easy to use
it as a base for developing something more advanced and refined.

If you want to take on this project and continue to develop the library, the most
important improvements are linked to the GUI core’s optimization and function,
as well as the library’s portability. The GUI core can be improved by developing
the existing layer function so that it supports that objects can be placed on top of
each other in a hierarchy set by the developer. Furthermore, it would be good if
the refresh function is optimized so that it redraws the screen less frequently and
only cleans it if necessary. This would provide a better user experience as the GUI
would be perceived as more responsive. More widgets could be easily added by
following an already existing widget as a template.

33

References
[1] STMicroelectronics. “32F469IDISCOVERY - Discovery kit with STM32F469NI

MCU” . https://www.st.com/en/evaluation-tools/32f469idiscovery.html.

[2] STMicroelectronics. “STM32 Graphical User Interface - STMicroelectron-
ics” . https://www.st.com/content/st_com/en/ecosystems/stm32-graphic-
user-interface.html.

[3] ARM. “Cortex-M – Arm Developer” . https://developer.arm.com/ip-
products/processors/cortex-m.

[4] QT. “Qt - Supported Platforms & Languages” .
https://www.qt.io/product/supported-platforms-languages.

[5] WebWire. “STMicroelectronics Eases Simple GUI Design for Ultra-Low-
Cost Devices with TouchGFX Updates and New STM32 Nucleo Shield” .
https://www.webwire.com/ViewPressRel.asp?aId=265078.

[6] idea4good. “GuiLite: The smallest header-only GUI library(4 KLOC) for all
platforms” . https://github.com/idea4good/GuiLite.

[7] Manners, David. “The HMI of Things” October, 2020. .
https://www.electronicsweekly.com/news/business/the-hmi-of-things-2020-
10/.

[8] STMicroelectronics. “BSP drivers development guidelines” June, 2019.
https://www.st.com/resource/en/user_manual/dm00440740-stm32cube-bsp-
drivers-development-guidelines-stmicroelectronics.pdf.

[9] STMicroelectronics. “Discovery kit with STM32F469NI MCU” 2020.
https://www.st.com/en/evaluation-tools/32f469idiscovery.html#overview.

[10] Yang, Deng-Ke and Wu, Shin-Tson. “Fundamentals of Liquid Crystal Devices”
2014.

[11] STMicroelectronics. “Description of STM32F4 HAL and low-layer drivers”
June, 2021. https://www.st.com/resource/en/user_manual/dm00105879-
description-of-stm32f4-hal-and-ll-drivers-stmicroelectronics.pdf.

[12] STMicroelectronics. “GUI Webinar: Fundamen-
tals for designing an Embedded GUI” June, 2020.
https://www.youtube.com/watch?v=LfWKOQ9kKiw&ab_channel=STMicroelectronics.

34

[13] STMicroelectronics. “STM32CubeIDE - Integrated Development Envi-
ronment for STM32” June, 2021. https://www.st.com/en/development-
tools/stm32cubeide.html.

[14] Bhowmik, Achintya K. “Interactive Displays: Natural Human-Interface Tech-
nologies” October, 2014. https://learning.oreilly.com/library/view/interactive-
displays-natural/9781118706206/9781118706206c2.xhtml.

[15] Sarkar, Roy. “5 top embedded GUI trends for 2021” 2021.
https://blog.cranksoftware.com/5-top-embedded-gui-trends-for-2021.

[16] Jiménez, Manuel and Palomera, Rogelio and Couvertier, Isidoro. "Introduc-
tion to Embedded Systems: Using Microcontrollers and the MSP430" 2014".

[17] The Qt company. "Qt - Licensing" 2021". https://www.qt.io/licensing/

[18] Free Software Foundation. “The GNU General Public License v3.0 - GNU
Project - Free Software” 2021. https://www.gnu.org/licenses/gpl-3.0.html.

[19] Free Software Foundation. “GNU Lesser General Public License v3.0 - GNU
Project - Free Software” 2021. https://www.gnu.org/licenses/lgpl-3.0.en.html.

35

	Introduction
	Problem formulation

	Background
	Design aspects
	Choice of programming language
	Embedded GUI libraries that already exist

	Theory
	Liquid Crystal Displays - LCD
	Touch displays
	Memory
	STM32
	Board Support Package - BSP
	Graphical user interface - GUI
	Portability

	Method
	The GUI core
	Graphics and BSP drivers
	The GUI widgets
	The demo implementation

	Result
	Graphics and BSP drivers
	GUI widgets
	GUI demo application

	Discussion and further development
	Portability
	Risk assessment
	Optimization of the GUI core
	Develop the GUI layer function
	Layout and scaling
	Widget development

	Conclusion

