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Abstract

A three-level system can be used in a Λ-type configuration in order to construct a
universal set of non-adiabatic quantum gates through the use of non-Abelian non-
adiabatic geometrical phases. Such construction allows for high-speed operation
times which diminish the effects of decoherence. This might be, however, accom-
panied by a breakdown of the validity of the rotating wave approximation (RWA)
due to the comparable timescale between the counter-rotating terms and the pulse
length, which greatly affects the dynamics. Here we investigate the trade-off be-
tween dissipative effects and the RWA validity, obtaining the optimal regime for
the operation of the holonomic quantum gates.
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I would like to start by thanking Erik Sjöqvist for his guidance and for his patience
during the development of this project. His willingness to discuss physics and to
introduce me to this field have been invaluable.

I would also like to thank Carlos Moysés Graça Araujo for coordinating this
exchange program and also for his help regarding my stay in Uppsala. Without
his aid this project certainly would not be possible.

I am also thankful to all the friends I made during my stay in Uppsala: Nader,
Umer, Paula, Sorana, Arsalan, Felix, Artur, Shila, Ingrid, Mostafa, Marco, Mo,
Bilal, Ali, Umair and Zeeshan.

Finally, I also acknowledge the staff in the Uppsala university, the staff in Uni-
versity of São Paulo and the financial support given by the European Commission
through the Swedish Council for Higher Education in the framework of Erasmus+
KA107



Contents

1 Introduction 5
1.1 The geometrical phase . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Berry’s Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Non-adiabatic non-Abelian geometrical phase . . . . . . . . . . . . 8

2 Non-adiabatic quantum computing 12
2.1 The Λ-type system . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The role of the RWA . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Bright and dark states . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Implementing single-qubit gates . . . . . . . . . . . . . . . . . . . . 16
2.5 Implementing two-qubit gates . . . . . . . . . . . . . . . . . . . . . 18

3 Open Quantum systems 21
3.1 Master Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Dissipative effect on the Λ-type system . . . . . . . . . . . . . . . . 21

4 Dropping the RWA 25
4.1 Sampling states on the Bloch Sphere . . . . . . . . . . . . . . . . . 25
4.2 Combined effect of dissipation and counter-rotating terms . . . . . . 26

5 Conclusions 31

References 32



1 Introduction

The advent of quantum mechanics in the past century has brought a plethora
of different technologies. Quantum computing, for instance, has shown several
promising applications throughout the years. A few seminal works, such as the
ones by Deutsch [1] and Shor [2], and even protocols for quantum-key distribu-
tion [3], have established a new ground for quantum technologies, showcasing how
quantum mechanics can be used to optimize tasks in computation and information
processing.

However, quantum computing (QC) naturally requires a suitable platform to
be performed on. An appropriate platform for QC has several desirable properties,
such as scalability [4], robustness against errors [5–7], long decoherence times [8, 9]
and universality [10]. Thus the search for such a platform is, in itself, an extensive
area of research, one which has seen considerable progress over the last decades.
Proposals range from trapped ions [11] to topological systems [12].

Among them, one promising alternative is holonomic quantum computing,
which emerged at the end of the nineties [13, 14]. This approach is based on the
use of geometrical phases for quantum computing due to certain advantages such
as its robustness against certain types of errors and noise. Even within the field
of holonomic quantum computing, several different implementations and protocols
have been proposed. For a review on these topics, see e.g. [15].

In this work we try to examine some of these different implementations, focusing
our attention on a non-adiabatic scheme for quantum computing based on Λ-type
systems, proposed in [16]. This framework has seen a couple of generalizations and
alternative constructions in the last few years, together with concrete experimental
implementations. Our main focus here is to study this implementation outside the
regime of validity of the rotating wave approximation (RWA).

In Sec. 1 we review basic concepts about geometrical phases, with special focus
on non-Abelian non-adiabatic phases. In Sec. 2 we review the proposal for non-
adiabatic quantum computing using Λ-type systems and we introduce some of our
results for the non-RWA case. In Sec. 3 we review the formalism for open quantum
system using Lindblad master equations and finally, in Sec. 4, we discuss our main
results. Conclusions and future outlooks can be found in Sec. 5.

1.1 The geometrical phase

In his seminal work, Berry [17] showed how geometrical phases arise in quantum
mechanical systems and its physical consequences. The results by Wilczek and Zee
[18] made further advancements, making a generalization for the degenerate case
and showing how a non-Abelian structure can emerge. A few years later, important
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contributions by Aharonov and Anandan [19, 20] came out, further generalizing
the non-Abelian geometric phase from Wilczek and Zee to the non-adiabatic case.
Here we briefly review the results by Berry, Aharonov and Anandan.

1.2 Berry’s Phase

The simplest case we will consider is the Berry phase, a geometrical phase which can
emerge when the system evolves adiabatically; which means that the Hamiltonian
is varied very slowly. By doing so, the evolution in the Hilbert space follows the
instantaneous eigenstates of the Hamiltonian.

More concretely, consider a Hamiltonian H(R(t)) which depends on a vector
of parameters R(t) = (R1, R2, ...). Let us also consider initially a non-degenerate
case. The eigenstates |n(R(t))⟩ of this Hamiltonian will naturally depend on the
parameters:

H(R(t)) |n(R(t))⟩ = ϵn(R(t)) |n(R(t))⟩ . (1.2.1)

The adiabatic theorem states that a state which is initially the n-th eigenstate
of H,

|ψn(0)⟩ = |n(R(0))⟩ (1.2.2)

will evolve into the instantaneous eigenstate of H at a later time t, that is

|ψn(t)⟩ = cn(t) |n(R(t))⟩ , (1.2.3)

given that the evolution is sufficiently slow. In this sense, the time scale is defined
by the inverse of the energy gap between the energy of the n-th state and the
neighboring states; the smaller the gap the slower the process should be. This
establishes a mapping between the path in the parameter space and a path in the
Hilbert space of the wave functions. The coefficient in Eq. (1.2.3) can be written
as:

cn(t) = eiγn(t) exp

[
−i

∫ t

0

dt′ϵn(t
′)

]
. (1.2.4)

The second factor in the equation above is called the dynamical phase [21]. Our
objective of interest, however, is precisely the phase γn. By plugging the equa-
tion above and Eq. (1.2.3) into the the Schrödinger equation (SE) iℏ d

dt
|ψn⟩ =

H(R(t)) |ψn⟩, we get, after taking the inner product with ⟨ψ(t)| [22]:

γn(t) = i

∫ t

0

dt′ ⟨n(R(t′))| d
dt′

|n(R(t′))⟩ . (1.2.5)

The geometrical aspect of the above equation becomes evident if we make one
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further modification. By using the chain rule to write

d

dt
|n(R(t))⟩ = ∇R |n(R(t))⟩ · dR

dt
, (1.2.6)

we may recast Eq.(1.2.5) as

γn(t) =

∫
C

An(R) · dR, (1.2.7)

where
An(R) = i ⟨n(R)| ∇R |n(R)⟩ (1.2.8)

is called the Berry connection. This result is remarkable because it reveals a novel
interpretation of γn. This phase is not an explicit function of the time, but rather,
it depends only on the path C of R in the parameter space, irrespective of the
dynamical details of the evolution. Hence, this phase is regarded as a geometrical
phase.

One important detail, however, is that this phase typically behaves like a gauge.
So, if we change the eigenstate by a phase δ(R), a change in the Berry connec-
tion (1.2.8) also incurs:

|n(R)⟩ → eδ(R) |n(R)⟩ =⇒ An(R) → An(R)−∇Rδ(R). (1.2.9)

This results in a phase change which depends on the endpoints of this gauge, in
other words:

γn → γn + δ(R(0))− δ(R(t)). (1.2.10)

A important observation which can be made here [17] is that cyclic adiabatic
processes in the parameter space, i.e. evaluations for which R(tend) = R(0) dispel
the gauge-dependence in the geometrical phase, unambiguously defining a Berry
connection for this cyclic evolution:

γn(t) =

∮
An(R) · dR. (1.2.11)

The geometrical interpretations of this result are even more far reaching. For
instance, one may notice that the Berry connection, due to its gauge properties, is
strongly analogous to the vector potential of a magnetic field. It is also possible to
define a Berry curvature, which is tensor constructed from the Berry connection.
This allows us to use Stokes’ theorem to express the geometrical phase (1.2.11) in
terms of the area enclosed by the loop in the parameter space [22].

1.2 Berry’s Phase
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1.3 Non-adiabatic non-Abelian geometrical phase

A natural question which arises from Berry’s framework is whether a similar result
holds for a non-adiabatic evolution. Built upon Berry’s work and also on the
Wilczek-Zee phase, which is a previous generalization of Berry’s phase for the
degenerate case, it was shown that it is possible to obtain a non-adiabatic non-
Abelian geometrical phase [19, 20] under certain conditions. This result will be
vital for the construction of quantum gates later on, as we shall see.

Our objective in this section is to follow the approaches in [19] and [20] to obtain
a closed form expression for the desired non-adiabatic non-Abelian geometrical
phases. We begin by investigating the non-adiabatic (but Abelian) phase studied
in [19]. This approach is slightly more general in the sense that we consider the
Hilbert space H (with dimH = n) and its projective space of rays, i.e. the set
of rays P (with dimP = n − 1) defined by the projection map Π : H → P with
Π(|ψ⟩) = {|ψ′⟩ : |ψ′⟩ = c |ψ⟩ , s.t. c ∈ C}. In short, what Aharonov and Anandan
did was to show that it is possible to compute a geometrical phase for all cyclic
evolutions. This framework, and later on the generalization for the non-Abelian
case [20], thus contain other well known special cases, such as the Berry phase,
periodic dynamics (such as the procession of a particle in a constant magnetic
field) and so on.

Trying to analyze Berry’s phase and the trajectory of the state in the param-
eter space for a system with a degenerate subspace is one of the examples which
illustrate why this new approach can be seen as more general. Curves in the pa-
rameter space, presented in the previous section, can show a certain redundancy in
this case, since for a degenerate part of the eigenspace the curve in the projective
Hilbert space will simply be a point in the parameter space [20]. This dynamics
nevertheless still describes a proper loop in the space of rays P , with an associated
non-trivial geometrical phase.

More concretely, let us start by considering a normalized state |ψ(t)⟩ ∈ H which
evolves according to the Schrödinger equation

H(t) |ψ(t)⟩ = iℏ
d

dt
|ψ(t)⟩ (1.3.1)

up to a time τ , which satisfies |ψ(τ)⟩ = eiϕ |ψ(0)⟩. This evolution defines an
arbitrary curve Ĉ in the Hilbert spaceH. In the ray space P however this represents
a closed loop C = Π(Ĉ).

Now, define a state |ψ̃(t)⟩ = e−if(t) |ψ(t)⟩ with f(τ)− f(0) = ϕ. The evolution
will be cyclic in the ray space since |ψ̃(τ)⟩ = |ψ̃(0)⟩ and the SE yields:

df

dt
= ⟨ψ̃(t)| i d

dt
|ψ̃(t)⟩ − 1

ℏ
⟨ψ(t)|H |ψ(t)⟩ . (1.3.2)

1.3 Non-adiabatic non-Abelian geometrical phase
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C
β = Ω

2

Figure 1: Loop C on the Bloch sphere for the periodic evolution of a qubit under a constant
magnetic field. The geometrical phase acquired by the qubit corresponds to half the value of the
solid angle associated with the loop.

By defining

β ≡ ϕ+
1

ℏ

∫ τ

0

1

ℏ
⟨ψ(t)|H |ψ(t)⟩ dt (1.3.3)

we can integrate Eq. (1.3.2) to obtain:

β =

∫ τ

0

⟨ψ̃(t)| i d
dt

|ψ̃(t)⟩ dt. (1.3.4)

This identity shows that the phase β is purely geometrical and depends only on
the curve C in P : β is independent of both ϕ and H. Moreover, H(t) can even be
chosen in an alternative definition so that the dynamical term in (1.3.3) vanishes.
Note how no approximations were made here and the expression for the phase β
is exactly valid: the evolution needs not to be slow neither the state |ψ(t)⟩ needs
to be an eigenstate of H(t). As a side note, we can also check that by taking
|ψ̃(t)⟩ ≈ |n(t)⟩ we recover Berry’s result (1.2.5), where |n(t)⟩ corresponds to an
instantaneous eigenstate of H(t).

If one is interested in measuring the geometrical phase (1.3.3), a few strategies
are possible. One may tune H in such a way that the second term in Eq. (1.3.3)
is zero, i.e. effectively eliminating the dynamical contribution from the phase,
such that ϕ becomes purely geometrical. Another possible strategy is to evolve
two different states such that their dynamical part is the same, so the geometrical
phase (difference) can be measured through ϕ1 − ϕ2 = β1 − β2.

1.3 Non-adiabatic non-Abelian geometrical phase
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An interesting example is the periodic evolution of a qubit subject to a constant
magnetic field in the z-direction, given by HB = −Ωσz, where Ω = µB, with µ
as the magnetic moment and B as the strength of the magnetic field. Consider
an initial state of the form |ψ(t)⟩ = cos (θ/2) |0⟩ + sin (θ/2) |1⟩. At a later time
t the wave function will be |ψ(0)⟩ = eiΩt/ℏ cos (θ/2) |0⟩ + e−iΩt/ℏ sin (θ/2) |1⟩. The
period of the evolution is τ = πℏ/Ω. By direct evaluation we can see that |ψ(τ)⟩ =
− |ψ(0)⟩ and ϕ = π. Thus, by solving the integral in Eq. (1.3.3) we get:

β = π(1− cos θ). (1.3.5)

A noteworthy property of this example is that the geometrical phase corresponds
to half the angle enclosed by the loop on the Bloch sphere [17, 19]. This example
is thus clarifying because this description in terms of the Bloch state helps us
visualize what is happening geometrically. However, as we have stressed before,
what is really important is the loop in the ray space P , and not the path on the
Bloch sphere itself, as this intuitive interpretation in terms of the Bloch sphere is
a very particular property of our model and does not hold for all cyclic evolutions
(just as the loop in the parameter space for the Berry phase is also just a particular
case of a more general result).

We can now extend this result to the non-Abelian case, following the steps
from [20]. Consider a n-dimensional subspace Vn(t) of H. We shall consider that
evolution is cyclic so this subspace is the same for the endpoints of the dynamics,
i.e. V (0) = V (τ). Now, consider a decomposition H = Vn(t)⊕Vm(t) of the Hilbert
space into two subspace of dimension n and m, respectively. As we will see later,
this type of division can be really natural. For example, in several applications,
such as one we will choose later on, the computational space of the qubits is just
of a subspace of a bigger Hilbert space, which may include auxiliary states into the
implementation of a quantum gate. Another common application occurs when Vn
is a degenerate eigenspace of H, such as it happens in the Wilczek-Zee phase [18].

Now, consider two orthonormal bases. First a basis {|ψ̃a(t)⟩ , a = 1, ..., n} of
Vn which satisfies the cyclic condition |ψ̃a(τ)⟩ = |ψ̃a(0)⟩. And second, a basis
{|ψa(t)⟩ , a = 1, ..., n} which follows the SE:

iℏ
d

dt
|ψa(t)⟩ = H |ψa(t)⟩ . (1.3.6)

Both bases initially coincide |ψ̃a(0)⟩ = |ψa(0)⟩. These two bases will be related by
a unitary matrix:

|ψa(t)⟩ =
n∑

b=1

Uba(t) |ψ̃b(t)⟩ . (1.3.7)

By inserting the previous equation into Eq. (1.3.6) we obtain an explicit form for

1.3 Non-adiabatic non-Abelian geometrical phase
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the unitary, given by:

U(t) = T exp

(∫ t

0

i(A−K)dt

)
. (1.3.8)

Here T is the time ordering operator, Kab = (1/ℏ) ⟨ψ̃a|H |ψ̃b⟩ corresponds to the
dynamical part of evolution and Aab = i ⟨ψ̃a| d/dt |ψ̃b⟩ corresponds to the geomet-
rical part of the evolution. To see that, note that Aab does not depend on H, but
rather, only on the structure of the Hilbert space, i.e. it can be computed entirely
from the basis |ψ̃a(t)⟩.

Investigating how Aab transforms further clarifies its nature. By choosing a
different basis |ψ̃′⟩ = Ω |ψ̃⟩, where Ω is a unitary, we can see that the two matrices
transform as:

A → iΩ†Ω̇+Ω†AΩ, K → Ω†KΩ, (1.3.9)

showing once again that A transforms as a vector potential and i ⟨ψ̃a| d |ψ̃b⟩ is a
matrix-valued connection one-form. In this sense, we can say that A is a holonomy
matrix for non-adiabatic evolutions [16].

This observation is important because it dictates the type of model and evo-
lution we will be interested in. Namely, we are interested in loops for which the
dynamical part K vanishes. This guarantees that evolution is purely geometric,
for reasons presented before. In this case, from Eq. (1.3.8) we can write the unitary
implemented by a loop C as

U(C) = P exp

(
i

∮
C

A
)
, (1.3.10)

where P is the path-ordering operator. And finally, we are interested in the non-
Abelian property of these phases, in other words, we should be able to obtain
two different loops C and C ′ for which the corresponding unitaries (1.3.10) do not
commute. As we will see in the next section, the Λ-type systems are a promising
platform which satify both of these requirements.

1.3 Non-adiabatic non-Abelian geometrical phase
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2 Non-adiabatic quantum computing

2.1 The Λ-type system

The use of geometrical phases in quantum computing, while robust against certain
types of noise and error [23], still suffers from decoherence and other open quantum
system effects [24]. This calls for strategies that would circumvent this type of
problem in some way [25]. Non-adiabatic holonomic quantum computing (NHQC)
[16] has shown promise in performing this task [26]. The considerable speed-up in
the operation time makes the system much more robust against decoherence. This
configuration has been used before in a couple of different experimental systems,
such as nitrogen-vacancy centers in diamond [27, 28] and superconducting qubits
[29]. Other implementations which shorten the originally proposed protocol by
employing single-loop holonomies were also investigated [30–33]. A generalization
to discrete holonomies can be found in [34].

Here we will follow the original proposal for NHQC in the Λ-type-system from
Ref. [16]. In this system, we couple two state |0⟩ and |1⟩ to an auxiliary excited state
|e⟩, while the two states |0⟩ and |1⟩, which span the qubit space, are uncoupled
between themselves. Thus, the system acquires a Λ-like structure, depicted in
Fig. 2.

|0⟩ |1⟩

|e⟩
Ω(t)ω0 Ω(t)ω1

Figure 2: Basic setup for the Λ-type system.

The starting point is the Hamiltonian:

H(t) = H0 + µ ·E(t), (2.1.1)

where H0 = −fe0 |0⟩ ⟨0| − fe1 |1⟩ ⟨1| is the bare Hamiltonian and

E(t) = g0(t) cos(ν0t)ϵ0 + g1(t) cos(ν1t)ϵ1, (2.1.2)

is the applied oscillating electric pulse. Here, gj(t) and νj (with j = 0, 1) are
the pulse envelope and oscillation frequency, respectively. Additionally, µ is the
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Figure 3: We compare the solutions of Eq. (2.1.4). We plot the populations (left) in the presence
of counter-rotating terms, where fe0 = fe1 = 10 and Ω0(t) = Ω1(t) = 1/

√
2, and (right) in the

RWA regime. In both cases we take the initial state to be |ψ0⟩ = (|0⟩+|e⟩)/
√
2. As the frequencies

fei increase, the smaller the ripples on the non-RWA solution get in comparison to overall period
of the dynamics.

magnetic dipole moment operator and ϵ is the polarization. We may then move
on to the interaction picture Hamiltonian HI(t) = e−iH0tH(t)eiH0t, obtaining:

HI(t) = Ω0(t)(e
−i(fe0+ν0)t + e−i(fe0−ν0)t) |e⟩ ⟨0|

+ Ω1(t)(e
−i(fe1+ν1)t + e−i(fe1−ν1)t) |e⟩ ⟨1|+ h.c.

(2.1.3)

In a final step, we tune the frequencies νj so they get resonant with the bare
transition frequencies fej, i.e. νj = fej. By doing so one finds:

HI(t) = Ω0(t)(1 + e−2ife0t) |e⟩ ⟨0|+ Ω1(t)(1 + e−2ife1t) |e⟩ ⟨1|+ h.c. (2.1.4)

where Ωj = ⟨e|µ · ϵ |j⟩ gj(t)/2 are transition frequencies which depend only on
the parameters of the applied field. Note how the bare Hamiltonian introduces
counter-rotating terms of the type (1 + e−2ifejt). Throughout this work we will be
interested in how to handle these terms and how they affect the quantum gates.

2.2 The role of the RWA

In this section we will be interested in how the counter-rotating terms previously
mentioned affect the basic dynamics of the system and on how to perform the
rotating-wave approximation (RWA) in a regime where these effects are negligible.

The argument here is that whenever fei is much bigger the other typical fre-
quencies of the system, e±2ifejt become rapidly oscillating terms which average out
to zero. This can be seen in more detail in Fig. 3. The counter-rotating terms
introduces ”ripples” in the solution. When we average out these terms, we get the

2.2 The role of the RWA
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|b⟩ |d⟩

|e⟩
Ω(t)

Figure 4: Evolution of the amplitudes of the state ψ0 defined in Fig. (3) in terms of the bright
and dark states (left). We also depict the Λ-type-system in this case (right).

RWA Hamiltonian

HI(t) = Ω0(t) |e⟩ ⟨0|+ Ω1(t) |e⟩ ⟨1|+ h.c, (2.2.1)

which has a periodic solution also seen on Fig. 3. Thus, it is possible to smooth
out the dynamics of the system by increasing the energy gap of the bare states,
approaching the RWA regime.

2.3 Bright and dark states

We can perform a very illustrative analysis on the Hamiltonian (2.2.1) in terms of
its eigenstates. We define the dark state as |d⟩ = −ω1 |0⟩ + ω0 |1⟩ and the bright
state as |b⟩ = ω∗

0 |0⟩+ ω∗
1 |1⟩. By doing so, we can rewrite Eq. (2.2.1) as:

HI(t) = Ω(t)(|e⟩ ⟨b|+ |b⟩ ⟨e|). (2.3.1)

Here we introduce a frequency Ω(t) which let us rewrite the frequencies as Ω0(t) =
ω0Ω(t) and Ω1(t) = ω1Ω(t), where we assume that |ω0|2 + |ω1|2 = 1. Thus, we
can see that these states take theses names because with this change of basis we
decouple the state |d⟩ from evolution, and we effectively get a two-level system with
oscillations between the bright state |b⟩ and the auxiliary state |e⟩. In Fig. (4) we
depict the Rabi oscillations between these two states. Note how the amplitude of
|d⟩ remains unchanged throughout the evolution.

It is also meaningful to ask ourselves what happens when we perform this
change of basis in the non-RWA case. When we do that, we get:

Hbd(t) = Ω(t)(1 + |ω0|2e−2ife0t + |ω1|2e−2ife1t) |e⟩ ⟨b|
+ Ω(t)ω0ω1(e

−2ife1t − e−2ife0t) |e⟩ ⟨d|+ h.c.
(2.3.2)

2.3 Bright and dark states
14
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Figure 5: Dynamics of the amplitudes of the bright and dark states, acording to Eq. (2.3.2)
with f0e = 10 and f1e = 11 (left) and Eq. (2.3.3) with f0e = f1e = f = 10 (right).

Notice that the counter-rotating terms, differently from RWA case, couple the dark
state with the rest of the system. Thus, we lose this interesting property, which as
we will see later on, will be fundamental for the single-qubit gates. However, the
expression above assumes a particularly simple form when fe1 = fe0 = f , which is:

Hbd(t) = Ω(t)(1 + e−2ift) |e⟩ ⟨b|+ h.c. (2.3.3)

When the two counter-rotating frequencies are the same this extra term cancels
out and the dark state coupling vanishes. We show this effect concretely in Fig. 5.
It may also be elucidating to examine what happens when we plot the trajectory of
the state on the Bloch sphere. If we initialize the system in the state |ψ0⟩ = |b⟩ the
amplitude of the dark state remains zero at all times, so it is possible to depict the
evolution of the wave function on the Bloch sphere with poles |b⟩ and |e⟩. Results
are shown in Fig. 6 for ω0 = ω1 = 1/

√
2.

It is interesting to note two things. As one would expect, the trajectory for the
RWA is just a great circle around one of the axis, since the operator which appears
in the Hamiltonian is just a Pauli matrix in the bright-dark basis. Meanwhile,
the counter-rotating terms introduce a wobbling movement around the ideal path.
One could think that even though the counter-rotating terms introduces oscillations
the states still return to the initial points, but that, however, is not the case. In
Fig. 6 we can also see that the wave function does not return to the initial state.
Instead, what we observe is a new trajectory with a slight offset in comparison to
the previous one. If we run the simulation for a long time it is possible to see in
Fig. 6 (right) the cumulative effect of these slight deviations.

2.3 Bright and dark states
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Figure 6: (Left) Trajectory of RWA and non-RWA evolution on the Bloch sphere for the state
|ψ0⟩ = (|0⟩+ |1⟩)/

√
2. (Right) Trajectory on the Bloch sphere over a long time.

2.4 Implementing single-qubit gates

Here we will show how to use the geometrical properties of the Λ-type system in
order to implement universal single-qubit gates. In our implementation we are
interested in the qubit subspace M(0) = span{|0⟩ , |1⟩}, while the state |e⟩ plays
the important auxiliary role. This space evolves into M(t), which is spanned by:

|ψk(t)⟩ = exp

(
−i

∫ t

0

Hf (t
′)dt′

)
|k⟩ = U(t, 0) |k⟩ , (2.4.1)

where k = 0, 1 and U(t, 0) is the time-evolution operator. It is also possible to get
some insight into the dynamics by writing this in terms of the bright-dark basis.
The unitary matrix becomes

Ubd(t, 0) = |d⟩ ⟨d|+ cos(Φ)(|b⟩ ⟨b|+ |e⟩ ⟨e|)− i sin(Φ)(|e⟩ ⟨b|+ |b⟩ ⟨e|) (2.4.2)

which means that the bright and dark states evolve as [31]:

|ψd(Φ)⟩ = |d⟩ ,
|ψb(Φ)⟩ = cos(Φ) |b⟩ − i sin(Φ) |e⟩ ,

(2.4.3)

2.4 Implementing single-qubit gates
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where

Φ =

∫ t

0

Ω(t′)dt′ (2.4.4)

is the area enclosed by the pulse. Geometrically, this evolution corresponds to a
path in the Grassmanian G(3; 2), i.e. the set of 2-dimensional subspaces of the
3-dimensional Hilbert space which defines the Λ system. In particular, when we
have

Φ = ΦC = π, (2.4.5)

the trajectory corresponds to a full loop in the Grassmanian. Moreover, we can
also see that the states evolve as

|ψd(ΦC)⟩ = |d⟩ ,
|ψb(ΦC)⟩ = − |b⟩ ,
|ψe(ΦC)⟩ = − |e⟩ .

(2.4.6)

The effect of this geometrical evolution whenever Φ = π is to implement a holonomy
matrix Zbd which acts by flipping the sign of |b⟩ and |e⟩ in the bright-dark basis.
In other words:

Ubd(C) =

1 0 0
0 −1 0
0 0 −1

. (2.4.7)

An explicit calculation shows that this matrix, in the computational basis, becomes,
after properly projecting it into the qubit space:

U(C) = Ubd(C)P =

(
cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
= n · σ (2.4.8)

where n = (sin θ cosϕ, sin θ sinϕ, cos θ) and P = |0⟩ ⟨0| + |1⟩ ⟨1|. Here, we have
parametrized the frequencies ω0 and ω1 as ω0 = sin(θ/2)eiϕ and ω1 = − cos(θ/2).
Besides the convenient representation for the unitary, this also guarantees that
|ω0|2 + |ω1|2 = 1. Thus, this process implements a π rotation around n on the
Bloch sphere. This unitary, however, is not universal. By employing a second loop
Cm we can implement the universal gate:

U(C) = U(Cm)U(Cn) = n ·m− iσ · (n×m). (2.4.9)

This transformation has a clear geometrical meaning as well. The universal
gate U(C) above corresponds to a rotation in the plane spanned by n and m by an
angle 2 cos−1(n ·m). Therefore, any single-qubit gate can be obtained by properly
choosing the appropriate pulses, which will determine n and m.

Under these considerations, we are going to choose a very convenient type of

2.4 Implementing single-qubit gates
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Figure 7: (a) A representation of the hyperbolic secant pulse from Eq. (2.4.10). (b) Represen-
tation of the pulse for different values of β. Note how 1/β can be seen as the length of the pulse.
Here τ is an arbitrary time scale.

pulse, namely, pulses which have the shape of a hyperbolic secant:

Ω(t) = β sinh(βt). (2.4.10)

This guarantees that the pulse is i) area-preserving for any β and that ii) Eq. (2.4.5)
is also satisfied. This choice gives us freedom of using different pulse lengths just
by changing the parameter β. As shown in Fig. 7(b), 1/β can be interpreted as the
length of the pulse: pulses are sharper for large values of β and wider when β is
small. Moreover, by appropriately choosing the angles θ and ϕ we can determine
the vector n (and by choosing a different set of angles for the second pulse we
determine m).

As a practical example, we consider the Hadamard gate H and the T gate. For
the Hadamard gate we need only a single pulse, choosing θ = π/4 and ϕ = 0. For
the T -gate the protocol is slightly more complicated, since we need the two pulses.
In this case, we can take θ0 = π/2 and ϕ0 = π/2 for the first pulse and θ1 = 0 and
ϕ1 = π/4 for the second pulse.

The drawback of gates which require two loops, such as the T -gate, is that
the exposure time to decoherence effects is longer. Protocols which implement
non-adiabatic quantum gates for single-loops which can mitigate this effect can be
found in [30] and [31].

2.5 Implementing two-qubit gates

In this section we once more follow the original proposal in [16], which also includes
a protocol based on the Sørensen–Mølmer scheme [35] for implementing two-qubit
gates (see also [14] for an adiabatic implementation and [36] for a generalization of
the NHQC scheme for higher order gates). The setup for the two-qubit gate consists
of two ions in the same three-level Λ configuration. The transition 0 → e (1 → e)

2.5 Implementing two-qubit gates
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is driven by a laser with detuning ν± δ (∓ν± δ), where ν is the phonon frequency
and δ is an additional detuning (see Fig. 8). Moreover, two extra conditions which
the setup should satisfy are: the Lamb-Dicke criterion η ≪ 1, where η is the Lamb-
Dicke parameter, and |Ωi(t)| < ν in order to suppress the off-resonant couplings
[35]. The Hamiltonian describing this interaction assumes the form:

H(2) =
η2

δ

(
|Ω0(t)|2σ0(ϕ, t)⊗ σ0(ϕ, t)− |Ω1(t)|2σ1(−ϕ, t)⊗ σ1(−ϕ, t)

)
, (2.5.1)

where

σ0(ϕ, t) = eiϕ/4(1 + e−2ife0t) |e⟩ ⟨0|+ h.c.,

σ1(−ϕ, t) = e−iϕ/4(1 + e−2ife1t) |e⟩ ⟨1|+ h.c.
(2.5.2)

After eliminating off-resonant couplings of the singly excited states |0e⟩ , |e0⟩, |1e⟩
and |e1⟩ and performing the RWA the Hamiltonian reads:

H(2)(t) =
√
|Ω0(t)|4 + |Ω1(t)|4

(
H

(2)
0 (t) +H

(2)
1 (t)

)
, (2.5.3)

with

H
(2)
0 (t) = sin

θ

2
eiϕ/2 |ee⟩ ⟨00| − cos

θ

2
e−iϕ/2 |ee⟩ ⟨11|+ h.c. (2.5.4)

and

H
(2)
1 (t) = sin

θ

2
|e0⟩ ⟨0e| − cos

θ

2
|e1⟩ ⟨1e|+ h.c. (2.5.5)

ν + δ
ν − δ

−ν − δ
−ν + δ

|0⟩ |1⟩

|e⟩

Ω0(t) Ω1(t)

Figure 8: Setup for the ions in the two-qubit gate. The green (red) arrows and the dotted
(dashed) lines correspond to the ν ± δ (ν ∓ δ) detuning of the 0 → e (1 → e) transition. Both
ions have the same configuration.

The criteria for two-qubit gate are analogous to what we have for the single
qubit gates: the phase ϕ should be kept constant throughout the evolution, while

2.5 Implementing two-qubit gates
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the frequencies satisfy |Ω0(t)|2/|Ω1(t)|2 = tan(θ/2). Moreover, we should once
again respect the criterion (2.4.5) for the pulse area:

η2

δ

∫ τ

0

√
|Ω0(t)|4 + |Ω1(t)|4dt = π (2.5.6)

However, one extra observation is in order; since H
(2)
0 (t) and H

(2)
1 (t) commute, it

is possible to decompose the evolution of the total Hamiltonian (2.5.3) as

exp

(
−i

∫ τ

0

H(2)(t)dt

)
= exp

(
−iπH(2)

0

)
exp

(
−iπH(2)

1

)
. (2.5.7)

The Hamiltonian H
(2)
1 (t) however acts trivially on the relevant computational sub-

space {|00⟩ , |01⟩ , |10⟩ , |11⟩} [16], makingH
(2)
0 (t) the relevant term in the evolution.

Due to this fact, H(2)(t) can be seen as a Λ-type-like Hamiltonian, and by analogy
to the single qubit gate we get the corresponding unitary:

U (2)(Cn) = cos θ |00⟩ ⟨00|+ e−iϕ sin θ |00⟩ ⟨11|+ eiϕ sin θ |11⟩ ⟨00|
− cos θ |11⟩ ⟨11|+ |01⟩ ⟨10|+ |10⟩ ⟨10| .

(2.5.8)

This unitary acts just like a single qubit gate in the space {|00⟩ , |11⟩} and it leaves
the components in the space {|01⟩ , |10⟩} invariant.

By choosing θ = 0 we construct a CZ gate

U
(2)
CZ = |00⟩ ⟨00|+ |01⟩ ⟨10|+ |10⟩ ⟨10| − |11⟩ ⟨11| , (2.5.9)

which is an entangling gate and can form a universal set together with other single-
qubit gates [37].

Finally, if we take the counter-rotating terms into account, Eq. (2.5.10) and
Eq. (2.5.11) become

H
(2)
0 (t) = (1+ e−2ife0t)2 sin

θ

2
eiϕ/2 |ee⟩ ⟨00|− (1+ e−2ife1t)2 cos

θ

2
e−iϕ/2 |ee⟩ ⟨11|+h.c.

(2.5.10)
and

H
(2)
1 (t) = 4 cos2 (fe0t) sin

θ

2
|e0⟩ ⟨0e| − 4 cos2 (fe1t) cos

θ

2
|e1⟩ ⟨1e|+ h.c., (2.5.11)

respectively.
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3 Open Quantum systems

In real world applications, decay and dissipative effects are phenomena which
deeply constrain our implementation of functional quantum technologies. One
of the major requirements for a good platform for quantum computing is the ro-
bustness against quantum noise and decoherence effects. In this sense, several
approaches for formalizing the treatment of open quantum systems have emerged
in the last decades [38–41]. In this section we will study some of these canonical
formulations and how they can be applied to the Λ-type systems. Our objective is
to show later on that the protocol is sufficiently robust against this type of effect.

3.1 Master Equations

One of most standard choices for describing open-quantum system effects is the
Lindblad equation [42]. The Lindblad equation typically describes the interaction
of a system, which is in contact with an external environment, undergoing some
type of dissipative process, e.g. a qubit in contact with a thermal bath. Given a
density matrix ρ which describes the state of the system, its dynamics is governed
by

dρ

dt
= i[ρ,H] +

∑
k

γkDk(ρ), (3.1.1)

where H is the Hamiltonian of the system and D[ρ] is given by

Dk(ρ) = LkρL
†
k −

1

2
{L†

kLk, ρ}. (3.1.2)

The operators Lk are called jump operators and they describe different inter-
actions between the system and the environment. The coefficients γk are simply
coupling strengths associated with these interactions. We call Eq. (3.1.2) a dissi-
pator. The matrix differential equation given by Eq. (3.1.1) is what we call the
Lindblad equation and it describes the dynamics of the open system. The first
term in this equation, which contains the commutator, is simply the von Neumann
term and it describes the unitary evolution of the system. The dissipator on the
other hand is responsible for taking dissipative and noisy effects into account.

3.2 Dissipative effect on the Λ-type system

In the Λ-type system, the excited state |e⟩ is typically an unstable state which
undergoes dissipation, while the computational states |0⟩ and |1⟩ can be regarded
as stable ground states. Thus, a physical description of the model will look like
Fig. 9. In our formulation we assume that the excited state decays to an auxiliary
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ground state |g⟩ which is not coupled to any other states through any type of
unitary dynamics. This means that whenever the ground state is populated, these
excitations are ”lost” from the point of view of the computational subspace. This
will result in a non-ideal mixed state at the end of the computation, which will
decrease the overall fidelity of the gate. Our purpose is precisely to investigate how
to mitigate this effect.

|0⟩ |1⟩

|e⟩

|g⟩

Ω(t)ω0 Ω(t)ω1

γ

Figure 9: Basic setup for the Λ-type system when an open quantum system approach is consid-
ered. The excited state decays with a rate γ. There is no coupling or decay with the computational
subspace itself. This means that dissipation effects only occur while the pulse is being applies
and the excited state is populated.

We will model the decay with an amplitude-damping jump operator given by
L = |g⟩ ⟨e|. Under a purely dissipative evolution this term will push the excitations
in |e⟩ towards the ground state |g⟩ (and, of course, this process will also damp the
coherences of the system, together with the populations). Initially considering the
RWA case, the dynamics of the system will then be given by

dρ

dt
= i[ρ,HI(t)] + γD(|g⟩ ⟨e|), (3.2.1)

where HI(t) is the RWA Hamiltonian in Eq. (2.2.1). Robustness against this type
of noise has been shown in [16]. The takeaway message in this case was that the
inverse pulse length should be much larger than the typical coupling strength γ, i.e.
we should have β ≫ γ. By increasing β the fidelity also monotonically increases,
approaching unity. This is precisely one of the advantages of this non-adiabatic
scheme: by removing constraints on the operation time one can use shorter pulses,
diminishing the effects of decoherence.

3.2 Dissipative effect on the Λ-type system
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By turning off the unitary part in Eq. (3.2.1) we can also understand how the
dissipative part acts on the system as a sanity check. For a pure initial state of
the type |ψ⟩ = c0 |0⟩+ c1 |1⟩+ ce |e⟩, the density matrix evolves as:

ρ(t) =


|c0|2 c0c

∗
1 e−γt/2c0c

∗
e 0

c1c
∗
0 |c1|2 e−γt/2c1c

∗
e 0

e−γt/2cec
∗
0 e−γt/2cec

∗
1 e−γt|ce|2 0

0 0 0 |ce|2(1− e−γt)

. (3.2.2)

We can see that the process does not interfere with the computational subspace
alone, but it dampens the population of the excited state and destroys the co-
herences. In the steady state limit γτ → ∞, all the population from the excited
state is transferred to the ground state. Hence, what happens when we turn off
the unitary interaction is that the dissipative process occurs only during the pulse
application, since there is no coupling between the computational subspace and the
ground state. Thus, by shortening the pulse we also shorten the time during which
the excited state is occupied and we minimize the errors due to dissipation. This is
of course consistent with what we expected when choosing the jump operators to
model the dissipation in this setup, so this result should not be seen as surprising.

We can now turn on the unitary part of interaction and try to quantify how
well this protocol performs. For that, we will take the initial state |ψ0⟩ = |0⟩. Our
gate of choice will be the Hadamard gate, whose implementation was discussed
in Sec. 2.4. Ideally, the application of the Hadamard gate upon |0⟩ should yield
|+⟩ = (|0⟩+ |1⟩)/

√
2.

The figure of merit for gate performance will be the fidelity, defined for two
arbitrary mixed states ρ and σ as [43, 44]

F (ρ, σ) =

(
Tr

√√
ρσ

√
ρ

)2

. (3.2.3)

The fidelity essentially quantifies how similar two states are, being 0 for orthogonal
states and 1 when both states are equal. Since we want to compare our output
state with an expected result |ψ⟩ which is always pure, the fidelity assumes a much
simpler form. In this case, it will be

F = F (ρ, |ψ⟩ ⟨ψ|) = ⟨ψ| ρ |ψ⟩ , (3.2.4)

where |ψ⟩ = U(C) |ψ0⟩ is the ideal output upon the application of the ideal quan-
tum gate U(C) and ρ is the density matrix obtained by evolving the system under
Eq. (3.2.1) for the whole duration of the pulse. We may also use the infidelity
1−F whenever it is convenient.

3.2 Dissipative effect on the Λ-type system
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Figure 10: We plot (a) the populations of the density matrix for the implementation of the
Hadamard gate and (b) the infidelity 1−F of the gate as a function of the pulse duration β. In
both cases the input state is |0⟩. The gray dashed line highlights the point ⟨i| ρ |i⟩ = 0.5.

Basic results are shown in Fig. 10. On Fig. 10(a) we can see that the application
of the pulse temporarily populates the excited state |e⟩, transferring excitations
from |0⟩ to |1⟩. Meanwhile, the ground state is also slightly populated due to these
dissipative effects, and these excitations are ”lost”, in the sense that they are not
recovered by the computational subspace later on in the evolution. And while we
did not plot the coherences here, they are also affected by this dissipative process.
For that reason the populations of |0⟩ and |1⟩ are not identical at the end of the
protocol and we get a mixed state. We can quantify this effect by investigating
how the duration β of the pulse changes the end result. In Fig. 10(b) we plot these
results, showing the infidelity 1−F as a function of the pulse duration relative to
the dissipation strength. We can see that it monotonically decreases as we increase
β/γ.

3.2 Dissipative effect on the Λ-type system
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4 Dropping the RWA

In the previous section we considered an implementation of the Λ-type system
where the counter-rotating frequencies in Eq. (2.1.4) are rapidly oscillating com-
pared to the typical timescales of the system, averaging out their effect to zero.
This yields the RWA Hamiltonian (2.2.1), whose robustness under open quantum
system effects we analyzed in Sec. 3.2. Our contribution here is to extend this
treatment to finite frequencies, considering the Hamiltonian in Eq. (2.1.4), study-
ing the interplay between the counter-rotating terms and the dissipative effects in
the system.

An extension of the original proposal in [16] for the non-RWA case has been
done previously in [45] for the dissipationless model. There, the authors show that
the RWA starts to break down at very small operation times. The performance of
the quantum gates is also analyzed for different pulse shapes and for typical exper-
imental setups. An alternative approach to this problem is to look for strategies
beyond the RWA, such as driven systems [46].

4.1 Sampling states on the Bloch Sphere

In order to quantify the performance of the Λ-type system implementation we
calculate the fidelity given by Eq. (3.2.4) for input states uniformly distributed
over the Bloch sphere. A common approach to this problem consists in sampling
these points uniformly with respect to the Haar measure [26]. However, since
computing the fidelity for a large number of points is computationally expensive,
we turn instead to a simple algorithm called Fibonacci lattice (or nodes), which is
reasonable approximation to evenly distribute a smaller number of points over the
Bloch sphere. This approach is used to map points from a Fibonacci lattice in a
square into a sphere through a cylindrical equal area projection [47]. This type of
procedure is needed because a naive approach, where one uniformly samples the
spherical angles, has a density of points strongly skewed towards the poles. This
can been seen in Fig. 11, where we compare the uniform sampling with the so
called Fibonacci nodes.

The procedure for a set of N points works as follows: i) uniformly distribute the
z-coordinate of the points in the interval [1,−1] into zn, ii) distribute the azimuthal
angle according to ϕn = 2πφn, where φ = (1+

√
5)/2 is the golden ratio, and finally

iii) take xn =
√

1− z2n cosϕn and yn =
√
1− z2n sinϕn. The desire set of points

will be given by the set of triples (xn, yn, zn) for n = 1, ..., N . This procedure can,
for instance, be used to uniformly generate points on the Bloch sphere.

One of the advantages of this method is that it is really simple to implement,
and since the points are not distributed randomly, we can get a reasonably uniform
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Figure 11: Distribution of points on the Bloch sphere. Compare the non-uniform distribution
(left) with an approximately uniform distribution (right) given by Fibonacci nodes.

distribution even for a small number of points. Of course, if one is interested in
methods which randomly distribute the points more canonical approaches are also
available [48].

4.2 Combined effect of dissipation and counter-rotating
terms

In this section we investigate the effect of the counter-rotating terms in the Λ-type
system. For the single qubit gates we consider the Hamiltonian in Eq. (2.1.4)
together with the dissipator for amplitude damping which appears in Eq. (3.2.1).
The corresponding master equation

dρ

dt
= i[ρ,HI ] + γD(|g⟩ ⟨e|) (4.2.1)

is then solved numerically for input states uniformly sampled on the Bloch sphere
as described in Sec 4.1. The Λ-type system HI is the unitary evolution, which
implemented through a sequence of pulses, as described in Sec. 2.4, and it also
contains the counter-rotating terms. The dissipator D(|g⟩ ⟨e|) describes the decay
from the excited state to the ground state. The strength of this effect is encoded
into the coupling parameter γ. The figure of merit used is the fidelity (3.2.4), which
compares the expected (pure) output state and the density matrix we obtain at

4.2 Combined effect of dissipation and counter-rotating terms
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the end of the simulation, resulting from the master equation.

As we have discussed before, the pulses Ω0(t) and Ω1(t) which implement the
Hamiltonian (2.1.4) can be of arbitrary shape, provided they respect the pulse
area ΦC = π, as shown in Eq. (2.4.5). Here we once again adopt the strategy of
choosing hyperbolic sine pulses of the form (2.4.10). As previously discussed, the
advantage of this choice is that β is a quantifier of how short the pulse is, while
simultaneously preserving its area as π no matter the value of β.

Our main objective is to investigate the interplay between three components in
this model: i) the pulse length β, ii) the counter-rotating frequencies fe,i and iii)
the coupling parameter γ. Shorter pulses (larger β) make the dissipative effects
negligible from the point of view of the system, this however also make the effect
of the counter-rotating terms significant, and we observe a breakdown of the RWA
if the frequencies fei are kept small. Conversely, using longer pulses in order to
offset the counter-rotating frequencies also compromises the accuracy of the gate
due to the long exposure time to dissipative effects. There is thus a ”time-optimal”
implementation of the single-qubit gates when one considers these effects jointly.
Our numerical results agree with this intuitive idea.

We perform simulations for three different single-qubit gates. First for the
X gate, which can be implemented through a single pair of pulses with ω0 =
eiϕ sin (θ/2) and ω1 = cos (θ/2) , choosing θ = π/2 and ϕ = 0. Note that in this
particular case both Rabi frequencies are the same. Secondly, we also perform
simulations for the Hadamard gate, which can be implemented through a single
pair of pulses with θ = π/4 and ϕ = 0. Finally, we also investigate the performance
of the T gate, which can be implemented through a pair of pulses (note how this
also explicitly showcases the need for a non-Abelian scheme), with θ1 = π/2 and
ϕ1 = 0 for the first pair of pulses and θ2 = π/2 and ϕ2 = π/4 for the second one
[16].

Basic results are shown in Fig. 12. We plot the fidelity as a function of the fre-
quency fi of the counter-rotating terms (in units of β), assuming fe0 = fe1 = fi, for
different values γ/β. The results are as one would expect: as the frequency of the
counter-rotating term increases the fidelity converges to the fidelity of the RWA im-
plementation, showing the validity of the approximation. Moreover, by decreasing
γ/β the gate also performs better. All plots show this qualitative behavior.

One interesting point to note is that, for a same value of γ/β, the phase-
shift gate in Fig. 12 (c) shows a slightly smaller fidelity when compared to the
X and Hadamard gates in Fig. 12 (a) and Fig. 12 (b), respectively. The reason
for that is the phase shift is implemented through two pairs of pulses, instead of
a single one, as discussed before. This doubles the exposure time of the gate to
dissipative effects, slightly diminishing its fidelity when compared to its single-pulse
counterparts.

4.2 Combined effect of dissipation and counter-rotating terms
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Figure 12: Fidelity as a function of the counter-rotating frequencies f0e = f1e = fi in units of
β for (a) the X gate, (b) the Hadamard gate and (c) the T gate. The fidelity is calculated for
100 states uniformly sampled over the Bloch sphere. The dashed lines correspond to the fidelity
in the RWA case. We can see that they are consistent with the numerical simulations for f ≫ β.

These results let us conclude that in order to optimize the protocol one should
have f ≫ β ≫ γ. This means that the counter-rotating frequencies should be
much larger than the pulse length 1/β. Fig. 13 illustrates this idea intuitively: by
satisfying this condition the typical oscillations arising from the counter-rotating
terms are much smaller than the dynamics generated by the pulses. At the same
time the coupling γ should be much smaller than β. This is what it means to say
that the pulse is short when compared to the dissipative effects, as 1/β is effectively
setting the timescale for this comparison (of course, this choice is arbitrary and
one could also compare the other two frequencies with γ instead).

Figure 13: An illustration of the optimal regime. As one increases f the timescale of the pulse
dominates and the RWA regime becomes valid, yielding a more accurate gate.

Meanwhile, in Fig. 14 we investigate the effect of different counter-rotating
frequencies. For that we show a contour plot of the infidelity 1− F as a function

4.2 Combined effect of dissipation and counter-rotating terms
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Figure 14: Average infidelity 1 − F as a function of the counter-rotating frequencies f0e and
f0e for γ/β = 0.02 for (a) the X gate, (b) the Hadamard gate and (c) the T gate. All other
parameters and the input states are the same as in Fig. 12. The calculations were done for a grid
of 150× 150 frequencies f0e and f1e.

of both f0e and f1e. In red we plot the optimal value of f1e for given f0e. We can
observe that for the X gate and the Hadamard gate, in Figs. 14 (a) and 14 (b),
respectively, ideally one should always increase the two frequencies while taking
them to be the same, i.e. f0e = f1e for optimal gate performance. This is probably
linked to the fact discussed in Sec. 2.3, where we showed in Eq. (2.3.3) how taking
the counter-rotating frequencies to be the same decouples the dark state and the
excited state in the dark-bright basis. So, in a sense, tuning fe1 = fe0 further helps
to reduce the effects of these counter-rotating terms. Meanwhile, we can also see
that increasing one of the frequencies while keeping the other to be the same may
decrease the fidelity of the gate.

We can see that in all of the three gates the optimal way to tune these frequen-
cies is to increase them linearly with respect to each other. The optimal strategy
for the X and the T gates is to keep them to be the same. For the T gate, on the
other hand, while it is true that the two frequencies should be increased linearly in
an optimal configuration, it seems that keeping f1e slightly higher leads to a better
performance.

Moreover, it is possible to note that Fig. 14 (a) displays a symmetric behaviour,
while the other two do not. The reason for that is that the two pulses in the X
gate are the same, this is not true for the Hadamard and the T gate. We can also
clearly see that the infidelity of the T gate is higher when compared to the other
gates. As we have discussed before, since the T gate requires two pairs of pulses
the system will be much more susceptible to decoherence effects, due to the longer
operation time.

4.2 Combined effect of dissipation and counter-rotating terms
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Figure 15: Average infidelity of the CZ gate for four different input states as a function of the
(dimensionless) system-environment coupling parameter γ/β. Other parameters are as in the
simulations for the single-qubit gates in Fig. 12.

Finally, we also investigate the fidelity of a two-qubit gate. We implement the
CZ gate as described in Sec. 2.5. In Fig. 15 we plot the infidelity 1 − F of the
gate averaged over four different input states, namely |+⟩ |+⟩, |+⟩ |−⟩, |−⟩ |+⟩ and
|−⟩ |−⟩ with |±⟩ = (|0⟩ ± |1⟩)/

√
2.

These states were chosen because applying the CZ gate to these input states
yield maximally entangled states. For instance, applying the CZ gate to |+⟩ |+⟩
yields CZ |+⟩ |+⟩ = (|0⟩ |+⟩+ |1⟩ |−⟩)/

√
2. If we apply a Hadamard gate H to the

second qubit we get a Bell state, i.e. (I ⊗H)CZ |+⟩ |+⟩ = Φ− = (|00⟩− |11⟩)/
√
2.

Our results show that the plots obtained for the two-qubit gate are qualitatively
similar to what we have for single-qubit gates and that the gate is also robust
against open quantum system effects under the appropriate conditions.

4.2 Combined effect of dissipation and counter-rotating terms
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5 Conclusions

We have reviewed the basic framework for holonomic quantum computing, showing
how non-adiabatic non-Abelian phases can be used to achieve high-speed quantum
computing. Using a formalism for open quantum system we were also able to review
some of the results for holonomic quantum gates and their robustness against decay.

Our main contribution was to further investigate the validity of the RWA in
this model. In particular, we showed that there is a trade-off regarding the gate op-
eration time; where shorter pulses are more robust against noise, but they however
cause the RWA to fail. By analyzing the Λ-type system in the bright-dark basis
we could also see that the counter-rotating terms in the Hamiltonian introduce a
coupling between the dark and the excited states.

We obtained the regime and the parameters for which the gate operation is
optimal. In particular, one should tune the pulse and the counter-rotating fre-
quencies in a way that makes the pulse frequency much larger than the coupling
between the system and the environment. On the other hand, the counter-rotating
frequencies should be tuned in a way that their frequency is much larger then the
inverse pulse length, which makes oscillations due to the counter-rotating terms
negligible, recovering the RWA regime. Finally, we show the effect of asymmetric
counter-rotating frequencies in the gate fidelity and their optimal configuration.
We show that keeping both frequencies comparable yield optimal results.

The results obtained here could be extended to other generalizations of this
basic setup, such as the single loop scheme [31] or the off-resonant scheme [30].
Strategies which do not rely on the RWA or a generalization to higher order gates
could also be investigated.
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[26] M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo,
K. Singh, and D. M. Tong, Phys. Rev. A 86, 062322 (2012).

[27] C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang, and L.-M.
Duan, Nature 514, 72 (2014).

[28] S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Nat.
Commun. 5, 4870 (2014).

[29] A. A. Abdumalikov Jr, J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wall-
raff, and S. Filipp, Nature 496, 482 (2013).
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