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Abstract 

Background: The duration of trial follow-up affects the ability to detect recrudescent infections following anti-
malarial treatment. The aim of this study was to explore the proportions of recrudescent parasitaemia as ascribed 
by genotyping captured at various follow-up time-points in treatment efficacy trials for uncomplicated Plasmodium 
falciparum malaria.

Methods: Individual patient data from 83 anti-malarial efficacy studies collated in the WorldWide Antimalarial 
Resistance Network (WWARN) repository with at least 28 days follow-up were available. The temporal and cumulative 
distributions of recrudescence were characterized using a Cox regression model with shared frailty on study-sites. 
Fractional polynomials were used to capture non-linear instantaneous hazard. The area under the density curve (AUC) 
of the constructed distribution was used to estimate the optimal follow-up period for capturing a P. falciparum malaria 
recrudescence. Simulation studies were conducted based on the constructed distributions to quantify the absolute 
overestimation in efficacy due to sub-optimal follow-up.

Results: Overall, 3703 recurrent infections were detected in 60 studies conducted in Africa (15,512 children 
aged < 5 years) and 23 studies conducted in Asia and South America (5272 patients of all ages). Using molecular 
genotyping, 519 (14.0%) recurrences were ascribed as recrudescent infections. A 28 day artemether-lumefantrine (AL) 
efficacy trial would not have detected 58% [95% confidence interval (CI) 47–74%] of recrudescences in African chil-
dren and 32% [95% CI 15–45%] in patients of all ages in Asia/South America. The corresponding estimate following a 
42 day dihydroartemisinin-piperaquine (DP) efficacy trial in Africa was 47% [95% CI 19–90%] in children under 5 years 
old treated with > 48 mg/kg total piperaquine (PIP) dose and 9% [95% CI 0–22%] in those treated with ≤ 48 mg/kg 
PIP dose. In absolute terms, the simulation study found that trials limited to 28 days follow-up following AL under-
estimated the risk of recrudescence by a median of 2.8 percentage points compared to day 63 estimates and those 
limited to 42 days following DP underestimated the risk of recrudescence by a median of 2.0 percentage points com-
pared to day 42 estimates. The analysis was limited by few clinical trials following patients for longer than 42 days (9 
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Background
Before the introduction of molecular genotyping, the 
World Health Organization (WHO) recommended that 
anti-malarial clinical trials conducted in areas of high 
transmission should be restricted to a short follow-up 
duration (2  weeks). This was in part to reduce poten-
tial confounding from new infections which then could 
not be distinguished from recrudescences [1]. One of 
the earliest indications of emerging anti-malarial drug 
resistance is recrudescent parasitaemia [2]. Recru-
descence is delayed until the anti-malarial drug no 
longer suppresses parasite multiplication. As resistance 
increases recrudescent parasitaemias occur as para-
sites are able to grow in increasing concentrations of 
the drug [2]. As the first recrudescences occur several 
weeks after treatment anti-malarial therapeutic efficacy 
trials with two weeks of follow-up could only identify 
high grade parasite resistance [2, 3].

In the 1990s, the introduction of polymerase chain 
reaction (PCR) genotyping allowed comparison of the 
sizes of amplified segments of highly polymorphic Plas-
modium falciparum genes, paving the way for classify-
ing probabilistically individual recurrent infections as 
either homologous (identical to the initial infection, 
i.e. recrudescent) or heterologous (different than the 
initial infection, i.e. a new infection) [4]. In 2003, the 
WHO revised its guidelines for assessing anti-malarial 
efficacy. The new guideline recommended 42  days of 
post-treatment follow-up for artemisinin-based com-
bination therapy (ACT), including lumefantrine, and 
63  days for artemisinin-based combinations including 
mefloquine, in conjunction with molecular genotyping 
to distinguish recrudescent from new infections [5, 6]. 
However conducting trials with such long follow-up 
was associated with significant logistical difficulties, 
and the guideline was revised again in 2009, to recom-
mend a minimum of 28 and 42 days follow-up for arte-
misinin-based combinations including lumefantrine or 
mefloquine, respectively [7]. It was anticipated that the 
revised follow-up duration would capture “most” of the 
treatment failures, and thereby provide a reasonable 
approximation of drug efficacy.

Recent studies have reported that a substantial propor-
tion of recrudescent infections emerge in the peripheral 
blood beyond the currently recommended follow-up 
duration. A Tanzanian study reported that 28  days of 
follow-up missed 28% (5/18) of recrudescent infections 
following treatment of 206 patients with artesunate-amo-
diaquine (ASAQ) and 58% (7/12) following treatment of 
197 patients with artemether-lumefantrine (evaluable 
population) [8]. In an Ethiopian study, 88% (14/16) of the 
recrudescent infections were detected after 28 days fol-
lowing treatment with AL (n = 348 patients) [9]. Other 
studies have reported recrudescent infections occurring 
after 6weeks after treatment with artesunate-mefloquine 
(ASMQ) and dihydroartemisinin-piperaquine (DP) [10–
12], and up to 6 weeks after treatment with AL [12, 13]. 
Together, these reports suggest that the current recom-
mendations regarding the duration of study follow-up 
warrant re-examination.

The aim of this study was to use pooled data from clini-
cal trials to assess the ability of currently recommended 
minimum follow-up periods to capture PCR-confirmed 
recrudescence following treatment of uncomplicated P. 
falciparum malaria with fixed dose ACT.

Methods
Study and patient data
Clinical studies with fixed dose formulations of ACT 
uploaded in the WorldWide Antimalarial Resistance Net-
work (WWARN) repository were selected if they had a 
minimum follow-up period of 28  days with molecular 
genotyping carried out to differentiate recurrent parasi-
taemia as due to either new infection or recrudescence 
[14]. Early treatment failures (on or before day 7) were 
excluded since the focus of the analysis was to charac-
terize the temporal distribution of late recrudescences 
following initial parasite clearance. Patients with miss-
ing or indeterminate genotyping outcomes were also 
excluded. In Africa, analysis was restricted to children 
less than 5 years of age, since for this population immu-
nity is predicted to have less impact on outcomes com-
pared to older individuals. In the studies from Asia and 

out of 83 trials) and the imprecision of PCR genotyping which overcalls recrudescence in areas of higher transmission 
biasing the later distribution.

Conclusions: Restricting follow-up of clinical efficacy trials to day 28 for AL and day 42 for DP will miss a proportion 
of late recrudescent treatment failures but will have a modest impact in derived efficacy. The results highlight that 
as genotyping methods improve consideration should be given for trials with longer duration of follow-up to detect 
early indications of emerging drug resistance.
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South America, patients of all ages were included. Fur-
ther details of study inclusion and exclusion criteria are 
presented in Additional file 1.

The time of observed recrudescence
The time of observed recurrence ( tobs) was used to esti-
mate the time to recrudescence ( TR) at which parasite 
recrudescence would exceed the threshold of detection 
(TOD); the latter was defined as 50 parasites per microli-
tre. TR was estimated assuming tenfold parasite multipli-
cation per 48  h asexual cycle using the following 
algorithm [15]: T̂R = tobs −

((
log10(

PR
50

))
× 2) , where 

tobs is the day when recrudescence was detected in the 
study and PR is the parasite density at the observed time 
of recrudescence. If the estimated TR was less than the 
time of last visit when the patient had a negative periph-
eral blood film examination ( tneg ), then TR was replaced 
as tneg + 1.

Estimation of temporal trend and distribution 
of recrudescence
The temporal trend (instantaneous risk) of recrudescence 
at any time during the study follow-up was quantified 
by its hazard function, h(t) . The adjusted estimate of the 
hazard function was derived from a Cox proportional 
hazard model controlling for the body weight adjusted 
(mg/kg) dose of the partner drug, age of the patient, 
and initial parasite load (on log-scale). The baseline haz-
ard function h0(t)was approximated as the slope of the 
cumulative baseline hazard (H0(t)) . H0(t) was estimated 
using fractional polynomial smoothing after applying 
log-transformation as outlined previously [16]. The frac-
tional polynomial approach was used, as standard para-
metric approaches were found to provide a poor fit to 
the data (Additional file 1; Sections 2 and 3). The prob-
ability density f0(t) of time to PCR confirmed recrudes-
cence was then estimated as f0(t) = h0(t).S0(t) , where 
S0(t) is the baseline survival estimate of drug efficacy 
( S0(t) = e−H0(t) ). The constructed distribution was nor-
malized such that the area under the curve was equal 
to 1. The area under the normalized probability density 
curve (AUC) was calculated at a given time-point and 
the cumulative AUC at a time-point t was reported with 
the associated 95% confidence interval (CI) derived using 
1000 bootstrap resamples drawn from data of the same 
sample size. The proportion of recrudescences missed 
at any specific time point was calculated as 1—AUC at 
that time-point. For the DP regimen, the distribution 
was estimated for those who received a total piperaquine 
dose of above or below 48 mg/kg, a threshold associated 
with poorer therapeutic outcomes in a paediatric popula-
tion [17]. For AL, the derived estimates were stratified by 
region as suggested previously [18].

Simulation studies
The impact of a missed proportion of recrudescences on 
the absolute bias (overestimation) in a derived estimate 
of efficacy was evaluated through two simulation studies. 
The first simulation study explored the impact of sub-
optimal follow-up on derived efficacy in areas of low and 
high malaria transmission, and Kaplan–Meier estimates 
were generated at the end of the maximum follow-up 
time (day 63) and compared with the estimates derived 
for days 28 and 42 (Additional file  1: Section  4). The 
second simulation study explored how the duration of 
follow-up influenced the estimated efficacies of AL and 
DP. Hazard ratios were estimated using Cox proportional 
hazards regression at days 28, 42 and 63. Summarized 
results were reported from 1000 simulation runs. The 
design of the simulation studies has been described pre-
viously [19] and a step-by-step outline of the simulation 
protocol is presented in supplemental text (Additional 
file 1: Sections 4).

Sensitivity analyses
The following two sensitivity analyses were considered: 
(i) distributions were re-estimated by using data only 
from studies with 42 days of follow-up, and (ii) the 707 
patients with indeterminate recurrence excluded in the 
primary analysis were considered as missing data, and 
the probability distributions were re-estimated using 
multiply imputed data, as previously described [20].

Software
Cumulative baseline hazard was estimated by fitting 
the Cox proportional hazard model using the survival 
library; Kaplan–Meier type hazard and kernel-smoothed 
hazard function were estimated using the muhaz library 
in R software [21].

Results
Data were available for 15,512 children aged less than 
5  years from 60 studies in Africa and for 5272 patients 
of all ages from 23 studies in Asia and South America 
(Fig.  1). The duration of follow-up was 28  days in 39 
(47.0%) studies, 42 days in 32 (38.6%) studies, 56 days in 3 
(3.6%) studies and 63 days in 9 (10.8%) studies. The stud-
ies were published from 2001 to 2015 with 45 (54.2%) 
studies published before 2010. Further details on the 
study designs and patient characteristics are provided in 
Additional file 1.

Recurrent parasitaemia and molecular genotyping
A total of 3703 (17.8%) patients had recurrent parasitaemia 
between days 7 and 63 after initiation of treatment. Parasite 
genotyping was attempted at three or more loci (including 
microsatellites) in 3026 (81.7%) recurrent infections, 2 loci 
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in 575 (15.5%) infections, one locus in 79 (2.1%) infections, 
and using microsatellites only in 15 (0.4%) infections. The 
number of markers was not documented in 8 (0.2%) infec-
tions. In total 3184 (86.0%) recurrent infections were clas-
sified as new infections and 519 (14.0%) as recrudescent 
infections. Among recurrent infections, the proportion of 
recrudescent infections was 20.3% (16/79) in studies which 
used a single marker, 16.5% (95/575) in studies with two 
markers, 13.2% (399/3026) in studies with three markers 
(including microsatellites), 33.3% (5/15) in studies using 
only microsatellites, and 50% (4/8) in studies with no 
description of molecular methods.

Temporal trend of P. falciparum recrudescence with AL 
and DP
A total of 306 recrudescent infections were confirmed 
after AL treatment (264 in Africa; 41 in Asia and 1 in 
South America) and 115 after DP treatment (94 in Africa; 
19 in Asia, and 2 in South America). The observed times 
of recrudescence in different regions stratified by follow-
up duration are presented in Fig. 2. The non-parametric 
estimates and the kernel smoothed estimate of the haz-
ard function exhibited a non-monotonic trend (Addi-
tional file  1: Section  2). Covariate adjusted smoothed 
hazard functions obtained from Cox models exhibited 

Fig. 1 Flow chart showing selection of clinical trials and participants in the study. AL = artemether-lumefantrine; 
DP = dihydroartemisinin-piperaquine; ASMQ = artesunate-mefloquine; ASAQ = artesunate-amodiaquine, and n = number of recrudescences; 
PCR = Polymerase Chain Reaction; WWARN = WorldWide Antimalarial Resistance Network; ACT = artemisinin-based combination therapy
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a non-monotonic shape for AL and DP (Fig.  3; right 
panels). For AL, the instantaneous hazard function was 
shifted to the right for Africa compared to Asia, and the 
peak hazard was lower and earlier in Asia (day 21) com-
pared to Africa (day 27). For DP, the peak hazard was 
earlier (day 30) in those who were under-dosed (< 48 mg/
kg of piperaquine) compared to those who received a 
higher dose of piperaquine (day 39). There were a total 
of 72 recrudescent infections following treatment with 
fixed dose formulations of ASAQ (61 in Africa and 11 
in Asia/S.America) and 26 (15 in Africa and 11 in Asia) 
following treatment with fixed dose ASMQ; these low 
numbers precluded robust modelling for these regimens. 
These patients were excluded in the construction of dis-
tribution of failure times. 

The empirical distribution of time of P. falciparum 
recrudescence
The probability density of the time to recrudescence in 
patients treated with AL and DP regimens is presented in 
Fig. 4. Overall the area under the curve (AUC) for AL in 
Africa was 0.42 [95% CI 0.26–0.53] on day 28, 0.79 [95% 

CI 0.53–0.97] on day 42 and 1.00 [95% CI 0.81–1.00] on 
day 63 (Table  1). In Asia, the distribution was shifted 
to the left compared to that observed in Africa, with an 
estimated AUC of 0.68 [95% CI 0.55–0.85] on day 28 and 
0.98 [95% CI 0.93–1.00] on day 42. The distribution of 
recrudescence following DP could only be derived from 
African studies in which 85 of the 514 recurrences were 
categorized as recrudescence by PCR. In Asia/S. Amer-
ica, only 21 of 206 recurrences were categorized as recru-
descences. The distribution of recrudescence following 
DP in Africa was shifted to the left in those who were 
under-dosed (receiving ≤ 48 mg/kg); the AUC by day 42 
was 0.91 [95% CI 0.78–1.00] in the under-dosed group 
compared to 0.53 [95% CI 0.10–0.81] in those treated 
with a higher dose (Table 1). 

Simulation studies
Simulation studies were undertaken to assess correlations 
between duration of follow-up and estimates of drug effi-
cacy. Compared to the “true” efficacy estimates of AL 
as measured at day 63, estimates derived using only the 
recrudescence observed until day 28 overestimated the 

Fig. 2 Observed time-to-recrudescence for ACT stratified by region and duration of follow-up. The y-axis depicts the time for the recrudescent 
infection to reach microscopic limit of detection (50 parasites/µL). In Africa, the distribution is shown for children < 5 years age, whereas in 
Asia/ S. America, data are shown for patients of all ages. Each dot represents an observed recrudescence. AL = artemether-lumefantrine; 
DP = dihydroartemisinin-piperaquine; ASMQ = artesunate-mefloquine; ASAQ = artesunate-amodiaquine, and n = number of recrudescences. Only 
data from studies with at least three molecular markers are shown in the graph. For DP (Asia), the graph depicts recrudescences observed in studies 
from Asia and S. America combined
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drug efficacy by a median of 2.8 percentage points [Inter-
quartile Range (IQR): 2.3%–3.4%; Range: 0.6%–5.5%] in 
areas of high transmission. With 42  days of follow-up, 
the overestimation in efficacy fell to 0.9 percentage points 
[IQR: 0.7%–1.3%; Range: 0.0%–2.9%] (Fig.  5; top-left 
panel). Compared to the true efficacy estimates for DP as 
measured at day 63, those generated at day 42 overesti-
mated drug efficacy by 2.0 percentage points [IQR: 1.7%–
2.6%; Range: 0.0%–4.6%] in high transmission settings 
(Fig 5; bottom left panel). The estimates for areas of low 
transmission intensity were similar (Fig. 5; right panels).

Impact of follow‑up duration on comparative efficacy
The effect of study duration on comparative efficacy in 
randomized comparative studies was investigated. In 
areas of low transmission in which the risk of new infec-
tions was low (8% in the DP arm and 15% in the AL arm), 

the median hazard ratio (HR) for AL relative to DP (for 
recrudescence) was 2.00 [IQR: 1.29–2.78] at day 28, 1.30 
[IQR: 1.07–1.68] on day 42 and fell to parity from day 49 
onwards (Fig.  6; left panel). The results were similar in 
areas of high transmission (Fig. 6; right panel). There was 
little difference in the results when the simulation was 
repeated with 200 and 1000 subjects per treatment arm 
(Additional file 1: Section 4).

Sensitivity analyses
When the analysis was restricted to outcomes at day 42 
and observations beyond this time-point were censored, 
the distribution of the timing of recrudescence after AL 
in Africa shifted to the left compared to the distribution 
including all data up until day 63 (Fig. 4; left panel, solid 
lines). Similarly, the distribution of recrudescence for DP 
in those treated with ≥ 48  mg/kg also shifted to the left 

Fig. 3 Fractional polynomial estimates of cumulative and instantaneous hazard for AL and DP. The cumulative baseline hazard estimated from 
Cox model (adjusted for age, baseline parasitaemia and mg/kg dosage of partner drug) together with fractional polynomial smoother (left panel). 
The temporal trend of observing recrudescence during the follow-up period, estimated by the instantaneous baseline hazard function (right 
panel). Data in Africa was restricted to children < 5 years whereas patients of all ages were included in Asia and S. America. Data from S. America 
were grouped with Asia. All studies used at least 3 locus genotypes (the usage of microsatellites was considered as a separate locus). Under-dosed 
was defined as total piperaquine dose ≤ 48 mg/kg (those receiving > 48 mg/kg defined as not under-dosed). AL = artemether-lumefantrine; 
DP = dihydroartemisinin-piperaquine. The equations for the cumulative baseline hazard functions derived using the fractional polynomial 
smoothing are presented in the Additional file 1
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when the analysis was restricted to day 42 (Fig.  4; right 
panel, solid lines). These sensitivity analyses remained 
unchanged when indeterminate outcomes were consid-
ered as missing data (Additional file 1: Section 5).

Discussion
Using data from 83 anti-malarial clinical trials conducted 
in Asia, Africa and South America, this analysis char-
acterized the temporal and cumulative distributions of 
recrudescence after treatment with AL or DP in patients 
with uncomplicated P. falciparum malaria. The temporal 
trend of P. falciparum recrudescent parasitaemia exhib-
ited a non-monotonic shape, an observation consistent 
with anti-malarial pharmacokinetics. Soon after therapy 
the risk of recrudescence is extremely low, as most para-
sites are rapidly cleared by the highly potent artemisinin 
components of the ACT. Subsequently, as concentrations 
of the partner drug fall below the minimum inhibitory 

concentration (MIC), any remaining parasites can grow 
and expand, eventually leading to patent infection and 
symptomatic illness; during this period, the instanta-
neous risk of recrudescence rises. In a population of 
patients the hazard of recrudescence rises as blood con-
centrations of the antimalarial drug fall below MIC val-
ues and then falls again as the majority of recrudescences 
have occurred. New infections are also constrained by 
residual concentrations of the slowly eliminated antima-
larial drugs and “bunch” together after blood levels fall 
below prevailing MIC values [22].

Characterization of the temporal trend enabled the 
construction of the probability distribution of the infec-
tions estimated to be recrudescences. In African children 
less than 5 years old treated with DP, the peak distribu-
tion of recrudescence was around day 39 after initia-
tion of therapy in children who were adequately dosed 
(≥ 48  mg/kg total dose of piperaquine), but this fell to 

Fig. 4 Distribution of recrudescent infection for artemether-lumefantrine and dihydroartemisinin-piperaquine. Dotted line represents distribution 
derived from all data. Solid line represents the distribution derived by including data up to day 42 (observations beyond day 42 were censored on 
day 42). For Africa, the data included children < 5 years old whereas for Asia, no age restriction was applied

Table 1 The area under the curve of the estimated probability distribution

AL, artemether-lumefantrine; DP, dihydroartemisinin-piperaquine; PIP, piperaquine; CI, confidence interval
a Estimated in children < 5 years in Africa and in patients of all ages from Asia

The 95% confidence interval was estimated from 1000 bootstrap samples of data for AL; for DP not under-dosed this was from 925 samples, and for DP under-dosed 
this was based on 987 bootstrap samples drawn from the original dataset

Day AL in  Africaa 95% CI] AL in  Asiaa [95% CI] DP in Africa (PIP mg/kg ≤ 48) 
[95% CI]

DP in Africa (PIP 
mg/kg > 48) [95% 
CI]

28 0.42 [0.26–0.53] 0.68 [0.55–0.85] 0.39 [0.25–0.52] 0.20 [0.00–0.36]

35 0.63 [0.40–0.78] 0.88 [0.78–0.99] 0.69 [0.53–0.83] 0.36 [0.03–0.59]

42 0.79 [0.53–0.97] 0.98 [0.93–1.00] 0.91 [0.78–1.00] 0.53 [0.10–0.81]

49 0.91 [0.64–1.00] 1.00 [0.93–1.00] 1.00 [0.93–1.00] 0.70 [0.22–0.99]

56 0.97 [0.74–1.00] 1.00 [0.94–1.00] 1.00 [0.98–1.00] 0.84 [0.36–1.00]

63 1.00 [0.81–1.00] 1.00 1.00 0.93 [0.47–1.00]
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day 30 in children treated with a lower total dose of pipe-
raquine (< 48  mg/kg). This is consistent with patients 
treated with a lower dose having blood concentrations 
which fall below the MIC sooner, allowing the parasite 
biomass to become patent earlier.

In patients treated with AL there were significant 
regional differences in the probability distributions of 
recrudescent infections with a shift to the left in Asia 
and South America (in patients of all ages) compared to 
Africa (in children < 5  years). This may reflect suppres-
sion of the parasite growth by host immunity, which is 
acquired earlier in life in Africa, where children often 
have multiple infections per year, whilst immunity is 
acquired more slowly in low endemic settings in Asia 
and South America [23]. However this explanation does 
not explain adequately why that suppression should then 
decrease to allow recrudescence. The derived distribu-
tion of recrudescences in high transmission settings, 
such as Africa, needs to be interpreted with caution, as 

late recrudescence beyond day 42 may also have arisen 
through misclassification of new infections as recrudes-
cences. In higher transmission settings, the proportion of 
recurrent infections that are due to reinfection increases 
in studies with longer follow up, until eventually all 
recurrent infections are newly acquired. The uncertainty 
is particularly pertinent for individuals treated with AL; 
only a small proportion of patients (11.4%) were fol-
lowed for more than 42 days and the infections ascribed 
as recrudescences detected between days 42 and 63 in 
9 patients influenced the estimation (See Fig.  4 on the 
impact of follow-up duration on the estimated distribu-
tion) [12, 24]. In areas of high transmission polyclonal 
infections are common and these confound the interpre-
tation of genotyping data [25, 26]. In multilocus genotyp-
ing using separate PCRs the amplified sequences are not 
phased so haplotypes cannot be inferred if there are mul-
tiple genotypes. The proportion of recurrent infections 
can be overestimated or underestimated depending on 

Fig. 5 Absolute overestimation in efficacy due to sub-optimal follow-up duration (compared to day 63 estimates). Overestimation of efficacy 
relative to day 63 estimates for AL and DP regimen. In areas of high transmission, there was a median of 15% new infections in the DP arm and 
30% new infections in AL arm representing. In areas of low transmission, there was a median of 8% new infections in the DP arm and 15% new 
infections in the AL arm. Simulation assumed 500 patients per treatment arm and was repeated for 1,000 runs. AL = artemether-lumefantrine; 
DP = dihydroartemisinin-piperaquine (See Additional file 1 for further details on the functions used for simulation)
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the background prevalence and distribution of the poly-
morphic markers, the technique used, the criteria set, 
and the number of reinfections (transmission intensity). 
In the one African study of AL, in which patients were 
followed until day 84, recrudescence was defined as per-
sistence of at least one baseline clone, and this is likely to 
have led to a substantial proportion of late new infections 
being misclassified as recrudescent infections [24]. When 
the distributions of recrudescence following AL in Africa 
were derived using only data from studies with 42  days 
follow up the distribution shifted to the left and this was 
far more apparent in Africa than Asia (Fig. 4).

To estimate the degree to which absolute efficacy 
might be overestimated, simulation studies for AL and 
DP regimens were undertaken. Compared to the efficacy 
estimates at day 63, studies of AL restricted to 28  days 
follow-up overestimated drug efficacy by a median of 
2.8% (range: 0.6%–5.5%), whereas studies of DP restricted 
to 42 day follow-up overestimated efficacy in adequately 
dosed DP by a median of 2.0% (range: 0%–4.6%). These 
results suggest that follow-up of 28  days for AL and 
42 days for DP may result in failure to detect early signs 
of recrudescent parasitaemia occurring after the end of 
follow-up. Overall, the impact of follow-up on estimated 
treatment efficacy was modest, and any additional gain 
in accuracy in deriving these estimates must be weighed 
against the increased logistical challenge of studies with 

longer follow-up and a higher risk of misclassification 
when defining recrudescences and reinfections.

Recrudescent parasitaemia is the primary determinant 
for the selection and onward transmission of de novo 
resistant parasites [15]. Such selection and propagation 
of resistance is predicted to occur within a “window” 
determined by a drug’s pharmacokinetic profile [27]. For 
the standard AL regimen, this hypothetical window lies 
between days 24 to 27 for emergence of de novo resist-
ance and between days 20 to 39 for acquired resistance 
[27]. The corresponding window for mefloquine (a drug 
with a longer elimination half-life) is estimated to be 
between 73 to 87 days and 65 to 113 days for the emer-
gence of de novo and acquired resistance, respectively 
[27].

The analysis presented has a number of important 
limitations. First, the estimation of the hazard function 
is vulnerable to the method used for estimation, espe-
cially on the distal part of the distribution (See Addi-
tional file 1: Section 2). Second, only 9 studies included 
in the analysis had a follow-up greater than 42  days 
and there were only 255 recurrent events (25 recru-
descences and 230 new infections) detected beyond 
this period, affecting the tail-end of the derived distri-
butions. When the analysis was restricted to studies 
with only 42 days of follow-up, the estimated distribu-
tion of recrudescence shifted to the left compared to 

Fig. 6 Simulation study comparing hazards ratio of recrudescence for AL against DP in children < 5 years in Africa. A There were a median 
(across 1000 simulation runs) of 8% new infections in DP arm and 15% in AL arm representing areas of low transmission. B There were a median 
of 15% new infections in DP arm and 30% in AL arm representing areas of high transmission. In both simulation settings, approximately 4% 
recrudescence was observed by day 63 on AL and DP arm. Data for AL was simulated based on the estimated hazard function of recrudescence in 
children < 5 years Africa, and for DP regimen the data was simulated based on the hazard function for those who received piperaquine dose greater 
than 48 mg/kg (See Additional file 1 for the functions used for these simulations). The dotted horizontal line shows the line of no effect (hazard 
ratio = 1). The simulation assumed 500 patients per treatment arms. AL = artemether-lumefantrine; DP = dihydroartemisinin-piperaquine
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that derived using all available data (Fig. 4; solid lines). 
Despite the shifts in the distributions, the results indi-
cated that the currently recommended follow-up times 
do not capture all late recrudescence. Third, the defini-
tion of recrudescence is dependent upon the molecu-
lar methods applied and their interpretation. Current 
genotyping methods are imprecise and, in areas of 
high transmission, overcall late recrudescent infec-
tions [25]. Whilst data on the number of polymorphic 
loci used to genotype were documented in all but 8 of 
the 3026 recurrent infections, no data were available on 
the population allele frequencies of these markers or 
the multiplicity of infection, and hence it was not pos-
sible to discern the degree to which late recrudescing 
parasites may have been misclassified. This will have 
affected the tail of the temporal distribution, particu-
larly in high transmission settings, where reinfection is 
common. Accounting for this error, when constructing 
the empirical distribution and in the simulation stud-
ies, was beyond the scope of this work, and hence the 
tail of the distribution of recrudescence following AL in 
Africa should be interpreted with caution. Finally, the 
estimated time of recrudescence assumed tenfold para-
site multiplication per 48-h asexual cycle for estimat-
ing the time when the parasite density would have first 
reached 50 parasites/µl, and yet this is likely affected by 
host characteristics, such as acquired immunity, and 
by circulating drug concentrations, which could not be 
quantified in this analysis [15, 28].

Conclusions
The derived empirical distribution of recrudescence 
indicates that the currently recommended minimum 
follow-up for anti-malarial efficacy trials do not cap-
ture a significant proportion of PCR confirmed recru-
descences occurring after AL and DP treatment. Whilst 
the overall impact of this limitation on the estimated 
efficacy of these anti-malarial regimens was modest 
in absolute terms, extension of the duration of follow-
up to 42  days for AL and 63  days for DP, particularly 
with more precise methods of genotyping, would facil-
itate detection of early signs of emerging drug resist-
ance, which can manifest through delayed parasite 
recrudescence.
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