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Inference with Extremes: Accounting for Extreme Values in Count 

Regression Models 

RESEARCH NOTE 

DAV I D RA N D A H L A N D JO H A N VE G E L I U S 

Uppsala University, Sweden 

Processes that occasionally, but not always, produce extreme values are notoriously difficult to model, as a small number 
of extreme observations may have a large impact on the results. Existing methods for handling extreme values are often 

arbitrary and leave researchers without guidance regarding this problem. In this paper, we propose an extreme value and 

zero-inflated negative binomial (EVZINB) regression model, which allows for separate modeling of extreme and nonextreme 
observations to solve this problem. The EVZINB model offers an elegant solution to modeling data with extreme values 
and allows researchers to draw additional inferences about both extreme and nonextreme observations. We illustrate the 
usefulness of the EVZINB model by replicating a study on the effects of the deployment of UN peacekeepers on one-sided 

violence against civilians. 

Los procesos que producen, de manera ocasional, pero no siempre, valores de carácter extremo son notoriamente difíciles 
de modelar, debido a que un pequeño número de observaciones con carácter extremo puede tener un gran impacto en los 
resultados. Los métodos existentes para manejar estos valores extremos son, con frecuencia, arbitrarios y dejan a los investi- 
gadores sin orientación con respecto a este problema. En este artículo, proponemos, con el fin de resolver este problema, un 

modelo de regresión de Valor Extremo y de Binomio Negativo Inflado Cero (EVZINB, por sus siglas en inglés), que permite 
modelar por separado las observaciones extremas y las observaciones no extremas. El modelo EVZINB ofrece una solución 

elegante para modelar aquellos conjuntos de datos que tienen valores extremos y permite a los investigadores hacer infer- 
encias adicionales sobre las observaciones extremas y las no extremas. Ilustramos la utilidad del modelo EVZINB replicando 

un estudio sobre los efectos del despliegue de las fuerzas de paz de la ONU sobre la violencia unilateral contra los civiles. 

Nous savons bien que les processus qui tendent parfois, mais pas tout le temps, à produire des valeurs extrêmes sont diffi- 
ciles à modéliser. En effet, un petit nombre d’observations extrêmes peut entraîner des conséquences importantes sur les 
résultats. Les méthodes existantes de traitement des valeurs extrêmes sont souvent arbitraires et ne fournissent aucun con- 
seil aux chercheurs concernant ce problème. Dans cet article, nous proposons le modèle de régression extreme value and 

zero-inflated negative binomial (EVZINB ou Valeur extrême et binomial négatif avec excès de zéros), qui permet de mod- 
éliser séparément les observations extrêmes et non extrêmes, pour résoudre ce problème. Le modèle EVZINB propose une 
solution élégante de modélisation des données avec des valeurs extrêmes et permet aux chercheurs d’effectuer d’autres déduc- 
tions quant aux observations extrêmes et non extrêmes. Nous illustrons l’utilité du modèle EVZINB en répliquant une étude 
des effets du déploiement des forces de maintien de la paix de l’ONU sur les violences unilatérales à l’encontre de civils. 
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Introduction 

s the availability and resolution of data increases in the po-
itical and social sciences, researchers are increasingly faced
ith difficult modeling decisions when the data they are

rying to model do not conform to well-behaved distribu-
ions. For example, when modeling the number of fatalities
rom one-sided violence (OSV) against civilians ( Eck and
ultman 2007 ) on a country-month or country-year level, it

an be assumed that certain countries will never experience
ny fatalities from OSV against civilians simply because they
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24
re not at risk of political violence and thus produce “struc-
ural” zeroes (see, for instance, Bagozzi 2015 ). Conversely,
n other countries there may be periods of very large counts
f OSV against civilians during campaigns of ethnic cleans-

ng or genocide, which can be thought of as a separate pro-
ess from the vast majority of cases. Fitting a regular count
egression model in these circumstances may produce inac-
urate inferences if the factors that cause the structural ze-
os or the extreme counts are different from the factors that
ause the nonextreme positive counts. The former of these
roblems, excessive structural zeroes, has received much at-
ention in the literature, and it has been shown that zero-
nflated count models are appropriate from both an empir-
cal and theoretical level (for a longer discussion on zero-
nflated models, see Hilbe 2011 , ch. 11, and Bagozzi 2015 ). 

The latter problem, that of the influence of extreme val-
es on the estimation of count regression model, has, how-
ver, received little or no attention in the literature, and
t is this issue that this paper aims to address. In this pa-
er, we propose an extreme value and zero-inflated negative
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1 This model can also be used when zero-inflation is not present, in which case 
it would reduce to an extreme value-inflated negative binomial regression model, 
EVINB. 
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binomial (EVZINB) regression model to allow for modeling
of count data with extreme values. This EVZINB model al-
lows researchers to model data that contains extreme val-
ues without arbitrary inclusion or exclusion criteria, and al-
lows researchers to draw inferences about which factors in-
fluence the likelihood of extreme values and which factors
influence the “extremeness” of the extreme values. We show
the empirical utility of the EVZINB model by replicating a
study on the effects of the deployment of UN peacekeep-
ing forces on OSV against civilians by rebel groups and gov-
ernments ( Hultman, Kathman, and Shannon 2013 ). The re-
sults of the replication study show that while the conclusion
of the original study, that an increase in UN peacekeeping
troops leads to a lower level of OSV against civilians, holds
true in the median case, the EVZINB model allows us to
show that this relationship is more complex for more ex-
treme cases and does not hold for the total overall effect,
where no statistically significant effect is seen. In addition,
we show that the EVZINB model outperforms the negative
binomial (NB) and zero-inflated negative binomial (ZINB)
regression models on a number of crucial evaluation met-
rics. 

This paper proceeds by motivating the EVZINB model
empirically and statistically. This is followed by the replica-
tion study on the effects of UN peacekeeping forces on OSV
against civilians by rebel groups and governments. In the
final sections we discuss the wider applicability of the EVZ-
INB model. In the online appendix , we also provide a small
supplementary study to further highlight the utility of the
model. 

Motivating the Extreme Value Inflated Model 

Extreme values tend to arise in a multitude of different disci-
plines where the phenomena studied have a self-reinforcing
component. However, extreme values need not only ap-
pear from processes that often or always follow an extreme
value distribution. Rather, extreme values can also appear in
phenomena, which in the majority of cases produce values
from nonextreme distributions. Examples of such phenom-
ena include different types of organized political violence
(for instance, Lacina and Gleditsch 2005 ; Eck and Hultman
2007 ; Hultman, Kathman, and Shannon 2013 ), crime rates
( Disha 2019 ), and mass protests ( Weidmann and Rød 2019 ).
Extreme-valued distributions are also present outside the so-
cial sciences in widely different fields, such as the sizes of
solar flares ( Litvinenko 1996 ), the use of word distribution
in languages ( Ferrer i Cancho and Solé 2003 ), earthquake
sizes in California ( Gutenberg and Richter 1944 ), rainfall
distributions ( Myhre et al. 2019 ), etc. 

However, the fact that extreme values exist but are rare
causes a number of different problems for researchers who
are aiming to model the phenomena. On the theoretical
level, it may be problematic to include the most extreme
observations of the phenomenon of interest in the analysis,
as it may well be argued that the observation arises from a
different process. For instance, when studying OSV against
civilians, a researcher could argue that cases where an active
genocide is ongoing should be excluded, as genocide arises
from a different process than other forms of OSV against
civilians. On the other hand, excluding the most prominent
cases of OSV against civilians may also seem like a strange
choice for this researcher. Worse yet, since the extreme val-
ues by their nature are very large compared to the vast ma-
jority of cases, the extreme values tend to have a large im-
pact on the results of any type of modeling. This means that
the decision to include or exclude certain cases may severely
affect the results of the modeling. To not be forced to make
an arbitrary inclusion or exclusion decision for a single or
handful of case(s), the researcher may decide to use an “ob-
jective” solution, such as “trimming” (excluding) or “win-
sorizing” (censoring observations to a threshold value), for
a certain number or percentage of cases ( Dixon and Yuen
1974 ). Yet, these techniques are in most cases neither statis-
tically nor theoretically sound, as they simply mask the arbi-
trary nature of the inclusion or exclusion criteria and may
severely bias the results by either removing important ob-
servations or artificially changing values on the dependent
variable. 

To show the effects of inclusion, exclusion, or censor-
ing of extreme values, we created a simple example regres-
sion model, where we modeled the country-month counts
of OSV against civilians in Africa between 1989 and 2019
( Pettersson and Öberg 2020 ) against population and two
dummy variables indicating democracy and autocracy, with
hybrid-regimes as the residual category ( Hegre et al. 2019 ).
We modeled this using both a regular NB and a ZINB re-
gression model. We focus on the count model and therefore
only present this part of the ZINB model. In the original
models, we used all available country-month observations;
in the trimmed models, we removed the ten largest counts;
and in the winsorized models, we censored the ten largest ob-
servations to the eleventh largest value in the data set. The
results of these regressions are found in table 1 . 

The results in the table show that by trimming or win-
sorizing the ten largest counts, i.e., the 0.05 percent most
extreme values, in our data set, the coefficient for autocracy
changes from being negative and statistically significant to
being positive and statistically significant. Similarly, the co-
efficient for democracy, while staying in the same direction
and level of significance, is more than halved for both the
NB and ZINB specifications. This example may be simplistic
in terms of the covariates included in the model, but it high-
lights the effects of the researchers’ choice of including or
excluding certain observations in the analysis. 

The problems with extreme values are not limited to their
effect on the observed results; they may also affect the esti-
mation method and the possibility to make diagnostic tests
or alternative specifications of the models. For instance,
when rerunning the NB regression model from table 1 using
bootstrapping, the algorithm failed to run in approximately
28 percent of the bootstraps. This shows that failing to prop-
erly deal with the extreme values may not only cause biased
results, but it may also make certain tools of analysis unavail-
able to the researcher. 

The EVZINB Model 

To alleviate the problems associated with modeling pro-
cesses that sometimes but not always exhibit extreme values,
we propose the EVZINB regression model. 1 The EVZINB
model extends the NB and zero-inflated generalized linear
models, developed for count data in the 1980s and 1990s
( Hilbe 2011 ), with elements from extreme value modeling
developed in the late 2000s ( Clauset, Rohilla Shalizi, and
Newman 2009 ). NB regression models, zero-inflated or not,
have been used for a wide variety of applications since the
early 1990s, including analyzing power outages following
hurricanes ( Liu et al. 2005 ), safety measures for highways
( Hadi et al. 1995 ), and analyzing societal determinants of
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Table 1. Regression results for OSV against civilians counts with different methods of handling extreme values. Only coefficients from the count 
model are shown for the ZINB. 

NB NB NB ZINB ZINB ZINB 

original trimmed winsorized original trimmed winsorized 

Constant 4 . 018 ∗∗∗ 1 . 558 ∗∗∗ 1 . 882 ∗∗∗ 4 . 311 ∗∗∗ 2 . 919 ∗∗∗ 3 . 172 ∗∗∗
(0.075) (0.065) (0.066) (0.064) (0.069) (0.069) 

log(pop) 0 . 020 ∗∗∗ 0 . 025 ∗∗∗ 0 . 023 ∗∗∗ 0 . 011 ∗∗∗ 0 . 009 ∗∗∗ 0 . 008 ∗∗∗
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) 

autocracy −1 . 430 ∗∗∗ 0 . 522 ∗∗∗ 0 . 336 ∗∗ −1 . 101 ∗∗∗ 0 . 362 ∗∗∗ 0 . 245 ∗
(0.133) (0.116) (0.118) (0.139) (0.099) (0.102) 

democracy −3 . 818 ∗∗∗ −1 . 484 ∗∗∗ −1 . 777 ∗∗∗ −3 . 363 ∗∗∗ −0 . 792 ∗∗∗ −1 . 046 ∗∗∗
(0.102) (0.089) (0.090) (0.120) (0.103) (0.108) 

Observations 19,499 19,489 19,499 19,499 19,489 19,499 
NB- α 40.86 30.83 32.10 30.25 8.33 9.11 
AIC 42,727.1 41,113.2 41,546.7 41,527.9 39,827.4 40,286.1 

Note: ∗ p < 0 . 1 ; ∗∗ p < 0 . 05 ; ∗∗∗ p < 0 . 01 . 
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2 That the process contains a self-reinforcing component is, however, not a 
requirement for a process to produce extreme values nor to model the process 
using the EVZINB model. Rainfall distributions and earthquake magnitudes are 
examples of processes where there is no (explicit) self-reinforcement. 
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isplacement following floods ( Vestby et al. 2024 ). Extreme
alue modeling, on the other hand, has been used within
olitical and conflict science to analyze and discuss grand
uestions such as the overall decline in large deadly wars,
he distribution of mass atrocities, or terrorist attacks (see,
or instance, Cirillo and Taleb 2016 ; Clauset 2017 ; Cunen,
id Hjort, and Mokleiv Nygård 2020 ). 
The EVZINB model builds on the ZINB model, which as-

umes that the data originates from two separate subpro-
esses: one generating zeroes and one generating counts
which may also produce zeroes). In ZINB models, these two
ubprocesses are modeled separately and can be thought
f as two different components of the models, which may

nclude different covariates. The first component aims to
odel structural excess zeroes using one set of covariates,
hile the second component models the count process sep-
rately from these excess zeroes ( Hilbe 2011 ). Our pro-
osal is to extend this framework to a three-component re-
ression model, where both excess zeroes and extreme val-
es are modeled separately. This three-component regres-
ion model can be seen as a regression model with latent
tates, where the latent states represent the subprocesses
rom which the data are generated. 

The benefits of this approach are manifold. First, by al-
owing for three separate states in the model, each of the
tates can be estimated while filtering out the effects of
he other two. This will lead to more stable and less bi-
sed parameter estimates for each of the components and
o fewer convergence issues in large data. Second, it al-
ows the researcher to specify different covariates on each
f the components, allowing for a more nuanced anal-
sis. Third, filtering out the effects of extreme observa-
ions should give more stable out-of-sample predicted val-
es from the model, enhancing the predictive performance
f the model. Fourth, the regression model allows for the
stimation of the probability that any given observation
s part of one of the three states, widening the possibil-
ties for further analysis. The ability to model and draw
nferences from all three components of the model also
ifferentiates the EVZINB model from earlier attempts to
odel extreme values, since in these cases the researchers

re primarily interested in drawing inferences about the
ail risks and the shapes of the extreme value distribu-
ions. 

The theoretical motivation for the model is perhaps eas-
est to see with regards to political violence; we also argue
hat this type of data, which originate from a data-generating
rocess with different latent states, should be relatively com-
on. In fact, there are many processes that could become

elf-reinforcing after a certain threshold, from the number
f people participating in demonstrations to the number of
eople infected by a certain disease and the number of con-
umers using a specific product. 2 

Statistical Methodology 

n the presence of count data, a common approach is to em-
loy the Poisson regression models. It has, however, been
ecognized that count data commonly display overdisper-
ion, i.e., the variance is larger than the mean. One possibil-
ty to account for overdispersion is the NB regression, which
elaxes the mean-variance equality restriction. It is, however,
lso common with data exhibiting a proportion of excess ze-
oes, which cannot be appropriately modeled using the NB
egression model. The ZINB regression model accounts for
xcess zeroes by introducing a proportion of zeroes, which
an be modeled using logistic regression ( Hilbe 2011 ). The
atent states associated with only zeros and moderate count
ata will be denoted Z and N B, respectively. 
We propose to introduce another latent state, generating

xtreme values, alongside the extra latent states generating
eroes ( Z ) and moderate count data ( N B). This state will be
eferred to as the E V state. Define the unobserved random
ariable W , which is W = ( 1 , 0 , 0 ) T , W = ( 0 , 1 , 0 ) T , or W =

( 0 , 0 , 1 ) T if the latent state is Z , N B, or E V , respectively.
hen, we introduce the observed random variable Y with

he following conditional properties: 

Y | W = ( 1 , 0 , 0 ) T = 0 

Y | W = ( 0 , 1 , 0 ) T ∼ NegBin ( μN B , αN B ) 

Y | W = ( 0 , 0 , 1 ) T ∼ Pareto ( c EV , αEV ) , 

here μN B and αN B are the mean and dispersion param-
ters of an NB distribution, respectively, αEV and c EV are
he shape and cut-off parameters of a Pareto distribution
nd the prior probabilities πZ = Pr 

(
W = ( 1 , 0 , 0 ) T 

)
, πEV =

r 
(
W = ( 0 , 0 , 1 ) T 

)
and πN B = 1 − πZ − πEV . The exact ex-

ressions for the probability mass functions of the NB and
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Pareto distributions are given in the online appendix . The
distribution of the random variable Y defining the data-
generating process in this study can be summarized as 

Y ∼ EVZINB ( πZ , πEV , μN B , αN B , αEV , c EV ) . (1)

The prior probabilities ( πZ and πEV ) of the latent states
are modeled using multinomial logistic regression, and the
extreme-value state is assumed to follow a Pareto distribu-
tion with shape parameter αEV modeled as a function of
the covariates. αEV is a real, positive number governing the
tail of the Pareto distribution. Whereas the Pareto distribu-
tion is proportional to y −αEV , the exponential and Gaussian
distributions are proportional to e −ky and e −cy 2 , respectively,
for positive numbers c and k. Hence, the Pareto distribu-
tion is associated with substantially more probability in its
tail, and is therefore suitable to model extremely large ob-
servations. In fact, when αEV approaches 1 from above, the
expected value approaches infinity. Another property is that
the conditional probability of yielding an observation twice
the magnitude of some number c 1 > c EV is the same for
any c 1 . In this sense, the Pareto distribution is scale invari-
ant ( Mandelbrot 1983 ) and, thus, suitable for modeling self-
enhancing phenomena like those discussed in the introduc-
tion. As described below, each observation will be associated
with a shape-parameter αEV , which indicates the potential
extremeness of a distribution with corresponding covariates.
The full model will be referred to as an EVZINB regression
model. The model-implied latent-state probabilities, or the
prior probabilities πZ,i , πN B,i , and πEV ,i of observation i, are
modeled as 

πZ,i = 

exp 

{
γT 

Z x π,i 
}

1 + exp 

{
γT 

Z x π,i 
} + exp 

{
γT 

EV x π,i 
} (2)

πEV ,i = 

exp 

{
γT 

EV x π,i 
}

1 + exp 

{
γT 

Z x π,i 
} + exp 

{
γT 

EV x π,i 
} , 

where πN B,i = 1 − πZ,i − πEV ,i and x π,i is a column vector
of covariates (starting with 1 for intercept), 3 and γZ and
γEV are zero-inflation and extreme value-inflation param-
eter vectors, respectively. The conditional mean μN B,i of the
N B latent state of observation i, and the observation-specific
shape αEV ,i of the E V latent state are modeled as 

μN B,i = exp 

{
βT 

N B x N B,i 
}

(3)

αEV ,i = exp 

{
βT 

EV x EV ,i 
}
, 

where x N B,i and x EV ,i are covariates (starting with 1 for in-
tercept) and βN B and βEV are column vectors of param-
eters. Additional model parameters are the dispersion pa-
rameter of the N B latent state αN B and c EV which is the
lower bound of observations from the Pareto distribution
( E V latent state). 4 The model parameters, hence, include
γZ , γEV , βN B , βEV , αN B , and c EV . Those are estimated with
maximum likelihood using a version of the EM algorithm
of Dempster, Laird, and Rubin (1977) , combining a gen-
eralized expectation maximization (GEM) algorithm, e.g.,
Wu (1983) , Lange (1995) , and an expectation conditional
maximization either (ECME) algorithm of Liu and Rubin
(1994) . The model estimation provides the model-implied
(ex-ante) latent state probabilities πZ,i , πN B,i , and πEV ,i and
the ex-post latent state probabilities after observing the de-
pendent variable (commonly referred to as the responsibili-
ties) of all observations. If the E V state is not included, the
3 It is possible to use different covariates for the Z and EV latent states, but 
the same are used in the presentation for notational convenience. 

4 See online appendix A1 for details on the Pareto distribution. 

 

 

 

 

model is equivalent of the ZINB model. If the Z state is not
included, the model reduces to an extreme value-inflated
negative binomial model (EVINB). 

For prediction, it is common to use the expected value
of the dependent variable, given the covariates and the es-
timated parameters. However, the E V state lacks expected
value if the shape parameter αEV ,i ≤ 1 . Instead, we use the
harmonic mean for the E V state. The harmonic mean of
a random variable X is defined as E 

[
X 

−1 
]−1 and exists for

any αEV ,i > 0 for the Pareto distribution. When using the
EVZINB model for prediction, it should be noted that the
harmonic mean provides a more conservative estimate than
E [ X ] . For more details on the harmonic mean and predic-
tion, see online appendix A1 and A2 . 

In order to investigate whether a covariate has a signifi-
cant contribution in any part of the model, a likelihood ra-
tio (LR) test is developed. Define the vector of parameters
to be θ and the log likelihood to be � ( θ) with the maxi-
mum likelihood estimator ˆ θ which maximizes � ( θ) . Define
the parameter vector ˜ θ, which includes the restricted ele-
ments γZ,p = γEV ,p = μN B,p = αEV ,p = 0 where, for example,
γZ,p represents the element of γZ corresponding to the p t h 

covariate in γZ . Then the test statistic 

χ2 = −2 

(
� 
(

˜ θ
)

− � 
(

ˆ θ
))

asymptotically follows a χ2 distribution with the degrees of
freedom equal to the number of restrictions, i.e., the num-
ber of components in which the covariate is present. 

Simulation Study 

To investigate the performance of the proposed method, a
simulation study is conducted. Data of three covariates were
generated, and the parameters γZ , γEV , βN B , αN B , βEV , and
c EV specified. A total of 1,000 replications of sample size
n = 1 , 000 are generated. The results of the simulation study
show that the EVZINB model provides unbiased parameter
results under the proposed process, while both the NB and
ZINB models are substantially biased, even when the pro-
portion of extreme values is as low as 0.7 percent. Full de-
tails on the simulation design as well as the full simulation
results are provided in online appendix A2 . 

Empirical Study 

To illustrate the empirical usefulness of the EVZINB regres-
sion model, we replicate Hultman, Kathman, and Shannon’s
(2013 ) study on the effect of UN peacekeeping on one-sided
violence against civilians . The dependent variable of the study
is the count of OSV against civilians per conflict month in
all conflicts coded by the Uppsala Conflict Data Program
(UCDP) between 1991 and 2008 ( Eck and Hultman 2007 ;
Sundberg, Eck, and Kreutz 2012 ). Hultman et al. use NB
regression models and a number of different model specifi-
cations to gauge the effects of UN Peacekeeping troops, po-
lice, and military observers on the amount of OSV against
civilians conducted by rebel groups, governments, or both,
and their main findings are that UN peacekeeping troops
and police have a negative effect on OSV against civilians,
i.e., that the more peacekeeping troops and police are
present in a conflict zone, the less violence is perpetrated
against civilians. We have chosen to replicate this study as it
is one of relatively few high-impact studies on OSV against
civilians, which is modeled using the raw count of fatali-
ties from OSV as the dependent variable and which exhibits

https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
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ov
oth a high degree of zero-inflation as well as a number of
arge outliers of extreme values. 5 

To limit the number of comparisons, we only replicate
odel 1, focusing on both government and rebel OSV

gainst civilians, from Hultman et al. This model contains
ight covariates, with the three theoretically relevant being
he number of UN military troops, police, and observers,

easured in 1,000’s of deployed peacekeepers. In addi-
ion, five control variables are included: conflict duration in

onths, two dummy variables measuring whether the con-
ict is over government and whether any OSV against civil-

ans was used in the previous month, the natural logarithm
f the population of the country the conflict is taking place

n, and the number of battle-related deaths in the conflict
n the previous month. 6 

The data on the dependent variable is highly zero-
nflated, with approximately 76 percent of observations be-
ng zeroes. In addition, the data contains a number of ex-
reme values and is severely overdispersed with a rate of
nconditional overdispersion (variance/mean) of approx-

mately 83,000. 7 To test the utility of our proposed model,
e estimate the model using both the original NB regres-

ion model as well as the ZINB and the EVZINB models. In
nline appendix B4 , we also report the results from trimmed
nd winsorized versions of the NB and ZINB models for
omparison. 

For both the ZINB and EVZINB models, we need to spec-
fy covariates for the additional components in the model.
n the ZINB model, we need to specify which covariates gov-
rn the zero-inflation, i.e., the covariates that separate the
ero process from the count process. In the EVZINB model,
e also need to specify the covariates that govern extreme
alue-inflation, i.e., the covariates that separate the extreme
alues from the zero- and count processes, and the covari-
tes that govern the extreme value (Pareto) component, i.e.,
he covariates that govern “how extreme” the extreme val-
es get. For the sake of simplicity, we have chosen to keep
ll covariates from the original model for the estimation of
oth the zero-inflation and extreme value-inflation. In the
xtreme value component, we have chosen to only retain
N military troops (lag), conflict duration, all battle deaths

lag), and population covariates, as we believe that these co-
ariates are likely to have an effect on the more extreme val-
es. In this component we have also chosen to log-transform

he UN military troops (lag) and conflict duration covari-
tes. 8 

We estimate the three models using bootstrapping with
,000 bootstrapped samples, and we report the coefficients
s the median across all bootstrapped samples, and the stan-
5 We also believe that one of the reasons that there are few published articles 
n this type of data are the problems of nonconvergence and/or model misspeci- 
cation that the EVZINB model is aiming to solve, i.e., that many of the potential 
esearch questions that could be asked of this type of data are not possible to 
nswer without solving the problem of extreme value-inflation. 

6 In Hultman et al., this variable is the count of all battle-related deaths in the 
onflict in the previous year. We have log-transformed this variable because this 
llows for more stable estimation across all models. Log-transforming this control 
ariable does not affect the conclusions with regards to the theoretically relevant 
ariables. 

7 More details on the distribution of the dependent variable is given in online 
ppendix B1 . 

8 In general, we recommend researchers to be parsimonious when choosing 
ovariates as only data points above C EV enter into the estimation for the ex- 
reme value (Pareto) component, and we also generally recommend either log- 
ransforming the covariates or using covariates that operate on a relatively narrow 
ange, such as dummy variables. These issues are further elaborated on in online 
ppendix A1 . As the covariates need to vary above C EV , we also chose to exclude 
ny OSV dummy variable for the Pareto component since near all observations 
bove C EV are positive for this variable. 
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ard error as the standard deviation across the bootstrapped
amples. Bootstrapping is needed for the estimation of stan-
ard errors in the EVZINB model, and we decided to use
ootstrapped estimates for all models as this allows for a
omparison of the models on equal terms. Since the data are
anel data, we use a cluster bootstrap on the conflict level,
here all observations of each conflict are either included
r excluded. Cluster bootstrapping is robust to the com-
lex autocorrelation and heteroskedasticity, which may be
ssumed to be present in the data ( Cameron, Gelbach, and
iller 2008 ). 9 Lastly, bootstrapping allows us to assess the

tatistical significance through bootstrapped p -values with-
ut relying on any distributional assumptions, which may
ot be fulfilled when the data is sparse (e.g., in the extreme
alue component) or when the distribution of the residuals
rom the regression is highly skewed (a likely consequence
f highly overdispersed data). Of the 1,000 bootstrapped
amples, the NB was inestimable for 215, highlighting one
f the issues with the NB model for this type of data. None
f the bootstrapped samples were inestimable for the ZINB
r EVZINB models. 

Results 

he results for the three regression models can be found
n table 2 . Focusing on the effects of the UN military troop
resence, we can see that all three models agree that the
ffect of UN military troops is negative in the NB compo-
ent, indicating that an increased presence of UN military

roops leads to fewer civilian killings. In the ZINB model,
his effect is not statistically significant. However, there is a
tatistically significant positive effect on the zero-inflation
or the variable, indicating that an increased presence of
N military troops increases the likelihood of observing a

ero count of civilian killings. This can be interpreted as the
N military troops increasing the likelihood that no civilian

illing occur , but given that we are in the count process, the
egative effect is no longer statistically significant. The EVZ-
NB model agrees with both the NB and ZINB models that
n increased presence of UN military troops is associated
ith a lower count of civilian killings in the count process
nd an increased likelihood of observing no civilian killings.
he EVZINB model also offers insight into how UN military

roops affect the likelihood of the process entering into the
xtreme value component and how extreme values will be if
he process enters into this. While these results are not sta-
istically significant, the point estimates indicate that an in-
rease in UN military troops slightly decreases the likelihood
f the process entering into the extreme value component,
hile the negative coefficient for the Pareto component in-
icates that if the process enters into this component, the
alues will tend to be more extreme. 

Both the ZINB and EVZINB models offer more nuanced
ictures of how the presence of UN military troops affect
SV but are also more difficult to interpret as the effects of
 variable may differ across the different components of the
odel. This is especially true with regards to statistical sig-
ificance since the statistical significance is only measured

n terms of the effect in the individual components rather
han the total effect across all components. To further inves-
igate how the presence of UN military troops affect OSV,
e in figure 1 reproduce figure 4 in Hultman, Kathman,
nd Shannon (2013 ), which shows the predicted number
f civilian killings for different levels of UN military troop
9 Hultman, Kathman, and Shannon (2013) use clustered standard errors to 
orrect for this. 

https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
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Table 2. Regression results across all components for the three different regression models. 

Negative binomial Zero-inflated negative binomial Extreme value and zero-inflated negative binomial 

NB β NB β ZI γ NB β ZI γ EVI γ Pareto β

UN military troops t−1 −0.522 ∗∗ −0.299 0.140 ∗ −0.127 0.157 ∗ 0.060 −1.003 
(0.192) (0.296) (0.265) (0.213) (0.172) (0.304) (8.881) 

UN police t−1 −9.770 ∗ −7.265 + 3.599 −3.020 −0.421 −6.080 
(8.925) (34.389) (22.393) (21.151) (9.506) (9.655) 

UN observers t−1 21.311 ∗∗∗ 12.638 −4.426 + 6.154 −3.657 + −4.114 
(9.261) (7.569) (5.910) (5.256) (4.506) (9.457) 

Conflict duration −0.002 −0.010 −0.008 ∗∗ −0.002 −0.006 ∗ −0.005 0.295 
(0.005) (0.006) (0.713) (0.003) (0.002) (0.004) (0.266) 

log(population) 0.741 ∗ 0.605 −0.568 ∗∗ 0.033 −0.473 ∗∗ 0.405 −0.178 
(0.284) (0.381) (1.263) (0.251) (0.155) (1.094) (0.491) 

log(all battle deaths) t−1 0.176 ∗ 0.064 −0.416 ∗∗ 0.057 −0.336 ∗∗∗ 0.003 −0.050 
(0.098) (0.058) (2.170) (0.063) (0.080) (0.104) (0.084) 

Any OSV dummy t−1 2.044 ∗∗∗ −0.094 −13.030 ∗∗∗ 0.298 −2.993 ∗∗∗ 0.153 
(0.321) (0.383) (12.937) (0.242) (0.809) (0.638) 

Government conflict 2.255 ∗∗∗ 1.914 + −1.483 ∗∗ 0.783 −0.780 ∗∗ 2.186 + 
(0.637) (0.743) (1.897) (0.484) (0.435) (1.847) 

Constant −9.394 ∗ −4.525 10.512 ∗∗∗ 1.073 8.623 ∗∗∗ −9.485 0.652 
(3.320) (4.331) (2.701) (3.192) (2.057) (14.510) (4.904) 

C E V 96 
αnb 16.75 5.00 1.96 
Observations 3,746 3,746 3,746 
Log likelihood −6,254.19 −5,689.65 −5,574.38 
Akaike inf. crit. 12,528.4 11,417.3 11,216.8 

Note: + p < 0 . 1 , ∗ p < 0 . 05 , ∗∗ p < 0 . 01 , ∗∗∗ p < 0 . 001 . 
Coefficients reported as the median of the bootstrapped coefficients. Standard errors in parenthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/isq/article/68/4/sqae137/7889362 by D

ennis H
ejhal user on 27 N

ovem
ber 2024
presence when the other continuous variables are set to
their means and the dummy variables are set to 1. In ad-
dition to the predicted number of civilian killings, we also
show the median 50th and 95th percentiles for each of the
models, as well as component probabilities for the ZINB and
EVZINB models. For the median 50th and 95th percentile
plots, we interpret the lines as the values that the model
implies that we would expect 50 percent and 5 percent of
observations to exceed, respectively. Including these plots
allows us to show how the covariate affects both the most
common case (the 50th percentile) as well as the more ex-
treme cases (the 95th percentile). 

The results highlight a number of important and interest-
ing differences between the three models. First, it is clear
that the conclusion that an increased presence of UN mil-
itary troops leads to a decrease in the number of civilian
killings is less pronounced, and not statistically significant,
in the EVZINB model. Looking at the panes for the 50th
and 95th percentiles, it can be seen that UN military troops
have divergent effects on the most common case, i.e., the
50th percentile, and the more extreme cases, i.e., the 95th
percentile, as the median 50th percentile of civilian killings
decreases as UN military troops increase, while the median
95th percentile of civilian killings increases as UN military
troops increase from about 0 to about 5,000 after which they
start decreasing. The decrease in predicted killings at the
50th percentile is statistically significant, while the increase
and decrease in predicted killings at the 95th percentile
are not. The curved relationship seen for the 95th per-
centile in the EVZINB model appears as an increase in UN
military troops both decrease the likelihood of extreme val-
ues appearing and tend to make them more extreme if
they happen. While these results are not statistically signif-
icant, and should not be interpreted causally, they highlight
an important feature of the EVZINB model: that covari-
ates may have divergent effects on the median and extreme
cases. 

Model Performance 

While the section above highlights that the EVZINB model
allows for a more nuanced analysis of effects than the NB
and ZINB models, it is also important to test the perfor-
mance of the models on a range of different metrics in order
to determine the usefulness of the EVZINB model. 

MODEL FIT 

To compare the fit of the NB, ZINB, and EVZINB mod-
els, we use a bootstrapped comparison of the Aikaike In-
formation Criteria (AIC) and Bayesian Information Crite-
ria (BIC). The results, which can be seen in the online ap-
pendix, figure B2 , show that with AIC correction, the EVZ-
INB model outperforms the NB model in 100 percent and
the ZINB model in 99 percent of the bootstrapped samples.
Using a BIC correction, which penalizes the additional pa-
rameters in the EVZINB model more severely, the EVZINB
model still outperforms the NB model in 100 percent of the
bootstrapped cases, and outperforms the ZINB model in 73
percent of of the bootstrapped samples. These results indi-
cate that the EVZINB model fits the data substantially better
than the competing models. 

https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
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Figure 1. Median predicted fatalities, median predicted 50th percentile of fatalities, and median predicted 95th percentile 
of fatalities for different values of UN Military Troops (lag) across all bootstrapped samples with the remaining continuous 
covariates set to their means, and the any OSV against civilians (t−1) and Government Conflict dummies set to 1. Highlighted 

areas indicate 90 percent bootstrapped intervals. 
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Table 3. Out-of-bag RMSE and RMSLE for all models across all 
bootstraps 

RMSE RMSLE 

Model Median Mean Median 

EVZINB 536 1 .89 1 .77 
ZINB 3,912 2 .42 2 .13 
NB 4,001 2 .11 2 .05 
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PREDICTIVE PERFORMANCE 

part from model fit, we also test the predictive perfor-
ance of the three models by making predictions on the

bservations left out in each bootstrapped sample, the so-
alled out-of-bag (OOB) observations. We then calculate the
oot mean squared error (RMSE) and the root mean squared log
rror (RMSLE) across all bootstraps and compare the mean
nd medians across these metrics. The results of the OOB
redictive performance can be seen in table 3 . This table
hows that the EVZINB model outperforms both the NB
nd ZINB models on OOB predictive performance. A pair-
ise comparison of the RMSE and RMSLE in each of the
ootstrapped samples also showed that the EVZINB model
utperforms both the NB and ZINB models in over 92 per-
 o
ent and 96 percent of bootstrapped samples on the RMSLE
nd in 82 percent and 80 percent of bootstrapped samples
n the RMSE. 
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Discussion 

The replication of Hultman, Kathman, and Shannon
(2013 ), has shown that the EVZINB model can be empir-
ically and theoretically useful. By employing the EVZINB
model instead of the more conventional NB or ZINB mod-
els, we were able to disentangle what the effect is of UN mil-
itary troops on civilian killings not only for the predicted
values of civilian killings but also how the effects of these co-
variates differ between the effect on the most common cases
and on the more extreme cases. 

We were able to show that the main finding of Hultman,
Kathman, and Shannon (2013 ), that an increased presence
of UN military troops leads to fewer civilian casualties, in-
deed holds in the most common cases, but that this conclu-
sion does not hold for the overall total effect of UN military
troops. Instead, we were able to show that while UN military
troops still lower the expected civilian killings in the median
case, this is not true for the more extreme cases of civilian
killings. These findings do not mean that we argue that UN
military troops are ineffective in preventing violence against
civilians. Rather, this conclusion helps us better understand
under what conditions, when, and where UN peacekeeping
may be most effective in preventing civilian killings. The
EVZINB model could also identify which cases are at risk
of entering into the extreme value state by producing pre-
dicted probabilities for each state. Such findings would be
important for the ongoing academic debate on the effects of
peacekeeping on different types of violence and under dif-
ferent circumstances (see, for instance, Gromes 2019 ; Bara
2020 ; Bara and Hultman 2020 ). 

The additional inferences that can be drawn from the
EVZINB model compared to a NB or ZINB model also al-
low us to more precisely analyze a phenomenon and dis-
tinguish the effects on the more common and more ex-
treme cases. Additionally, researchers can test more fine-
grained hypotheses not only about which covariates affect
which outcomes but also test hypotheses relating to the ex-
treme and less extreme cases separately. There may, for in-
stance, be covariates that both decrease the likelihood of
observing a zero, but also decrease the likelihood of enter-
ing the extreme value domain. With conventional models
such as the NB and ZINB models, hypotheses relating to
these covariates would be difficult to test as the overall ef-
fects may be zero, even if the effects are pronounced in both
directions. 

In addition to more fine-grained analysis, the EVZINB
model also opens up for new avenues of research. In partic-
ular, the convergence and misspecification issues that arise
when trying to model data containing extreme values using
the NB and ZINB models may have prevented researchers
from approaching certain research questions as the mod-
eling problems have been too severe, thus causing a file-
drawer problem. We believe that this is one of the reasons
for the low number of high-impact research articles pub-
lished on such data in the last decade. Using the EVZINB
model, researchers using such data may be encouraged to
restart research on these types of data. The EVZINB model
also allows for new types of research questions as it is pos-
sible to focus the analysis on, for instance, the covariates
for the multinomial process, which differentiates between
the zero, count, and extreme value latent states, allowing
researchers to better understand which conditions need to
be present for a process to start producing extreme values.
Focusing on the transitions between states may be especially
useful when communicating results with policymakers as the
(prior) state probabilities may be used to evaluate the risk of
a low-intensity armed conflict escalating into a high-intensity
armed conflict, while the ex-post (posterior) state probabil-
ities of the same observation may be used to assess the like-
lihood that the armed conflict, given a certain number of
fatalities, has entered into the specific state. 

A straightforward extension of the EVZINB model would
be to also allow regression parameters to be estimated for
the Pareto threshold, ˆ c EV , i.e., the point after which ob-
servations may enter into the latent Pareto process. While
perhaps not immediately evident, estimating regression pa-
rameters specifically for ˆ c EV may create new avenues for re-
search, and open up new types of research questions as ˆ c EV 
is a measure for when a process have a chance of progress-
ing from a well-behaved count process to an extreme value
process. This means that by investigating covariates effect
on ˆ c EV , we can ask questions such as: What factors affect the
threshold for when low-intensity armed conflicts may progress into
large-scale armed conflicts? The EVZINB model could also be
constructed as a hidden Markov process where the latent
states correspond to hidden Markov states. 

Conclusion 

In this paper, we have introduced the extreme value and
zero-inflated regression model for count data, which con-
tains both an inflated number of zeroes and extreme values.
The extreme value and zero-inflated regression model can
be thought of as a latent states regression model, where we
can estimate both which covariates affect the likelihood of
different states of the process and how these covariates af-
fect the behavior of the process given its state. 

We have shown that this model is both empirically and
theoretically motivated and that the model can retrieve cor-
rect parameter estimates from simulated data. We have also
shown the empirical usefulness of the model through repli-
cation of Hultman, Kathman, and Shannon’s (2013 ) paper
on the effect of UN peacekeeping troops on civilian killings.
In the replication study, the extreme value and zero-inflated
regression model allowed us to draw additional inferences
about when UN military troops decrease civilian killings. Ad-
ditionally, the EVZINB model outperformed both the NB
and ZINB models with regards to efficiency of the estimated
parameters, the AIC and BIC corrected LRs, and the predic-
tive performance of the model. 

In the discussion, we also presented a number of dif-
ferent empirical lenses through which the extreme value
and zero-inflated regression model can be viewed, and how
this model can allow researchers to ask novel questions
about the nature of their data and to ask questions previ-
ously not possible to answer. The extreme value and zero-
inflated regression model can also easily be extended to a
non-zero-inflated version for count data which do not suf-
fer from zero-inflation but still contains extreme values.
With future development, a unified framework for analy-
sis of the effect of covariates across states of the model
could be developed, allowing for a more specific analysis
of the marginal effects of certain covariates in different
conditions. 

The EVZINB model and tools related to analyzing this
model are available in the R package evinf on CRAN. 

Supplementary Information 

Supplementary information is available in the International
Studies Quarterly data archive. 

https://academic.oup.com/isq/article-lookup/doi/10.1093/isq/sqae137#supplementary-data
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