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Advanced body composition analysis with whole-body imaging could uncover novel 
associations between regional tissue composition and metabolic disease. Imiomics is an 
automated image analysis framework that enables large-scale integration of magnetic resonance 
imaging (MRI) data and orthogonal technologies such as metabolomics and genomics for the 
detailed study of body composition. The Imiomics method is based on spatial normalisation to 
attain voxel-to-voxel correspondence in large cohorts of volumetric MR images. The spatially 
normalised data is then further used to generate voxel-wise statistical inference volumes 
for analysis. In this thesis, Imiomics was integrated with metabolomics for the first time, 
providing a detailed map of the relationship between the metabolome and regional body 
composition in T2D. Furthermore, Imiomics was integrated with genomics for the first time, 
exposing detailed associations between single nucleotide polymorphisms (SNPs) and sex-
stratified body composition. A rapid and intuitive visual framework was developed for the 
analysis of volumetric Imiomics maps, and further applied to study the relationship between 
body composition and clinical variables in T2D. Whole-body positron emission tomography 
(PET)/MR was used to study detailed insulin-stimulated glucose metabolism and its associations 
with tissue volume and tissue fat fraction. This thesis has contributed to the field of advanced 
body composition research, primarily through the integration of Imiomics with additional -
omics platforms. 
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Figure 5. PET/MRI can provide detailed tissue-specific information on glucose 
uptake. From left to right: PET image (glucose uptake), MRI (adipose tissue signal) 
and MRI (water signal) 
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4. The ‘Omics’ Era 

The hour-long ‘central dogma’ lecture was held by Nobel Prize laureate 

Francis Crick in September 195736. During the lecture Crick shared his 

understanding of the flow of genetic information from gene to protein. The 

lecture gave birth to what nowadays is recognised as “the central dogma of 

molecular biology”, though, the original notes37 shared by Crick have been 

largely misquoted. 

This states that once ‘information’ has passed into protein it cannot get out 
again. In more detail, the transfer of information from nucleic acid to nucleic 
acid, or from nucleic acid to protein may be possible, but transfer from protein 
to protein, or from protein to nucleic acid is impossible. 

Crick, F.H.C., On protein synthesis, p. 152, 1958. 
 
 

Congruent with past misquotation through abstraction, Figure 6 illustrates a 

modified representation of the central dogma. Paper I and IV aimed not only 

to understand how information flows from genes to proteins, but rather from 

metabolites to disease phenotype and genes to body composition, respectively. 

 

Figure 6. The central dogma in the age of -omics and body composition. 
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The number of -omics publications have significantly increased in the last few 

years as high-throughput technologies have been made more accessible to 

researchers (Figure 7). In addition, the tools required for big data processing 

have considerably improved, largely due to open-source initiatives38,39. 

 

Figure 7. The number of publications on PubMed mentioning -omics technologies 
from 2000 to 2019. Figure adapted with CC BY 4.0. Anda-Jáuregui & Hernández-
Lemus, (2020). 

4.1 Genome-wide association studies and phenotypes 

The objective of functional genomics is to explore how the genome together 

with a multitude of complex interactions contribute to specific phenotypes38. 

A common experimental design to study the associations between genetic 

variants and phenotypes is genome-wide association studies (GWAS). Single-

nucleotide polymorphisms (SNPs) are genotyped using DNA (micro)arrays 

where hybridisation of immobilised oligonucleotides and labelled sample 

DNA produce fluorescent signals that can be detected and quantified. The 

technology has rapidly improved, specifically through the parallelisation of 

solid support-based oligonucleotide hybridisation39,40. Millions of SNPs can 

be measured with a reasonable degree of effort and cost, and untyped SNPs 

can be tagged by using a range of statistical methods (e.g., linkage 

disequilibrium and imputation) to attain genome-wide coverage41. 

According to Hirschhorn & Gajdos42, the first broadly replicable GWAS 

was published in Science by Klein et al. in 2005, detailing the connection 

between a polymorphism in the complement factor H gene and age-related 

macular degeneration43. Since then the field has boomed, and hundreds of 

complex phenotypes have been linked to thousands of SNPs44. Disease-
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associated SNPs have been reported for T2D45,46, inflammatory bowel 

disease47,48, rheumatoid arthritis49, low-density lipoprotein (LDL)-

cholesterol50, osteoporosis51 and many more44. Significant contributions of 

GWAS also include the discovery of the obesity gene, FTO (fat mass and 

obesity associated gene)52,53. However, the significance and utility of GWAS 

results have been challenged by several prominent scientists. Opposing 

thoughts emphasise the limited effect sizes typically reported in GWAS, lack 

of causality and the overflowing spurious findings54–57. The large amount of 

experimental data produced with GWAS poses significant challenges for 

researchers to maintain proper quality control (QC) procedures and statistical 

rigor. 

Challenges associated with GWAS are particularly evident when studying 

complex traits such as body composition phenotypes58. In other words, the 

genetic variation that meaningfully contributes to complex traits is seldom 

attributed to an isolated polymorphism at a single locus. The associations 

between several individual SNPs and body composition were studied in Paper 

IV, in addition, polygenic risk scores (PRS) were included to address some of 

the concerns with GWAS and complex traits. PRS address the limitations of 

individual SNPs by combining a set of independent variants, commonly as a 

weighted sum according to 

 

 𝑷𝑹𝑺 =  ∑ 𝜷𝒊 ×  𝒅𝒐𝒔𝒂𝒈𝒆𝒊𝒋
𝑵
𝒊 , (4.1) 

 

where N represents the number of SNPs included in the PRS,  is the effect 

size and dosageij is the copy number of SNP i in individual j59. Several 

additional approaches for calculating PRS exist, which is further considered 

in Paper IV where two different methods were used58–60.  

4.2 Mass spectrometry-based metabolomics 

The road from gene/s to phenotype is long and convoluted, and whilst there 

are many -omics technologies (e.g., transcriptomics, proteomics and 

lipidomics) available for the study of downstream events, metabolic pathways 

are commonly studied using metabolomics. Products and substrates of 

metabolism are typically measured with the analytical techniques nuclear 

magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). A 

review of the many available analytical techniques and variations thereof is 

outside the focus of this thesis but the reader is encouraged to read the 

introductory review by Liu & Locasale61. In Paper I, metabolites were 

identified with MS coupled with either liquid chromatography (LC-MS) or 

gas chromatography (GC-MS). There are many differences between the two 

techniques, an important consideration in Paper I was that the coverage is 
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different, as such when used together LC-MS and GC-MS provide broader 

metabolite coverage (Figure 8)62. 

 

Figure 8. Venn diagram illustrating the different metabolite classes that are covered 
by GC-MS and LC-MS, respectively. 

A simplified MS workflow is illustrated in Figure 9. The mass-to-charge ratio 

(m/z), relative abundance and retention time (RT) are collected for each parent 

ion, and if tandem mass spectrometry is used (e.g., LC-MS/MS) a downstream 

fragmentation step provides the respective features for the fragment ions63,64. 

In very simple terms for the non-initiated, metabolites are separated using GC 

or LC and afterwards MS is used to detect them based on mass. The extracted 

features are used for metabolite profiling, which depending on the 

experimental design can be targeted or untargeted. Even for experienced 

bioinformaticians in the field, processing and matching raw MS data to 

metabolites is non-trivial. Open-source software packages are commonly used 

in metabolomics research, these tools apply advanced methods for peak 

identification, alignment, deconvolution and more65. Finally, metabolites can 

be identified using publicly available databases or in-house libraries66,67. 
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Figure 9. Simplified overview of mass-spectrometry workflow. Adapted with 
permission from Springer Nature. Alseekh et al. (2021). 

Metabolomics is a useful technology for studying variability in body 

composition and metabolic dysfunction in diseases such as T2D68. A series of 

exploratory metabolomics studies have reported associations between T2D 

and bile acids69, aromatic amino acids (AAAs)70, branched-chain amino acids 

(BCAAs)71 and phospholipids72. The technology can further be used for 

predictive modelling of disease progression or development, this was 

illustrated in a seminal paper by both Wang et al., and Liu et al. in decade-

long follow-up studies71,73. Though, the relative additional value of these 

models compared with standard clinical risk factors (e.g., BMI, FPG and 

HbA1c) warrants additional study.  
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Figure 10. A systems biology approach to study metabo-genomics, sometimes 
referred to as mGWAS. Reprint with permission from Springer Nature. Shin et al., 
(2014).  

Systems biology approaches aim to integrate untargeted metabolomics with 

other -omics technologies to reveal novel insights into the biological relevance 

of the results from exploratory metabolomics studies75–77. To demonstrate this 

in a comprehensive exploratory study, Shin and colleagues combined GWAS 

and metabolomics to map the genetic influences of the human metabolome 

and reported 84 novel metabolic loci (Figure 10)74. Metabolite genetics, 

sometimes referred to as mGWAS78, has now been used in numerous studies 

to characterise the genetic influence on metabolic phenotypes79–81. 

Conversely, few studies have reported the associations between metabolites 

and whole-body tissue composition. In paper I, metabolomics was integrated 

with the Imiomics framework for the first time with the objective to explore 

novel hypothesis-generating insights. 
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5. Medical Imaging  

The previous chapters discussed the implications of detailed body 

composition studies in partnership with -omics technologies. In this chapter, 

the medical imaging techniques that were used in Paper I-IV are discussed in 

more detail.  

5.1 Basics of magnetic resonance imaging (MRI) 

In chapter 4, NMR was mentioned for its use in metabolomics research. The 

technology was first documented by Nobel Prize laureate Isidor Isaac Rabi in 

1939, although towards the end of World War II independent contributions by 

Nobel Prize laureates Felix Bloch and Edward M. Purcell extended the 

capabilities of the technology82,83. A third Nobel Prize was awarded many 

years later to Paul Lauterbur and Peter Mansfield for the development of MRI, 

where NMR signals were used to create 2-D images84. 

Amongst the many relevant elements in the body (e.g., 1H, 16O, 23Na, 
14Nand 31P), hydrogen nuclei have the strongest NMR signal. Hydrogen is also 

the most relevant for clinical MRI due to the high abundance in adipose tissue 

and water. The intrinsic nuclear angular momentum (spin) property of 

hydrogen nuclei determines its behaviour in the presence of a strong external 

magnetic field. In a MR system, a strong static magnetic field, B0, is used to 

align hydrogen nuclei with the direction of B0 and induce a net magnetisation, 

M, in the tissue. Subsequently, a weaker magnetic field, B1, is used to 

temporarily perturb the direction of M away from the longitudinal plane to the 

transverse plane83. This is achieved by the transmission of a radiofrequency 

(RF) pulse at the resonance frequency of M, resulting in the absorption of 

energy by the hydrogen nuclei and the ability to flip their alignment away from 

the direction of B0. As M approaches equilibrium i.e., as the hydrogen nuclei 

following RF excitation returns to a resting state (relaxation), RF waves are 

emitted from the tissues and measured using receiver coils. The signals then 

undergo a series of image reconstruction steps, including a Fourier 

transformation, to transform the raw data into MR images as depicted in 

Figure 1183,85–88. 
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Figure 11. Overview of the image acquisition and reconstruction process in MRI. 
Adapted with permission from John Wiley and Sons. Hansen & Kellman (2015). 

5.1.1 The Dixon method 

Many parameters can be adjusted to generate different types of MR images. 

Importantly, relaxation times are different between tissues, a property which 

is commonly exploited to provide tissue contrast in MRI. MRI provides 

exceptional soft tissue contrast compared with other imaging techniques. 

However, body composition studies can benefit from auxiliary separation of 

the adipose tissue- and water signal. Generally, this can be achieved by 

suppressing the signal from adipose tissue by using the versatile Dixon 

technique89. The Dixon technique takes advantage of the fact that hydrogen 

nuclei have different resonance frequencies in water and adipose tissue, 

sometimes referred to as the chemical shift difference. The chemical shift 

difference translates into a phase difference as a function of the echo time, 

hence by acquiring images when the water- and adipose tissue signals are in-

phase (IP) and out-of-phase (OOP), one can reconstruct water-only images 

and adipose tissue-only images as illustrated in Figure 1290. 

 

Figure 12. Adipose tissue and water separated MRI using the Dixon method. From 
left to right: adipose tissue signal (male), water signal (male), adipose tissue signal 
(female), water signal (female) 
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5.2 Basics of positron emission tomography (PET) 

The basic principles of PET are based on the detection of electron-positron 

annihilation events91. Briefly, annihilation events are initiated by radionuclide 

decay resulting in the emission of a positron (+) and a neutrino (v). The decay 

occurs as the unstable radioactive isotope transitions from a high-energy state 

to a lower-energy state. When the positron eventually collides with an electron 

in the tissue, an annihilation event occurs, where both masses are turned into 

energy according to Einstein’s equation  

 

 𝑬 = 𝒎𝒄𝟐. (5.1) 

 

Two high-energy (511 keV) photons are created and emit in opposite 

directions. The high-energy photons are picked up by pairs of colinearly 

aligned detectors, converted to an electrical signal, amplified and the raw data 

finally processed with image reconstruction algorithms (Figure 13)91.  

 

Figure 13. Simplified overview of the PET image acquisition process. Reprint with 
permission for Elsevier. Walker et al. (2004) 

5.3  Integrated PET/MRI 

PET is a quantitative functional imaging technique, but it offers limited 

anatomical information. It is an ideal orthogonal technique for successful 

integration with MRI, which was the method used for data acquisition in 

paper I-III. In oncology, 18F-fluorodeoxyglucose (FDG) PET/computer 

tomography (CT) is frequently used. PET/MRI offers several advantages 

compared with PET/CT, including superior soft tissue contrast, lower ionizing 
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radiation and the option of multiparametric or functional imaging (e.g., 

diffusion-weighted imaging)92. Weaknesses of PET/MRI compared with 

PET/CT include but are not limited to, longer acquisition times, higher cost of 

integrated PET/MR systems and challenges with attenuation correction 

(AC)93. AC is a key challenge for PET/MRI. Simply put, when our previously 

mentioned opposing 511 keV proton-pair travel through the tissue they might 

interact with electrons and change direction (loss of energy), resulting in the 

attenuation of the PET signal94. Photon attenuation can be described according 

to 

 

 𝑰

𝑰𝟎

= 𝒆−𝝁𝑳, 

 

(5.2) 

where the non-attenuated signal (I) could be recovered should the other 

variables (I0 - attenuated signal,  - linear attenuation coefficient and L – tissue 

thickness) be known94. Unfortunately, MRI struggles with generating the 

required linear attenuation coefficient maps ( maps), conversely, 

transforming CT Hounsfield Units (HU) to  values is simpler because CT is 

fundamentally based on the attenuation of x-rays. MR-based attenuation 

correction (MRAC) is a well-researched field with continuous innovations 

hoping to solve the challenges associated with PET/MRI95,96. The Dixon 

technique is commonly applied, followed by image segmentation to acquire 

predefined  values for specific tissues97.  

In summary, several publications have reported extended comparisons 

between PET/CT and PET/MRI, predominantly in the context of 

oncology92,93. For metabolic body composition studies 18F-FDG PET/MRI is 

superior because of the exceptional soft tissue contrast and low radiation 

exposure, despite its current challenges. 
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6. Medical Image Analysis 

Basic principles help us understand the image acquisition process in MRI and 

PET, but ultimately the acquired raw data is transformed into a digital image 

in a process termed image reconstruction. A review of the intricacies of image 

reconstruction is outside the scope of this thesis, however, two noteworthy 

general concepts are worth mentioning: sampling and quantisation. With 

sampling and quantisation an analogue image is transformed into a digital 

image. The two processes determine the spatial- and gray level resolution of 

the digitised image. In this thesis, the work has been focused on monochrome 

(grayscale) and binary images (black and white). Typical image sizes were 

362x155x224, containing 12,568,640 ‘voxels’ for statistical inference.  

6.2 Imiomics – an overview 

The aim with Imiomics is to attain voxel-to-voxel correspondence of whole-

body MR images to enable unbiased voxel-wise statistical inference and 

additional subsequent applications98.  

6.2.1 Image registration 

The spatial normalisation i.e., the deformation of images to a common 

coordinate system is accomplished by using a three-step image registration 

process. The framework utilises the complementary information in acquired 

water- and adipose tissue separated MR images. Assumptions of tissue 

variability between subjects motivates the step-by-step registration process. 

The between-subject variability of bone is assumed to relatively low due to its 

rigid structure, in contrast, adipose tissue inter-variability is assumed to be 

relatively high and lean tissue inter-variability falls somewhere in the middle. 

Spatially varying tissue elasticity constraints are used to reflect these 

assumptions where the bones are registered first followed by lean tissue and 

lastly adipose tissue, each subsequent step constrained by the previous one/s 

(Figure 14)98.  
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Figure 14. An illustration of the Imiomics workflow from MRI data to correlation 
maps. Figure adapted with support from Joel Kullberg and Robin Strand. 

Accurately evaluating the registration results is challenging, three different 

methods have been used: 

 

i. Visual evaluation of the registered images 

ii. Inverse consistency as given by 

 𝑻𝑨𝒊→𝑩°𝑻𝑩→𝑨𝒊 
 𝒂𝒏𝒅 𝑻𝑩→𝑨𝒊

°𝑻𝑨𝒊→𝑩, (6.1) 

in basic terms, the registration method should ideally be insensitive 

to the source/target arrangement of the image pair. 

iii. The Dice similarity coefficient as given by 

 
𝑫𝑺𝑪 =  

𝟐 ×  |𝑨 ⋂ 𝑩|

|𝑨| +  |𝑩|
, 

(6.2) 

in the binary setting99. It was used to evaluate image segmentations 

of water- and adipose tissue98. 

 

Since simultaneous acquisition of PET/MR images produces inherently co-

registered images, the deformation fields from the MR registration can be used 

on the corresponding PET image when applying Imiomics to PET/MRI. 
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6.2.2 Image segmentation 

Medical image segmentation refers to the process of delineating regions of 

interest (ROI) in medical images100. In the simplest case, the annotation 

process results in a binarized image, segmentation mask, where pixels of 

interest are labelled as 1s and background pixels are 0s. The spatial 

normalisation feature of Imiomics enables atlas-based image segmentation, 

where segmentation masks from the reference volume (single-atlas) or 

volumes (multi-atlas) are propagated to unlabelled images. In addition to 

Imiomics, many other methods are available for automating the image 

segmentation process. In recent years, deep learning has predominantly taken 

over. The most impactful paper in the medical image segmentation field 

during the last decade has arguably been “U-Net: Convolutional Networks for 
Biomedical Image Segmentation” by the Google DeepMind research scientist 

Olaf Ronneberger et al.101. The U-Net, an encoder-decoder model, is 

incredibly powerful and easy to use, with countless variations depending on 

the specific task102. Imiomics is different from deep learning in that it enables 

holistic analysis of the whole-body image. In addition, as deformation fields 

are stored, there is a greater degree of traceability with Imiomics compared to 

powerful but relatively black-boxed deep learning models. Developments 

within the medical image deep learning field, particularly the focus on 

explainable AI and transfer learning will result in the increased use of deep 

learning for all sorts of medical applications. Deep learning could also be 

incorporated into Imiomics to further advance image registration efforts103,104. 

6.2.3 Voxel-wise statistical inference 

The Swedish National Infrastructure for Computing (SNIC) provides high-

performance computing (HPC) resources to researchers working with 

sensitive data. In Uppsala, Sweden, the research system Bianca is maintained 

and further developed by Uppsala Multidisciplinary Centre for Advanced 

Computational Science (UPPMAX). Bianca and its 204 compute nodes with 

a total of 3264 cores, was made available to our research group for parts of 

this thesis, the computational resources enabled increasingly large-scale 

studies to be performed using Imiomics. 

Voxel-wise statistical inference following image registration is a 

computationally costly process. The procedure involves iteratively loading 

large image files from disk into memory, saving parts of the image volume 

(Vp) depending on the total number of files, file size and available memory, 

and then loading the next file until all image volumes have been included. The 

process then repeats n-times, where n is the total image volume/Vp, until the 

full volume has been processed for each image file. Finally, combined output 

volumes are generated (e.g., Pearson correlation coefficient, r, maps). 

Significant optimisation and method development work was completed for 

this thesis. Two internal codebases are currently maintained for optimizing 
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voxel-wise statistical inference calculations using Bianca. For this thesis, 

primarily paper III-IV, a codebase based on memory-mapped files using the 

numerical python (NumPy) package was developed. Briefly, instead of 

iteratively loading large files n-times and saving small parts of the volumes, a 

structure for combining all images (3D arrays) into one massive file on disk 

was considered. Flattening the 3D arrays and horizontally stacking them 

achieves this (Figure 15). 

 

Figure 15.  Schematic overview of the voxel-wise statistical inference workflow using 
a distributed approach. 

Next, as memory-mapped files in NumPy allows for partial file reading, this 

was utilised to ‘synchronously’ distribute different parts of the file to multiple 

nodes on Bianca (n=40 used here). The individual outputs from the distributed 

computing scheme were finally stitched together into the desired Imiomics 

output volumes (e.g., r maps).  

Addressing the bottlenecks of iterative image loading by using distributed 

HPC provides several advantages, some of which were realised for the first 

time in Paper IV. Computationally intensive statistical methods could now 

be used effectively at scale i.e., instead of computing Pearson correlation 

coefficients, multiple linear regression models or multi-step multiple linear 

regression models could be constructed with output volumes representing the 

R2, -coefficients and corresponding p-values. Furthermore, as the loading of 

independent variables or covariates into memory was completely decoupled 

from the image loading and distribution, multiple relationships could be 

studied while the image data is in memory. As demonstrated in paper IV, 

permutation-based multiple comparison correction was performed at scale, 

removing the dependency on conservative methods such as Bonferroni 

adjustments in accordance with the results of Breznik et al.105. 
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7. Whole-body Imaging, -Omics and Body 

Composition 

7.1 Summary of Imiomics- and associated studies 

Imiomics was first introduced by Kullberg et al. at the 23rd Annual Meeting of 

the International Society for Magnetic Resonance in Medicine (ISMRM) in 

2015106. A more extensive summary was introduced two years later by Strand 

et al.98. The framework was intended to address the weaknesses of traditional 

a priori-based whole-body analysis methods where large parts of the image 

outputs were disregarded. The three-step image registration method was 

evaluated on 128 individuals from the Prospective investigation of Obesity, 

Energy and Metabolism (POEM) cohort107 and a number of example 

applications were demonstrated for the first time98. A second method 

development paper followed in 2018 by Johansson et al. and confirmed the 

feasibility of integrated PET/MRI and HEC in 10 participants34. The study 

was completed on a subset of cohort I (see Chapter 8). An additional report 

on cohort I was presented by Boersma et al., where glucose uptake in T2D 

was explored, in a similar approach to Paper II108. Though, there were 

significant methodological differences between the studies. Boersma et al., 

was completed on a subset of cohort I and only manual segmentations were 

used, with limited MRI measurements. Conversely, Paper II was based on an 

automatic image analysis method and included complex glucose metabolism 

features including but not limited to, rate of glucose disappearance (Rd), 

endogenous glucose production (EGP), total tissue glucose uptake rates (Total 

MRglu) and glucose partitioning calculations (see Chapter 9). Hence, paper 

II was able to address fundamentally different and more detailed questions of 

adipose tissue and glucose metabolism in T2D. A series of Imiomics studies 

followed, including works from this thesis, studying body composition and 

vasoreactivity109, proinflammatory interleukins110, metabolic syndrome111, 

glucose metabolism112, metabolomics113 and intima-media thickness114. In 

addition, several technical development papers have been published 

describing optimisation of the image registration method and other validation 

activities115–119. 
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7.2 Summary of body composition and GWAS 

studies 

GWAS have discovered hundreds of near-independent significant SNPs 

associated with BMI120,121, WHRadjBMI
122, waist circumference123, lean body 

mass (LBM)124 and height125. In a recent study, bio-electrical impedance 

(BIA) was used by Rask-Andersen et al. to study the genetic variation of 

relative body fat distribution in the arms, legs and trunk126. The study 

identified 98 near-independent SNPs, of which 29 were novel i.e., not 

previously associated to an adiposity-related phenotype126. Dual energy X-ray 

absorptiometry (DXA) has also been used to study body composition in 

combination with GWAS in the UK Biobank13. From a starting point of 

6,137,607 imputed SNPs, the authors retrieved three SNPs (rs7592270, 

rs77772562 and rs7552312) that were associated with multiple obesity 

indicators and one (rs2236705) that was associated with a lean phenotype, 

specifically female lean leg mass. While DXA and BIA are great techniques, 

MRI is considered the gold standard for advanced body composition 

research7. Nevertheless, few studies have investigated the heritability of body 

composition phenotypes as measured by whole-body MRI. Recently, Ji et al. 

integrated GWAS and MRI data from the UK Biobank to study the heritability 

of a “favourable adiposity phenotype”127. Even though the MRI part was 

limited to a single transverse slice of the liver, the concept of a favourable 

adiposity phenotype is intriguing and harmonises with the gluteofemoral SAT 

proponents from Chapter 1. To the best of my knowledge, the only GWAS 

and advanced body composition study that rivals Paper IV in sample size is 

a very recent study from Liu et al. on the UK Biobank128. The team from 

Madeleine Cule’s lab used deep learning, specifically a combination of 2D 

and 3D U-nets101, to segment and extract fat and iron in VAT, SAT, lungs, 

spleen, kidney, pancreas and liver from MRI scans in over 38,000 participants.  
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8. Experimental Design 

The work presented in this thesis is based on the extensive study of two 

cohorts, comprising of several independently acquired orthogonal datasets. 

The data was acquired and analysed using different technologies, such as the 

ones already introduced. 

8.1 Cohort I  

Cohort 1 is the result of a large collaboration study between AstraZeneca, 

Uppsala University and SciLifeLab. The study involved over 15 collaborators, 

with the aim to study T2D development through both a vertical and horizontal 

(interdisciplinary) approach. A summary of the initial study design is 

represented in Figure 16.  

 

Figure 16. AstraZeneca, Uppsala University and SciLifeLab collaboration. Project 
overview. Figure from Prof. Håkan Ahlström. 
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Paper I-III involved both the in vivo and in vitro cross-sectional part of the 

study. Paper I was the first integrative effort undertaken to analyse whole-

body imaging data with Imiomics and metabolomics. Paper II was an effort 

to utilise the complementary data acquired with three technologies, namely, 

PET, MRI and HEC, to accurately study whole-body glucose metabolism. The 

study involved significant feature engineering work as is further explained in 

Chapter 9. Paper III was primarily a method development effort with the 

aim to quickly be able to generate hypotheses from large amounts of 

Imiomics-generated 3D correlation maps. The effort was the result of an 

infrastructure change in our research group. As the Bianca HPC cluster was 

made accessible, generating voxel-wise correlation volumes at scale became 

feasible but presented increasing analysis challenges. The framework was 

designed to enable quick, intuitive and visual analysis of 3D Imiomics 

correlation maps without requiring the generation of complementary 3D p-

value volumes. It was initially applied as a proof of concept on cohort I to 

explore the associations between clinical variables and tissue composition.  

8.2 Cohort II  

Cohort II is the result of continuous efforts in the UK Biobank study to collect 

extensive phenotypic and genotypic data from 500.000 participants (Figure 

17)129. The UK Biobank is an outstanding resource for biomedical researchers, 

and it continues to accumulate massive amounts of open-access datasets. The 

UK Biobank MRI cohort represents one of the largest coherent imaging 

datasets available and presented a unique opportunity to explore Imiomics at 

scale8. The work presented in this thesis included the intersection of the 

imaging- and GWAS cohorts in the UK Biobank and was completed in 

collaboration with Professor Tove Fall’s research group. To the best of our 

knowledge, Paper IV represents one of the largest body composition and 

imaging genetics studies to date. It required the integration of two massive and 

complex datasets for joint analysis and significant computational resources. 
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Figure 17. Schematic illustration of the extensive phenotypic- and genotypic data 
available in the UK Biobank. Reprint with CC BY 4.0. Bycroft et al. (2018). 
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9. Contributions  

This is a comprehensive summary thesis based on the four papers summarised 

in this chapter. 

9.1 Paper I 

Integration of whole-body [18F]FDG PET/MRI with non-targeted 

metabolomics can provide new insights on tissue-specific insulin 

resistance in type 2 diabetes. 

Klev Diamanti*, Robin Visvanathar*, Maria J. Pereira, Marco Cavalli, Gang 

Pan, Chanchal Kumar, Stanko Skrtic, Ulf Risérus, Jan W. Eriksson, Joel 

Kullberg, Jan Komorowski, Claes Wadelius and Håkan Ahlström. 

Scientific Reports (2020). 

 

Aims 

To integrate whole-body imaging with non-targeted metabolomics and 

explore the associations between tissue-specific phenotypes and 

plasma/adipose tissue metabolites in healthy individuals and individuals with 

T2D. 

 

Materials and Methods 

This study was approved by the Regional Ethics Review Board in Uppsala 

(DNR 2014-313). Three groups of volunteers were included in the study, 

comprising of twelve healthy controls (6 female, 6 male) and sixteen 

individuals with prediabetes (9 female, 7 male) and fourteen individuals 

diagnosed with T2D (6 female, 8 male). Participants were matched for BMI, 

age and sex. Blood samples were collected following an overnight fast (>10h) 

for analyses of biomarkers and plasma metabolomics. SAT samples were 

retrieved for adipose tissue metabolomics analysis. The metabolomics 

analyses were performed using LC-MS and GC-MS at the Swedish 

Metabolomics Centre in Umeå, Sweden. Commercial and publicly available 

software were used for processing of the metabolomics data, including QC 

and targeted/untargeted compound identification. An integrated 3.0T 

PET/MR system (Signa PET/MR, GE Healthcare, Waukesha, WI) was used 

for image acquisition. Water- and adipose tissue separated images were used 

for further analyses following stepwise whole-body image registration with 
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Imiomics. Mann-Whitney U tests were used for differential analyses between 

groups, non-diabetes (ND, healthy volunteers + individuals with prediabetes) 

and T2D. The Benjamini-Hochberg procedure was used for multiple 

comparisons adjustment. Multiple regression models were used to study the 

associations between metabolites and body composition measurements. 

Statistical analyses were performed in RStudio (RStudio v.1.1.453, 2015) 

using custom scripts.  

 

Results 

A comprehensive mapping of the metabolome and tissue composition, 

including glucose uptake, was reported. 259 metabolites were identified in 

adipose tissue samples and 272 metabolites in plasma. BCAAs and AAAs 

were negatively associated with insulin sensitivity (β = −0.25, p < 0.1 and β = 

−0.12, p < 0.1, when pooled, respectively). Lysophosphatidylcholines 

(lysoPCs) in plasma were overrepresented in T2D compared with ND. 

Furthermore, of the plasma metabolites, lysoPC(P-16:0) was positively 

associated with SAT Ki (β = 0.5, p < 0.1) and inversely associated with hepatic 

fat content (β = −0.62, p < 0.1) (Figure 18). 

 

Figure 18: Voxel-level correlation maps between lysoPC(P-16:0) and tissue 
parameters generated with Imiomics. a) Pearson’s r-coefficient maps showing only 
significant associations. b) P-value maps converted to masks (p<0.05), displaying 
only significant voxel-level associations.  

Conclusion 

Novel links between tissue composition and plasma/adipose tissue 

metabolites were presented. Systematic integration of whole-body imaging 

and non-targeted metabolomics is a powerful approach for exploratory 

“metabo-composition” research.  
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9.2 Paper II 

Tissue-specific glucose partitioning and fat content in prediabetes and 

type 2 diabetes: whole-body PET/MRI during hyperinsulinemia. 

Jan W. Eriksson, Robin Visvanathar, Joel Kullberg, Robin Strand, Stanko 

Skrtic, Simon Ekström, Mark Lubberink, Martin H. Lundqvist, Petros 

Katsogiannos, Maria J. Pereira and Håkan Ahlström. 

European Journal of Endocrinology (2021). 

 

Aims 

To study whole-body glucose partitioning, tissue crosstalk and tissue-specific 

glucose uptake, volume and adipose tissue content in the development of T2D.  

 

Materials and Methods 

The study was approved by the Regional Ethics Review Board in Uppsala 

(DNR 2014-313). Three groups of volunteers were included in this study, 

comprising of twelve healthy controls (6 female, 6 male) and sixteen 

individuals with prediabetes (9 female, 7 male) and fourteen individuals 

diagnosed with T2D. Participants were matched for BMI, WHR, age and sex. 

Subjects were examined in the morning after overnight fasting and instructed 

to avoid alcohol and caffeine for a minimum of 6 hours prior to the 

examination, and to avoid intense physical activity 24 hours prior to the 

examination. The HEC was initiated with a priming dose, the insulin infusion 

rate was held constant at 56 mU/m2 body surface/min. Simultaneously, a 20% 

glucose solution was infused at a variable rate to achieve a steady-state plasma 

glucose level of 5.6 mmol/L. When steady state was achieved, image 

acquisition was initiated. 4 MBq [18F]FDG/kg bodyweight was injected 

intravenously with the initiation of a 10 min dynamic PET scan of the thorax 

to capture early tracer dynamics. This was followed by five whole-body PET 

scans (covering head to toe) and MR images generated for attenuation 

correction (MRAC) from a built-in dual-echo water-fat MRI sequence. 

Imiomics was used for image registration following the defined three-step 

process. Atlas-based image segmentation was performed for brain, heart, 

liver, VAT, SAT, gluteal-/thigh-/calf skeletal muscle.  

 

Results 

Several complex features were derived and studied, including endogenous 

glucose production. 

 

𝐸𝐺𝑃 = 𝑅𝐷 + 𝑉𝑔𝑙𝑢 +
∆𝑃𝐺

∆𝑇
− 𝐺𝐼𝑅 

 

𝑅𝐷 =
(𝐷𝑜𝑠𝑒𝐹𝐷𝐺 + 𝑈𝑟𝑖𝑛𝑒𝐹𝐷𝐺)

𝐴𝑈𝐶𝐹𝐷𝐺
 ×  𝑆𝑆𝑔𝑙𝑢  
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We showed that impaired glucose uptake and metabolism during 

hyperinsulinemia in T2D is largely accounted for by skeletal muscle and to a 

lesser extent adipose tissue compartments and the liver. The relative 

contribution of skeletal muscle was 32% of whole-body Rd in participants 

with T2D vs 41% in healthy participants. Liver fat fraction was inversely 

associated with the glucose metabolic rate of all tissues except for the brain 

(Figure 19). Brain MRglu was also positively associated with HbA1c and EGP. 

A gradually increasing proportion of whole-body glucose turnover during 

HEC was shown in the brains of individuals with T2D compared with 

prediabetes and healthy controls (7.1%, 5.5% and 3.8%, respectively). 

 

 

Figure 19. Scatter plots of significant bi-variate correlations. Liver fat % vs Rd (A), 
brain MRglu (B), liver MRglu (C), thigh MRglu (D), VAT MRglu (E) and SAT 
MRglu (F).  

 

Conclusion 

The use of integrated PET/MRI during HEC for studying detailed whole-body 

glucose turnover was demonstrated. Insulin-stimulated glucose partitioning 

and absolute glucose uptake rates in the brain were altered in individuals with 

T2D, revealing a potential key role of the brain in glucose homeostasis. 
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9.3 Paper III 

Exploration of whole-body PET/MRI data and clinical variables in type 

2 diabetes for data-driven hypothesis generation.  

Robin Visvanathar, Lina Carlbom, Simon Ekström, Stanko Skrtic, Maria J. 

Pereira, Jan W. Eriksson, Håkan Ahlström and Joel Kullberg. 

Manuscript. 

 

Aims 

To develop a rapid hypothesis-generating framework for the analysis of rich 

3D correlation maps produced with Imiomics using whole-body PET/MRI 

and clinical variables in T2D.  

 

Materials and Methods 

The dataset used for method development of the hypothesis-generating 

framework overlaps with Paper I-II. Voxel-wise correlation maps were 

generated for 30 clinical biomarkers and PET/MR data. An optimized, 

distributed computational approach was developed and applied for statistical 

inference. The correlation maps were stratified based on three groups of effect 

sizes: weak, moderate and strong. Confidence intervals were estimated by 

using arctanh transformation on the generated effect size distributions. 

 

Results 

 

Figure 20. Stratified correlation maps generated for C-reactive protein (CRP). Blue 
background: positive associations, red background: negative associations. The 
correlation map illustrates a moderate inverse association between CRP and K i in 
skeletal muscle.  
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P-CRP was positively associated with VAT volume but negatively associated 

with Ki in whole-body skeletal muscle. P-CRP was positively associated with 

fat fraction in the liver and skeletal muscle (Figure 20). In general, the same 

pattern was observed for other inflammatory biomarkers. There was a 

negative association between fat fraction in skeletal muscle and P-Creatinine. 

Conversely, P-Creatinine was positively associated with fat fraction around 

the kidneys. Whole-body insulin sensitivity, the M-value, was positively 

associated with skeletal muscle glucose uptake, but inversely associated with 

glucose uptake in the brain.  

 

Conclusion 

A data-driven hypothesis-generating analysis method for quick, intuitive and 

visual analysis of 3D correlation maps produced with Imiomics was 

developed. The method enables effortless identification of non-imaging data 

associations from volumetric maps. 

9.4 Paper IV 

Genetic variation and sex-stratified advanced body composition 

analysis: neck-to-knee MRI and genetics in the UK Biobank.  

Robin Visvanathar, Jenny Censin, Uwe Menzel, Shafqat Ahmad, Filip 

Malmberg, Joel Kullberg, Tove Fall and Håkan Ahlström.  

Manuscript. 

 

Aims 

To integrate Imiomics with GWAS and explore sex-stratified imaging 

genetics for the discovery of novel links between genetic variation and body 

composition in the UK Biobank. 

 

Materials and Methods 

A total of 27,149 participants (13,300 men and 13,849 women) were included 

after GWAS and imaging QC (Figure 21). A dual-echo Dixon imaging 

protocol was used for the acquisition of water- and fat separated MR images. 

Images were acquired on a 1.5T Siemens Aera MR system using the following 

scan parameters: TE=2.39/4.77ms, TR=6.69, =10 and voxel 

size=2.2322x3mm3. Mean intensity projections of the volumetric MRI data 

were visually assessed and checked for water-fat swaps, high background 

noise or corrupted data. A three-step image registration process was 

completed to deform all volumetric data to a common coordinate system. Four 

imaging subgroups (male/female, tissue volume/fat fraction) were used for 

advanced body composition analysis with Imiomics. Sex-stratified Pearson 

correlation coefficient maps were calculated for all subgroups to study the 

relationship between body composition and risk scores for BMI, WHR and 
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height. Six selected SNPs were further included for detailed mapping to body 

composition with Imiomics. Tissue segmentations of VAT, abdominal SAT, 

gluteofemoral SAT, heart, liver and thigh muscle were used for quantification 

and comparison within and between groups.  

 

 

Figure 21. Schematic overview of participant selection. A total of 27,194 participants 
were included in the study following GWAS- and imaging quality control. 

 

Results 

Imiomics and GWAS integration delivered a detailed mapping of individual 

SNPs with the tissue composition of regional adipose tissue depots, heart, 

liver, lungs and thigh muscle (Figure 22). 

 

In both sexes, the rs1358980-T variant was the highest ranked SNP inversely 

associated with gluteofemoral SAT volume (Figure 23). In men, rs1358980 

was positively associated with VAT fat fraction (r= 0.039, p<0.05) and heart 

fat fraction (r= 0.004, <0.05). Rs1358980 was also the SNP with the strongest 

inverse association with gluteofemoral SAT fat fraction in men (r= -0.007, 

p<0.05). Top ranked SNPs that were positively associated with all tissue 

volumes were rs6567160 and rs13021737 for both men and women. In 

women, rs6567160 was positively associated with liver fat fraction (r= 0.0056, 

p<0.05) and thigh fat fraction (r= 0.0052, p<0.05), but inversely associated 

with gluteofemoral SAT fat fraction (r= -0.0058, p<0.05), The same inverse 

trend between rs6567160 and gluteofemoral SAT fat fraction was observed in 

men. Several additional novel tissue composition and SNP relationships were 

found. For the genetic risk scores, observed effect sizes were higher with 

LDpred-derived PRS compared with genome-wide significant only scores. 



 

 45 

 

Figure 22. Associations between all SNPs and tissue-specific volumes in men and 
women. The raw data for all 84 associations is displayed below the graph. 
Abbreviations: Male (M), Female (F), Subcutaneous adipose tissue (SAT), Visceral 
adipose tissue (VAT). 
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Figure 23. Illustrative visualisation of Imiomics outputs. Sex-stratified voxel-wise 
correlation maps of rs1358980 with tissue volumes and fat fraction are shown. 
Rs1358980 is inversely associated with the volume of gluteofemoral SAT in both 
sexes. The colorbars represents the Pearson correlation coefficient (r), only 
statistically significant (p<0.05) voxels are shown in colour. 

 

Conclusion 

Imiomics and GWAS were successfully combined to generate a mapping 

between genetics and imaging-derived features. Novel links between SNPs 

and detailed body composition features were reported. To the best of our 

knowledge, this is one of the largest advanced body composition and imaging 

genetics studies to date.  
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10. Discussion 

The work discussed in this thesis represents a multidisciplinary effort to 

integrate complex datasets by leveraging an image-based approach. Imiomics-

guided advanced body composition analysis when combined with orthogonal 

data sources, either through multimodal imaging and HEC or -omics 

techniques, could discover original multi-layered results. In the following 

passages, I will attempt to describe the lessons that have originated from the 

repeated application of image-based methods, primarily Imiomics, to study 

complex body composition relationships.  

10.1 Complicated study of glucose metabolism  

The complementary strengths of 18F-FDG PET and MR data were illustrated 

in Paper II. The combined modalities together with HEC allowed us to 

perform detailed quantification of whole-body glucose turnover. In terms of 

lessons, the study highlighted the difficult balance of working with complex 

imaging features and the circularity of limited sample sizes because of the 

complicated acquisition protocols required to capture those complex imaging 

features. To exemplify, in the study an initial short dynamic PET scan was 

performed to capture early tracer dynamics which was required for the image-

derived input function (IDIF)34. The IDIF replaced serial arterial blood 

sampling that would otherwise be preferred to measure radioactivity 

concentrations in the plasma130. Ultimately, the IDIF was used to estimate 18F-

FDG uptake rate or the net influx parameter, Ki. The 18F-FDG uptake rate was 

further transformed to MRglu (the glucose metabolic rate per 100g tissue) with 

the help of steady state glucose levels from HEC. MRglu was further 

propagated for additional feature engineering to leverage the three modalities 

fully, this is schematically illustrated in Figure 24.  
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Figure 24. The complex feature engineering in Paper II. Integration of PET, MRI and 
HEC data. 

 

The caveat was that with more complex imaging features, assumptions and 

minor inherent variances were compounded, and statistically grounded 

conclusions made less likely. Furthermore, due to the complex nature of the 

acquisition protocols sample size could not be significantly increased to 

compensate for the added complexity. The primary finding of the study was 

the observation of altered glucose metabolism in the brain during T2D 

development, however, it is likely that we missed several relevant and 

important findings due to the compounded noise in the complex features. This 

was evident by the many near-significant results in the study and emphasised 

the challenge of integrating whole-body multimodal data for detailed glucose 

metabolism studies. 

10.2 The challenges of -omics 

The first ever Imiomics and metabolomics study was performed in paper I. 

Differential analysis in ND and T2D revealed differences in metabolite 

composition that were further investigated with Imiomics. The combination 

of two inherently exploratory approaches, namely untargeted metabolomics 

and Imiomics, presented significant interpretation challenges with respect to 

statistics and the biological relevance of the findings. This was reinforced by 

the nature of the dataset, being of limited sample size yet massively high-

dimensional. The same lessons were reflected upon in paper IV, where the 

first ever Imiomics and genomics study was performed. Although the 

significantly increased sample size in paper IV mitigated the typical statistical 

weaknesses of an exploratory study, there were remaining challenges with 
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respect to the interpretation of the generous outputs. Typical -omics studies 

including genomics, metabolomics, proteomics, transcriptomics and 

Imiomics, output massive amounts of results in accordance with their high-

throughput distinguishing feature. For the Imiomics-based -omics integration 

studies in paper I and IV, the most challenging part was the interpretation of 

bivariate correlations between imaging-derived features and metabolites or 

genetic variants. Correlation does not imply causation hence even statistically 

significant associations become difficult to contextualise when studying links 

between alterations on the molecular biology level and body composition 

phenotypes. Ultimately, the additional orthogonal validation from the 

literature provided enough support to discover novel insights in paper I and 

IV. Nevertheless, one suggestion for future research with Imiomics is to step 

away from correlation maps towards more advanced statistical inference 

modelling e.g., mendelian randomisation with Imiomics to explore image-

based causality analysis. The method development work conducted in this 

thesis could support such progress, specifically enabling voxel-wise statistical 

inference on a distributed system for orders of magnitude more efficient 

computation.  

10.3 Holistic analysis of volumetric Imiomics maps  

There were a total of 12,568,640 voxels in a typical volumetric image, which 

meant 12,568,640 statistical tests were performed every time an Imiomics map 

was created. Multiple testing correction using the traditional Bonferroni 

method in most cases would demolish any significant findings. There are 

various ways to address this challenge i.e., downsampling for dimensionality 

reduction, pre-segmentation to remove irrelevant voxels or using a different 

multiple comparison correction method. They all have different strengths and 

weaknesses, downsampling comes with the risk of removing relevant details, 

and attempting to mask out background could make the process more 

complicated and less efficient. Different multiple comparison methods for 

voxel-wise statistics were evaluated recently by Breznik et al.105. The 

conclusion was that permutation-based approaches would be most 

appropriate, but they are computationally demanding. Still, in paper IV a 

permutation-based correction method was used but the number of iterations 

was in the 100s and not the typical 1000s.  

Paper III aimed to develop a method for the study of Imiomics maps 

without p-values. The method intended to leverage the effect size and sample 

size to estimate confidence in findings by using the Fisher z-transformation. 

The volumetric maps were analysed with stratified visualisations according to 

an old system introduced by the prominent statistician Jacob Cohen in 1988131. 

As a proof-of-concept the method was applied to study the associations 

between clinical variables and body composition. However, it is worth 

mentioning that the same system likely will not work with Imiomics-guided 
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genomics and metabolomics studies. The effect sizes in those studies are 

simply too small, in future developments one could step away from Cohen’s 

definitions and instead stratify visualisations and findings based on relative 

observed effect sizes. Furthermore, incorporating projection-based 

visualisations e.g., mean- or median intensity projections, could potentially 

reduce tedious analysis hours and simplify the workflow. 

Statistical rigor is an interesting topic in the era of -omics studies. 

Arguably, there is a degree of overreliance on the predetermined notion of 

statistical significance in the medical research community, and too little 

emphasis on descriptive statistics for inferring biological relevance. I will 

leave it to the reader to interpret the words of Sir Ronald Aylmer Fisher, one 

of the most ground-breaking modern statisticians in history132. 

 

10.4 Conclusions and future perspectives 

Imiomics is an innovative and original analysis framework intended for 

applied, large-scale and interdisciplinary body composition research. The 
results presented in this thesis has contributed to the methodological 

development of Imiomics and further demonstrated the utility of Imiomics in 

combination with metabolomics and genomics, respectively. Paper I 

describes the integration of whole-body imaging with metabolomics to reveal 

novel metabolite-phenotype associations in T2D. Paper II describes the 

accurate study of glucose turnover in T2D by combining whole-body 

PET/MRI and HEC. Paper III describes a hypothesis-generating framework 

for scalable analysis of large amounts of 3D Imiomics maps. Paper IV 

describes the integration of Imiomics with GWAS to explore heritability and 

body composition. 

Most -omics technologies experience two initial stages of development in 

the research community. The first stage is generally characterised by high 
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costs, hints of scalability, limited utility and significant method development 

on both the hardware and software side. The second stage is characterised by 

increased utility, scalability, low costs, increased accessibility and 

consequently significant software method development. The work discussed 

in this thesis represents the early transition phase of Imiomics, where 

scalability, increased utility and software development have been in focus. 

Importantly, there is still a long way to go before Imiomics becomes a 

mainstream technology like other -omics platforms. Barriers include 

significant hardware costs, demands on computational resources and 

interdisciplinary efforts to pave the way for innovation. Navigating the 

transition from hypothesis-driven high utility studies, in the traditional 

research community, to exploratory hypothesis-generating low utility studies, 

is a major challenge for all -omics technologies. Fortunately, large open-

access biobanks such as the UK Biobank provides tremendous potential for 

innovation. This thesis illustrates an important concept as we move forward 

i.e., the increased utility achieved by integrating orthogonal datasets to further 

support novel insights.  
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Populärvetenskaplig sammanfattning 

I denna avhandling presenteras fyra arbeten där kroppsammansättning har 

studerats i detalj med hjälp av magnetisk resonanstomografi (MRT) och 

metabolism med positronemissionstomografi (PET). Det övergripande målet 

var att bidra till forskning som berör kroppsammansättning och bildanalys. 

Det innovativa bildanalys konceptet, Imiomics, applicerades och 

vidareutvecklades för att möjliggöra nya applikationer. 

Delarbete I 

I detta delarbete användes Imiomics tillsammans med metabolomics för att 

studera relationen mellan kroppssammansättning och ämnesomsättning i typ-

2 diabetes. Vävnadsvolymer och fetthalter analyserades i relation till 

metaboliter i plasma och fettväv. Flera nya och erkända fynd presenterades 

såsom relationer mellan fosfolipider och aminosyror med leverns fetthalt. Ett 

flertal metaboliter som skiljde sig åt mellan friska individer och individer med 

typ-2 diabetes rapporterades. Detta var den första studien där 

helkroppsbildanalys med Imiomics kunde kombineras med metabolomics. 

Delarbete II 

I detta delarbete användes PET och MRT (PET/MR) för att studera olika 

vävnaders glukosupptag till följd av insulinstimulering. Det totala 

glukosupptaget i kroppen och relativa glukosupptaget i vävnader jämfördes 

mellan friska individer och individer med typ-2 diabetes. Hjärnans 

glukosupptag i individer med typ-2 diabetes var förhöjt jämfört friska 

individer, och levern fetthalt var associerad med andra vävnaders 

glukosupptag. 

Delarbete III 

I detta delarbete utvecklades en enkel metod för att analysera Imiomics bilder. 

Metoden applicerades på MR och PET data för att studera relationen mellan 

vardagliga kliniska variabler och vävnadskomposition. Metoden var baserad 

på statistiska genvägar för att undvika beräkningsintensiva steg med Imiomics 

och ämnade att förenkla analys av stora mängder Imiomics data. 

Delarbete IV 

I detta delarbete användes Imiomics på helkropps-MR tillsammans med 

genomics för att studera hur genetisk variation påverkar 
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kroppssammansättning. Detaljerade vävnadskartor av relationen mellan 

specifika enbaspolymorfier (eng. SNPs) och vävnadsvolym samt fetthalt 

presenterades. Studien inkluderade över 20,000 individer och var den första 

studien där helkroppsbildanalys med Imiomics kunde kombineras med 

genomics. 

 

Sammantaget har delarbetena bidragit till forskning om kroppsammansättning 

genom applicerad bildanalys, med fokus på Imiomics tillsammans med flera 

oberoende teknologier som metabolomics och genomics. 

 

 

 

Exempel på korrelationskartor skapade med Imiomics. 
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