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Persistent half-metallic ferromagnetism in a (111)-oriented
manganite superlattice
Fabrizio Cossu1,2, Heung-Sik Kim 1✉, Biplab Sanyal3 and Igor Di Marco 2,3,4✉

We employ electronic structure calculations to show that a (111)-oriented (LaMnO3)12∣(SrMnO3)6 superlattice retains a half-metallic
ferromagnetic character despite its large thickness. We link this behaviour to the strain and the octahedral connectivity between
the layers. This also gives rise to breathing modes, which are coupled to charge and spin oscillations, whose components have a
pure eg character. Most interestingly, the magnetisation reaches its maximum value inside the LaMnO3 region and not at the
interface, which is fundamentally different from what observed for the (001) orientation. The inter-atomic exchange coupling shows
that the magnetic order arises from the double-exchange mechanism, despite competing interactions inside the SrMnO3 region.
Finally, the van Vleck distortions and the spin oscillations are crucially affected by the variation of Hund’s exchange and charge
doping, which allows us to speculate that our system behaves as a Hund’s metal, creating an interesting connection between
manganites and nickelates.
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INTRODUCTION
Due to continuous advances in molecular beam epitaxy1,2 and
pulsed laser deposition2–8, perovskites (and the more general
Ruddlesden-Popper family, An+1BnO3n+1, where n=∞ for per-
ovskites) have been objects of undying attention in the scientific
community9–11. In the last years, this trend has been further
accelerated by advances in defect engineering, which has
improved the perspective of practical applications8,12. Despite
their apparent simplicity, bulk materials exhibit a variety of ground
states, driven by the strong interplay of different degrees of
freedom13–17. The symmetry breaking at interfaces18–21 leads to
even more exciting phenomena, such as flat bands22, anisotropic
conductivity23, magnetic anisotropy24,25, exchange bias26, spin-
glass27, electronic quantum confinement28–30, unconventional
superconductivity31, topologically protected edge states32,33,
unexpected metallicity34–38 and tunable quantum phase transi-
tions38–40.
Much research on interfaces and surfaces has been focused on

mixed-valence manganites. Bulk materials are primarily known for
their colossal magnetoresistance41, which is favoured by a
disordered solid mixture of Mn+3 and Mn+4 ions42–44. In super-
lattices, however, non trivial phenomena may be observed and
ordered hetero-valent ions do not prevent the emergence of a
large magnetoresistance45. Particularly studied are (LaM-
nO3)n∣(SrMnO3)m superlattices, where various magnetic and
electronic ground states across the metal-insulator transition can
be tuned10,46–50. This is achieved by varying their period (n+m) or
component ratio (n/m)47,48,51, which is a way to modulate the
tunnelling of eg electrons across the interface48; orbital52 and
charge53 order were also reported. More exotic phenomena,
including correlated topological states, may be expected when
passing from the (001) orientation to the (111) orientation,
because of the large polarity and a peculiar symmetry-driven
epitaxial strain54,55. This is the reason why (111)-oriented

superlattices remain under intense scrutiny, despite of the scarcity
of suitable substrates and unfavourable thermodynamics55–57.
In this context, the current article presents an ab-initio study on

the structural, electronic and magnetic properties of a (111)-oriented
(LaMnO3)12∣(SrMnO3)6 superlattice as illustrated in Fig. 1(a), which is
isostochiometric to the colossal magnetoresistive La2/3Sr1/3MnO3. Our
calculations will show that this superlattice has a half-metallic
ferromagnetic (FM) ground state, whose character persists inside the
innermost layers of the component regions. This behaviour is
profoundly different from what reported for other orientations and is
traced back to the cooperation of charge transfer across the
interface, strain, structural distortions and electronic correlations.
Magnetism will be shown to originate from a double-exchange
interaction between the Mn atoms and to be pinned inside the
LaMnO3 region and not at the interface. Finally, the Mott-Hund
character of the electronic correlations will also be analysed.

RESULTS AND DISCUSSION
Ground-state structure and spectral properties
The (LaMnO3)12∣(SrMnO3)6 superlattice is investigated via
density functional theory (DFT) plus Hubbard U approach,
labelled as sDFT+U. While tilting systems and angles are known
for many perovskites in the bulk, their determination at surfaces
and interfaces is not trivial. A previous ab-initio study54

predicted that (111)-oriented manganite superlattices should
adopt the a−a−a− tilting system instead of the native a−a−c+

tilting system, as expressed in Glazer notation58, used through-
out this paper. The energy difference between these two
structures depends on the lattice parameters. With a lattice
constant of 3.860 Å (hereby denoted as equilibrium or 0%
strain), the a−a−c+ tilting system is favoured by 7.6 meV per
formula unit (f.u., i.e., a AMnO3 unit, where A may be La or Sr)
with respect to the a−a−a− tilting system. A reasonably small
compressive strain may change this structural order, as recently
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Fig. 1 Overview of the superlattice and its properties. a Crystal structure of the superlattice. The interfacial layers are #0 and #12. b Curve
total energy vs strain for FM solutions with a−a−c+ (black) and a−a−a− (red); `zero' strain means that the pseudo-cubic lattice constant is
3.860Å. c Projected DOS for Mn-t2g and Mn-eg states for selected layers; additional information, covering all Mn and O layers, is provided in
the Supplemental Material. d Total, Mn-d projected and O-p projected DOS for the FM solution.
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reported for nickelates59. As shown in Fig. 1(b), we predict a
transition to the a−a−a− tilting system for a compressive strain
of ~ 1.5 %, corresponding to epitaxial growth on SrMnO3 (on
LaAlO3 the strain is~2%). The energy difference between the
two tilting systems remains below 7 meV (~80 K) at all
simulated strain values, whereas that between the ground
state FM and anti-ferromagnetic (AFM) orders are larger than
25 meV (~290 K), see Table 1. Therefore, phase transitions and
coexistence are more likely to occur in the structure than in the
magnetic order.
The two tilting systems do not lead to qualitatively different

results in terms of distribution of charges and magnetic moments,
but the a−a−c+ requires a large supercell, which may hinder a
thorough analysis of the layer-resolved properties. Therefore, we
focus on the a−a−a− tilting system at the equilibrium lattice
constant, for simplicity.
The superlattice analysed has a half-metallic character, as

inferred by the total density of electronic states (DOS) in Fig. 1(d),
with a band-gap in the minority-spin channel between Mn-d and
O-p of ~2.0 eV. The site-projected DOS in Fig. 1(c) reveals that the
half-metallicity persists across all the layers. The curves show that
the deeper the Mn inside the LaMnO3 region, the lower the onset
of the eg bands, because of the larger electronegativity of La with
respect to Sr. The smooth variation of these onsets across the
superlattice is a further signature of metallicity. Moreover, the eg
states are well separated from the t2g states in the LaMnO3

region (see layers 5 and 6), whereas they are much closer in the
SrMnO3 region. Their separation is small also at the interface,
note the larger upshift of the t2g states with respect to the eg
states in Fig. 1(b).
The features just outlined are unusual for manganite super-

lattices with this large thickness. For the (001) orientation, the
superlattice becomes insulating if LaMnO3 is thicker than 2
layers48,53,60, whereas it is 12-layers thick in the present case. To
understand the difference between the two orientations we
should first understand what drives the formation of a half-
metallic FM state. We recall that bulk LaMnO3 (characterised by
the a−a−c+ tilting system) becomes half-metallic FM under a small
compressive strain61,62. As discussed above, SrMnO3 causes a
small compressive strain on LaMnO3, and this should be sufficient
to induce the transition. Interestingly, this situation is even more
favourable in the a−a−a− tilting system, which is predicted by our
calculations to be a FM half-metal for all in-plane lattice
parameters hereby considered.
Once established that strain is the driving factor in determining

the half-metallic FM state in the LaMnO3 region, we need to
understand why this state is more likely to survive in the (111)-
oriented superlattice than in its (001)-oriented counterpart.
Clarifying this issue requires a deeper analysis of the structural
features and the magnetic properties, presented in the next
sections.

Breathing distortions and spin-charge oscillations
As for most perovskites, the structural features are linked to the
electronic and magnetic properties. In agreement with leading
literature63,64, we introduce the Jahn-Teller distortions and
breathing distortions in terms of the variations of the octahedral
lengths x,y,z (with respect to their average values). Breathing
distortions are defined as QR

1 ¼ ðΔx þ Δy þ ΔzÞ= ffiffiffi
3

p
, whereas the

Jahn-Teller distortions are QR
2 ¼ ðΔx � ΔyÞ= ffiffiffi

2
p

and
QR
3 ¼ ð�Δx � Δy þ 2ΔzÞ= ffiffiffi

6
p

. Breathing distortions are seldom
found in manganites, which host orbital order and Jahn-Teller
distortions (also defined in the Methods) instead. A recent study
highlighted that Jahn-Teller modes arise from a steric effect that
affects the electron-lattice coupling and are therefore dependent
on the tilting system65,66. In the bulk, the constraint imposed by
the R3c phase should lead to a total quenching of these (pseudo)
Jahn-Teller modes. The Jahn-Teller distortions are shown in Fig. 2
(a) and are quenched in agreement with the aforementioned
literature. The quenching is not full because the relaxation of the
superlattice modifies the pristine a−a−a− tilting pattern.
The quenching of the Jahn-Teller modes is accompanied by the

presence of the breathing modes. The latter are lessened by a
factor 4 in the structure without tilts (data not shown). A similar
relation between octahedral tilts and breathing distortions was
recently found in rare-earth nickelates, where it leads to a
structurally triggered metal-insulator transition67. In addition,
LaMnO3 is mentioned as a case where a close competition
between charge and orbital order is driven by a similar
mechanism (in line with refs. 63 and68). In the superlattice under
investigation, this mechanism has to compete with the high
stability of the FM half-metallic phase, associated to the strained
structure, and with the uniform shift of the band-edge, induced by
the charge transfer – see again Fig. 1(b). Therefore, it becomes
unfavourable to induce a transition to an AFM insulator with
orbital order. The site-projected charge and magnetic moment
distributions, as computed à la Bader69–73, is presented in Fig. 2(b)
and shows a hint of charge order, leading to oscillations in the
LaMnO3 region and a smooth behaviour in the SrMnO3 region.
The smooth variation of the Mn-O-Mn angles across the

superlattice (which take approximately the same values for all

Table 1. Energy difference per formula unit relative to the ground
state structure – i.e., the FM phase with the a−a−c+ tilting system – of
various magnetic orders and tilting systems. The energies are
computed for the same in-plane lattice parameters, corresponding to
0% strain.

a−a−c+ a−a−a−

FM G. S. 7.6

A-type AFM 26.5 37.5

C-type AFM 43.7 53.8

G-type AFM 71.8 95.6
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Fig. 2 Correlation between distortions and charge. a Layer-
resolved van Vleck distortions. b Mn-projected Bader charges and
magnetic moments. The dashed vertical line indicates the interfacial
layer. The charge transfer across the interface is visible in having
Bader charges larger (lower) than for the nominal oxidation state,
i.e., 13 (14) in the SrMnO3 (LaMnO3) region. A more direct
visualisation of the structure with respect to the layers numbering
is provided in Fig. 1.
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layers in the central LaMnO3 region) mirrors the uniform shift of
the band-edge, compare Figs. 3(b) and 1(b), whereas the Mn-O
distances appear with oscillations in the inner LaMnO3 region, see
Fig. 3(a). Where the Mn-O-Mn bond are closer to a flat angle (the
SrMnO3 region) the structure presents larger splitting in the Mn-O
distances between increasing ẑ and decreasing ẑ, and where the
Mn-O-Mn bonds are more bent (the LaMnO3 region) the structure
presents oscillating Mn-O distances and breathing modes, see
Figs. 2, 3. In fact, the connection between breathing distortions
and angles is even more apparent in the inset of Fig. 3(b), where
flat angles correspond to single values for the MnO6 volumes
(breathing distortion) and bent angles – in the LaMnO3 region –
correspond to large variance of the MnO6 volumes distribution, in
line with the above mentioned literature67. The large Mn-O
distance splitting, occurring in the SrMnO3 region, reveals a typical
tendency for SrMnO3 to ferroelasticity74, avoided by the symmetry
with respect to the interface.

Exchange couplings and ferromagnetic order
As we argued that the magnetism is a consequence of structure
and strain, we do not expect it to be interfacially driven. This is
clearly visible in Fig. 2(b), where the largest magnetisation is found
in the innermost layers of the LaMnO3 region. For a better insight
into the magnetic properties, we analyse the inter-atomic
exchange coupling, computed for a lattice constant of 3.892Å
(which corresponds to a tensile strain below 1%). The largest
contributions in the Mn sublattice are those connecting a Mn
atom to its first nearest neighbours or fourth-nearest neighbours.
The latter correspond to the second-nearest neighbours along
Mn-O-Mn-⋯ lines, consistently with the double-exchange
mechanism48,60. The relevant exchange couplings across the
superlattice are illustrated in Fig. 4. In the LaMnO3 region,
the magnetic order is driven by the FM nearest neighbour
coupling, which in the innermost layer takes the value of 17.7 meV

and sharply decreases at the interface, exhibiting oscillations in
phase with the magnetic moments. Interestingly, the maximum
value is not reached at the innermost layer, but at intermediate
layers, and amounts to 18.4 meV, which is 30% smaller than in the
isostochiometric La2/3Sr1/3MnO3

75. This behaviour reflects a
competition between the trend of the magnetisation – see
Fig. 2(b) – and the potential induced by the charge transfer across
the interface – see Fig. 1(b). Such relatively strong ferromagnetism
is even more surprising if compared to the behaviour of (001)-
oriented supercells, whose nearest neighbour exchange becomes
bulk-like AFM for LaMnO3 regions thicker than 2 unit cells48,60. A
smaller contribution to the magnetic order is given by the fourth-
nearest neighbour exchange, whose values are noticeable at the
interface (1.36 meV), but are totally quenched in the innermost
layers of the LaMnO3 region.
The situation is more complicated in the SrMnO3 region. In the

innermost layers, the nearest neighbour exchange is AFM, as in
the bulk76. However, The strength of the coupling is much weaker
than in the bulk, i.e., -1.6 meV versus -7.5meV77, due to the
combined effect of charge transfer and epitaxial strain (about 1%).
Strain alone was shown to induce an AFM-FM transition at about
3% in bulk cubic SrMnO3

77 – while here the strain is virtually null
on SrMnO3. Interestingly, the FM order inside the SrMnO3 region is
stabilised by the fourth-nearest neighbour coupling, which
becomes even larger (1.8 meV) than the nearest neighbour one.
This frustration due to competing FM and AFM interactions is
likely to lead to a more complex magnetic structure, probably
accompanied by non-collinearity. Exploring the magnetic phase
diagram may be an interesting project, but outside the scope of
the present work. We prefer, instead, to focus on the origin of the
oscillations of charge, magnetic moments, exchange couplings
and breathing distortions.
We can summarise what leads to the half-metallic FM state with

the help of Fig. 5. In the bulk, LaMnO3 and SrMnO3 behave as an
AFM Mott insulator with Mn3+ ions and an AFM band insulator
with Mn+4 ions, respectively. In the superlattice, the local strain in
the LaMnO3 region induces the delocalisation of the Mn-3d states,
which in turn suppresses the AFM super-exchange and favours the
FM double-exchange60,61. This effect is further enhanced by the
charge transfer across the interface, which penalises the ionic
picture and promotes the hopping between Mn sites. In (001)-
oriented superlattices, the local strain is imposed in-plane – hence
along two crystallographic directions – and allows different
relaxations in different regions: SrMnO3 recovers its G-type AFM
order, blocking the tunnelling of eg electrons from LaMnO3 and
imposing a strong penalty on the double-exchange mechanism.
For the (111) orientation, the strain acts on the same footing for all
octahedral axes, and therefore the aforementioned phase separa-
tion is forbidden, the eg tunnelling survives and the FM coupling
prevails. In summary, geometrical degrees of freedom affect the
electronic ones, governing the magnetic and metallic properties
of the superlattice. Further information can be inferred by the
analysis of the bond angles, shown in Fig. 3. In the LaMnO3 region,
the Mn-O-Mn angles vary from 160∘ to 165∘. These values are
higher than the bulk LaMnO3

78 value of 155∘ and close to the La2/
3Sr1/3MnO3 value79 of 165∘. The analysis of the Mn-O bond lengths,
see Fig. 3, is in line with the presence of breathing modes in the
LaMnO3, but also with a tendency to ferroelasticity in SrMnO3,
avoided by the equivalence of the interfaces. Such behaviour is
typical of SrMnO3

74. Charge doping and metallicity would anyway
prevent the transition to a ferroelectric phase.

Role of Hund’s coupling
The suppression of Jahn-Teller order in favour of breathing
distortions was predicted a decade ago in nickelates as a
consequence of Hund’s coupling and was pointed out to be
persistent well into the metallic side of the Mott transition80.

Fig. 3 Correlation between angles and distances/distortions.
a Mn-O distance for the 3 inequivalent nearest neighbours, as
illustrated in the inset;+ and− denote increasing and decreasing c,
respectively. b Opposite of the Mn-O-Mn angles ( dMnOMn) averaged
over the three directions; inset: correlation between the angles ðπ �
dMnOMnÞ=2 and the breathing distortions. In the main panels, the

vertical dashed black line denotes the layer at the interface, while
the dashed magenta line denotes the center of the SrMnO3 region.
Note that layers #0 and #18 are also at the interface. In the inset of
panel (b), the vertical lines denote the range of breathing distortions
for one corresponding value of the angle.
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Later studies67 pointed to structural distortions as the driving
mechanism. In the present case, we observe an intermediate
situation. On one hand, the structure has a primary importance,
forbidding certain distortions, such as Jahn-Teller, and preserving
metallicity. On the other hand, the breathing distortions are not
large enough to induce a metal-insulator transition, but we still
observe signs of charge order. The dependence of our results on
the strength of Hund’s exchange J is investigated via charge
density functional plus U scheme (denoted as cDFT+U∣J here-
after)81,82 for a lattice constant of 3.892Å. It suggests to what
extent Hund’s coupling affects the properties of our system. The
oscillations of the magnetic moments across the superlattice
depend crucially on the value of Hund’s coupling, see Fig. 6(b).
When J becomes as small as 0.6 eV, the magnetism is no longer
pinned at the innermost layers of the LaMnO3 region. Instead, it
becomes pinned at the interface, similarly to what happens in
(001)-oriented superlattices. The change in the trend of the
magnetic moments across the superlattice is accompanied by an
analogous change of the breathing distortions, emphasising that
the former drives the latter, to a large extent. Furthermore,
electron/hole doping may lead to the disappearance of the
breathing distortions as well as the magnetic moments oscillations
(data not shown). Such a drastic change is surprising, considering
the shape of the density of states in the corresponding doping
range ( ± 0.1 eV), and suggests that strong electronic correlations
play an important role. Overall, the metallic character with spin
and charge oscillations, the presence of strong correlation effects,
and the key role of the Hund’s exchange J suggest that our
superlattice behaves as a Hund’s metal83,84. Using our parameters
U and J, as well as the effective bandwidth extracted from the
DOS, we can obtain some information from existing phase
diagrams of the Hubbard model85–87. The most accurate
comparison is offered by ref. 87, where Merkel et al. investigated

a 5 orbital system with a d4 occupation, including the level
splittings associated to the presence of breathing modes
(representative of CaFeO3). Using their phase diagram, we can
confirm the regime of (homogeneous) Hund’s metallicity, with an

Fig. 4 Magnetic coupling constants as computed and shown along the (001) – or any of the equivalent (010) and (100) – crystallographic
directions of the superlattice. The Mn are shown as circles, and the values of the coupling constants are reported in meV. Straight segments
denote first nearest neighbours, whereas semicircles denote fourth-nearest neighbours, namely Mn two layers away but along the same Mn-
O-Mn direction (whereas they vanish for all other Mn couples).
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estimated quasiparticle weight between 0.4 and 0.6. By increasing
J, we expect to get closer to a valence skipping metal phase,
which finds correspondence in an increasing amplitude of charge
and spin oscillations (see inset of Fig. 6(b)). A further increase of J
would lead to a charge disproportionated insulator, which in ref. 87

is predicted to happen for values larger than 2.3 eV. Despite signs
of “Hundness” have been found in a variety of systems during the
last decade83,84, they had never been reported for a manganite
superlattice. For a more quantitative analysis allowing for more
precise conclusions, one would need to perform calculations
beyond DFT, e.g., in combination with the dynamical mean-field
theory (DMFT), including the structural response. Considering the
size of the system as well as the very high number of degrees of
freedom, such an analysis would be beyond the scope of the
present study.

Outlook
In summary, we have investigated the electronic and magnetic
properties of the (111)-oriented (LaMnO3)12∣(SrMnO3)6 superlattice
using DFT+U∣J. A half-metallic FM state is supported by the
cooperation of charge, spin, orbital and lattice degrees of
freedom, and is favoured with respect to an AFM state. The half-
metallic FM character is found to persist across the entire
superlattice, while the innermost layers of its (001)-oriented
counterpart become AFM insulators for a thickness larger than 3
layers. The atomic volumes, charges and magnetic moments are
correlated across the superlattice, in particular in the LaMnO3

region, where adjacent sites display charge, spin, and volume
oscillations. Breathing distortions arise and may be accompanied
by the quenching of Jahn-Teller distortions in the presence of
a−a−a− tilting of MnO6 octahedra while may coexist with the
Jahn-Teller distortions in other tilting systems such as a−a−c+.
Overall, the present results suggest that the [111] epitaxial strain
associated to the superlattice formation is a viable pathway to
engineer a system analogous to La2/3Sr1/3MnO3 without introdu-
cing doping-induced disorder. This is not only an advantage for
avoiding alloy-related problems, as e.g. cation disorder, but does
also widen the potential of interfacial engineering in oxide
heterostructures. Finally, we also speculate that the fascinating
physics exhibited by this superlattice may arise from Hundness,
alongside with structural aspects, similarly to what happens in
nickelates. Therefore, the system addressed here can provide
further theoretical ground for the development of heterostruc-
tures hosting exotic magnetic phases and topological states.

METHODS
Framework and parameters
The superlattice is fully relaxed with an optimised lattice constant of
3.860Å (denoted as equilibrium or 0 % strain). Calculations are performed
in density functional theory (DFT) using the projector-augmented wave
method as implemented in the Vienna Ab-initio Simulation Package
(VASP)88,89. The exchange-correlation functional is treated in the general-
ised gradient approximation (GGA) by Perdew-Burke-Ernzerhof90,91. To
improve the description of the Mn-3d states92, we make use of on-site
corrections for static correlation effects in the rotational invariant DFT+U
approach by Liechtenstein et al.93, denoted as sDFT+U∣J. Further
calculations to analyse Hund’s coupling are performed by following the
approach discussed in ref. 94, which we label as cDFT+U∣J. The Coulomb
interaction parameters are chosen as U= 3.8 eV and J= 1.0 eV, in
accordance with works on similar systems95,96. A deeper analysis of the
magnetic properties is then performed via the full-potential linear muffin-
tin orbital (FP-LMTO) method as implemented in the RSPt code97–99. We
used also the SCAN parameter-free functional100: results (shown in the
Supplemental Material) confirm the core results obtained with DFT+U∣J.
The inter-atomic exchange interactions Jij are calculated by mapping the

magnetic excitations onto an effective Heisenberg Hamiltonian
Ĥ ¼ �P

i≠j Jij � ð e!i � e!jÞ, where i, j are atomic sites and e!i , e!j are unit
vectors along the local magnetisation direction. This calculation is performed

via the magnetic force theorem, using the implementation of ref. 101, which
was also successfully applied to CaMnO321. Due to the better accuracy of all-
electron methods102, these calculations also serve to confirm the validity of
VASP results.

General considerations on the modelled system
The supercells used for the calculations consist of two types: the R3c cell was
used for the results presented throughout this work, whereas an
orthorhombic cell was used for calculations to compare total energies and
results on the charge and spin distributions. The two interfaces have the
same stacking sequence (i.e., LaO3∣Mn∣SrO3 or SrO3∣Mn∣LaO3), thus they are
equivalent; furthermore, the superlattice possess inversion symmetry with
respect to the Mn atom at the interface and therefore there is no built-in
electric field generated. Further details on the cells and the sampling of the
Brillouin zones are given in the Supplemental Material.
The analysis on the on-site charges and magnetic moments is carried on

by in agreement with state-of-the-art methods69–73. The analysis of the
electronic properties is performed with the aid of the post-processing code
VASPKIT103. Finally, images of structures and charge/spin distributions
are produced with VESTA JP-Minerals104. Further details on the calculations
are given in the Supplemental Material.
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