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A B S T R A C T   

In positron emission tomography (PET), 68Ge-transmission scanning is considered the gold standard in attenu-
ation correction (AC) though not available in current dual imaging systems. In this experimental study we 
evaluated a novel AC method for PET/magnetic resonance (MR) imaging which is essentially based on a com-
posite database of multiple 68Ge-transmission maps and T1-weighted (T1w) MR image-pairs (composite trans-
mission, CTR-AC). 

This proof-of-concept study used retrospectively a database with 125 pairs of co-registered 68Ge-AC maps and 
T1w MR images from anatomical normal subjects and a validation dataset comprising dynamic [11C]PE2I PET 
data from nine patients with Parkinsonism. CTR-AC maps were generated by non-rigid image registration of all 
database T1w MRI to each subject’s T1w, applying the same transformation to every 68Ge-AC map, and aver-
aging the resulting 68Ge-AC maps. [11C]PE2I PET images were reconstructed using CTR-AC and a patient-specific 
68Ge-AC map as the reference standard. Standardized uptake values (SUV) and quantitative parameters of kinetic 
analysis were compared, i.e., relative delivery (R1) and non-displaceable binding potential (BPND). 

CTR-AC showed high accuracy for whole-brain SUV (mean %bias ± SD: 0.5 ± 3.5%), whole-brain R1 (− 0.1 ±
3.2%), and putamen BPND (3.7 ± 8.1%). SUV and R1 precision (SD of %bias) were modest and lowest in the 
anterior cortex, with an R1 %bias of − 1.1 ± 6.4%). 

The prototype CTR-AC is capable of providing accurate MRAC-maps with continuous linear attenuation co-
efficients though still experimental. The method’s accuracy is comparable to the best MRAC methods published 
so far, both in SUV and as found for ZTE-AC in quantitative parameters of kinetic modelling.   

Introduction 

Accurate attenuation correction (AC) in positron emission tomog-
raphy (PET) imaging is a prerequisite for obtaining quantitatively cor-
rect images. The transmission scan with rotating 68Ge-rod sources (68Ge- 

AC) is considered the gold standard for PET AC [1], as it directly obtains 
linear attenuation coefficient (LAC) values of 511 keV photons. Other 
methods, like computed tomography (CT)-based AC (CT-AC), require 
conversion from CT Hounsfield units acquired at lower energy (around 
120 keV) to LAC values at 511 keV [2,3]. In a hybrid PET /magnetic 
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resonance (PET/MR) system, there is neither a direct nor an indirect way 
to obtain LAC values, as for stand-alone PET and PET/CT systems, 
respectively. The main reason is the MR-metal incompatibility which 
excludes the implementation of a standard rotating rod source, although 
a non-commercial alternative has been presented for brain PET imaging 
[4]. Hence, MR compatible AC (MRAC) methods were developed to 
achieve reliable quantification [2,5–9]. 

MRAC methods can essentially be separated into three different 
groups [5,10,11] based on: (1) MR image segmentation, (2) the use of an 
atlas or database, and (3) emission-based methods, or a combination of 
any of these with machine learning. Image segmentation uses a classi-
fication of MRI data in different tissue types to produce a CT-like image 
(Pseudo-CT). LAC values are then attributed based either on tissue type 
or MR intensities. An advantage is that individual structural patient 
information is considered. The most recent methods, such as ultrashort 
echo time (UTE) and zero-echo time (ZTE), are also able to take bone 
into account [12–14]. They provide dependable results, although with a 
significant bias in absolute radioactivity concentrations compared to 
68Ge-AC [15,16] (but not compared to CT-AC [17]). Atlas, database or a 
combination of these methods, rely on having a database with many 
subjects to produce a template image that can be converted into the 
patient space. This approach can be implemented using transmission AC, 
CT-AC or, images to generate a patient-matched Pseudo-CT along with 
probabilistic [18–22] or machine learning methods [23–25]. However, 
patient-specific variations outside the template database, such as skull 
thickness or bone abnormalities, are not considered. Emission-based 
MRAC methods are implemented using PET data only, as the AC map 
is calculated from emission data [26]. The maximum likelihood recon-
struction of attenuation and activity (MLAA) method is an example of an 
iterative reconstruction algorithm that allows the reconstruction of ac-
tivity distribution alongside the attenuation properties [4]. However, 
this method does not converge to a single solution and might fail in 
regions with low radioactivity concentration [27]. 

For evaluation of MRAC methods, most studies regarded static brain 
PET using standardized uptake values (SUV) or target-to reference re-
gions in SUV, which solely express the tracer uptake. In a comparative 
multi-centre study, eleven different MRAC methods were evaluated 
using a large cohort with static PET/MR data [28]. Generally, the 
average accuracy of tracer uptake was within acceptable ±5% limits 
compared to CT-AC. The last few years, an increasing number of studies 
[19,21,23,29,30] reported MRAC assessments from dynamic brain PET 
data acquisitions allowing derivation of quantitative kinetic parameters, 
illustrating physiological processes over time. Although most studies 
show an acceptable accuracy, direct comparisons of the results are 
impeded due to differences in methodology, especially choice of radio-
tracer and kinetic modelling approach. Further, CT-AC was considered 
as reference standard which may cause an additional bias compared to 
the use of a 68Ge-based AC [3]. 

In this work, we evaluated an in-house developed composite AC 
method for PET/MR imaging based on a composite database comprising 
68Ge-transmission maps and T1-weighted (T1w) MR image-pairs from 
many subjects. This multi-atlas approach, called CTR-AC (CTR, com-
posite transmission), provides a 68Ge-based AC with continuous LAC 
values to any subject scanned on a PET/MR system. Our hypothesis is 
that CTR-AC map will result in a more accurate representation of photon 
attenuation compared to CT- and MR-based AC methods. This work is 
built on previous studies where we compared Atlas-, ZTE-, and MaxProb- 
MRAC (multi-atlas approach using maximum probability) to the gold 
standard 68Ge-AC using both static and dynamic brain PET images of the 
dopamine transporter (DAT) ligand [11C]PE2I [15,16]. ZTE- and 
MaxProb-MRAC demonstrated similar accuracy, but ZTE-MRAC 
demonstrated consistently a higher precision in SUV and quantitative 
kinetic parameters, compared to 68Ge-AC. As the field-of-view (FOV) of 
the stand-alone PET scanner was about 40% smaller compared to the 
PET-MR scanner, we needed individual MRAC images for resampling 
and completion of neck information. In the current study, we used 

individual ZTE-MRAC images as it was the best method available on our 
PET/MR system. 

Hitherto, no study has evaluated a multi-atlas approach using 68Ge- 
transmission maps in dynamic PET data on the quantitative outcome 
parameters using kinetic modelling applications. Yet, there is one other 
research group which reported a similar approach obtaining template- 
based attenuation maps using MR and 68Ge-transmission scans for 
reconstruction of PET data acquired on a PET/MR system [22,31]. 
However, their template was grounded on a small number of subjects 
and the validation was done in static [18F]FDG brain images. Further 
they evaluated regional SUVs and were using CT-AC as reference 
method [31]. 

The aims of this proof-of-concept study were two-fold: (1) generation 
of a reliable CTR-AC map; (2) evaluation of the CTR-AC method in a 
clinical validation dataset, using in both cases 68Ge-AC as the gold 
standard. In the first part, we evaluated the absolute differences between 
CTR- and 68Ge AC maps, both for tissue classes and voxel-wise over the 
whole-brain. In the second part, we used the same dynamic [11C]PE2I 
PET/MR data as in our previous studies [15,16] for validation of CTR- 
AC, allowing even comparisons to former results. Evaluation criteria 
were accuracy and precision, using 68Ge-AC as golden standard, for SUV 
as well as binding potential and relative delivery obtained from a kinetic 
modelling approach. The evaluation was completed with voxel-wise 
brain analyses for all quantitative outcome parameters. 

Methods 

68Ge-AC and MRI database 

Data were selected retrospectively from our research database and 
comprised 125 pairs with a 68Ge-AC map and a 3D T1w MR image. For 
details, see supplemental data (S1). The included T1w MR images in our 
database should be anatomical normal. Furthermore, the MR images 
should have a good quality showing a high soft tissue contrast, well 
defined borders, and absence of artefacts. Each 68Ge-AC map was based 
on a 10 min transmission scan with rotating 68Ge-rod sources acquired 
on an ECAT Exact HR+ stand-alone PET device (Siemens/CTI PET 
Systems Inc, Knoxville, TN, USA) prior to injection of radioactivity. The 
transmission scans were reconstructed using ordered subset expectation 
maximization (OSEM) with 6 iterations, 8 subsets, and a 4 mm Hanning 
post-filter. All 68Ge-AC maps had the same matrix size and voxel size as 
in the validation dataset: 128 × 128 × 63 voxels and 5.15 × 5.15 × 2.43 
mm3, respectively. Most of the T1w MR images (> 85%) were acquired 
on a 3 T MRI system (Achieva, Philips Healthcare, Cleveland), with the 
remainder being acquired on other 1.5 T and 3 T MRI scanners (n = 18). 

Validation dataset 

We used retrospectively the same imaging data as in our previous 
studies [15,16]. Shortly, nine patients with Parkinsonism (5 female; age 
range 49–82 years) underwent an 80 min dynamic PET scan consisting 
of 22 frames with increasing duration (4 × 60 s, 2 × 120 s, 4 × 180 s, 12 
× 300 s) after injection of 5 MBq/kg body weight [11C]PE2I on a 3 T, 
time of flight PET/MR scanner (SIGNA PET/MR, GE Healthcare, Wau-
kesha, WI, USA). Simultaneously, two scans related to this study were 
acquired: (1) a ZTE sequence [13,14] (duration 153 s, 4 NEX, FOV 260 
mm, slice thickness 1.4 mm, no slice gap, matrix 192 × 192, flip angle 
0.8◦) and (2) a 3D T1w brain volume sequence (gradient-echo, duration 
272 s, 1 NEX, FOV 250 mm, slice thickness 1 mm, matrix 256 × 256, flip 
angle 12◦, TI 450 ms). All patients had a previous investigation on a 
stand-alone PET scanner including acquisition of 68Ge-AC transmission 
data (within 6 months). The acquisition and reconstruction protocol 
used were the same as described for the database. None of the patients 
showed severe brain atrophy. 
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Generation of a composite 68Ge-transmission AC map 

Fig. 1 illustrates the generation of a composite 68Ge-transmission AC 
map (CTR-AC). For every pair of images in the database, the T1w MR 
image was co-registered to the corresponding 68Ge-AC image using the 
FSL affine registration tool FLIRT [32,33]. Then, all T1w MR images in 
the database were spatially normalised to each subject’s T1w image (FSL 
FNIRT; for details, see supplemental data (S2)). The resulting trans-
formation matrices were then applied to corresponding 68Ge-AC maps, 
and a CTR-AC map was generated voxel-wise as the mean of all regis-
tered 68Ge-AC maps. Zero voxel values in any of the registered 68Ge-AC 
maps were ignored when calculating the voxel mean. The average CTR- 
AC map was resampled to a MRAC matrix size of 128 × 128 × 89 voxels 
with dimensions 4.68 × 4.68 × 2.78 mm. Individual ZTE-MRAC data 
was used to complete missing neck information for each patient in the 
validation dataset due to the differences in axial FOV between the stand- 
alone PET and PET/MR scanners, 155 and 300 mm, respectively. ZTE- 
MRAC was chosen because we have shown it is the most correct AC 
method available to us [16]. Finally, the CTR-AC map was completed 
with head coils and bed information supplied by the PET/MR 
manufacturer. 

Generation of 68Ge-AC map for PET/MR 

The computation of the patients’ 68Ge-AC map for PET/MR was 
previously described [15]. The 68Ge-transmission map was co-registered 
to the ZTE-MRAC map. In four patients, the top of the skull was missing, 
and these images were completed using ZTE-MRAC data. Like CTR-AC, 
head coils and bed information were added. 

Image reconstruction 

The [11C]PE2I PET data were reconstructed with both CTR- and 
68Ge-AC methods, using time-of-flight ordered subset expectation 
maximization with 2 iterations, 28 subsets, a 300 mm FOV, a 5 mm 
Gaussian post-filter, and reconstruction matrix of 192x192x89 voxels. 
All appropriate corrections for quantitative image reconstruction were 

applied as included in the PET/MR software. 

Data evaluation 

Patients’ motion during scanning was estimated from the 68Ge-AC- 
based [11C]PE2I PET images on a frame-by-frame basis, where each time 
point was realigned to the previous starting with a 0–3 min reference 
image. The same motion correction was applied to both datasets. For all 
patients, the T1w MR images were co-registered to the 0–3 min refer-
ence image and segmented into grey matter, white matter, and cerebral 
spinal fluid using SPM 12 [34]. Thereafter, a probabilistic volume of 
interest (VOI) template was applied using PVElab [35]. Time activity 
curves (TACs) were acquired by projecting the grey matter VOIs over the 
dynamic [11C]PE2I PET datasets, and regional SUVs were obtained by 
normalization of the activity values by patient weight and injected 
radioactivity dose. Parametric [11C]PE2I R1 (relative delivery, reflecting 
cerebral blood flow relative to cerebellum) and BPND (non-displaceable 
binding potential, proportional to DAT availability) images were 
derived using a basis function implementation of the simplified refer-
ence tissue model [36,37] with the cerebellar grey matter as a reference 
region. The same VOI template was projected on the parametric images 
to obtain regional R1 and BPND estimates. 

VOIs were grouped in clusters of regions for assessment of SUV and 
R1. The brain clusters comprised anterior cortical regions (ACR; frontal 
gyrus, dorsolateral and ventrolateral prefrontal cortexes), posterior 
cortical regions (PCR; occipital cortex, parietal cortex), dorsal striatal 
regions (STR; caudate nucleus, putamen), limbic regions (LR; amygdala, 
hippocampus, hypothalamus, and thalamus), whole-brain (WB; grey 
matter) and cerebellum. For evaluation of BPND quantification, only 
areas with high DAT density were considered: caudate nucleus and 
putamen. 

To compare LAC values for both methods, grey matter and bone VOIs 
were created on the respective AC maps. A grey matter VOI was created 
as a sphere containing a large portion of brain tissue. Threshold seg-
mentation followed by two pixel erosion of the AC map was used to 
calculate the bone VOI, as previously described by Sousa et al. [15]. 

Fig. 1. Generation of a composite 68Ge-transmission AC map (CTR-AC) using a database of co-registered T1-MR images (T11 to T1N) and 68Ge-AC maps (AC1 to ACN). 
All database T1 images were spatially normalised to a subject’s individual T1 image (sn1 to snN). The resulting transformation matrices (tm1 to tmN) were applied to 
the corresponding database 68Ge-AC images. The subject’s CTR-AC map was then calculated by voxel-wise averaging of the generated AC maps (AC1

′ to ACN’). Blue: 
database space; orange: subject space. 
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Statistical analysis 

For VOI-based analyses, accuracy was defined as the relative differ-
ence (%bias) between CTR-AC and 68Ge-AC (Eq. 1), and precision as the 
standard deviation of the %bias: 

Bias(%) =
PETCTR− AC − PET68Ge− AC

PET68Ge− AC
× 100 (1) 

with PET referring to either SUV, R1 or, BPND. 
For voxel-wise analyses, SUV and parametric images (R1 and BPND) 

were spatially normalized to a common image space (MNI) using 
SPM12. Then, absolute differences (bias) were calculated at the voxel 
level according to Eq. 2: 

Bias = PETCTR− AC − PET68Ge− AC (2) 

Hence, mean images (SUV, R1 and BPND) based on all patients were 
calculated for CTR-AC, 68Ge-AC and absolute bias. 

Correlation rank-order analysis (Spearman) and orthogonal regres-
sion analysis were calculated to assess degree of agreement between 
CTR-AC and 68Ge-AC for R1 and BPND. Significant differences (p-value <
0.05) between CTR- and 68Ge-AC were evaluated using a Wilcoxon 
matched-paired signed-rank test. All statistical analyses were conducted 
in GraphPad Prism 8 (GraphPad Software Inc, La Jolla, CA, USA). 

Results 

Data from one female patient was excluded. In this case the method 
providing a ZTE neck completion failed, which resulted in an incorrect 
AC map at the neck region. 

CTR-AC and 68Ge-AC attenuation maps are presented for a repre-
sentative patient in Fig. 2, along with the absolute differences between 
maps. In this subject, the 68Ge-AC required completion in the skullś 
superior section, as seen in Fig. 2b, creating a slightly increased negative 
absolute bias in that area (Fig. 2c). In brain tissue classes, CTR-AC 
showed a relative bias of 0.9% ± 5.5% in soft tissue, and in bone, 
2.1% ± 2.4% in terms of LAC values. 

Mean 80 min [11C]PE2I SUV images based on CTR-AC and 68Ge-AC, 
and the corresponding absolute bias, are presented in Fig. 3. Differences 
are hard to detect by visual inspection. However, the bias image 
demonstrated a slight positive bias in central and anterior sections, 
especially at the level of the striatum. In contrast, a minor negative bias 
was observed in posterior areas. All differences were in the range of 
− 0.05 and 0.07 SUV units. 

Mean CTR-AC and 68Ge-AC TACs were similar for all brain clusters 

(Fig. 4a) and the mean bias of CTR-AC relative to 68Ge-AC was at any 
time below 2% for all clusters (Fig. 4b). Time-variability was found for 
the cerebellum with a slightly increasing negative bias and increased 
interpatient variability towards the end of the scan. For the other brain 
clusters, the bias and interpatient variability were almost constant over 
time. 

Mean parametric [11C]PE2I R1 images for CTR-AC and 68Ge-AC are 
presented in Fig. 5a and b. The difference image (Fig. 5c) illustrates a 
marginal overestimation in the frontal and medial regions, and under-
estimation in the brain’s posterior section of the brain. 

Relative bias and relationships between CTR- and 68Ge-AC based R1 
values are presented at VOI levels in Fig. 6 and Table 1. No significant 
bias was found. The mean relative bias was close to zero, with cortical 
regions showing a slightly negative bias and the subcortical regions a 
slightly positive non-significant bias. Cortical brain clusters (ACR, PCR) 
showed considerably higher variability than subcortical clusters (STR, 
LR), but overall, the variability was about 3% (WB). Consequently, 
correlations (r) in cortical areas were around 0.9, whereas the correla-
tions for subcortical regions were close to one. The regression slope was 
only significantly different from identity for anterior cortical regions. 

Mean parametric [11C]PE2I BPND images for CTR-AC and 68Ge-AC 
based PET images were visually equivalent, but a minor positive abso-
lute bias was observed across the brain, above all at the level of the 
striatum (Fig. 7). 

For striatal regions, a bias of about 3.5% was found, although there 
was a substantial interpatient variability (Fig. 8 and Table 2). The slopes 
of the orthogonal regression lines between CTR-AC and 68Ge-AC were 
not significantly different from identity, and the corresponding corre-
lations were close to one. 

Discussion 

In this proof-of-concept study, we presented a new 68Ge-transmission 
multi-atlas AC method to be used for AC of brain PET data in PET/MR 
systems, using a database of pairs of 68Ge-AC and T1w MR images. The 
CTR-AC map showed a small bias in brain tissue classes and voxel-wise 
in the whole-brain compared to the gold standard for measurement of 
linear attenuation coefficients for 511 keV photons, the 68Ge-trans-
mission scan. This method was validated using dynamic [11C]PE2I 
scans, showing overall a high accuracy and a modest precision against 
68Ge-AC. To our knowledge, three other studies [19,21,23] have 
assessed the impact of a kind of composite MRAC map on the outcome 
parameters of kinetic modelling. In these studies, accuracy was high (% 

Fig. 2. AC maps for a representative patient: (a) CTR-AC, (b) 68Ge-AC, and (c) 
corresponding absolute bias. 

Fig. 3. Mean SUV images (n = 8) for (a) CTR-AC, (b) 68Ge-AC, and (c) corre-
sponding absolute bias. 
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bias < ±5%) compared to CT-AC, but as mentioned before the used 
radiotracers have different kinetic properties which make an in deep 
comparison difficult. On a longer term, the present work could 
contribute to development of an accurate 68Ge-based AC with contin-
uous LAC values for quantitative neuro PET/MR. 

The mean bias in SUV values was close to zero (Fig. 4), with a 
standard deviation of approximately 3–5%. Compared to the multi- 
centre study of MRAC methods by Ladefoged and colleagues [28], 
CTR-AC accuracy would rank among the best three methods while 
precision was slightly worse than the best-ranking methods. One must 

Fig. 4. Mean SUV over time (a) and (b) relative bias over time for different brain clusters. The green points represent CTR-AC SUV values and the red points 68Ge-AC. 
ACR anterior cortical regions, PCR posterior cortical regions, STR striatal regions, LR limbic regions, CER cerebellum, and WB whole-brain grey matter. The solid 
points represent mean values, while shaded areas show standard deviation. 

Fig. 5. Mean parametric R1 images (n = 8) when using (a) CTR-AC, (b) 68Ge- 
AC, and (c) corresponding absolute bias. 

Fig. 6. Relative delivery (R1) - (a) %bias (and (b) relation between CTR- and 68Ge-AC based values for the various brain clusters. ACR anterior cortical regions, PCR 
posterior cortical regions, STR striatal regions, LR limbic regions, CER cerebellum, and WB whole-brain grey matter. The solid line is the orthogonal regression fit, 
and the dashed line is the line of identity. 

Table 1 
R1 Mean accuracy (%bias), precision (SD of %bias), and Spearman correlation 
coefficient (r) for all brain clusters. Additionally, slope and intercept of 
orthogonal regression lines are given.  

VOI Cluster %Bias SD (%) r Slope Intercept 

WB  − 0.10  3.17  0.90  1.12  − 0.10 
ACR  − 0.56  6.38  0.91  1.22*  − 0.17 
PCR  − 1.09  5.39  0.87  1.10  − 0.09 
STR  0.70  3.41  0.97  0.99  0.01 
LR  0.08  2.17  0.98  1.03  − 0.02 

ACR anterior cortical regions, PCR posterior cortical regions, STR striatal re-
gions, LR limbic regions, WB whole brain grey matter. * p-value < 0.05, Wil-
coxon matched-paired signed rank test. 
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keep in mind that they used [18F]FDG, whereas we used [11C]PE2I. 
However, the initial frames of a dynamic [11C]PE2I scan essentially 
show cerebral blood flow, which has a similar distribution as [18F]FDG 
[38]. When only looking at the first four minutes of the [11C]PE2I scan 
the CTR-AC shows a bias of 0.5 ± 3.4% in SUV, which can be compared 
to the results by Ladefoged et al. [28] and emphasised the relatively high 
accuracy of CTR-AC. We previously compared ZTE-MRAC to 68Ge-AC 
[16] and found for WB an average moderate SUV bias of about 8% 
together with a very high precision (1.5%). The substantial bias of ZTE- 
MRAC compared to the methods investigated by Ladefoged et al. [28] 
might also be due to the use of different reference methods, 68Ge-AC and 
CT-AC, respectively. Rota-Kops et al. [22,31] evaluated template-based 
68Ge-AC against CT-AC investigating accuracy of regional SUVs of 
static [18F]FDG images in eleven subjects acquired on a hybrid 3 T MR- 
BrainPET scanner (Siemens Medical Solutions Inc, Knoxville, TN, USA). 
Despite observed differences in classifications of bone and soft tissue 
between both methods, they found a high accuracy and precision for 
template-based 68Ge-AC (relative bias < ±4%; SD at most 2.5%). Sekine 
et al. [17] compared ZTE-MRAC to CT-AC, and they also found a bias 
close to zero. In summary, in terms of SUV, CTR-AC shows high accuracy 
and moderate precision. 

As for SUV, we found high accuracy and moderate precision in the 
quantitative parameters R1 and BPND after reconstruction with CTR-AC. 
For R1, the average %bias varied between − 1.1 and 0.7% resulting in an 
accuracy which was comparable to or higher than previously found for 
ZTE-MRAC (-0.5–3.3%) [16]. R1 precision was equivalent in subcortical 
areas (2.0–3.5%) but substantially lower than ZTE-MRAC in cortical 
regions (1.5–2.5%). For striatal regions, CTR-AC showed a lower accu-
racy for BPND compared to ZTE-MRAC (− 0.8–1.8%), but still within 
acceptable limits of ± 5%. BPND precision was comparable in caudate 
(7.4%) and lower in putamen (3.8%), as previously found for ZTE-MRAC 
and should be considered as moderate (5–10%). 

CTR-AC LACs show a non-significant difference of 0.9 ± 5.5% and 
2.1 ± 2.4% in soft tissue and bone, respectively, compared to the indi-
vidual patients’ 68Ge-AC maps. Differences between tissue types in our 
study are comparable to those reported when using more complex deep 
learning transmission maps [23]. Further, the CTR-AC maps have a 
much smaller bias than the vendor-provided AC, single atlas [18], and 
ZTE [13,14,39], where differences are around 3% in soft tissue and from 
4 to 18% in bone were found. This modest bias is mainly caused by a LAC 
for soft tissue of 0.100 cm− 1 in most MR-based methods versus measured 
values of around 0.097 cm− 1 in 68Ge-AC images [15]. 

In recent years several machine learning techniques, using deep 
learning with convolutional neural networks, have been proposed for 
MR-image segmentation. The resulting pseudo-CT can be used for brain 
PET AC on a PET/MR system [24,25,40,41]. All mentioned studies 
showed promising results with a high accuracy, but the clinical evalu-
ations were mostly restricted to static [18F]FDG PET images. An 
exception was the study by Spuhler et al. [23] who evaluated a pseudo- 
CT map based on T1w MRI data compared to a 68Ge-AC map in static and 
dynamic data of PET scans for two different serotonin tracers, [11C] 
WAY-100635 and [11C]DASB. For the pseudo-CT the mean relative bias 
was − 1.1 ± 0.8% which is in line with our results. In general, the mean 
relative bias was < 3% in static and dynamic outcome parameters, 
where the latter were derived using a kinetic modelling approach. 
However, although these results are encouraging, they cannot be 
directly compared to our results due to different tracer properties. 
Furthermore, in contrast to our study, no direct validation was con-
ducted on a PET/MR system. 

Additional factors could have contributed to the differences between 
the CTR-AC and the reference AC method. Atlas-based methods used to 
have an outstanding performance. Nevertheless, in practice, patient 
variations and algorithm limitations exist, which will not allow for a 
perfect co-registration between the atlas and patient data. Outliers with 
abnormal morphologies will affect the co-registration, and thereby 
decrease the performance of the atlas-based AC map [19,20]. 

Fig. 7. Mean parametric BPND images (n = 8) when using (a) CTR-AC, (b) 68Ge- 
AC, and corresponding (c) absolute bias. 

Fig. 8. Binding potential (BPND) – (a) %bias and (b) relation between CTR- and 
68Ge-AC based values for caudate and putamen. The solid line is the regression 
fit, and the dashed line is the line of identity. 

Table 2 
BPND – Mean accuracy (%bias), precision (SD of %bias), and Spearman corre-
lation coefficient (r) for all brain clusters. Additionally, slope and intercept of 
orthogonal regression lines are given.  

VOI %Bias SD (%) r Slope Intercept 

Caudate  3.56  8.37  0.98  0.90  0.34 
Putamen  3.70  8.11  1.00  0.92  0.30 

*p-value < 0.05, Wilcoxon matched-paired signed rank test. 
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Furthermore, a more robust validation of CTR-AC, would be by com-
parison to a 68Ge-AC map acquired directly in the PET/MR as suggested 
by Renner et al.[4], and thereby evading any negative co-registration 
issues. However, such a comparison is technically challenging and 
cannot be done using commercially available technology. 

The presented CTR-AC methodology has benefits and limitations, 
which need to be addressed. Based on multiple 68Ge-transmission maps 
this MRAC method has the advantage of providing continuous LAC 
values. Although, the averaging approach might reduce the range of LAC 
values compared to a standard 68Ge-AC maps, this approach still allows 
for more correct LAC values at the interface region between tissues 
compared to discrete tissue-class methods. In our case there is no need 
for tissue segmentation which avoids possible misclassification errors. 
Further the CTR-AC approach is a relatively simple and straightforward 
approach compared to most other published methods, especially 
pseudo-CT AC along with machine learning methods using convolu-
tional deep neural networks. Deep learning models demand big data for 
training and testing in patients and healthy volunteers. Further a long 
process is often required to train the neural network for producing a 
reliable pseudo-CT. On the other hand, the presented CTR-AC map can 
be implemented directly in all subjects regardless their health status. 
Beside the database with pairs of 68Ge-transmission and structural MRI 
data, no big data is needed. Consequently, the validation of this method 
could be based on relative few subjects. 

The CTR-AC method provides excellent accuracy, but precision 
slightly lower as shown with other MRAC methods. One possible reason 
for this may be related to inaccuracies induced by co-registration of the 
database images to the individual patient images. The 15.5 cm FOV of 
our ECAT system means that most database images are truncated 
immediately below the cerebellum and that parts of the top of the skull 
often were missing, which may cause inaccuracies in the resulting CTR- 
AC images. The lack of information in the top of the skull can be easily 
derived from 68Ge-transmission images in the database which contain 
entire skull information. However, neck information is absent in all 
68Ge-transmission images. This absence of information makes the CTR- 
AC method dependent on an additional MRAC map for completion of the 
missing information. A possible solution to this problem could be ach-
ieved by artificially reconstructing the patient neck section using the 
T1w image as template. In fact, other MRAC maps native to each scanner 
can be used, for example, previously we used Atlas-MRAC for this pur-
pose [15,16]. Ideally, the CTR-AC database should be based on 68Ge- 
transmission images from a stand-alone PET scanner with the same FOV 
as the SIGNA PET/MR to avoid the need for completion of the skull and 
neck. To our knowledge the only such scanner is the ECAT HRRT [42] 
but this scanner uses a 137Cs point source for transmission scanning 
resulting in an energy of 662 keV which requires conversion to 511 keV 
attenuation values as well. However, despite this FOV-related limita-
tion, the current approach already showed a high accuracy and provides 
a solid ground for further studies and refinement of the CTR-AC method. 

Our database included pairs of T1w MR and 68Ge-AC images of 125 
anatomically normal subjects, which was the total number of image 
pairs with a good quality T1w MRI and reconstructed ECAT 68Ge- 
transmission images that were readily accessible from our archive. We 
feel confident about the size of the database. Though a smaller number 
of database pairs might have been sufficient, optimisation of the number 
of included image pairs to speed up the method will be subject of future 
work. This novel approach was tested in a small group of patients with 
normal anatomy, however extending the number of patients was not 
possible, as the stand-alone PET scanners were no longer available. This 
method is still experimental and time-intensive, and as such it is not 
ready for routine application, but the obtained results are promising. 
Hence, CTR-AC should be evaluated in a larger patient cohort and 
compared to the best available MRAC method. It is also important to 
include patients with irregular skull anatomy. Further improvements 
could involve refining the database images’ registration to target space 
using machine learning-based registration and incorporation of patient- 

specific data such as information on skull abnormalities provided by 
ZTE. 

Conclusions 

The presented approach for the CTR-AC method, based on a com-
posite data base of multiple 68Ge-transmission maps and structural MR 
images, provides accurately MRAC maps, and in contrast to most other 
published MRAC methods, even with continuous LAC values. CTR-AC 
shows a high accuracy, both in static and dynamic data, which is 
generally comparable to the best reported and commercially available 
MRAC methods so far. CTR-AC showed a near-zero bias in SUV and a 
similar low bias as found for ZTE-MRAC when using a kinetic modelling 
approach. This CTR-AC method is still experimental and not ready for 
routine application. However, the obtained results of this proof-of- 
concept study warrant further evaluations and methodological re-
finements in future work. 
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