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Abstract

Recursion methods for solving the Schrödinger
equation

Thor Lindberg, Anton Ljungar, Emy Engström

The purpose of this study is to approximate the local density of states 
(LDOS) for a metal block by solving the Schrödinger equation in an 
efficient way. To make the code more effective different methods were 
implemented, for example trying to parallelize the process and to run 
the code solely on a GPU (Graphic Processing Unit). The conclusion that 
was drawn was that running the code in parallel over the different 
orbitals on a multicore central processing unit (CPU) is faster and thus 
more efficient than running it in sequential order. Running the 
calculations on a GPU was determined to be slower because of inefficient 
use of its bandwidth due to individual indexing in matrices and vectors. 
Further tests using block versions of the same algorithm on GPUs could 
be of interest because of better use of the available bandwidth. These 
tests were not done due to time constraints.
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1 Introduction

Magnetism has been known to humanity since ancient times[1] and has since
then had an enormous impact on humanity, with inventions such as electric
motors, hard drives and magnetic resonance imaging (MRI). Magnetism con-
tinues to be a research subject at the very forefront in science[2] and as such
it is a very important force to understand. The interactions between electrons
in materials is what gives them their electric and magnetic properties[3] and in
order to understand this, the Schrödinger equation has to be solved.

The Schrödinger equation is a partial differential equation with much signif-
icance in quantum physics and solving this equation will give the eigenenergies
for a system. From these eigenenergies the local density of states can be ob-
tained. These density of states or local density of states can be analysed to find
many different properties of material exemplified by Local Density of States for
Nanoplasmonics[4] and Understanding Open-Circuit Voltage Loss through the
Density of States in Organic Bulk Heterojunction Solar Cells[5].

For this project the Schrödinger equation will be solved by recursion meth-
ods for the configuration of electrons in metals. A recursion method solves a
computational problem with a solution that is depending solutions of smaller
parts in the problem.

The institution of physics and astronomy at Uppsala University already has
an old code that solves this task in the programming language Fortran. In this
project the new code will be written in MATLAB which later can be translated
to Fortran and implemented in the original code.

1.1 Purpose

The purpose of this Bachelor Project is to learn about and explore the uses of
calculations needed to solve the Schrödinger equation in an academic setting.
This project is thus in large part a learning exercise, where a significant focus
will be placed on understanding and going through the mathematics and logic
behind the calculations. If possible, the project is also meant to contribute to
the institution’s own code in order to make it more efficient.

1.2 Problem statements

The project will be focusing on the following points:

• How is the Schrödinger equation solved, using the institution’s imple-
mented algorithms?

• Is it possible to make the institution’s code more effective?

• Would the code run faster on a GPU?
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1.3 Limitations

The projects is based on advanced physics which require a lot of practice and
understanding to be able to use. The understanding of this theory is therefore
both a necessity to be able to write the required code and also a limit for how
effective the code will become. When learning about a new area there is a risk
to have a shortage of knowledge that could limit the possibilities.

Knowledge is also a limitation when it comes to programming languages.
The already existing code that the institution currently uses is written in For-
tran, but due to a restricted understanding of Fortran the code will be rewritten
in MATLAB in order to work on and optimize it.

Since this project is only a Bachelor Project it is also quite limited in time.
Time will therefore restrict how much optimization that can be implemented.

1.4 Outline

The first part of this project will be merely theoretical and consists of reading
and understanding the theory behind the Lanczos algorithm, which the code is
based upon. A few simpler examples will also be done to practice the algorithm
and better comprehend the theoretical parts before the main parts of the project
is initiated.

After the theoretical stage the work on the main code will begin. This means
that the institution’s Fortran code will be translated into MATLAB code. At
first, the code to calculate the coefficients for the eigenvalues in the Schrödinger
equation will be written. After that, the next task is going to be to use the
coefficients from the first part to approximate the Green’s functions, which
is used to solve the Schrödinger equation. When the whole code is working
successfully and generating a correct result the process of optimizing it will
start where different methods will be implemented to try to make the code
faster and more efficient.

The institution is especially interested in whether or not it would be possible
for the new code to run on GPU, Graphics Processing Unit, instead of a CPU,
Central Processing Unit, in order to boost performance. This will therefore be
tested in the MATLAB version of the code.

2 Theory

This Bachelor project uses several methods and algorithms that are all based
on theoretical physics. The theory section is divided into different parts that all
contain relevant information about the project. It is necessary to understand
the theory to be able to comprehend the project.

2.1 Fortran and MATLAB

The already existing code that this project is based on is written in the pro-
gramming language Fortran. For this project MATLAB will also be used as the
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preferred tool, and it is therefore relevant to know the differences between the
two computer programming languages.

Fortran, an abbreviation of Formula Translation, is a computer programming
language. It was created in the 1950s and is still often used in science and
engineering, since Fortran is suitable for numerical calculations.

MATLAB is one of the programming languages that is currently taught at
Uppsala University and is a shortening of Matrix Laboratory. It is often used
by many in engineering and science to analyze data, develop algorithms and to
create models. MATLAB is also suitable for numerical calculations, however,
since it is a higher level language compared to Fortran it will run slower, but
with the benefit of being easier to program and test in. A higher level language
such as MATLAB will often use libraries written in lower level languages, for
example MATLAB uses the LAPACK library (Linear Algebra Package) library
written in Fortran.[6] This means that the same program will oftentimes run
faster if written in Fortran but as an example you need to reserve memory for
vectors which MATLAB does by itself. All these things that MATLAB does
automatically compared to Fortran makes it slower to run but easier to program
in.

2.2 Schrödinger Equation

The Schrödinger Equation is an equation that is very central in quantum me-
chanics. It is a linear partial differential equation which dictates the wave func-
tion. The wave function is often written as 𝜓 (𝒙, 𝑡) if it is time dependent and
𝜓 (𝒙) if it is time independent.

A PDE, a partial differential equation, describes the relations between the
variables and their partial derivatives in a function with multiple variables. The
Schrödinger Equation calculates the wave function in a quantum-mechanical
system. The equation looks different depending on which variables that are
included and in which coordinate system the system takes place, but this is
what the time-independent Schrödinger equation looks like[7]:

𝑯 |𝝍⟩ = 𝐸 |𝝍⟩ (1)

The Schrödinger equation from equation 1 is in this project solved to determine
the eigenenergies and eigenvectors from which the local density of states in
metals and several material properties can be extracted.

2.3 LDOS

The density of states (DOS) is a graph which shows the number of states an
electron can take for a given energy. The local density of states (LDOS) is the
DOS in a finite space and is used due to properties of the local system.[8] The
LDOS can be calculated for a specific energy 𝐸 by 𝐿𝐷𝑂𝑆 (𝐸) = −Im((𝐺 (𝐸))/𝜋)
where 𝐺 (𝐸) is the Green’s function.
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2.4 The chain model

In order to solve the quantum mechanical model seen in equation 1 it is con-
verted to a chain model using sets of orthonormal base functions {𝒖0, 𝒖1, 𝒖2, . . . }
together with sets of real parameters {𝛼0, 𝛼1, 𝛼2, . . . } and {𝛽0, 𝛽1, 𝛽2, . . . } which
can describe the Hamiltionian 𝑯 using equation 2 and the matrix representation
𝑯𝑻𝑫 can be seen in equation 3[9]

𝑯 |𝒖𝒏⟩ = 𝛼𝑛 |𝒖𝒏⟩ + 𝛽𝑛+1 |𝒖𝒏+1⟩ + 𝛽𝑛 |𝒖𝒏−1⟩ 𝑛 = 0, 1, 2, . . . (2)

𝑯𝑻𝑫 =



𝛼0 𝛽1 0 . . . 0

𝛽1 𝛼1 𝛽2 0
...

0 𝛽2 𝛼2
. . .

...
...

. . .
. . .

. . . 𝛽𝑛
0 . . . 0 𝛽𝑛 𝛼𝑛


(3)

2.5 Transformation to the chain model

2.5.1 Derivation

The transformation of 𝑯 to 𝑯𝑻𝑫 is done using Lanczos method[10, 11] seen
below.

𝑯 |𝒖0⟩ = 𝛼0 |𝒖0⟩ + 𝛽1 |𝒖1⟩ ⇐⇒

⟨𝒖0 | 𝑯 |𝒖0⟩ = ⟨𝒖0 | 𝛼0 |𝒖0⟩ + ⟨𝒖0 | 𝛽1 |𝒖1⟩ ⇐⇒

⟨𝒖0 | 𝑯 |𝒖0⟩ = 𝛼0 ⟨𝒖0 | 𝒖0⟩ = 𝛼0 (4)

Using 𝛼0 from equation 4 we can calculate 𝛽1 as seen in equation 5

𝛽1 |𝒖1⟩ = 𝑯 |𝒖0⟩ − 𝛼0 |𝒖0⟩ = (𝑯 − 𝛼0) |𝒖0⟩ ⇐⇒

⟨𝒖1 | 𝛽∗1𝛽1 |𝒖1⟩ = (𝑯 − 𝛼0) |𝒖0⟩ · ⟨𝒖1 | 𝛽∗1 ⇐⇒

𝛽21 = ⟨𝒖0 | (𝑯 − 𝛼0)∗ (𝑯 − 𝛼0) |𝒖0⟩ =⇒ 𝛽1 =
√︁
(𝑯 − 𝛼0)∗ (𝑯 − 𝛼0) (5)

Using 𝛼0 from equation 4 and 𝛽1 from equation 5 we can calculate 𝒖1 as seen
in equation 6

|𝒖1⟩ =
(𝑯 − 𝛼0) |𝒖0⟩

𝛽1
(6)

Using 𝒖1 from equation 6 we can calculate 𝛼1 and using that we can calculate
𝛽2 and so on, this is Lanczos method and the general forms for 𝒖𝒏,𝜶𝒏 and 𝜷𝒏+1

can be seen in equations 7, 8 and 9.

|𝒖𝒏⟩ =
(𝑯 − 𝛼𝑛−1) |𝒖𝒏−1⟩

𝛽𝑛
𝑛 = 1, 2, 3, . . . (7)
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𝛼𝑛 = ⟨𝒖𝒏 | 𝑯 |𝒖𝒏⟩ = 𝐻𝑛,𝑛 𝑛 = 0, 1, 2, . . . (8)

𝛽𝑛+1 =

√︃(
⟨𝒖𝒏 | (𝑯 − 𝛼𝑛)∗ − ⟨𝒖𝒏−1 | 𝛽∗𝑛

)
· ((𝑯 − 𝛼𝑛) |𝒖𝒏⟩ − 𝛽𝑛 |𝒖𝒏−1⟩) 𝑛 = 1, 2, 3 . . .

(9)
Using Lanczos method on an atom lattice as seen in figure 1 allows the chain

model to approximate the real solution with a low number of iterations 𝑛 even if
the atom cluster is large. This is since 𝑯𝑻𝑫 will have eigenvalues corresponding
to the 𝑛 largest eigenvalues of 𝑯 .[12]

Figure 1: Copper lattice structure (FCC)

2.5.2 Code implementation

2.5.2.1 Chain model

The saving vector 𝜓 for the base functions will contain each the base functions
{𝒖0, 𝒖1, 𝒖2, . . . } for each orbital 𝑛𝑜𝑟𝑏 . As such the saving vector will be a 𝑛 ×𝑛𝑜𝑟𝑏
matrix, since the calculation for 𝒖𝒏 uses 𝒖𝒏−1 as seen in equation 6 an additional
vector 𝑝𝑚𝑛 which is a 𝑛 × 𝑛𝑜𝑟𝑏 matrix will be used to temporarily save 𝜓 . How
equation 9 and 6 is implemented in code can be seen below. The variable 𝑠𝑢𝑚𝑚

is the calculated 𝛽2 in equation 5 and will be saved in the corresponding vector.
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1 pmn = pmn−a temp(LL)*psi;
2

3 summ = 0;
4 for col = 1:9
5 summ = real(summ+pmn(:,col)'*pmn(:,col));
6 end
7 s = 1/sqrt(summ);
8

9 psi temp = pmn*s;
10 pmn = psi;
11 psi = psi temp;
12

13 s = sqrt(summ);
14 pmn = −pmn*s;

The calculation of 𝛼𝑛 is done by summing all the contributions from the
atoms in each recursion step, these contributions is calculated using equation 8.
The calculations for these is done on lines 3,9 and 13 in the code below. In this
step the new cumulative base function 𝑝𝑚𝑛 is also calculated as seen on line 14.

1 for m = 1:n orb
2 for L = 1:n orb
3 dum(L) = dum(L)+H(m,L)*psi(i,m);
4 end
5 end
6 ...
7 for m = 1:9
8 for L = 1:9
9 dum(L) = dum(L)+H((j−1)*9+m,L)*psi(nnmap,m);

10 end
11 end
12 ...
13 summ = summ+real(dum(L)*conj(psi(i,L)));
14 pmn(i,L) = dum(L)+pmn(i,L);
15 ...
16 a temp temp = summ;

6



2.5.2.2 Mapping

Figure 2: Example of cluster

The atom cluster is randomly generated as a text file and then read in as a ma-
trix. The cluster can look as the one seen in figure 2 but each atom has up to 18
neighbours. A 0 means that the place for the atom is empty. Each recursion step
covers the next neighbours so the mapping goes 1 =⇒ 1, 7645, 0, 7617, 8612 =⇒
1, 7645, 0, 7617, 8612, 45, 133, 12, · · · =⇒ . . ., this means that the entire cluster
is covered in a low number of iterations. In order to keep track which atom’s
eigenfunction to use in the superposition a vector of zeros 𝑖𝑧𝑒𝑟𝑜 is created, this
vector is the same length as the number of atoms in the cluster so index 1 corre-
sponds to atom 1 and so on. When running through the recursions each atoms
existing neighbours is checked and if 𝑖𝑧𝑒𝑟𝑜 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ) ≠ 0 it’s eigenfunction is
used in the superposition and 𝑖𝑧𝑒𝑟𝑜 (𝑎𝑡𝑜𝑚) is set to 1 for the next recursion. This
is done on line 25 for the dummyvector 𝑖𝑑𝑢𝑚 for 𝑖𝑧𝑒𝑟𝑜 and the updating is done
on line 35 in section 8.3.3.

2.6 Approximation of Green’s function

Green’s function 𝐺0 (𝐸) can be calculated using equation 10.

𝐺0 (𝐸) = ⟨𝒖0 | (𝐸 − 𝑯𝑻𝑫 )−1 |𝒖0⟩ (10)

where
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(𝐸 − 𝑯𝑻𝑫 )−1 =



𝐸 − 𝛼0 −𝛽1 0 . . . 0

−𝛽1 𝐸 − 𝛼1 −𝛽2 0
...

0 −𝛽2 𝐸 − 𝛼2
. . .

...
...

. . .
. . .

. . . −𝛽𝑛
0 . . . 0 −𝛽𝑛 𝐸 − 𝛼𝑛


= 𝐴 (11)

From equation 10 equation 12 can be derived where 𝐷𝑛,𝑛 is the determinant
of 𝐴 with the first n rows and columns suppressed.

𝐺0 (𝐸) =
𝐷1 (𝐸)
𝐷0 (𝐸)

(12)

Using Laplace expansion equation 12 can be expanded into an infinite frac-
tion as seen below.

𝐺0 (𝐸) =
𝐷1 (𝐸)
𝐷0 (𝐸)

=
𝐷1 (𝐸)

(−1)2𝐴1,1𝐷1,1 + (−1)3𝐴2,1𝐷2,1
=

=
𝐷1 (𝐸)

(𝐸 − 𝛼0)𝐷1 − (−𝛽1) (−1)2𝐴2,1𝐷2
=

𝐷1

(𝐸 − 𝛼0)𝐷1 − 𝛽21𝐷2

=
1

𝐸 − 𝛼0 − 𝛽21

𝐷2

𝐷1

=

=
1

𝐸 − 𝛼0 − 𝛽21

𝐷2

(𝐸 − 𝛼1)𝐷2 − 𝛽22𝐷3

=⇒

=⇒ 𝐺0 (𝐸) =
1

𝐸 − 𝛼0 −
𝛽21

𝐸 − 𝛼1 −
𝛽22

𝐸 − 𝛼2 −
𝛽23

. . .

(13)

In order to make a numerical approximation of 13 it is assumed that

lim
𝑛→∞

𝛼𝑛+1
𝛼𝑛

= 1 lim
𝑛→∞

𝛽𝑛+1
𝛽𝑛

= 1

As such if a number 𝑁 is chosen large enough we have that 𝛼𝑁 = 𝛼𝑁−1 = 𝛼

and 𝛽𝑁+1 = 𝛽𝑁 = 𝛽, using these the infinite fraction seen in equation 13 can
be truncated using the function 𝑡 (𝐸) seen in equation 14. 𝛼 and 𝛽 is chosen
using Pettifor termination (section 2.7) in order to have a strictly positive local
density of states (LDOS).

𝑡 (𝐸) = 𝛽2

𝐸 − 𝛼 − 𝑡 (𝐸) =⇒ 𝑡 (𝐸) = 1

2

(
𝐸 − 𝛼 ±

√︁
(𝐸 − 𝛼 − 2𝛽) (𝐸 − 𝛼 + 2𝛽)

)
(14)
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Using this truncating function in equation 13 gives us the numerical approx-
imation of Green’s function as seen in equation 15

𝐺0 (𝐸) ≈



1

𝐸 − 𝛼0 −
𝛽21

𝐸 − 𝛼1 −
𝛽22

𝐸 − 𝛼2 −
𝛽23

. . .

𝐸 − 𝛼𝑁−1 −
𝛽2
𝑁

𝐸 − 𝛼𝑁 − 𝑡 (𝐸)
𝑡 (𝐸) = 1

2

(
𝐸 − 𝛼𝑁 ±

√︁
(𝐸 − 𝛼𝑁 − 2𝛽𝑁 ) (𝐸 − 𝛼𝑁 + 2𝛽𝑁 )

)
(15)

Equation 15 is easily implemented in code which can be seen below.

1 function out = bprldos(e,a,b2,LL,ebot,etop)
2 %Approximation of greens function for LDOS
3 ea = e−etop;
4 eb = e−ebot;
5 emid = 0.5*(etop+ebot);
6 det = ea*eb;
7 zoff = sqrt(det);
8 Qt = (e−emid−zoff)*0.5; %terminator 5
9

10 for L = LL−1:−1:1
11 Qt = b2(L)/(e−a(L)−Qt);
12 end
13 out = −imag(Qt)/pi;
14 end

2.7 Pettifor termination

According to Gershgorin’s Circle Theorem the eigenvalues for a 𝑛 × 𝑛 complex
matrix with elements 𝛼𝑖, 𝑗 lies within the union of Gershgorin discs 𝐷 (𝑎𝑖,𝑖 , 𝑟𝑖 (𝛼)),
where D is a disc centered on 𝛼𝑖,𝑖 with a radius of 𝑟𝑖 (𝛼) =

∑
𝑖≠𝑗 |𝛼𝑖, 𝑗 | in the

complex plane.[13] For the tridiagonal matrix 𝑯𝑻𝑫 in equation 10 Gershgorin’s
Circle Theorem means that the eigenvalues will be in the interval [𝐸𝑏𝑜𝑡 , 𝐸𝑡𝑜𝑝 ]
seen below. {

𝐸𝑏𝑜𝑡 = 𝑀𝐼𝑁 (𝛼𝑛 − 𝛽𝑛 − 𝛽𝑛+1) 𝑛 = 0, 1, . . . 𝑛 − 1

𝐸𝑡𝑜𝑝 = 𝑀𝐴𝑋 (𝛼𝑛 + 𝛽𝑛 + 𝛽𝑛+1) 𝑛 = 0, 1, . . . 𝑛 − 1
(16)

Choosing the Pettifor terminators 𝛼𝑖𝑛𝑓 and 𝛽𝑖𝑛𝑓 as in equation 17 guarantees
that the DOS is strictly positive.[14]{

𝛼𝑖𝑛𝑓 =
𝐸𝑏𝑜𝑡+𝐸𝑡𝑜𝑝

2

𝛽𝑖𝑛𝑓 =
−𝐸𝑏𝑜𝑡+𝐸𝑡𝑜𝑝

4

(17)
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This method is implemented in the code since the density of states is required
to be positive. 𝛼𝑖𝑛𝑓 and 𝛽𝑖𝑛𝑓 is calculated in the function Emami which can be
found in the appendix 8.3.6 .

2.8 Processor

The existing code which the institution is using that this project is based on is
currently being run on a CPU but a part of this project is to make the code
possible to run on a GPU instead. Both of them are processing units but they
have different advantages and areas of application.

2.8.1 Central processing unit

A Central processing unit (CPU) is the unit which processes the instructions
which run the computer. There exists several different processors but the one
which will be used in this project is the Multithreaded Processor which is able
to execute instructions in parallel[15]. This can greatly decrease the runtime of
programs where multiple calculations can be done in parallel.

2.8.2 Graphics processing unit

A Graphics processing unit (GPU) is a unit with a high bandwidth and a parallel
structure which makes it efficient at running one operation on multiple data
points but inefficient at running one operation in sequence on data points[16].
As such a GPU performs well for example when one operation is done on a
big matrix but slow when it is done by using that operation on indexes in the
matrix.

3 Method

3.1 Preparations

To prepare for the intended code a more simple code was first implemented. This
code calculated coefficients, Green’s function and plotted LDOS for Benzene in
Matlab. This was done with the Lanczos process.

3.2 Execution

The execution of this project was divided into two different parts. The first part
was to calculate coefficients for the eigenvalues in the Schrödinger equation and
the second part was to use the coefficients to approximate the Greens functions
that will be used to solve Schrödingers equation. After the implementation had
been made the code was optimized to be more effective.
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3.3 Implementations of transformation to the chain model

3.3.1 First implementation

At first the code was implemented in MATLAB with different subfunctions to
calculate the coefficients. The code is reading in a file that contains a Hamil-
tonian H which is an 18𝑥18 matrix where each element 𝐻𝑛𝑚 is an 9𝑥9 matrix.
The Hamiltonian describes how the atoms interact and the atoms are placed in
the cluster randomly. The main code loops over the orbitals and uses different
subfunctions such as 𝑐𝑟𝑒𝑐𝑎𝑙 and ℎ𝑜𝑝. 𝐶𝑟𝑒𝑐𝑎𝑙 loops over the iteration steps 𝑛 and
calls on the subfunction ℎ𝑜𝑝 which calculates 𝒖,𝜶 and 𝜷 .

3.3.2 Implementation using parallelisation

In this implementation the code was made to run over all 9 orbitals in parallel
instead of in sequential on the CPU.

There is a command in Matlab called 𝑝𝑎𝑟 𝑓 𝑜𝑟 which work like a for-loop
but on parallel workers. When 𝑝𝑎𝑟 𝑓 𝑜𝑟 is executed a parallel pool is created
which enables a multi-core computer to use each core as a separate worker. The
toolbox Parallel Computing Toolbox is required to be able to use 𝑝𝑎𝑟 𝑓 𝑜𝑟 . For
𝑝𝑎𝑟 𝑓 𝑜𝑟 to work the body of the loop must be independent and not depend on
other loops since the loop iterations are executed in a nondeterministic order.[17]
𝑃𝑎𝑟 𝑓 𝑜𝑟 was implemented in the code for the loops to be able to run in parallel
for the code to be more effective.

3.3.3 Implementation using GPU

In this implementation the code was instead made to run on the GPU but still in
sequential order over the orbitals. This was done by using 𝑔𝑝𝑢𝐴𝑟𝑟𝑎𝑦 in Matlab.
𝑔𝑝𝑢𝐴𝑟𝑟𝑎𝑦 is an array that is being stored in GPU memory, instead of at the
CPU like an usual array. A 𝑔𝑝𝑢𝐴𝑟𝑟𝑎𝑦 is created by 𝐺 = 𝑔𝑝𝑢𝐴𝑟𝑟𝑎𝑦 (𝑋 ) where X
is the original array and G is the 𝑔𝑝𝑢𝐴𝑟𝑟𝑎𝑦 object.[18]

3.4 Calculations of Green functions

3.4.1 Implementation

The second part of the code uses the constants that are calculated in the first
part to calculate the Green function and approximate the LDOS (Local Density
Of States). The code uses several functions such as 𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝑏𝑝𝑂𝑃𝑇 , 𝐸𝑚𝑎𝑚𝑖 and
𝐵𝑝𝑟𝑙𝑑𝑜𝑠.

3.4.2 Optimisation

After implementing the code for calculations of greens function and the approx-
imation of the LDOS it was determined to not be significant compared to the
recursion in runtime. This meant that no optimisation for the calculation of
Green’s function was done.
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3.5 Implementation of a new map

A new map for finding the neighbours of an atom was implemented in code.
This was done by going through the starting atom and saving it’s neighbours in
a new cell. In figure 2 this would mean that cell 1 would contain atoms 1, 7617,
8612 and cell 2 would contain atoms 7617, 8612, 7645 and their neighbours.
Cell 3 would contain the next layer of neighbours and so on for all recursions 𝑛
as seen in figure 3. The benefit of using this method would be skipping having
to go through all atoms and using the vector 𝑖𝑧𝑒𝑟𝑜. An analogy to this is that
instead of wandering randomly around in your neighbourhood until you find
your door you would go straight to it using a map.

Figure 3: The new map

4 Results and Discussion

4.1 Preparation

Before the implementation of the intended code was done the same calculations
were performed on the more simpler example Benzene. The Hamiltonian that
was calculated was tridiagonalized and with the following shape and values:

𝐻 =

©«
𝑎

√
2𝑏 0 0√

2𝑏 𝑎 𝑏 0

0 𝑏 𝑎
√
2𝑏

0 0
√
2𝑏 𝑎

ª®®®®¬
=

©«
0 1.4142 0 0

1.4142 0 1 0
0 1 0 1.4242
0 0 1.4142 0

ª®®®¬
This means that the calculated coefficients were 𝑎 = 0 and 𝑏 = 1. From this were
the local density of states for 𝜋 electron of benzene plotted:
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Figure 4: LDOS for Benzene

This was the correct result and the graph shows that there are 4 peaks for
the energy at values -2, -1, 1 and 2 but not at 0.

4.2 Non block recursions

4.2.1 Runtimes

Table 1: Runtimes for different non block recursion codes with 21 recursions
All runs done on a computer with specification as seen in section 8.1

Version time [s]
Ordinary 208.9

With parfor (including pool creation) 134.3
GPU >27000

As seen in table 1 running the code in parallel over the orbitals using 𝑝𝑎𝑟 𝑓 𝑜𝑟

on the CPU makes it run 1.56 times faster, this is since the CPU uses all of its
cores which dramatically lowers the runtime.

The code running on the GPU is much slower than even the unoptimised
code, after 27000 seconds the code was only on recursion 15/21 on orbital 1.
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This is since indexing on a 𝑔𝑝𝑢𝑎𝑟𝑟𝑎𝑦 is really slow and as seen below on lines
4 and 14 in the code the code uses a lot of indexing. These lines are called in
total ≈ 2 · 109 times and in its current state the code can not be rewritten so
that those lines are not using indexing. This is because of the way the mapping
is done which will be shown in section 4.3.

1 if izero(i) ≠ 0
2 for m = 1:n orb
3 for L = 1:n orb
4 dum(L) = dum(L)+H(m,L)*psi(i,m);
5 end
6 end
7 end
8 for j = 2:nr
9 nnmap = nn(i,j);

10 if nnmap > 0
11 if izero(nnmap) > 0
12 for m = 1:9
13 for L = 1:9
14 dum(L) = dum(L)+H((j−1)*9+m,L)*psi(nnmap,m);
15 end
16 end
17 idum(i) = 1;
18 end
19 end
20 end

14



4.2.2 Runtimes depending on recursions

Figure 5: Runtimes for ordinary code and parfor including poolcreation

In figure 5 the benefit of using parallel computing is seen. At very low number
of recursions the normal code is faster due to the time spent creating the pool
used by 𝑝𝑎𝑟 𝑓 𝑜𝑟 . At these low number of recursion a lot of detail is lost as seen
in figure 6 and as such we are mostly interested in recursion 𝑛 ≥ 21 since for
bigger clusters of atoms more recursion are needed to accurately approximate
the LDOS. As the number of recursions grow the runtime for the code using
𝑝𝑎𝑟 𝑓 𝑜𝑟 is growing slower than the code not running in parallel and as such
𝑝𝑎𝑟 𝑓 𝑜𝑟 is better.

4.3 Implementation of a new map

The new map implementation was determined to not be possible. This is due
to the amount of memory required to create the cell array. Since each atom has
up to 18 neighbours the final cell 𝑛 will have around 19𝑛 entries, even with 𝑛 = 5
this cell requires 45680 GB of memory which means this method is not feasible
considering we want to use 𝑛 ≥ 21.
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4.4 LDOS

(a) 11 recursions (b) 21 recursions

(c) 31 recursions (d) 41 recursions

Figure 6: LDOS with different amount of recursions

In figure 6 it can be seen that as the number of recursion steps increases the
resolution of the LDOS gets better. Between figure 6a and figure 6b we see the
two big peaks is more defined and in figure 6c we see even more peaks starting
to form. This higher resolution has a limit because of the size of our cluster.
As the number of recursions increases we eventually cover the whole cluster and
this creates instability in the solution. With a cluster of 16757 atoms this limit
is reached by 41 recursions as seen in figure 6d where the instability is shown
by the spikes in the LDOS.

4.5 Block Recursion

As seen in table 1 the GPU is very slow for the current code and this is because
of the individual indexing. An alternative to this could be using block recursion
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which instead calculates all orbitals in parallel using matrices. The theory for
this method can be found in the appendix. This was not implemented in this
project due to time constraints but since it uses matrix calculations it should
be able to use more of the available bandwidth of the GPU. These matrices
will be the same size as the orbitals so if there is 9 orbitals they will be 9 × 9.
Research has shown that for matrices of this size even a single core CPU beats
a GPU[19] but it could still be worth researching and testing further. This is
since GPUs are in constant improvement and their architecture might become
better at parallelising their workload in order to use more of their bandwidth.

5 Conclusions

5.1 Effective code

Based on the result a conclusion can be made that the code became more effec-
tive after the parallelization with 𝑝𝑎𝑟 𝑓 𝑜𝑟 . This was a successful implementation
and made the code faster which was the intention. The creation of a parpool
takes some time but since the code performed a big number of iterations the
small delay in the start was worth the extra time. 𝑃𝑎𝑟 𝑓 𝑜𝑟 makes it possible for
the program to run several loops in parallel, the amount of cores is the limit,
which reduces the runtime significantly especially with a big number of cores.

Another try to make the code more efficient was done by implementing a
new map. The intention was to make it faster and to have fewer temporary
variables and lesser indexing, but it turned out to be less effective and used far
too much memory to be usable.

5.2 Implementation on GPU

The implementation on GPU in the code without block recursion showed clearly
that it was not effective. 𝐺𝑝𝑢𝐴𝑟𝑟𝑎𝑦 is very efficient on big matrices but for this
code with a big amount of indexing is the GPU version much slower. So it is
not possible to make this non block recursion code more efficient on a GPU.

To fully make use of a GPUs performance, another method such as the block
Lanczos algorithm could perhaps be used. However it is still unclear whether
or not this would be more efficient than using the normal Lanczos method on a
CPU. There was not time enough to test this, however it would be interesting
to know in order to make the calculations as effective as possible.
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7 Populärvetenskaplig sammanfattning

Magnetism har använts av människan sedan urminnes tider och fortsätter än
idag vara relevant, utan magnetismen skulle inte v̊art samhälle se ut som det
gör idag. För att fortsätta utveckla nya samt förbättra nuvarande teknologier
behöver materials egenskaper s̊asom magnetism först̊as. Detta görs genom att
analysera atomerna i material, atomer i alla material är placerade i mönster och
kommer alltid att p̊averka varandra i n̊agon utsräckning.

I metaller bildar atomerna ett kristallikt mönster där varje atoms grannar
kommer ha n̊agon form av inverkan p̊a denna. Baserat p̊a hur dessa atomer
influerar de atomer nära dem kan Schrödingers ekvation lösas. Eftersom det
finns väldigt m̊anga atomer s̊a kommer beräkningarna för att f̊a fram detta att
bli väldigt krävande, därför används datorer för att göra detta. Den metod
som används är rekursiv, vilket innebär att metoden löser ett problem med en
lösning som är beroende av lösningar av mindre delar av problemet. Målet med
detta projekt var att skriva en programmeringskod p̊a datorn som löser detta
och därefter hitta sätt att effektivisera den koden för att göra den snabbare.

De största effektiviseringsförsök som gjordes var att parallellisera koden,
allts̊a s̊a att flera delar kan köra samtidigt, samt att anpassa det p̊a ett sätt
som g̊ar att köras p̊a en GPU vilket är en grafisk processor som klarar av att
göra m̊anga saker samtidigt. Slutsatsen som kunde dras var att koden var
mycket snabbare när processerna kördes parallellt vilket d̊a innebar att flera
saker gjordes samtidigt istället för efter varandra. Försöket att implementera
kod som kördes p̊a en GPU var inte lika framg̊angsrikt och gjorde istället koden
l̊angsammare.
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8 Appendix

8.1 Computer specifications

Processor Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz 2.81 GHz

GPU NVIDIA GeForce GTX 1060 6GB

Driver version 512.15

Installed RAM 8,00 GB

RAM speed 2666 MHz

Edition Windows 10 Home

Version 21H2

MATLAB version R2021b

8.2 Block recursion method

Instead of calculating each orbital by itself, all can be calculated at the same time
using the block Lanczos algorithm.[20] Instead of using the numbers 𝛼𝑛 and 𝛽𝑛,
𝐴
𝑛
and 𝐵

𝑛
are used, which are matrices 𝑀 ×𝑀 in size, where 𝑀 is the number of

valence orbitals of the starting site. The vectors |𝑈𝑛) = ( |𝐿𝑛1⟩ , |𝐿𝑛2⟩ , . . . , |𝐿𝑛𝑀 ⟩)
constitute the Lanczos basis states which are orthonormal and represent the
arrangement of neighbouring atoms to the starting site. To find the 𝐴

𝑛
, 𝐵

𝑛
and

𝑈𝑛 the following calculations are made:

|𝑈0) = ( |𝑖1⟩ , |𝑖2⟩ , . . . , |𝑖𝑀𝑖⟩) (18)

𝐴
𝑛
= (𝑈𝑛

��𝐻 ��𝑈𝑛) (19)

|𝑟𝑛) = 𝐻 |𝑈𝑛) − |𝑈𝑛−1)𝑡𝐵𝑛 − |𝑈𝑛)𝐴𝑛
(20)

(𝐵
𝑛+1)

2 = (𝑟𝑛 |𝑟𝑛) (21)

(_
𝑛
)2 = 𝑡𝑉

𝑛
(𝐵

𝑛+1)
2𝑉

𝑛
(22)

𝐵
𝑛+1 = _

𝑛
𝑡𝑉

𝑛
(23)

(𝐵
𝑛+1)

−1 = 𝑉
𝑛
_−1
𝑛

(24)

|𝑈𝑛+1) = |𝑟𝑛) (𝐵𝑛+1)
−1 (25)

This is a modified version of the Lanczos block algorithm to prevent numerical
instability. The conventional method for calculating 𝐵

𝑛+1 would be as follows:

𝐵
𝑛+1 = 𝑉

𝑛
_
𝑛
𝑡𝑉

𝑛
(26)

(𝐵
𝑛+1)

−1 = 𝑉
𝑛
_−1
𝑛

𝑡𝑉
𝑛

(27)
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From the values calculated above, the Green’s function can be calculated. This
is done similar to the non-block method:

𝐺𝐿
00(𝑍 ) =

1

𝑍𝐼 −𝐴0 −
𝑡𝐵1𝐵1

𝑍𝐼 −𝐴1 −
𝑡𝐵2𝐵2

𝑍𝐼 −𝐴2 −
𝑡𝐵3𝐵3

. . .

(28)

To terminate this continuous fraction the following terminator is used:

𝑡 (𝑍 ) = [𝑍 − 𝑎 − 𝑏2𝑡 (𝑍 )]−1 =
1

𝑏


𝑍 − 𝑎

2𝑏
− 𝑖

√︄
1 −

(
𝑍 − 𝑎

2𝑏

)2 (29)

In the above terminator, it is assumed that the diagonal elements of 𝐴∞ and 𝐵∞
each are the same and are called 𝑎 and 𝑏 respectively.

8.3 Matlab code

8.3.1 Main code

1 %Solves and approximaties LDOS
2

3 %% Solves for a and b
4 fclose('all'); %close all files
5

6 %reading of files
7 files = untar('recurbundle.tar');
8 data real = readmatrix(files{1},'CommentStyle','nn');
9 data im = readmatrix(files{2},'CommentStyle','nn');

10 nn = readmatrix(files{3});
11 nn = nn(1:16757,:); %Remove the extra lines
12

13 H = data real + data im*1i; %Hamiltionian
14

15 kk = length(nn); %Total number of atoms
16 LLmax = 21; %Number of iterations
17 n orb = 9; %Number of orbitals
18

19 a = zeros(n orb,LLmax); %Saving vector
20 b2 = zeros(n orb,LLmax); %Saving vector
21

22 j = nn(1,1); %Takes the atom we calculate from
23 parfor L = 1:n orb %number of orbitals
24

25 %error search
26 % disp(['Orbital number ' num2str(L)])
27

28 izero = zeros(kk,1); %Vector for mapping
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29 izero(j) = 1;
30

31 psi = zeros(kk,n orb); %eigenvector
32 psi(j,L) = 1;
33

34 pmn = zeros(kk,n orb); %eigenvector
35

36 a temp = zeros(LLmax,1); %temp for a
37 a temp(end) = 0;
38

39 b2 temp = zeros(LLmax,1); %temp for b
40 b2 temp(1) = 1;
41 [a temp, b2 temp,izero] = ...

crecal(a temp,b2 temp,kk,n orb,LLmax,H,psi,nn,pmn,izero);
42 for LL = 1:LLmax
43 a(L,LL) = a temp(LL);
44 b2(L,LL) = b2 temp(LL);
45 end
46 end
47

48 %% Calculates density of states
49 [E,DENS] = density(a,b2,n orb,LLmax); %calculates density
50

51 %Plotting of LDOS
52 plot(E,sum(DENS,2))
53 title('LDOS')
54

55 %time 188 s for booting and doing program

8.3.2 Crecal

1 function [a temp, b2 temp,izero] = ...
crecal(a temp,b2 temp,kk,n orb,LLmax,H,psi,nn,pmn,izero)

2 %Calculates b2
3 summ = b2 temp(1);
4

5 nm1 = LLmax−1;
6 for LL = 1:nm1
7

8 %error search
9 % disp(['loop number ' num2str(LL)])

10

11 [a temp(LL),pmn,izero] = hop(kk,izero,n orb,H,psi,nn,pmn);
12 b2 temp(LL) = summ;
13 pmn = pmn−a temp(LL)*psi;
14

15 summ = 0;
16 for col = 1:9
17 summ = real(summ+pmn(:,col)'*pmn(:,col));
18 end
19 s = 1/sqrt(summ);
20

21 psi temp = pmn*s;
22 pmn = psi;
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23 psi = psi temp;
24

25 s = sqrt(summ);
26 pmn = −pmn*s;
27 end
28 b2 temp(LLmax) = summ;
29 end

8.3.3 Hop

1 function [a temp temp,pmn,izero] = hop(kk,izero,n orb,H,psi,nn,pmn)
2 %Calculates a
3 idum = zeros(kk,1);
4 v = zeros(kk,n orb);
5 for i = 1:kk
6 idum(i) = izero(i);
7 dum = zeros(9,1);
8 nr = 19;
9 if izero(i) ≠ 0

10 for m = 1:n orb
11 for L = 1:n orb
12 dum(L) = dum(L)+H(m,L)*psi(i,m);
13 end
14 end
15 end
16 for j = 2:nr
17 nnmap = nn(i,j);
18 if nnmap > 0
19 if izero(nnmap) > 0
20 for m = 1:9
21 for L = 1:9
22 dum(L) = dum(L)+H((j−1)*9+m,L)*psi(nnmap,m);
23 end
24 end
25 idum(i) = 1;
26 end
27 end
28 end
29 for L = 1:n orb
30 v(i,L) = dum(L);
31 end
32 end
33 summ = 0;
34 for i = 1:kk
35 izero(i) = idum(i);
36 for L = 1:n orb
37 dum(L) = v(i,L);
38 summ = summ+real(dum(L)*conj(psi(i,L)));
39 pmn(i,L) = dum(L)+pmn(i,L);
40 end
41 end
42 a temp temp = summ;
43 end
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8.3.4 Density

1 function [ene,dens] = density(a,b2,n orb,LLmax)
2 %Calculates the density of states
3

4 %Constants
5 npts = 10000;
6

7 %Vectors
8 alpha inf = zeros(n orb);
9 beta inf = zeros(n orb);

10 edge2 = zeros(n orb,10);
11 width2 = zeros(n orb,10);
12 weight2 = zeros(n orb,10);
13 am2 = zeros(n orb,LLmax);
14 bm2 = zeros(n orb,LLmax);
15 nb2 = zeros(n orb);
16

17 for orb = 1:n orb
18 aa = a(orb,:);
19 bb = b2(orb,:);
20 sqbb = sqrt(b2(orb,:));
21

22 if or(orb==1,orb==10) %widens the b state for other orbitals
23 b2 = 1.025*b2;
24 end
25

26 %Temp vectors
27 am = zeros(LLmax,1);
28 bm = zeros(LLmax,1);
29 edge = zeros(10,1);
30 width = zeros(10,1);
31 weight = zeros(10,1);
32

33 [am(1),bm(1)] = bpOPT(LLmax,aa,sqbb,LLmax−1);
34

35 if or(orb==1,orb==10) %Widens bm for other states
36 bm = 1.01*bm;
37 end
38

39 %temp constants
40 alpha inf(orb) = am(1);
41 beta inf(orb) = bm(1);
42 nb = 1;
43 edge(1) = am(1)−2*bm(1);
44 width(1) = 4*bm(1);
45 weight(1) = 1;
46 nb2(orb) = nb;
47 am = aa;
48 bm = bb;
49

50 for k = 1:nb %nb = 1 in this case
51 a1 = edge(k);
52 a2 = edge(k)+width(k);
53 edge2(orb,k) = edge(k);
54 width2(orb,k) = width(k);
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55 weight2(orb,k) = weight(k);
56 end
57

58 if orb == 1 %Orb=1 means starting guess for high/low eigenvalue
59 emin = a1;
60 emax = a2;
61 else
62 emin = min([emin,a1]);
63 emax = max([emax,a2]);
64 end
65

66 if nb > 0 %nb = 1 in this case
67 for l = 1:LLmax
68 am2(orb,l) = am(l);
69 bm2(orb,l) = bm(l);
70 end
71 else
72 for l = 1:LLmax
73 am2(orb,l) = 0;
74 bm2(orb,l) = 0;
75 end
76 end
77 end
78

79 dens = zeros(npts,n orb); %density vector
80 ene = linspace(emin,emax,npts); %vector for eigenvalues
81 for eidx = 1:npts
82 for orb = 1:n orb
83 nb = nb2(orb);
84 if nb > 0
85 for l = 1:LLmax
86 aa(l) = a(orb,l);
87 bb(l) = b2(orb,l);
88 am(l) = am2(orb,l);
89 bm(l) = bm2(orb,l);
90 end
91 edge = zeros(nb,1);
92 width = zeros(nb,1);
93 weight = zeros(nb,1);
94 for k = 1:nb
95 edge(k) = edge2(orb,k);
96 width(k) = width2(orb,k);
97 weight(k) = weight2(orb,k);
98 end
99 dens(eidx,orb) = bprldos(ene(eidx),aa,bb,LLmax,...

100 edge(1),edge(1)+width(1));
101 else
102 dens(eidx,orb) = 0;
103 end
104 end
105 end
106 end

8.3.5 bpOPT
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1 function [ainf,binf] = bpOPT(ll,a,b,n)
2 %Calculates optimal values for terminators using Pettifor's ...

termination
3 ndime=ll; %Size of H TRI
4 ifail = 0;
5 eps = 1e−5;
6 jiter = 0; %iteration counter
7 bmax = max(b);
8 bmin = min(b);
9 ainf = a(n);

10

11 %saving vectors
12 az = zeros(ll,1);
13 bz = zeros(ll,1);
14

15 bm = eps+1; %temp value
16

17 while bm > eps
18 jiter = jiter+1;
19 az(1) = 0.5*(a(1)−ainf);
20 for i = 2:n−1
21 az(i) = 0.5*(a(i)−ainf);
22 bz(i) = 0.5*b(i);
23 end
24 az(n) = a(n)−ainf;
25 bz(n) = 1/sqrt(2)*b(n);
26 [bmax,bmin,emamifail] = emami(ndime,az,bz,n);
27 bm = bmax+bmin;
28 bm = abs(bm);
29 ainf = ainf+bmax+bmin;
30 if jiter > 300
31 ifail = 1;
32 disp('bpOPT has failed')
33 break
34 end
35 end
36 binf = (bmax−bmin)/2;
37 if emamifail == 1
38 disp('Emami has failed')
39 end
40 if ifail == 1
41 disp('bpOPT has failed')
42 end
43 end

8.3.6 Emami

1 function [emax,emin,ifail] = emami(ndime,az,bz,n)
2 %Obtains the maximum and minimum eigenvalues of H TRI
3 %Initial guesses
4 emax0 = −1e6;
5 emin0 = 1e6;
6
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7 %saving vectors
8 a = zeros(ndime,1);
9 b = zeros(ndime,1);

10 for i = 1:n
11 a(i) = az(i);
12 b(i) = bz(i);
13 end
14 b(1) = 0;
15 b(n+1) = 0;
16 for i = 1:n
17 x1 = a(i)+abs(b(i))+abs(b(i+1));
18 x2 = a(i)−abs(b(i))−abs(b(i+1));
19 if emax0 ≤ x1
20 emax0 = x1;
21 end
22 if emin0 > x2
23 emin0 = x2;
24 end
25 end
26

27 ifail = 0;
28 relfeh = 2ˆ(−39); %incase p = 0
29

30 eps = 1e−6;
31 istop = 0; %iteration counter
32

33 emax = emax0; %starting guess
34 emin = emin0; %starting guess
35

36 %Calculation of emax
37

38 dele = eps+1; %temp value
39 while dele > eps
40 E = (emax+emin)/2;
41 istop = istop+1;
42 if istop > 50
43 ifail = 1;
44 disp('emax has failed')
45 break
46 end
47 num = 0;
48 p = a(1)−E;
49 if p < 0
50 num = num+1;
51 end
52 for i = 2:n
53 if p == 0
54 p = a(i)−E−abs(b(i))/relfeh;
55 if p < 0
56 num = num+1;
57 end
58 else
59 p = a(i)−E−b(i)ˆ2/p;
60 if p < 0
61 num = num+1;
62 end
63 end

27



64 end
65 if num == n
66 emax = E;
67 end
68 if num < n
69 emin = E;
70 end
71 dele = (emax−emin)/((emax+emin)/2);
72 dele = abs(dele);
73 end
74 E1 = E;
75

76 %Calculation on emin
77 istop = 0;
78 emax = E1; %initial guess
79 emin = emin0; %initial guess
80

81 dele = eps+1; %temp value
82

83 while dele > eps
84 E = (emax+emin)/2;
85 istop = istop+1;
86 if istop > 50
87 ifail = 1;
88 disp('emin has failed')
89 break
90 end
91 num = 0;
92 p = a(1)−E;
93 if p < 0
94 num = num+1;
95 end
96 for i = 2:n
97 if p == 0
98 p = a(i)−E−abs(b(i))/relfeh;
99 if p < 0

100 num = num+1;
101 end
102 else
103 p = a(i)−E−b(i)ˆ2/p;
104 if p < 0
105 num = num+1;
106 end
107 end
108 end
109 if num == 0
110 emin = E;
111 end
112 if num > 0
113 emax = E;
114 end
115 dele = (emax−emin)/((emax+emin)/2);
116 dele = abs(dele);
117 end
118 E2 = E;
119

120 %assign emax and emin
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121 emax = E1;
122 emin = E2;
123 end

8.3.7 Bprldos

1 function out = bprldos(e,a,b2,LL,ebot,etop)
2 %Approximation of greens function for LDOS
3 ea = e−etop;
4 eb = e−ebot;
5 emid = 0.5*(etop+ebot);
6 det = ea*eb;
7 zoff = sqrt(det);
8 Qt = (e−emid−zoff)*0.5; %terminator 5
9

10 for L = LL−1:−1:1
11 Qt = b2(L)/(e−a(L)−Qt);
12 end
13 out = −imag(Qt)/pi;
14 end

8.3.8 GPU code

1 fclose('all');
2 files = untar('recurbundle.tar','Stage 1');
3 data real = readmatrix(files{1},'CommentStyle','nn');
4 data im = readmatrix(files{2},'CommentStyle','nn');
5 nn = readmatrix(files{3});
6 nn = nn(1:16757,:);
7

8 H = data real + data im*1i;
9

10 kk = length(nn);
11 LLmax = 21;
12 n orb = 9;
13

14 a = zeros(n orb,LLmax,"gpuArray");
15 b2 = zeros(n orb,LLmax,"gpuArray");
16

17 j = nn(1,1);
18 for L = 1:1 %number of orbitals
19 izero = zeros(kk,1,"gpuArray");
20 izero(j) = 1;
21

22 psi = zeros(kk,n orb,"gpuArray");
23 psi(j,L) = 1;
24

25 pmn = zeros(kk,n orb,"gpuArray");
26

27 a temp = zeros(LLmax,1,"gpuArray");
28 a temp(end) = 0;
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29

30 b2 temp = zeros(LLmax,1,"gpuArray");
31 b2 temp(1) = 1;
32 disp(['orbital number ' num2str(L)])
33 [a temp, b2 temp,izero] = crecal(a temp,b2 temp,kk,n orb,...
34 LLmax,H,psi,nn,pmn,izero);
35 for LL = 1:LLmax
36 a(L,LL) = a temp(LL);
37 b2(L,LL) = b2 temp(LL);
38 end
39 end
40

41 function [a temp, b2 temp,izero] = ...
crecal(a temp,b2 temp,kk,n orb,...

42 LLmax,H,psi,nn,pmn,izero)
43

44 summ = b2 temp(1);
45

46 nm1 = LLmax−1;
47 for LL = 1:nm1
48 disp(['loop number ' num2str(LL)])
49 [a temp(LL),pmn,izero] = hop(kk,izero,n orb,H,psi,nn,pmn);
50 b2 temp(LL) = summ;
51 pmn = pmn−a temp(LL)*psi;
52

53 summ = 0;
54 for col = 1:n orb
55 summ = real(summ+pmn(:,col)'*pmn(:,col));
56 end
57 s = 1/sqrt(summ);
58

59 psi temp = pmn*s;
60 pmn = psi;
61 psi = psi temp;
62

63 s = sqrt(summ);
64 pmn = −pmn*s;
65 end
66 b2 temp(LLmax) = summ;
67 end
68

69 function [a temp temp,pmn,izero] = hop(kk,izero,n orb,H,psi,nn,pmn)
70 idum = zeros(kk,1,"gpuArray");
71 v = zeros(kk,n orb,"gpuArray");
72 for i = 1:kk
73 idum(i) = izero(i);
74 dum = zeros(n orb,1,"gpuArray");
75 nr = 19;
76 if izero(i) ≠ 0
77 for m = 1:n orb
78 for L = 1:n orb
79 dum(L) = dum(L)+H(m,L)*psi(i,m);
80 end
81 end
82 end
83 for j = 2:nr
84 nnmap = nn(i,j);
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85 if nnmap > 0
86 if izero(nnmap) > 0
87 for m = 1:9
88 for L = 1:9
89 dum(L) = dum(L)+H((j−1)*9+m,L)*psi(nnmap,m);
90 end
91 end
92 idum(i) = 1;
93 end
94 end
95 end
96 for L = 1:n orb
97 v(i,L) = dum(L);
98 end
99 end

100 summ = 0;
101 for i = 1:kk
102 izero(i) = idum(i);
103 for L = 1:n orb
104 dum(L) = v(i,L);
105 summ = summ+real(dum(L)*conj(psi(i,L)));
106 pmn(i,L) = dum(L)+pmn(i,L);
107 end
108 end
109 a temp temp = summ;
110 end
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