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The small hive beetle (SHB), a social parasite of beehives, is native to sub-Saharan Africa
and has spread to America, Europe, and Australia. Recently, these beetles invaded China,
causing widespread colony collapses in the honeybee, Apis cerana. In this study, single
nucleotide polymorphisms (SNPs) were identified in the beetle genome from its native
range (Africa), a region that was invaded by SHBs nearly 30 years ago (America), and more
recent invasions (Asia). The beetles in the United States formed the earliest branch and
show signs of two decades of gene flow and local adaptation to differentiate this
population from the native ones. The beetles in China were deep branched and
showed the highest fixation index when compared to the US populations. The number
of SNPs in overexpressed genes was significantly higher than the transcriptome. Gene-
expression profiles presented here distinguish the characters between adult and
larvae SHBs.
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INTRODUCTION

The small hive beetle (Aethina tumida Murray, hereafter SHB) is a parasite of bee colonies.
This beetle belongs to the family Nitidulidae; members of this family mainly feed on decaying
vegetables, ripened fruit, and sap (Mckenna et al., 2015; Neumann et al., 2016). SHBs can
survive on a wide range of food but thrive in the beehive that provides shelter and protein-rich
food (Cuthbertson et al., 2013; Neumann et al., 2016). The adult beetles are attracted by
beehive volatiles and invade the hive around dusk (Torto et al., 2005; Torto et al., 2007;
Graham et al., 2011). Once inside the beehive, adult beetles employ a “sit and wait” strategy
until an opportunity for reproduction arises (Neumann et al., 2015). The adult beetles lay eggs
in cracks, which hatch in approximately 72 h (Neumann et al., 2016). Larvae are the most
damaging stage for the beehive as they tunnel through the combs and ferment the honey, which
attracts other SHBs (Benda et al., 2008). The larvae can feed on pollen, honey, and bee brood,
which is also a vector of bee viruses (Eyer et al., 2009; Huang et al., 2019; Huwiler et al., 2020).
At the later stage, the larvae crawl out of the beehive and pupate in soil, which may take up to
months depending on the temperature and humidity (Neumann et al., 2016; Cornelissen et al.,
2020). Once adult SHBs emerge from the soil, they search for and fly to beehives individually or
in swarms (Neumann and Elzen, 2004).
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The SHB is endemic in sub-Saharan Africa, and the damage to
local honeybees is minor, as the native bees can better guard the
entrance and the comb (Neumann et al., 2016). Outside the native
range, SHBs were first reported in the United States in 1996 and
caused considerable damage to apiculture (Hood, 2000; van
Engelsdorp et al., 2007). SHBs were then reported in Canada
and Australia in 2002 (Gillespie et al., 2003; Clay, 2006), Mexico
in 2007 (Del Valle Molina, 2007), Italy and the Philippines in

2014 (Palmeri et al., 2014; Cervancia et al., 2016), and South
Korea in 2019 (Mohamadzade Namin et al., 2019). In China,
SHBs were first found to infest Eastern honeybee colonies in 2017
(Zhao et al., 2020). Using a fragment of mitochondrial DNA, the
SHBs in China and the Philippines formed a cluster that was
distant from beetles collected in other areas, leaving an
unresolved invasion source (Liu et al., 2021a). In this study,
we used single nucleotide polymorphisms (SNPs) at the genome

FIGURE 1 | Phylogenetic tree of 56 small hive beetles crossing native and novel regions. The tree was built on 4,541,776 SNPs along the genome. The beetles
collected from the same region are highlighted with color. The beetles in the United States were clustered into two clusters. The beetles collected in China formed the
deepest branch, which was closely related to those in Burkina Faso. The value on the branch indicates the bootstrap confidence. Honeybee was used as an outgroup to
root the tree. The scale bar for branch length is shown at the bottom.
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level to reconstruct the invasion routes of SHBs in China based on
a phylogenetic analysis. In addition, the characteristically
expressed genes were distinguished between larvae and adults.
The number of SNPs in the highly expressed genes was further
quantified and compared with the number of SNPs in the
remaining genes to infer gene selection.

MATERIALS AND METHODS

Sample Collection
The small hive beetle was first observed to parasitize honeybee
colonies in south China in 2017. In July 2019, 23 SHBs, including
8 larvae and 15 adults, were randomly collected from five
collapsed honeybee (Apis cerana) colonies in the coastal city
of Haikou. The SHBs were stored in a −80°C freezer.

RNA Extraction and Gene Expression
Analysis
Out of 23 SHBs, 15 beetles were used for RNA extraction,
including 8 larvae and 7 adults. Total RNA was extracted
from individual beetle using TRIzol. The RNAseq libraries
were prepared for each beetle individually and sequenced on
Illumina HiSeq 2000. In total, 15 libraries were sequenced. The
quality of RNA-seq reads was controlled using Fastp with default
parameters (Chen et al., 2018). The reads were aligned to the SBH
genome (GCA_001937115.1) using Hisat2 with default
parameters (Kim et al., 2015; Evans et al., 2018). The output

files were compressed, sorted, and indexed using Samtools (Li
et al., 2009). The variance of replicates was used to calculate
significantly regulated genes with the edgeR package and adjusted
for multiple comparisons with FDR (Robinson et al., 2010; R Core
Team, 2013). The protein sequences of significantly regulated
genes were used to query KEGG databases to retrieve the putative
functions and involved pathways (Kanehisa and Goto, 2000).

DNA Extraction, Variant Calling, and
Phylogenetic Analysis
DNA was extracted from 8 adult beetles using DNAzol
individually. DNA sequencing libraries were prepared for each
beetle and sequenced on Illumina HiSeq 2000. In total, 8 libraries
were sequenced. In addition, DNA sequencing reads of 48 SHBs
were obtained from NCBI for phylogenetic analysis, including
samples from South Africa (N = 12), United States (N = 9),
Tanzania (N = 6), Burkina Faso (N = 12), and Liberia (N = 9).
Low-quality reads were filtered using Fastp with default
parameters (Chen et al., 2018). DNA reads were then mapped
to the SBH genome (GCA_001937115.1) using BWAwith default
parameters (Li and Durbin, 2009). The variants were called using
the Picard-GATK-SNPEFF pipeline (Van der Auwera et al.,
2013). Then the SNPs of 57 samples were integrated to
generate a single gVCF file by CombineGVCFs. The high-
quality variants were extracted using GenotypeGVCF and
SelectVariants functions in GATK (McKenna et al., 2010;
Christmas et al., 2021). The output VCF files were converted
to PHYLIP files for genetic phylogenetic analysis using
VCF2PHYLIP (Ortiz, 2019). A maximum-likelihood tree was
constructed using IQTree with 1000 bootstrap replicates (Nguyen
et al., 2015). As the host, the honeybee (Apis mellifera) was used as
an outgroup to root the tree. The fixation index FST was pairwise
calculated among the beetles collected in Africa, the
United States, and China using PoPoolation2 (Kofler et al.,
2011). The distribution of significantly regulated genes in
adults and larvae was compared using Pearson’s Chi-squared
test, R (R Core Team, 2013). The number of SNPs per gene was

TABLE 1 | Pairwise fixation index FST of the three beetle sources along the
genome (mean ± SE). The beetles collected from China and the United States
showed the highest divergence.

Beetle Source China United States

Africa 0.1432 ± 0.0141 0.062 ± 0.0078
United States 0.2308 ± 0.0225 —

FIGURE 2 | Structure analysis of the beetles. (A) PCA plot of the studied beetles. The beetles in China were distant from the ones in native and established regions.
(B) Ancestral population inference of the studied beetles. The beetles in China may share an ancestor with the ones in Burkina Faso.
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compared using a T-test, R. To infer the population structure of
the studied beetles, principal component analysis (PCA) was
performed using Plink, and the ancestry was estimated using
Admixture (Purcell et al., 2007; Zhou et al., 2011).

RESULTS AND DISCUSSION

Phylogenetic Analysis Suggests Burkina
Faso as the Original Source
On average, 54,358,906 paired reads (151 bp per read) were
aligned to the SHB genome, and 5,400,117 SNPs were called
in an individual beetle collected in China. After normalizing
SHBs collected from Africa and America, 4,541,776 SNPs were
identified in all samples, which were used for the phylogenetic
analysis. The beetles collected from the United States were

clustered into two groups, which formed the earliest branch of
studied beetles (Figure 1). The results supported the previous
studies that two haplotypes were formed due to multiple
intrusions in the United States (Evans et al., 2003; Lounsberry
et al., 2010). In addition, the early branch also indicates that the
multiple intrusion routes and transporting pollination activities
facilitated novel genotypes in the United States, leading to
differentiated haplotypes. Indeed, we found that the beetles in
the United States showed the highest fixation index with the ones
in China compared with those in Africa (Table 1). In our study,
the beetles were primarily clustered per country, which reflects
that geographic proximity and substantial dispersal of beetles
were not detected within their native region. However, occasional
intrusions from Burkina Faso to the neighboring countries were
indicated, whichmight be due to human-mediated transportation
(Idrissou et al., 2019; Liu et al., 2021b). The PCA recapitulated the

FIGURE 3 | Gene expression of small hive beetles. (A) Venn diagram of expressed genes in SHB adults and larvae. In the beetle genome, 13,656 protein-coding
genes were annotated. Overall, 78% genes were expressed in both adults and larvae. (B) Significantly upregulated genes in adults. In total, 460 genes were significantly
upregulated in adults compared with larvae SHBs, and the genes were enriched in environmental information processing. (C) Significantly upregulated genes in larvae.
Overall, 203 genes were significantly upregulated in larvae compared with adults and the genes associated with translation, replication, and repair showed a high
relative abundance compared with adults.
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occasional dispersal of beetles from Burkina Faso to other regions
(Figure 2). In our previous study, the SHBs in China were closely
related to the ones in the Philippines based on a fragment of
mitochondrial DNA, suggesting that the beetles that invaded the
two countries were from the same source (Liu et al., 2021a).
However, those beetles cannot be clustered with the ones in their
native region. In the PCA plot, the beetles in China were distant
from those of other regions. In the phylogenetic tree, the beetles in
China and the ones in Burkina Faso formed a cluster, suggesting
that the SHBs that invaded China shared a common ancestor with
those in Burkina Faso. However, it does not necessarily indicate
that SHBs in China were directly imported from Burkina Faso.
The ancestry inference analysis also supported the close
relationship between the beetles in China and those in
Burkina Faso (Figure 2). In Asia, the beetles were also
reported to invade South Korea. Using mitochondrial DNA, it
was found that the beetles in Korea likely originated from the
United States (Mohamadzade Namin et al., 2019). It seems clear
that SHBs invaded Asia through multiple invasion paths.

Gene Expression of Larvae and Adults
On average, 29,249,729 paired reads (151 bp per read) were aligned
to SHBs. Out of 13,656 annotated protein-coding genes, 12,068
genes were detected in adults, and 11,042 genes were detected in
larvae (Figure 3). Among the expressed genes, 203 genes were
significantly upregulated in larvae, and 460 genes were significantly
upregulated in adults, which significantly deviated from random
(Pearson’s Chi-squared test, df = 1, p < 0.001). By quantifying the
number of SNPs in each gene, we found that the 663 overexpressed
genes in adults and larvae showed a significantly higher number of
SNPs than the remaining genes (t-test, p < 0.05). Using the Kyoto
Encyclopedia of Genes analysis, the distribution of genes in six
main pathways was significantly different between adults and
larvae (Pearson’s Chi-squared test, df = 5, p < 0.001). Among
the six main pathways, metabolism was associated with the highest
number of genes in both adults (31.0%) and larvae (40.1%). The
larvae showed a higher number of upregulated genes associated
with translation, replication, and repair than the adults. In the
white-striped longhorn beetle, more genes were upregulated in
adults than in larvae, and the antennae showed tissue-specific
expressed olfactory genes (Yang et al., 2018). Similarly, in the coffee

berry borer beetle, more genes were significantly upregulated in
adults than in larvae. As expected, higher expression levels of
larval-specific cuticle-binding proteins and chitinases were found
in larvae (Noriega et al., 2019). In another pest beetle, Tribolium
castaneum, a higher number of upregulated genes were found in
larvae than in adults. Large numbers of ribosomal proteins were
included, indicative of protein production variation between the
life stages (Perkin and Oppert, 2019). In our data, the relative
abundance of genes involved in genetic information processing was
two-fold higher in larvae than in adults, which indicates the fast
growth at this stage as supported by highly expressed
metabolic genes.
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