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A B S T R A C T   

The Host-microbiome interactions that exist inside the gut microbiota operate in a synergistic and abnormal 
manner. Additionally, the normal homeostasis and functioning of gut microbiota are frequently disrupted by the 
intervention of Multi-Drug Resistant (MDR) pathogens. CRISPR-Cas (CRISPR-associated protein with clustered 
regularly interspersed short palindromic repeats) recognized as a prokaryotic immune system has emerged as an 
effective genome-editing tool to edit and delete specific microbial genes for the expulsion of bacteria through 
bactericidal action. In this review, we demonstrate many functioning CRISPR-Cas systems against the anti- 
microbial resistance of multiple pathogens, which infiltrate the gastrointestinal tract. Moreover, we discuss 
the advancement in the development of a phage-delivered CRISPR-Cas system for killing a gut MDR pathogen. 
We also discuss a combinatorial approach to use bacteriophage as a delivery system for the CRISPR-Cas gene for 
targeting a pathogenic community in the gut microbiome to resensitize the drug sensitivity. Finally, we discuss 
engineered phage as a plausible potential option for the CRISPR-Cas system for pathogenic killing and 
improvement of the efficacy of the system.   

1. Introduction 

The gut microbiome can be referred to as the consortium of diverse 
bacterial colonies found in the gastrointestinal tract (GIT) which plays a 
synergistic role in host homeostasis, nourishment, and metabolism 
balance along with up-regulation of intestinal development, regenera
tion, and immune responses[1–3]. The microbial colonies residing in the 
gut can be classified into autochthonous and allochthonous bacteria. 

Autochthonous bacteria are generally native to the gut and provide 
immune-physiological functions along with pathogenic defense. 
Whereas allochthonous bacteria are out-sourced and express incidental 
pathogenicity while generating immune responses [4–6]. 

Despite the pathogenic defenses provided by autochthonous bacte
ria, certain external bacterial species (mainly allochthonous bacteria) 
manage to infiltrate the gut microbiome causing severe infections [7]. 
The gradual increase in the pathogens population disrupts the intricate 
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balance and homeostasis of the gut. This leads to dysbiosis altering 
reactive oxygen species (ROS) levels, bringing irregularities in the in
testinal stem cell cycle, and mediates apoptosis. Thereby affecting the 
intestinal homeostasis and regeneration [8]. The factors leading to 
dysbiosis which induce resistance in these pathogens primarily remain 
incomprehensible. The factors like the prolonged and inappropriate use 
of similar sets of antibiotics, lifestyle, demography, and host biological 
processes (metabolism, immunity, ISC regeneration, and drug absorp
tion) play an important role in their acutance of resistance leading to 
high antimicrobial resistance (AMR) [8,9]. Consequently, pathogenic 
AMR can reduce the therapeutic efficacy (sole application of antibiotics 
and antibiotics in combination) of conventional therapies, leading to the 
evolution of multi-drug resistant (MDR) pathogens [10]. Recent reports 
suggest that phage and additionally modified phage have failed to 
reciprocate against the MDR pathogens when applied in single doses 
[11]. Therefore, it becomes instrumental to devise novel combinational 
therapies for combating such MDR pathogens. 

To overcome the limitation of current medicines, research has been 
conducted in the CRISPR-Cas (Clustered regularly interspersed short 
palindromic repeats - CRISPR-associated protein) system for gene- 
specific pathogen abrogation has been conducted [12,13]. Addition
ally, the CRISPR-Cas system poses an advantage over other available 
approaches because of the high specificity and possibilities of 
target-specific gene deletions [14]. The bacterial CRISPR-Cas system 
constitutes the prokaryotic adaptive immune system and is highly 
diversified (two classes, 6 types, and 33 subtypes) [15,16]. Even with 
such a high diversification, the basic function for all the CRISPR-Cas 
systems remains the same. Which includes three main steps: (a) Firstly 
the exogenous DNA fragments are subsumed into the CRISPR array 
(termed as adaptation) followed by (b) expression and maturation of the 
adapted CRISPR-RNA (crRNA) from the acquired spacers [15,17] and 
lastly, (c) the produced crRNA induces interference, where it recognizes 
and attaches to a complementary nucleotide sequence leading to 
cleavage of DNA/RNA by the Cas nuclease [16,18]. However, the 
complementary nucleotide sequence is flanked by a proto-spacer adja
cent motif (PAM), which aids in the crRNA interference [17]. Such 

systems can be used to target the same bacterial genome. Previous re
ports suggest that the presence of self-targeting spacers of the 
CRISPR-Cas system aids in bacterial apoptosis when the cleaved DNA is 
not repaired immediately [19]. Therefore, it can be outlined that 
reprogramming Cas nuclease activity may assist in targeting specific 
bacterial populations thereby re-sensitizing or killing them, that exhibits 
the effective repurposing of the CRISPR-Cas system [16]. 

The immediate concern that arises in this context is the method of 
CRISPR-Cas system delivery into a targeted pathogen for elimination. 
Previously, several engineered vectors have been used for exogenous 
DNA transfer such as polymer nanocomposites, biolistic methods [20, 
21]. A recent development in genetics has shed light on a new type of 
modified phage where the CRISPR-Cas system can be incorporated into 
the bacteriophage genome [22]. This constitutes CRISPR- DNA packed 
in plasmid constructs within a DNA-phage system which is termed as 
CRISPR-Phage or CR-phage (Fig. 1) (CRISPR enhanced phage are termed 
as CR-phage from hereon). This novel system will potentially act based 
on phage adhesion on the targeted pathogen through receptors like LPS, 
protein porin OmpC, flagellin, pili (gram-negative), peptidoglycan, tei
choic acids/teichoic acid - peptidoglycan polymer (gram-positive) 
leading to delivery of the CRISPR-conjugated material into the pathogen 
via phage [20,23]. Following this, exogenous Cas enzymes enter the 
targeted pathogenic system and reciprocate genetic changes as previ
ously mentioned, leading to the defective genetic constitution that re
duces bacterial resistance [24]. The admirable trait that lies in this 
system lies in the fact that various phage cocktails maybe be used for 
multiple doses to completely target pathogenic colonies, which previ
ously were unattainable [25]. Therefore, the novelty of this system 
mostly relies on the fact that it incorporates both the phage; specificity 
with CRISPR-based pathogen knockout, which was lacking in previously 
investigated single system-based treatments [15]. In addition, extrinsic 
factors like host range, phage pharmacodynamics, and phage resistance 
can be modulated for enhanced effectiveness of the system [16]. 
Furthermore, this system effectively modulates the targeted gene 
expression and immuno-dynamics in the host-pathogen relationship, 
thereby bringing in perfect cooperation and allowing effective resistance 

Fig. 1. Phage delivered CRISPR-Cas system in intestinal niche. Several types of CRISPR-Cas systems can be conjugated with different models of phages to form the 
novel engineered phage termed as CR-Phage. Cr-Phage is highly specific and can deliver CRISPR-Cas systems directly into the targeted pathogens, thereby bringing in 
gene deletions supplemented with phage therapy that brings loss in targeted pathogenicity in the intestinal niche. 
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abrogatio n [26]. Thus, developing CR-phages in a pathogen-specific 
manner will allow combating the ever-increasing resistance in MDR 
pathogens that will be utilized to target specific phage delivery along 
and combine CRISPR-Cas mechanism against specific resistance genes in 
pathogens to bring complete clearance in bacterial colonies colonizing 
the gut. This review focuses on the new mechanism of CR-Phages syn
thesis and its function against gut-specific MDR infections, with the goal 
of elucidating its therapeutic implications and paving the road for 
realistic resistance-free redemption. 

2. Cr-Phage: a promising gene-editing tool 

CRISPR-Cas system forms an excellent gene manipulation tool and 
can be used to negate excessive pathogenic accumulation through spe
cific genomic deletions, though the major challenge lies in its delivery 
[27,28]. Phage are natural predators of any bacterial system but can act 
as an excellent vector for the CRISPR-Cas system by delivering the 
exogenous CRISPR-DNA, thereby solving the problem of delivery [29]. 
Recent insights into gut microbiome editing through strain-specific 
depletion have proven to be an important proof of principle in GI re
sidual strain-specific pathogenic targeting [30]. Phage attachment is 
achieved by initiating the replication cycle of the phage where they bind 
to specific bacterial receptors (LPS, OmpC, flagellin, peptidoglycan, and 
teichoic acids) leading to permanent phage adhesion and infection [31, 
32]. This process leads to pathogenic apoptosis via an abortive infection 
system (Abi) as a response to phage infection [16,33]. In addition, when 
engineered phage models carrying CRISPR-Cas systems, deliver to the 
bacterial cell, it brings additional specificity and certainty in 
pathogenic-gene abrogation and bacterial apoptosis [29]. Furthermore, 
such engineered phage mainly use CRISPR-assisted non-homologous 
end joining (CA-NHEJ) repair systems with homology-directed repair 
(HDR) at times inside bacterial genome system (Fig. 2), ensuring effi
cient killing in tandem with the conventional Abi mechanism [34]. 
Phage-CRISPR incorporation requires extensive knowledge of phage 
engineering and recent investigations have shown that such phage en
gineering and functioning is possible, even though the major challenge 
in phage engineering lies in preventing excessive viral replication and 

assembly that might affect CRISPR-Cas efficacy significantly (Fig. 2) 
[35]. 

The CRISPR-Cas system is commonly found in the genomes of gut 
residual MDR-pathogens and can target the bacterial system in which it 
is expressed [36]. Self-targeting spacers found within bacteria have been 
proven in studies to cause bacterial death if the bacterial genomic DNA is 
cleaved and not repaired [37]. Wu et al. in 2021, reviewed and depicted 
that CRISPR-Cas systems can be employed in bacterial detection sys
tems, DNA/RNA conjugated targeting, and whole bacterial system 
regeneration [37]. Such a phenomenon emphasizes the importance of 
CRISPR-Cas as an antimicrobial agent. However, such engineered 
Cr-phage-based delivery is not available for all gut-specific pathogen 
genomes. Thus, functional carry-over remains an area of further 
research that will incite phage engineering and CR-Phage mechanisms 
[38]. 

The delivery of the CRISPR system by phage so far is dependent on 
either phagemid or engineered replicative phage (temperate/virulent) 
(Figure3). In the case of the CRISPR-phagemid system, it constitutes a 
DNA packed in a plasmid construct with a DNA-phage system to which 
CRISPR is cloned [20]. Phagemid DNA replicates inside the bacteria and 
is packaged in a phage capsid to be delivered via transduction to the 
targeted bacterial strain [39]. The mechanism of CRISPR-phagemid in
volves the adsorption to the bacterium by the phage particle and 
consequently its injection into the plasmid of the cell, leading to the 
expression of exogenous Cas protein and the maturation of spacers 
present inside the plasmid CRISPR-array into crRNA [20]. The crRNA 
along with gRNA guides the targeted Cas proteins to cut the proto-spacer 
of the bacterial genome accounts for the death of the bacteria unless it 
repairs its genome [16]. In addition, the efficiency of the phagemid 
system can be enhanced by the use of helper plasmids and facilitate the 
overcoming of the limitations set by the phagemid-based vector (Fig. 2) 
[40]. Advanced engineering allows the negation of possible backfiring of 
such models and pushes forward the efficacy of these models. 

In the case of the CRISPR-temperate phage system, the mechanism 
remains the same as that of the CRISPR-Phagemid system, except of their 
independent viral replicative mechanism allows the phage to complete 
its replicative cycle [16,41]. Thereby, assembling new viral particles and 

Fig. 2. CRISPR-modifiedphage (Cr-Phage). (i) During phage infection, theCRISPR-Cas9 complex is formed and binds to the target site in the phage genome,causing a 
double-strand DNA break. The mutations were put into the donor’splasmid. Recombination with the donor has the potential to repair the DNAbreak, resulting in 
mutants of interest. Adapted with permission from openaccess [36]. (ii) TheCRISPR-Cas system’s NHEJ-mediated gene-editing process. Adapted with permission 
from open access [37]. 
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new virions to be emancipated in the surrounding [16,41]. The 
CRISPR-Cas system alters MDR pathogens by altering their genetic 
constitution after delivery of the exogenous CRISPR-Cas system by 
either phagemid/temperate replicative phage (Fig. 3) [15]. Gene dele
tion, stop codon insertion and selected mutagenesis either result in 
antibiotic re-sensitization or a reduction in pathogenic burden in the gut 
[42]. Thus, emphasizing the critical role of phage-mediated CRISPR-Cas 
delivery in the gut microbial community [43]. Therefore, it can be said 
that phage delivery of CRISPR-Cas to specific gut-specific pathogenic 
islands remains a unique field of study. It provides ample capacity for 
further research and development, while any present obstacles can be 
easily reverse-engineered to find solutions, thereby enhancing the effi
cacy of the system. Fig. 4. 

3. Phage delivered CRISPR-Cas (Cr-Phage) therapies against gut 
pathogens 

Though there are several instances where stability hampers during 
pathogenic interference, the gut maintains homeostasis in normal times. 
The primary cause for such occurrences might be weak host immunity, 
robust bacterial virulence, or even pathogenic displacement in the host 
body [44–46]. Taking into consideration of previous advantages, 
phage-delivered CRISPR-Cas therapies against such pathogens have 
been discussed as reliable therapeutics against such pathogenic 
influence. 

Clostridium difficile (C. difficile) (phylum Firmicutes) is the gram- 
positive anaerobic, spore-forming bacterium that was first discovered 
in the neonatal gut and has been a constant threat to human health for a 
significant amount of time with constant increment of resistance [47, 
48]. In general, several clusters co-exist in the Clostridium group, where 

a few are beneficial while the rest are pathogenic, whereby; C. difficile 
from cluster XI mainly has pathogenic roles in the human gut [49]. 
Several studies outline that virulent strains of C. difficile have 
antibiotic-resistant properties and infrequent exposure to antibiotics 
such as vancomycin, erythromycin, metronidazole [50], fidaxomicin 
[51], and fluoroquinolones have converted them into AMR pathogen 
[52]. Moreover, the AMR trait in C. difficile can be focused on the 
presence of well-known virulence genes [53], such as the CFR[54], 
adhesion proteins like Cwp66 (GroEL heat-shock protein), flagella pro
teins like FliC (flagellin) and FliD (flagellar cap protein) [55–57]. The 
same plays a crucial role in pathogenesis along with over usage of the 
previously mentioned antibiotics leading to the development of the 
MDR trait in Clostridium, which advocates for finding a plausible cure via 
the CR-phage system. 

CRISPR-Cas system can be used as a potential antimicrobial against 
C. difficile, and its previous application has led to reduced expression of 
secondary bile acids, dipeptides, and glucose in the gut microbiome 
niche, showing reduced C. difficile growth, thereby bringing out CRISPR- 
Cas’ role as a potential antimicrobial [58,59]. In a study, the CRISPR Cas 
I-B system-induced selective mutagenesis against C. difficile Stickland 
metabolism dependent selenoprotein production [60]. Its synthesis was 
inhibited by TargeTron insertion via the CRISPR Cas system, resulting in 
a reduction in the MDR property of C. difficile leading to an effective 
antimicrobial effect in the gut [60]. TargeTron insertion allowed nega
tion of selenophosphate synthetase (SelD) expression, important for 
growth in C. difficile, faced global eradication, thereby bringing out the 
role of CRISPR systems [60]. In addition, the CRISPR-Cas-9 system can 
be used for modifying Clostridium sp. genome and convert it into 
erythromycin sensitive C. difficile by deletion of the ermB genes present 
on Tn5398 [61]. Moreover, recent investigations have used temperate 

Fig. 3. Mechanism of CR-phage System to Combat the Gut Microbiome Pathogens. (1) Exogenous CRISPR-Cas DNA delivery to the bacterial genome through a 
phagemid in a bacterial endogenous CRISPR system. The integration of CRISPR-Cas into the bacterial genome and subsequent delivery of CRISPR-Cas results in the 
bacterial DNA being lysed in a crRNA-dependent manner, resulting in its death. The helper phage contributes to the phagemid’s viral assembly. (2) Delivery of 
exogenous DNA to the bacterial genome by replication or temperate-based delivery in the bacterial endogenous CRISPR system. After integration into the bacterial 
genome and subsequent delivery of CRISPR-Cas, the bacterial DNA is lysed in a crRNA-dependent manner, resulting in bacterial clearance and death. The phage 
completes its replication cycle, assembles new viral particles, and lyses the cell, releasing newly replicated viruses into the surrounding environment. (3) Phage-based 
delivery of exogenous CRISPR system where it either deletes or inactivates the MDR genes of the pathogens of the gut. 
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phage ϕCD24–2 which has been genetically engineered to express a 
CRISPR array composed of a repeat-spacer-repeat sequence against a 
conserved C. difficile type I-B system [62]. The delivery of CRISPR-Cas3 
into the microbe cell by this designed temperate phage transduced 
CRISPR-Cas3 into the microbe cell during infection and expressed it 
together with the bacteriophage’s lytic genes. The same method proved 
efficient at neutralizing and modifying antimicrobial-resistant C. difficile 
in the murine model and was significantly more effective than wild-type 
temperate phage delivery, highlighting the efficacy of 

CRISPR-engineered phage [62]. Bacterial clearance occurred via two 
distinct mechanisms: (1) irreversible genome damage caused by indig
enous type I-B Cas effector proteins regulated by CrRNA, and (2) holins 
and endolysin release during phage replication’s lytic phase [62]. This 
has been demonstrated in both in vitro and in vivo experimental settings, 
highlighting CR-phage as an effective weapon for combating C. difficile 
proliferation and resistance. Thus, phage-delivered CRISPR-Cas has 
emerged as an excellent genetic-engineered based antimicrobial that has 
immense potential to counter the rising resistance to C. difficile 

Fig. 4. B. thetaiotaomicron pathogenicity can be 
modulated by phage-delivered CRISPR. (A) 
Schematic of NanoLuc suppression using dCas9. 
IPTG stimulates the production of dCas9, which 
forms a complex with constitutively produced 
sgRNA that targets the NanoLuc (NL1–4) coding 
sequence or the PcfiA promoter (PR1–2). The 
NanoLuc cassette and the IPTG-inducible 
CRISPRi system are separated by the plasmid 
backbone. (B) dCas9-mediated targeting of the 
NanoLuc coding sequence (NL1–4), the pro
moter (PR1–2), or a nonsense sequence (NS). 
IPTG was added to cultures in four-fold serial 
dilutions commencing at 500 M or no inducer. 
A Hill function was used to fit the response 
curves (solid lines). (C) Fold repression is trig
gered by different gRNAs in the presence of an 
inducer (500 mM). The color of the bars corre
sponds to the color of the bars (B). (D) Genomic 
location of CRISPRi-targeted endogenous genes. 
(E) Polymyxin B minimum inhibitory concen
trations (MICs) for cells with CRISPRi targeting 
BT1854 (dCas9BT1854) against wild-type (WT) 
cells or non-specific control cells (dCas9NS). 
The reported data are the average of three 
biological replicates performed on three 
different days. (F) CRISPRi was used to target 
BT1754 (dCas9BT1754). WT (black), 
dCas9BT1754 (pink), and dCas9NS (gray) cells 
grow in a minimal medium supplemented with 
0.5% glucose (MM-Glc) or 0.5% fructose (MM- 
Fru) in the presence (full line) or absence 
(dotted line) of 100 mM IPTG. The error bars 
show the standard deviation of three biological 
replicates performed on different days. Adapted 
with open access permission [106].   
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infections in the gut. Although, a beautiful technology, further im
provements are necessary. Focus can be drawn on the development of 
crRNA arrays against multiple repeat tandem gene structures that will 
negate genetic recombination and spacer excision. Furthermore, atten
tion can be drawn to identifying and abolishing putative phage lysogenic 
genes promoting lysogeny. Lastly, further studies on specific 
CRISPR-cassette identification and engineering against C. difficile along 
with phage modification will elucidate the overall mechanism of 
phage-delivered CRISPR therapy. These new directions suggest heavily 
that the CRISPR-Cas system in association with phage can be an effective 
therapeutic against MDR C. difficile infecting the gut microbiota. 

Klebsiella pnueumoniae (K. pnueumoniae) in recent times has gained 
notoriety as an infectious pathogen with hypervirulent antibiotic resis
tance strain with few available treatments [63,64]. The gram-negative, 
encapsulated bacterial species K. pnueumoniae belongs to the Entero
bacteriaceae family [63]. K. pnueumoniae possesses hydrolyzing property 
via chromosomal β-Lactamase SHV-1 of β-lactam antibiotics along with 
a lipopolysaccharide capsule which provides cps-dependent resistance 
against phagocytosis [65,66]. In addition, the presence of self-protective 
pathogenic properties like fimbriae (KpfR expression) and capsule 
forming capabilities (via Group I or Wzx/Wzy pathway) helps in supe
rior MDR character build-up in K. pnueumoniae [67–69]. In addition, 
extensive usage of carbapenem and other such antibiotics has led to 
MDR development along with biofilm formation [70]. Such properties 
make it hard to target and spatiotemporally negate it and therefore, most 
times single phage systems or antibiotics fail to bring clearance. 
Furthermore, studies have found the presence of type I-E and type 
I-E* chromosomal plasmids in K. pnueumoniae [71], which are respon
sible for providing adaptive immunity aiding in resistance build-up. The 
presence of type I-E CRISPR-Cas systems helps in the genetic prolifera
tion of blaKPC (blaKPC-IncF plasmids+) in K. pneumoniae populations, 
which remains the main cause of resistance. Due to such complexities, it 
becomes crucial to target such specific genes to bring sensitivity in MDR 
K. pnueumoniae, where previous therapies have failed. 
CRISPR-engineered phages poses the ability to combat such resistance in 
K. pnueumoniae and are paving forward as an established therapeutic in 
this field. 

The presence of chromosomal putative type IV CRISPR-Cas system 
within the genome can be utilized for native CRISPR-Cas targeting and is 
performed by cleaving the proto-spacer sequences of their gDNA deliv
ered by phage, thereby providing anti-microbial activity [72]. The 
CRISPR-Cas9 system was effective in finding the bla(kpc2) gene as one of 
the primary causes of carbapenem resistance in K. pnueumoniae (CRKP) 
strain which was achieved using a two-plasmid system of pCasKP-pSGKP 
and pBECKP (cytidine-based editing system) [73]. In addition, the same 
group engineered murine cytidine deaminase rAPOBEC1 with Cas9 
nickase nSpCas9 to form pBECKP (a chimeric protein that recognized 
bacterial genomic sequences and can induce SSBs and convert cytidine 
into thymidine bases). This allowed the creation of a premature stop 
codon in the pathogenic FosA gene that reversed fosfomycin resistance 
in K. pnueumoniae with 100% efficiency. Both pBECKP and 
pCasKP-pSGKP were used to resensitize and terminate 
carbapenem-resistant hypermucoviscous K. pneumoniae. Additionally, it 
was shown that by utilizing CRISPR-Cas9 from Pyogenes and a small 
guide RNA (sgRNA), the MDR genes in K. pnueumoniae could be deleted 
via bacteriophage phiKpS2, resulting in a decreased load of 
K. pnueumoniae using the CR-phage system [74]. The reduced load of 
pathogenic K. pnueumoniae showed less pathogenicity and effectivity 
towards antibiotics, which made it possible to bring its clearance. Lastly, 
encapsulation of phage via liposomes allowed overcoming the problem 
of circulation and providing protection against gastric juice and host 
immune system [75]. Studies have found that there is an enhanced 
reduction in pathogenic load via encapsulated phage CRISPR system 
compared to non-encapsulated phage system [76]. Thus, these finding 
suggests that CRISPR-Cas delivery by engineered phage (Cr-Phage) is 
possible and is advantageous for re-sensitizing and terminating 

K. pnueumoniae in the gut. Though effective in vitro conditions, there has 
been no investigation regarding its efficacy in complex in vivo situations. 
Therefore, a large number of clinical trials are required for such systems 
to make it a practical therapy against K. pnueumoniae infections. Only 
future research in this field will elucidate its effectivity as a therapy 
against the same. 

Escherichia coli (E. coli), a prominent commensal and symbiont of the 
gut, can sometimes pose as a revered pathogen inside the gut with an 
enhanced resistance profile and hiked cases in the past decade [77]. The 
Escherichia coli strain ST131 is one of the most studied pathogenic bac
terial forms and has the inherent capability to modulate the effect on 
various antibiotics like fluoroquinolones [78], owing to its AMR prop
erty and its capability to form FimH adhesion-dependent biofilms [79]. 
The epidemiology-related clinical studies conducted in Iran [80], 
Mexico [81], and India [82] have reported the different degrees of 
resistance to various antibiotics including cephalosporin, SXT, cipro
floxacin [83]. E.coli has exacerbated the present situation of its 
ever-increasing resistant profile to all known major classes of drugs for 
which novel therapies like phage delivered CRISPR-Cas retardation is 
required. 

To counter-resist, the MDR E.coli strains, the CRISPR-Cas system has 
surfaced as antimicrobials. It can be delivered through phage-mediated 
mechanisms to provide a global eradication of E.coli [84]. Köse et al. in 
2020, showed that replacing the Cat gene against the catabolite 
repressor protein (CRP) gene using CT-CRISPR-Cas9 editing along with 
the panD gene of the bacterial chromosome resulted in decreased 
pathogenic load [15]. Additionally, the CRISPR-Cas system can over
come E. coli’s chloramphenicol resistance, demonstrating the 
CRISPR-Cas system’s antimicrobial potential. This is accomplished by 
regulating the E.coli system’s metabolic pathways [85]. The same results 
in highly decreased pathogenic load since they are one of the funda
mental components of resistance to E.coli [86]. Additionally, the 
CRISPR-Cas9 system was effectively employed in a study to eliminate 
and replace pathogenic genes in enterotoxin E.coli. (ETEC) [87]. More
over, in another scenario, the CRISPR-Cas9 system was used in associ
ation with Cytidine deaminase (PmCDA1) to get specific point mutations 
(SPM) at cytosine that converted cytosine to thymine (in a five-base gap 
of target sequences) to inactivate the virulence of E.coli [88]. The mu
tation efficiency was boosted with DNA glycosylase inhibitor in associ
ation with a degradation tag (LVA tag) that permanently brought in 
mutations and destroyed E.coli pathogenicity, thereby bringing out the 
role of CRISPRs as an antimicrobial [89]. Several investigations using 
CRISPR as an antimicrobial can be used against luxS, β-lactamase, Stx, 
and LEE pathogenicity islands [21,90,91]. Thus, the CRISPR-Cas system 
is quite effective against several pathogenic genes and can be beneficial 
in curbing high incidences of pathogenicity shown in E. coli and can be 
further enhanced when target-delivered by Cr-Phage. 

To bring out Cr-Phage delivered efficacy, Lam et al. used a single- 
stranded DNA (ssDNA) filamentous inovirus M13 phage, against gut 
residual Sm-resistant (SmR) E.coli [92]. CR-Phage selectively targeted 
the pathogen and depleted its virulence through the introduction of 
genomic deletions. Lam and colleagues were able to construct two sets of 
CRISPR-Cas9 vectors: 1) non-targeting (NT) and 2) GFP-targeting 
(GFPT) CRISPR-Cas9 using E.coli bla gene. They utilized the f1 origin 
of replication and inserted it into low-copy CRISPR vector pCas9 that 
produced pCas9-NT-f1A/B and pCas9-GFPT-f1A/B respectively [30]. 
This cassette of the engineered CRISPR-Cas system was inserted into 
M13 that produced two M13 phage strains namely; NT-M13 and 
GFPTM13 [30]. These strains were used to infect (SmR) E.coli consecu
tively followed by carbenicillin which resulted in reduced growth and 
lower rates of recovery. The engineered phage M13 was able to target 
specifically and deliver the CRISPR-Cas9 gene that induced genomic and 
chromosomal deletions and helped in an overall reduction of its specific 
growth [30]. Whole-genome sequencing of each deletion 
(45 bp-82.6 kb) was performed demonstrating the E. coli-mediated 
Cas9-induced double-stranded breaks through homologous 
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recombination, which brought out the efficacy of CRISPR-Cas9 induced 
restriction on resistant E. coli [93]. As a result, CRISPR administered by 
phage (M13) was extremely successful and suitable for introducing ge
netic deletions via conserved DNA repair mechanisms. The main 
advantage to this system lies in the fact that simple genetic abrogation in 
E. coli would not affect the whole gut microbiome but is efficient in 
clearing up specific pathogenic islands. Although elusive, this technique 
faces a few challenges like an escape to CRISPR-Cas9, spacer losses, and 
CRISPR gene deletions for which future investigations need to be con
ducted. It can be said that phage-delivered CRISPR-Cas (Cr-Phage) 
therapy in MDR E. coli is in a neonatal state and research and further 
clinical trials are required to bring practical advantages to this mecha
nism. Thus, Cr-Phage therapy provides a directive path to specific gene 
targeting in E. coli allowing its clearance, without hampering gut 
microbiota, and with futuristic approaches, it can pose as a reliable 
therapy. 

In several instances, the presence of Pseudomonas aeruginosa 
(P. aeruginosa) in the gut microbiome has led to pathogen-specific in
fections in the gut microbiota [94]. P. aeruginosa, is an anaerobic 
gram-negative pathogen of the Pseudomonadaceae family known to be 
extensively drug-resistant and has been reported to cause infection of 
the intestines [95,96]. P. aeruginosa, too, relies on biofilm formation and 
quorum sensing and uses three genes like las, rhl, and quinolone signal 
transduction system in an acylated homoserine-dependent manner [97, 
98]. These gene products and quinolone control various pathogenic 
factors including enzymes like elastase, protease, and other substances 
like pyocyanin which promote pathogenesis and infectivity [99]. Gen
eral antibiotics mainly fail to penetrate the biofilm thereby, initiating 
the so-called multidrug resistance, thereby requiring specific gene 
editing mediated therapy [100,101]. 

Complete resistance of P. aeruginosa can be overcome with CRISPR- 
Cas delivered by a phage that targets the pathogen island with biofilm 
eradication, lowering antibiotic resistance, and finally killing [15]. 
Infection of P. aeruginosa strain PA14 was reduced by DMS3 engineered 
phage with CRISPR-Cas system when five out of six endogenous 
CRISPR-Cas genes were deleted [102]. The use of phage in conjunction 
with the CRISPR-Cas system increased the specificity, but also enhanced 
the biofilm penetration ability of antibiotics and phage. Once penetrated 
through the pathogenic biofilm islands, the engineered phage could 
modulate the pathogens and target them by using CRISPR-Cas nuclease 
activity to induce killing [102]. This was mediated mainly by lytic and 
lysogenic mechanisms of the DMS3 phage along with DNA denaturation 
and modification by the injected CRISPR-Cas system. Therefore, DMS3 
engineered phage system forms an important insight where Cr-Phage 
was able to deliver CRISPR RNA to mediate biofilm eradication, and 
enhanced antibiotic penetration. Furthermore, such targeting led to 
phage and CRISPR combined bacterial killing that further brings out the 
importance of CRISPR-delivery by phages in P. aeruginosa. However, 
these findings are still in an early state and further research in gene 
delivery and phage-bacterial biologics has to be determined to deduce 
its further application in combating MDR P. aeruginosa. 

Bacteroides thetaiotaomicron (B. thetaiotaomicron) of Bacteroides is a 
rare pathogen of the intestine. Though previous reports suggest that 
Bacteroides class are mostly present as commensals helping in the 
fermentation of host diet or microbial-derived polysaccharides [103]. 
B. thetaiotaomicron can act as an opportunistic pathogen in the gut, 
mainly due to weak host immune systems. It is known that 
B. thetiaotaomicron are gram-negative, non-spore-forming, obligately 
anaerobic, antibiotic-resistant bacteria that harbor in the human gut 
[104]. B. thetaiotaomicron possesses certain virulence factors like 
adherence proteins, penta-acylated LPS, as well as the ability to defend 
itself from the host immune response in oxygen-depleted circumstances 
and phagocytosis, resulting in increased resistance and a robust infec
tion profile [104]. In addition, it is known that B. thetiaotaomicron 
possesses a lincomycin resistance gene (linAN), and transposon NBU2 
may be responsible for its transmission into the Bacteroides group. NBU 

family is miscellaneous and all have similar integration strategies with 
different target sites and carries various resistance gene that might 
provide a broad resistance, though this requires further investigations 
[105]. 

To find a justifiable therapy for such resistance-related infections, 
Mimee et al., 2014 have presented a reprogrammable system that can 
lower the recombinant and endogenous gene expressions in 
B. thetiaotaomicron using CRISPRi (CRISPR-interference) system and 
recombinase system [107]. B. thetiaotaomicron is highly resilient and 
shows superior resistance in the gut microbiota [107]. To target this and 
reduce its resilience, the CRISPR-Cas system was designed against LpxF 
(provides resistance towards inflammation-associated cationic antimi
crobial peptides, like polymyxin B) from gene BT1854. CRISPR-Cas9 
system incorporating dCas9 (regulated by IPTG-inducible PLacO23 
system) was incorporated resulting in the production of specific sgRNA 
against BT1854 (dCas9BT1854) that reduced resilience and resistance 
towards polymyxin B [107]. B. thetiaotaomicron also shows robust car
bohydrate metabolism important for successful establishment in the gut 
and its growth. BT1754 gene is a two-component detector and controls 
BT1757–1763/BT1765 (fructose-containing polysaccharide utilization 
locus), helping in its fructose metabolism and establishment. 
CRISPR-Cas9 engineered system was incorporated in a similar way as 
(dCas9BT1854) against gene BT1754 (dCas9BT1754) that resulting in 
reduced fructose metabolism while keeping glucose metabolism normal 
[107]. Through in-depth investigations, a plausible easy phage delivery 
of this mechanism has been established. A novel class of phage called 
crAss-like phage mainly targets Bacteroides species and crAss-like phages 
DAC15 and DAC17 have been recently reported to infect 
B. thetiaotaomicron and induce killing [108]. DAC15 and DAC17 can be 
similarly engineered with the CRISPR-Cas9 system as shown by Mimee 
et al. in in vitro study [107]. In the study, phage-mediated CRISPR-Cas 
delivery against B. thetiaotaomicron was made possible using in vitro 
techniques. The study enlightened the fact that CRISPR mediated 
interference (CRISPRi) will be possible in gut microbiota and when 
delivered by phage can pose as a feasible therapy for targeting 
B. thetiaotaomicron-related infections, although further research is 
required to bring conclusive facts. 

CRISPR delivery of phages via CR-Phage is a completely novel 
technique and comes with the benefit of combinational therapies 
relating to phage and CRISPR (Fig. 5). Table 1 summarizes the clinical 
significance of Phage-CRISPR synergy. The enhancement in bacterial 
targeting, specificity, and overall efficient killing of bacterial pathogenic 
islands, with a global approach to curb the MDR traits of the afore
mentioned pathogens affecting the gut; will determine a new direction 
in phage and gene editing biologics (Fig. 4). In addition, when several 
antibiotics are failing to reciprocate regulation in the pathogenic pop
ulation, such technologies in mono and combined with pre-existing 
antibiotics approach will further determine the MDR curbing efficacy. 
However, it is difficult to state the overall therapeutic functionality of 
such systems due to many hurdles that are still untouched. Experimental 
obstacles like CRISPR-cassette mutations, gene deletion, pathogen mu
tations and escape from CRISPR targeting remain to be investigated and 
a field of further research. 

4. Immune system modulates the overall Cr-Phage targeting 

The functionality and efficacy of Cr-Phage delivered CRISPR-Cas 
system depends on how efficiently the phage can target and attach to 
the bacterial cell wall followed by phage adhesion and delivery of the 
genetic material [30]. Recent investigations have exhibited that phage is 
mainly constituted of foreign viral particles (capsid, nuclear materials), 
which initiate immune system-mediated action against phage by pro
ducing anti-phage antibodies [110]. These anti-phage antibodies while 
targeting phage also apprentice in bacterial targeting and overall phage 
therapy. Hence, phage therapy can be curated by the host immune 
system and control the overall phage targeting efficiency. Investigations 
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have shown that the gut-residual phage is an important regulator of the 
host immune system, and forms the interface for phage-immune system 
interaction through transcytosis-mediated action in the inner lying 
epithelial cells to modulate the immune system responses [111]. The 
phage can also incite interaction with TLRs and successively 
TLR-mediated immune response against themselves [111]. The dynamic 
nature of the phage allows them to alter the pathogenic property of 
bacterial species which can be exploited to kill the pathogens [112]. 
Phage can stimulate enhanced bacterial phagocytosis which is beneficial 
to target the pathogens. The bacteriophage can also induce 
cytokine-mediated innate anti-inflammatory and pro-inflammatory im
mune responses, that aids in final bacterial clearance [111]. Therefore, it 
is evident that there is a very close interaction between phage and the 
host-immune system. Immunomodulation of CRISPR-phage is a very 
important aspect and is gaining importance in current scenario. Utilizing 
such interactions, phage delivery of CRISPR-Cas system to target path
ogens can be shaped accordingly, and specificity can be upregulated 
accordingly, thereby directing the stem down for the rising MDR path
ogens more efficiently. 

5. Engineered Phage-CRISPR system: potential for combating 
MDR pathogens 

Phages can be modified with exogenous DNA (CRISPR-Cas) to 
overcome resistance in several pathogens and enhance the effectiveness 
of the system [113]. Though efficacious, this technology might face 
certain problems like phage resistance, phage pharmacodynamics, and 
lastly host range that becomes a problem in long-term applications 
[114]. Therefore, recent advances have shown that phage delivery of 
CRISPR (Cr-Phage) can be further enhanced with specially mod
ified/engineered phage to overcome the barriers that this therapy might 
face altogether [114]. Addressing such problems will lead to a better 
platform for this gene-editing-based therapy, and improve the efficacy of 
the system. 

Phage resistance within the bacteria is an important aspect, which 
plays a pivotal role in determining the sensitivity of phage-based ther
apies like CR-phage [115]. CR-phage-based therapy can not only face 
phage resistance but also come across an overall phage-mediated bac
terial infection efficiency reduction (loss of fitness) during bacterial 
infection. A solution for such complexities lies in combining multiple 
phage with engineered phage to form a phage cocktail that may help to 
minimize the aforementioned problems and thus, improve the thera
peutic efficacy (Fig. 6) [116]. Previously, such phage cocktails have 

Fig. 5. CR-phage and MDR pathogen resistance in the gut microbiome. C. difficle utilizes temperate phage to delivery CRISPR Cas3 to induce bacterial killing. 
K. Pnuemoniae utilizes Phage X to cause bacterial clearance in a nuclease dependent manner upon delivery of CRISPR-Cas 3. Genetic editing of MDR genes upon 
delivery of CRISPR-Cas 9 by Phagemid, Phage-plasmid, engineered phage and M13 phage causes clearance of E.coli and A. baumannii and P.aeruginosa. 

Table 1 
CR-phage to Combat MDR Pathogen Resistance in Gut Microbiome.  

Pathogen Bacteriophage System CRISPR-Cas 
System 

Preclinical 
study 

Neutralization of MDR pathogen via combinational 
therapy 

Reference 

Clostridium difficile temperate phage CRISPR-Cas 3 in vivo nuclease dependent bacterial clearance [62] 
Klebsiella pnueumoniae Phage X (encapsulated with mutated 

capsid) 
CRISPR–Cas 9 in vivo nuclease dependent bacterial clearance [75] 

Klebsiella pnueumoniae PhilKpS2 phage CRISPR-Cas 9 in vitro neutralization of the MDR genes via gene editing [74] 
Escherichia coli Phagemids M13 CRISPR-Cas9 in vitro neutralization of the MDR genes via gene editing [35] 
Acinetobacter 

baumannii 
Phage -plasmid conjugation CRISPR-Cas9 in vitro neutralization of the MDR genes via gene editing [109]  
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been used and can be effective in paving the path for Cr-Phage and 
CRISPR-Cas delivery in gut residual MDR pathogens. 

Engineered phage along with Cr-Phage capitalizes on the receptor 
binding mechanism of phages and by modifying such receptors, novel 
strategies can be developed to personalize or extend the specific host 
range (Fig. 6) of CR-Phage. Furthermore, such modifications can lead to 
better adsorption to the target pathogen. Previously, Bowers et al. in 
2018 and Yehl et al.in 2019, was able to create plasmids carrying 
appropriate phage tail genes and a T7 phage-packaging signal that was 
transfected into E. coli to increase the receptor binding capability. Yehl 
et al., in 2019, further showed that phage T3 solely modified with re
ceptor genes created via random mutagenesis resulted in a broader panel 
of altered phage known as phage-bodies that reduced the generation of 
phage-adsorption resistant bacterial colonies in the gut. Therefore, such 
engineering enhanced and curated the host range thus modulating the 
delivery aspect of the phage. 

Phage pharmacokinetics is yet another important factor and has a 
crucial role in CRISPR-engineered phage therapeutic efficacy [117]. 
Without proper considerations, future therapies involving Cr-Phage may 
take a longer duration for effective therapy. Additionally, a certain 
amount of phage cocktail should reach the target bacteria when applied 
for required efficacy, that will lead to proper adsorption to the patho
gens [118]. Phage when injected into the body faces clearance from the 
host body and therefore adequate attention should be provided to allow 
proper levels of phage to be injected for non-hampered effectivity [118]. 
Furthermore, encapsulating phage in alginate or employing liposomes 
or polyethylene glycol-based platforms have been used to increase 
phage adsorption, dispersion, and persistence along with delaying 
clearance from the body [119]. Encapsulation protects phage from 
stomach acidity and the immunomodulatory functions, allowing them to 
circulate more freely for extended durations in mammals [119]. 

Therefore, encapsulation of CR-Phage can enhance it effectivity in 
combatting gut residual pathogens. These instances confirm the utility 
of CRISPR-engineered modified phage over normal CRISPR encoded 
phage and form an insight that has resulted in abrogating phage resis
tance, enhancing host range and pharmacokinetics thereby concreating 
and filling gaps in normal phage delivery of CRISPR. CR-phage efficacy 
can be propagated to endless proportions leading to an effective plat
form that can deal with the ever-increasing resistance of pathogens 
infecting the gut, although severe investigations are required to make it 
perfect.Fig. 7. 

6. Conclusion 

Infection to the gut microbiome through MDR pathogens remains 
high and is a matter of concern at present. Failure of previous mono and 
combinatorial therapies (phage, antibiotics, and cocktails of both) in this 
arena has led to apprehensions following to the investigation of novel 
ways in gene-editing tools and their delivery. CRISPR-Cas mediated 
gene targeting and its delivery by bacteriophages (Cr-Phage system) 
remains to be a besuited mechanism in combating MDR pathogens 
affecting the GIT. Additionally, the CR-Phage-based gene-editing system 
has proven to be efficacious and poses an authentic therapy against MDR 
pathogenicity. It exploits the phage-CRISPR counter selection system 
and utilizes the advantages provided by both the systems in successful 
bacterial gene modification (virulence genes, pathogenic cassettes) 
leading to death (Box2). Moreover, Cr-Phages can re-induce antibiotic 
sensitiveness and heightened efficacy through proper targeting, pene
tration, and resistance breakage, which remains need of the hour. Phage 
biology, host transcriptome, and immunity spearhead and orchestrate 
the overall targeting and delivery. Bringing further curation to such 
significant players in this synergy will allow us to comprehend the 

Fig. 6. Engineered-phage CRISPR combinational therapy to enhance bacterial killing.  
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overall mechanism and enhance the precision of the current approach. 
Further investigational steps in this field can be testing of Cr-Phage 
technology in animal models and bringing clinical trials. Profound 
data sets in molecular mechanisms, gut microbiome orchestration, and 
phage dynamics are required for CR-phage establishment as a reliable 
technique. Although phage-based targeting is an old approach, the use 
of engineered phages (especially CR-phages) is quite novel and still in 
infancy. Further research will elucidate the phages delivered CRISPR- 
Cas system contrivance that will help us to curb MDR gut-residual 
pathogens. 
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