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Abstract

To reach the error threshold required to successfully perform error correcting algorithms in
guantum computers, geometric guantum gates have been considered because of their natural
resilience against noise. Non-cyclic geometric gates have been proposed to reduce the run time
of conventional geometric gates, to further guard against decoherence. However, while these
proposed gates remove the dynamical phase from the computational basis, they do not in
general remove it from the eigenstates of the time evolution operator. For a non-cyclic gate to
genuinely be considered geometric the dynamical phase should be removed from both the
computational basis and the eigenstates. Here, a scheme for finding genuine non-cyclic
geometric gates is proposed. The gates are designed to evolve the computational basis along
non-cyclic paths, consisting of two geodesic segments, chosen such that the dynamical phase
is removed from the eigenstates. The gates found with this scheme did not have shorter run
times than cyclic gates, but it was possible to implement any gate with this scheme. The
findings are important for the understanding of how general quantum computations can be
implemented with geometric gates.
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Popularvetenskaplig sammanfattning

En kvantdator &r en berdkningsmaskin som &r grundad i kvantmekanik for att utfora dess
berdkningar. Tack vare att dessa enheter ar kvantmekaniska, tillkommer egenskaper som
superposition, att en partikel kan befinna sig i flera tillstand samtidigt, och kvantsam-
manflatning, ett sidtt pa vilket partiklar kan sammanldnkas med varandra. Med hjalp av
dessa egenskaper kan en kvantdator utfora algoritmer i vissa fall betydligt snabbare &an
motsvarande algoritmer pa en vanlig dator. Darfér onskar man att kunna utnyttja den
enorma berdkningskraften som kvantdatorer skulle kunna ha. Det finns dock hinder som
maste 10sas innan dagens kvantdatorer skulle ge en berdkningsmassig vinst 6ver klassiska
datorer. Dels skulle de behova ha fler kvantbitar, kvantdatorns motsvarighet till en bit i
en klassisk dator, for att kunna gora berdkningar i storre skala och de skulle behéva vara
mer robusta mot fel. Kvanttillstand ar kénsliga mot brus vilket sdtter stora krav pa att
kvantdatorer ska vara taliga mot bruset for att informationen i kvantbitarna inte ska ga
forlorad.

En idé for att reducera bruset i en kvantdator ar att anvanda sig av geometriska kvant-
grindar. Kvantgrindar ar enkla operationer som fordndrar kvantbitens tillstand, de &ar
kvantdatorns motsvarighet till logiska grindar i en klassisk dator. En given kvantberakning
ar ett specifikt natverk av kvantgrindar. Geometriska grindar ar en speciell typ av kvant-
grindar som bygger pa konceptet geometrisk fas. Nér en partikels tillstand &ndras cykliskt
skiljer sig start- och sluttillstandet med en fas som kan delas upp i tva delar: en dynamisk
och en geometrisk fas. Den geometriska fasen beror embart pa véigen lings vilken par-
tikelns tillstand utvecklats, men inte pa hur snabbt utvecklingen skedde. Genom design av
tidsutveckling kan den dynamiska fasen elimineras och fasen som partikeln far efter utveck-
lingen ar da rent geometrisk. Geometriska grindar ar kvantgrindar som endast bygger pa
geometrisk fas och blir darigenom naturligt taliga mot brus.

For varje tidsutveckling av en kvantbit kommer det finnas tillstand som &ndras cykliskt,
alltsa borjar och slutar i samma tillstand, men med en fasskillnad. Dessa tillstand definierar
egentillstanden till tidsutvecklingen. For att en kvantgrind ska vara en geometrisk grind
méste alltsd den dynamiska fasen elimineras fran egentillstinden. Aven tillstand andra
an egentillstanden kommer att fa en fas nir de genomgar samma tidsutveckling trots att
dessa inte kommer utvecklas cykliskt, utan kommer &ndras till ett annat sluttillstand &n
starttillstandet. Uppdelningen av geometrisk och dynamisk fas gar dven att gora for de
icke-cykliska utvecklingarna.

For att tillverka grindar som opererar snabbare finns det &n 6nskan att hitta geometriska
grindar baserade pa icke-cykliska banor. I tidigare studier har tidutvecklingar som elim-
inerar den dynamiska fasen fran berdkningsbasen studerats. Berdkningsbasen &ar tva valda
ortogonala tillstand hos en kvantbit som representerar en boolesk 1:a respektive 0:a. Trots
att den dynamiska fasen har eliminerats for berakningsbasen i dessa fall har egentillstanden
till tidsutvecklingarna inte tagits i atanke och genomgar generellt inte rent geometriska
utvecklingar. Det ar darfor oklart om dessa tidigare studerade realiseringar verkligen kan
kallas geometriska grindar.
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I denna rapport underscktes utvecklingar dar berdkningsbasen ror sig i specifika icke-
cykliska banor som garanteras vara fria fran dynamiska faser. Genom att variera parametrar
som specificerar dessa banor gick det att eliminera de dynamiska faserna dven fran egen-
tillstanden. Med detta gar det att visa att det 4r mojligt att konstruera genuint geometriska
grindar som ar icke-cykliska. Detta ar viktigt for att forsta hur generella kvantdatorer kan
implementeras med geometriska grindar, och dérigenom ta steg narmre en fullt fungerande
kvantdator.
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1 Introduction

Quantum computation is a form of computation which uses properties of quantum mechan-
ics, such as superposition and entanglement, to be able to perform calculations. By use of
these properties, some quantum computational algorithms can outperform equivalent clas-
sical algorithms. A famous example of this is Shor’s algorithm [1] for finding prime factors.
This is an algorithm which can find prime numbers exponentially faster than any algorithm
a classical computer can run. A quantum computer with sufficiently many qubits, the quan-
tum computer’s equivalent to bits, running this algorithm would be able to break common
public-key cryptography schemes, such as RSA, which are deemed secure today [2]. This
shows the incredible computational potential of these devices.

The quantum computers of today do not have the number of qubits required to break
these cryptography schemes but every year a new record is set, moving us closer to the goal.
It is not, however, enough to scale up quantum computers, they also need to be resilient
to noise and decoherence. Quantum decoherence is when a quantum state is changed due
to interactions with an external system, leading to the state losing its quantum mechanical
properties. The computational state within a quantum computer cannot be completely iso-
lated and decoherence is therefore inevitable. It is possible to overcome this issue according
to the error threshold theorem [2]. It states that a quantum computer with an error rate
below a threshold will be able to suppress the errors, induced by noise and decoherence,
with quantum error correction algorithms.

One approach to reach this error rate threshold is to use geometric quantum logic
gates [3]. They are based on the concept of geometric phases of quantum systems [4].
When a quantum state undergoes a cyclic evolution it can gain a phase factor. This phase
factor can be split into a dynamical part and a geometric part, where the geometric part is
only dependent on the path a quantum state takes through its state space. By choosing an
evolution where the dynamical phases are trivial this can be used to implement quantum
logic gates which are purely dependent on the geometry of the path. This dependency on
only geometry can be shown to be naturally resilient against certain types of noise. [5]

While geometric quantum gates show promise in the implementation of robust quantum
computers there are still improvement to be made before they are fully operational. One
possible improvement is to reduce the run time of the gates, as faster operation time would
reduce the qubits’ exposure to the environment, and thereby reduce the decoherence. To
reduce the run time, some ideas to use non-cyclic evolution in the implementation of geo-
metric quantum gates have been proposed [6-8]. These gate are based on qubits evolving
along open paths while still only acquiring a geometric phase. However, in cyclic evolution
of the computational states the geometric phases are the eigenvalues of the time evolution
operator but this is in general not the case for the non-cyclic case. This makes the geomet-
ric meaning of these non-cyclic gates ambiguous. In this report, we propose an approach
of realizing time efficient geometric gates by finding gates where the dynamical phase is
removed for the eigenstates of the time evolution operator while the computational states
undergo geometric non-cyclic evolution.



1.1 Objective

This project will examine single qubit gates where the computational basis evolves along
non-cyclic paths constructed with geodesic segments. The gates will be examined to find
for which paths the evolution of the eigenvectors of the time evolution operator becomes
geometric. This is done by calculating the eigenvalues and eigenstates of a general gate and
then searching for which set of parameters the dynamical phase of the evolution becomes
trivial.

The project is limited to only studying gates using two pulses to drive the qubit, since
two pulses is the minimum required to make any meaningful geometric gates. Each pulse
needs to be fine-tuned to avoid noise, making a gate with more pulses harder to implement
noiselessly. More pulses also increase the degrees of freedom for what paths are possible,
giving more freedom in choosing the evolution but making it harder to study the gates
systematically due to the increasing number of pulse parameters.

2  Quantum Computation

2.1 Qubit

The basis of quantum computation is the qubit [2]. The qubit is a two-state quantum
mechanical system where one state represents a boolean 0 and the other a 1. These are two
orthogonal quantum states and are usually expressed in the Dirac notation as: |0), |[1). The
|)-bracket, called a ket, signifies that these are complex vectors. There is also the (|-bracket,
called a bra, which is the transposed complex conjugate of the ket. The set of {|0),|1)} is
called the computational basis and span the vector space of the qubit. Since the qubit is
quantum mechanical it can be in a superposition of the two states. A general qubit state is
therefore of the form
) = a [0) + B11), 1)
where o and 3 are two complex numbers with |a|® and |3|* describing the probability of
measuring respective state. Therefore, a and § have the restriction |a|® + []* = 1.
An intuitive way of visualising a qubit is the Bloch sphere, where each state is repre-
sented by a point on a unit sphere, as shown in Fig. 1. The qubit is projected on the Bloch

sphere by
» 0
a = €7 cos () ,
2

B = eM¥Psin <§> . (2)

Here, 0 is the angle from the north pole, meaning the north pole is the |0) state and the
south pole is the |1) state. 7 is a global phase and ¢ is the relative phase of the two basis
states. The global phase factor has no observable effect in a quantum system and can
therefore be ignored. Experimentally, qubits can be implemented in a variety of ways, such
as trapped ions [9], nitrogen vacancies in diamonds [10], or superconducting circuits [11].



Figure 1: A state |¢)) on the Bloch sphere

2.2 Quantum logic gates

Quantum computation is performed by letting quantum logic gates transform the qubits,
similarly to logic gates in a classical computer. They transform qubits from one state to
another in the form of unitary operators. They can be represented by a matrix relative
some basis, usually the computational basis.

One of the most important quantum gates is the Hadamard gate (H) which preforms
the mapping |0) — % and [1) — % and thereby transforming the two basis states
of the computational basis into a equally probable superposition of the two states. One way

of implementing this gate is a w-rotation around the axis f\?f on the Bloch sphere. In the

computational basis it is represented by the Hadamard matrix.

500

Other important quantum gates are the Pauli gates also called the X-, Y-, and Z-gates.
These are gates based on the Pauli matrices, three 2 x 2 linearly independent and trace-
less matrices important for quantum mechanics. They where originally introduced in the
mathematical treatment of spin precession but has subsequently become extremely useful
in quantum computing. These matrices are

01 0 — 1 0
UI—X—<1 0), O'y—Y—<Z, 0), O'Z—Z—<0 _1>. (4)

They are equivalent to rotations around the z-, y-, and z-axis on the Bloch sphere by
radians. The X-gate is also referred to as the NOT-gate since it maps to [0) — |1) and
|1) — |0), similarly to the classical NOT-gate.

One last important single qubit quantum gate is the T-gate, also called the 7 /8-gate.
This gate shifts the phase ¢ of the qubit with /4 radians. The matrix representation of



this gate is

1 0 s (€780
T= <O ez'7r/4> =/ < 0 em/s)- (5)

The operation is a 7/4-rotation around the z-axis. The 7/8 name comes from the second
definition of the the T-gate seen in Eq. (5) but since global phase has no measurable
significance the two operations are equivalent.

For quantum computation it is also necessary for the qubits to interact with each other
with controlled operations. The most common controlled operation is the controlled NOT
gate (CNOT). The CNOT is a two-qubit gate that performs the NOT operation on a target
qubit when a control qubit is in the |1)-state, while it leaves the target unaffected if the
control qubit is in the |0)-state. In the computational basis of {|00), |[01),|10),|11)}, where
the first number is the control qubit and the second is the target qubit, the CNOT-gate
takes the form

1000
0100

CNOT= | o o | (6)
0010

These interactions allow the qubits to become entangled, which is a crucial feature of quan-
tum computation.

The experimental implementation of quantum gates depends on what qubit setup is
used. For example, in trapped ions short laser pulses are used [9], while for superconducting
qubits it is common to use microwave pulses [11].

2.3 Universal quantum gates

To make quantum computing practically implementable, it is desired to find sets of gates
which can be combined to replicate any gate. In classical computing there are gates such
as the NAND and NOR gates which alone fulfill this desire, meaning all boolean functions
can be implemented using only one of these. In quantum computing there is no single gate
which fulfill this but there are sets of gates which do, one such set is the set {H, T, CNOT}.
A set of quantum gates, such as this, is called a set of universal quantum gates meaning
that all other gates can be simulated with a combination of gates from this set to an
arbitrary accuracy. This condition of arbitrary accuracy is added because, unlike a classical
computer, a quantum computer is not discrete and with this an uncountable number of
gates are possible. Therefore, an uncountable set of gates would be required to simulate
a quantum computation exactly but a finite set of gates picked from a universal set can
simulate a quantum computation to a chosen degree of accuracy.

3 Geometric phase gates

To understand geometric quantum gates some insight into quantum evolution is first re-
quired.



3.1 Quantum evolution

The evolution of a quantum system in time is governed by the unitary time evolution
operator U(t,to) [12] as
[W(to = t)) = U(L, to) [(to)) - (7)

It describes how the state evolves from a time tg to a time ¢. The operator U is a solution
of the Schrodinger equation

z’hgtU(t,to) — HE) Ut o), (8)

where #H(t) is the Hamiltonian of the system. For a piecewise time-independent Hamiltonian
the solution takes the form

U(T,0) = Un (T, tn—1) Un—1(tn—1,tn—2) - - - Ua(t2,t1) U1 (1,0), 9)

and each U, is

(10)

Up(tm, tm—1) = exp [_ZHm(tm — tm—l)} 7

h

with H,, being a time-independent Hamiltonian, and ¢,, = 7. This operator can be written
into diagonal form by using the relation

Ultmst1) = 3 i oxp | 2=t (1)
k

where {E}} are the eigenvalues of the Hamiltonian and {|¢y)} their corresponding eigen-
vectors.

The evolution of a single qubit by a time-independent Hamiltonian corresponds to a
precession of the state on the Bloch sphere. The state will precess around an axis 77, which
is an eigenvector of the Hamiltonian, with a angular speed w. The Hamiltonian for this is

"=, (12)

where ¢ is the Pauli vector defined as ¢ = 0,Z + o,y + 0.2,

3.2 Geometric phase

Consider the eigenvalue equation of the evolution from t =0tot =17

U(T,0) [thr) = Ak [Yk) - (13)

This is a cyclic evolution where the state [ix) evolves along a path on the Bloch sphere and
ends up back where it started at time 7. Since U is unitary it follows that

Rl UTU ) = (W] Nede [) = [Nl (reldn) (14)
(Wi UTU k) = (W] T [¥r) = (Wrlvn)



from which we see that

Akl 1 (15)
)\k = e—iWk .

The eigenvalues of the evolution will therefore always be phase factors and ¢ will be the
acquired phase after the cyclic evolution. This phase can be split up into two parts as [4]

k= Ok + Yk (16)

where ¢, is the dynamical phase and 7 is the geometric phase. These phases are defined

as
1

e =~ | (ol e Oy 0) ) . a7

0
T = Pk — O = arg (Vi |U(7, 0) [Yr) + /OT (or UT(t, OV H (U2, 0) [ dt. (18)

By splitting up the phases in this fashion the geometric phase will be purely dependent
on the geometry of the evolution and have no dependence on the rate of change along the
path. For a qubit the geometric phase will be equal to the solid angle enclosed by the path
on the Bloch sphere.

By using the relation in Eq. (11) the time evolution operator becomes

Ze 2k ) (yi] = Ze—“‘sm ) (W] - (19)

For a two-dimensional case the time evolution operators will belong to the group SU(2).
From this it follows that the eigenvalues ¢g 1 will be @91 = £¢. The path traced out by
the qubit on the Bloch sphere will be mirrored. The enclosed solid angle from each of the
eigenstates [11) will therefore be equal but with opposite normal vectors. It then follows
that 791 = +v. From these two statements it also follows that dp; = £. With this the
matrix of the evolution in the basis of the eigenvectors is

e % 0 e~ Ho+Y) 0 Zitsam (1 0
U(r,0) = < 0 einp) = < 0 ei(5+’y)> =710 (0 €2i(5+7)> : (20)

Just as before the factor e~*(®*7) has no physical meaning.

3.3 Implementation of geometric quantum gates

For evolution where 26 = 0 mod 27 we have €*® = 1. This results in ¢ = ~, meaning
the total acquired phase is completely geometrical and equal to the enclosed solid angle
on the Bloch sphere. One can notice that the final expression in Eq. (20) is a T-gate if
27 = 7 /4 and the eigenstates of U are used as computational basis. It is not only phase
shift gates which can be implemented by geometric gates, but any gate is possible by letting

the eigenvectors match the eigenvectors of the desired gate and 2y be equal to its rotation.



The reason why creating quantum gates using only geometric phases is interesting is
because they are naturally resilient to certain types of noise [5]. These gates are implemented
by using pulses of effective fields B that drive the qubit.

H= gé .. (21)
The magnitude of B determines the rotational speed w in Eq. (12), and the direction of
B determines the axis of rotation 7. In a realistic scenario there will be some fluctuations
in the field strength of the components of B resulting in noise of both w and 7. Since the
geometric phase is independent of the rate of change of the evolution, noise in w will not
directly contribute to noise in the gate. The noise in 7 will still affect the gate, as the
path of the evolution will be altered. However, since the geometric phase is related to the
enclosed solid angle of the path on the Bloch sphere, fluctuations around the path could
cancel each other, resulting in the same enclosed solid angle. Geometric gates are therefore
also somewhat resilient to noise in the 7.

One common way of implementing geometric
gates are by letting the states evolve as geodesics,
or portions of great circles, on the Bloch sphere |12)
[13]. When a state evolves along geodesics it gains
no dynamical phase along the path and is because

of this guaranteed to be geometric. A gate imple-

mented by using two pulses can be made into a S,
phase gate by having the two pulses both rotate /

the qubit an angle 7, first around the y-axis and >
then around another axis of rotation lying in the ¥

zy-plane. The path these two pulses create form
an orange slice of the Bloch sphere and the choice
of the second axis of rotation dictates the size of
the enclosed area. In Fig. 2 an example of such a
gate can be seen, which in this case is a Z-gate.

Figure 2: A geometric Z-gate imple-
mented with two pulses. The path the
qubit takes on the Bloch sphere grad-
While the resilience against errors associated with ually shifts from blue at the start to
geometric gates are very desirable for quantum yellow at the end.

gates the operational time is also important. The

information encoded in the qubit will eventually

be lost to decoherence, undesired interactions with

the environment [14]. Therefore, the operational time of the quantum computation must
be shorter than the decoherence time. To reduce the operational time of geometric gates,
non-cyclic schemes have been proposed [6-8]. The schemes make use of methods to remove
the dynamical phase from the computational basis, while the basis evolve along open paths.
However, since the paths are open the computational basis is no longer the eigenbasis of the

3.4 Non-cyclic geometric gates



time evolution operator. The dynamical phase for the eigenvectors are in general non-trivial
for these schemes and it is therefore questionable if they should be considered genuinely
geometric.

For a non-cyclic gate to genuinely be considered geometric the eigenvectors of the time
evolution operator should still fulfill the condition of evolving purely geometric, but it is
also required for the computational basis to only acquire trivial dynamical phase to retain
the error resilience. To ensure this one could construct gates where the computational
states evolve along geodesic segments, ensuring they gain no dynamical phase during the
evolution, and find for which of these paths the eigenvectors of the time evolution operators
only gain trivial dynamical phase. Such gates are coined genuinely non-cyclic geometric
gates.

4 Results

To implement non-cyclic geometric quantum gates, evolution generated by two pulses are
used. The pulses move the computational basis along segments of geodesic paths. After
constructing these gates, the dynamical phase of the eigenstates of the gate is studied, to
find which gates are geometric, i.e., fulfilling the condition 26 = 27n .

For a path to be a geodesic on a sphere the axis of rotation must be orthogonal to the
vector being rotated. Beginning in the |0) or |1) state all rotational axes lying in the xy-
plane would create geodesic paths. The difference between choosing one axis over another
would result in a phase shift. It is therefore sufficient to study one axis and then rotate
the gate if needed. Therefore, the first pulse is chosen to always be a rotation around the
y-axis, i.e., iy = g. According to Eq. (12), the Hamiltonian of this rotation takes the form

Hi = —-oy, (22)

resulting in the time evolution operator

U (t,0) = exp [—f‘; <Q _ozﬂ . (23)

1

To express this exponential in matrix form the eigenvalue and eigenvectors of the Hamilto-
nian are needed. These are

) = 5 [ 1] )

The corresponding time evolution reads

0 (t,0) = iy} 5 Gy + Iy ) o | = (Gl ] )Y o)
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Figure 3: a) The precession of the qubit during the first pulse. 6, is the precession angle
and 77 is the axis of rotation. b) The precession of the qubit during the second pulse. 65 is
the precession angle, ¢ determines the axis of rotation 7is. 7is is also orthogonal to the final
state of the first pulse, U [¢)). The paths in both figures gradually shifts from blue at the
start to yellow at the end.

At the final time t; the pulse has rotated the qubit an angle #; = wt;. This precession can
be seen in Fig. 3a. For the second pulse to move the qubit along a geodesic path the axis
of rotation must be orthogonal to the final state of the first pulse. Starting at |0) the final
state of the first pulse will have the coordinates sin 61 + cos #1Z. The axis of rotations 7 of
the second pulse is therefore

Mg = sin(f; — 7/2) cos ¢ + sin ¢y + cos(0; — 7/2) cos PZ. (27)

This lies in the plane spanned by a vector in the xz-plane, orthogonal to the final state of the
qubit, and the y-axis. ¢ is the angle around the final state of the first pulse, determining
which axis of rotation in this plane. With the axis of rotation defined the Hamiltonian

becomes

h
Ho = % (—cosbycospo, +singpoy, +sinbcospo,). (28)

Once again the eigenvalues and eigenvectors of Hamiltonian must be found to write the
time evolution operator on matrix form. They are

h
e =, (29)
cos2 0 cos? ¢ + sin® ¢ +1 — sin 6 cos ¢
= 1.
o) \/ 2 F 2sinfy cos ¢ 07 + —cosGlcos¢—isin¢| ) (30)



The time evolution operator is

—iwt iwt

Un(t,0) = lrs) 2 (s + ) e (| (31)
_ (cos (4t) —icos(¢)sin (%) —sin(¢) sin (%)
< sin(¢) sin (%) cos (%) + i cos(¢) sin (“g)) ' (32)

Finally, the total time evolution operator Uy is

U (t,0), 0<t<t,

(33)
U (t,t1) Us(t1,0), t1 <t<r,

Upor(t,0) = {

where 7 is the final time of the second pulse, at which point the qubit has rotated an
additional angle 0y = w(T — t1).

With the total time evolution operator we may now calculate the eigenvalues and eigen-
vectors of the evolution from time ¢ = 0 to ¢t = 7. It is these which specify the gate. The
eigenvalues are found by solving

det(Us (T, t1)Us (t1,0) — A\T) (34)
cos (9—1> [COS (0—2) — 4cos ¢ sin (9—2” sin (9—1> [— cos (9—2) + 1 cos ¢sin (92”
2 —sin (9212> sin (%) sin ¢ —2)\ 2 — cos (%) sin (%) smgb2
— =0.
sin (9—1> [cos 9—) + 1 cos ¢ sin (@)] cos (6—1) [COS (9 ) + i cos ¢ sin (9—2)}
2 + cos 2921) sin (%) sin; 2 <9212) sin < ) sin ¢ 2)\

This gives

At =cos <921) cos (%) —sin <921> sin (922> sin ¢ (36)
2
+ i\/l - {cos <021> cos (022> — sin <621> sin <622> sin qb] = eTi¥, (37)

The corresponding eigenvectors are
cos (91) [ cos (02> + 7 cos ¢ sin (%)] + sin (%1) sin <%2> sin (¢) 4 e

Py = 0) + -
‘ jE> sin <§1> { cos( >+zcos¢sm (%2)} — cos (%) sin (%) sin ¢

>

10



The normalization is

1

2
2 — cos by [1 + cos 02 + 2 cos(2¢) sin (%2) } + 2sin 6 sin 63 sin(¢)

8 (1 + cos (%) [— cos (%2) cos % sin (%) cos ¢ sin gp} + sin (%1) sin (%2) sin ¢ cos gp)
which gives the normalized eigenvectors

1 -
[Yx) = = ‘¢i>~ (40)
<¢i ‘%: >
Next we find the dynamical phases of the evolution. The dynamical phase is calculated

by using Eq. (17), which yields

1 [

o = — 7, <7/)i|1/{f(t, 0)H1(t)Uy(t,0) |1hy) dt (41)
B % /tT (o | UL (t1, O)UE (t, 11 Y M (6 U (L, 1)U (£, 0) [0s) d. (42)

The Hamiltonians H1 and Hs commutate with U; and Us, respectively. This can be used
in the following manner:

wh

U}L(t, 0)Hq1(t)Ui(t,0) = Z/l;r(t, 0) Ui (t,0)H1(t) = TH(t) = < v (43)
and
U (£, 0)UL (¢, 01 Ho (U (£, 81Uy (t1,0) = U (t1,0)Ha ()L (£1, 0). (44)
Explicitly calculating Eq. (44) it is found to be
f wh :
Ui (t1,0)Ha (1)U (£,0) = -5 (— cos po, + sin ¢oy) . (45)

This shows that none of the integrands are time-dependent and the integrals become

01 02 .
a =~ (sl oy [9) — 2 (] (— cos o +sin gory) [¢s). (46)
To find geometric gates we need to solve for which choices of 61, 02, and ¢ the dynamical

phases become trivial, i.e., fulfilling the condition 26 = 27n. To find the parameters when
this is fulfilled a root-finding algorithm is used on the equation

—01 (Y| oy |Y+) — b2 (4| (— cos pog + sin poy) [1h+) — 2mn = 0. (47)

11



Roots of 26

3 —
25| « By /7= 0.000318
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"Z 15 J \ Bjm=1
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0.5
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o

Figure 4: The roots of 2§ = 0. 61 (f2) is the first (second) precession angle, and ¢ is the
angle determining the axis of rotation for the second precession.
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Figure 5: The geometric phase corresponding to the roots of 2 = 0. 6y is the first precession
angle, 0- is the second precession angle, and ¢ is the angle determining the axis of rotation
for the second precession.
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The time necessary to perform the evolution is proportional to the total angle of the two
precessions. Therefore, the roots with the smallest total precession angles are the most
relevant. For this evolution the smallest total precession angles are found when n = 0, i.e.,
26 = 0. The roots of the dynamical phase for some parameters are plotted in Fig. 4. From
the figure one can see that the total precession angle always equals 27 or more. In Fig. 5 the
corresponding geometric phase for the roots are shown. It is possible to find all geometric
phases ranging from 0 to 27. It should be noted that geometric phases smaller than 7 are
only found when ¢ and 6; are larger than 7 and the total precession angle of these path are
larger than 2.

Since it is not only the geometric phase, but also the eigenvectors, that define what gate
the evolution corresponds to, these vectors are also important. To be able to implement
any gate using only two pulses any combination of geometric phase and eigenvector must be
possible. To study this the eigenvectors of all gates with 2v = 7 are plotted as shown in Fig.
6. The z-values of these vectors cover the entire z-axis. It is also important to remember
that only gates with the first rotation taken around the y-axis has been considered so far.
By changing the first axis of rotation to another axis in the xy-plane, but keeping the
relation between the first and second axis, the system would be phase shifted, meaning the
eigenvectors would be rotated about the z-axis. Any gate with m-rotations can then be
implemented. This can similarly be shown for gates with rotations other than 2y = .

Y/

Figure 6: The eigenvectors of all gates with 2y = 7 with the first rotation taken around the
y-axis.

To give an example, we show how a Hadamard gate can be implemented. This gate is

a m-rotation around the axis x+2z, meaning an evolution with 2y = 7 and an eigenvector

in that direction is needed. In Fig. 6, no vector in that direction can be found, but an
eigenvector with the same polar angle as 222 can. The path created by the gate, with this

S
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eigenvector, acting upon its eigenvector and the |0)-state can be seen in Fig. 7. In Fig. 7b,
we see that the |0)-state is mapped onto a state on the xy-plane, but not the %—s‘ca‘ce,

which is where the Hadamard gate would map it unto. To change this gate into a Hadamard
gate we want to rotate the axes of rotation of this gate around the z-axis with the difference
in azimuthal angle between the eigenvector and ’i;;“; The eigenvector of the rotated gate
47

2 Y
a Hadamard gate. The paths of the new eigenvector and the |0)-state acted upon by the
Hadamard gate is shown in Fig. 8.

will be phase shifted by the same angle, shifting it into resulting in turning it into

Z

PEr—

Urot | (&

(a) (b)

Figure 7: a) The path of one of the eigenstates of a gate with 2y = 7. The eigenstates has
the same polar angles as the eigenstates of the Hadamard gate. b) The path of the |0)-state
with the same gate acted upon it.
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(a) (b)

Figure 8: The path of one of the eigenstates (a) and the |0)-state (b) when acted upon by
a geometric Hadamard gate. The computational state evolves along geodesic segments.

5 Discussion and conclusions

We have shown here that it is possible to create two pulse non-cyclic geometric gates, where
the computational states evolve along open paths consisting of two geodesic segments, and
the paths are chosen such that the eigenvectors of the time evolution operators only gain
trivial dynamical phase. With this scheme, both the computational basis and the eigenvec-
tors pick up no dynamical phase and the gates can be called genuinely non-cyclic geometric
gates. This further improves upon the understanding of what constitutes geometric gates
and how they can be found for the non-cyclic case.

It was not possible to find gates with shorter operation times than for cyclic gates, as
all non-cyclic gates found, had a total precession angle equal to or larger than 2w. For
this reason there were no gain in this respect, which was the reason the previous schemes
were proposed. These finding are, however, still important. It is only phase gates that are
cyclic in regards to the computational basis, but for universal computations gates other
than phase gates are also required. For example, the Hadamard gate maps the |0)-state to
the %. With the scheme found in this report, geometric implementations can be found
for these non-cyclic gates as well.

This study has been limited to gates using only two pulses. However, this method of
finding geometric gates could be extended to three or more pulses. The main gain possible
with introducing more pulses is potential reduction in the total precession angle. The total
precession angle is related to the time necessary for the evolution. Reducing the operation
time of the gate reduces the time the qubits’ are exposed to the environment and thereby
reduce their decoherence. The drawback in introducing more pulses can be added noise
from the additional pulses. Because of this the reduction in decoherence must be balanced
against a possible increase in noise. It is also possible to expand the scheme to evolution
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where the computational basis evolves along non-geodesic paths. In this case it would
be necessary to condition the paths such that both the eigenstates and the computational
basis to gain trivial dynamical phases but the removal of the condition of geodesic evolution
would increase the degrees of freedom in choosing the evolution. The reason to introduce
non-geodesic paths would also be to find paths with smaller total precession angles.

To showcase the scheme developed here on a experimental setup, qubits based on, for
example, trapped ions or nitrogen cavity centers would be natural choices. This is because
they are controlled with pulses of lasers. These pulses are good for applying the piece-wise
constant Hamiltonians used to implement the gates showed here.

In summary, this report have shown how genuinely geometric non-cyclic gates can
be implemented, demonstrating how geometric gates can be used for general quantum
computations. Further improvements could be made by altering the scheme to try and
reduce the operational time of the gates. Lastly, a experimental demonstration would be
needed to actuate the scheme.
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