
Transbound Emerg Dis. 2022;69:369–377.	﻿�    |  369wileyonlinelibrary.com/journal/tbed

 

Received: 19 October 2020  |  Revised: 12 December 2020  |  Accepted: 7 January 2021

DOI: 10.1111/tbed.13988  

O R I G I N A L  A R T I C L E

Molecular detection of influenza A viruses and H5 subtype 
among migratory Amur falcons (Falco amurensis) and captive 
birds of prey

Mohamed E. El Zowalaty1,2,3  |   Jennifer DeBeauchmp1 |   Trushar Jeevan1 |   
John Franks1 |   Kimberly Friedman1 |   Rina Pretorius4 |   Sean G. Young5 |     
Robert G. Webster1 |   Richard J. Webby1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.

1Division of Virology, Department of 
Infectious Diseases, St. Jude Children’s 
Research Hospital, Memphis, TN, USA
2Department of Clinical Sciences, College 
of Medicine, University of Sharjah, Sharjah, 
UAE
3Department of Medical Biochemistry and 
Microbiology, Zoonosis Science Center, 
Uppsala University, Uppsala, Sweden
4Bird Life Northern Natal, Newcastle, South 
Africa
5Department of Environmental and 
Occupational Health, Fay W. Boozman 
College of Public Health, University of 
Arkansas for Medical Sciences, Little Rock, 
AR, USA

Correspondence
Mohamed E. El Zowalaty, Division of 
Virology, Department of Infectious Diseases, 
St. Jude Children’s Research Hospital, 262 
Danny Thomas Place, Memphis, TN 38105, 
USA.
Email: elzow005@gmail.com

Funding information
This project was funded by the United 
States NIH/NIAID Centres of Excellence 
for Influenza Research and Surveillance 
(contract no. HHSN272201400008C) 
and by the American Lebanese Syrian 
Associated Charities (ALSAC), St. Jude 
Children's Research Hospital. M.E.E.Z. is 
an awardee of an NIH/CEIRS (contract 
no. HHSN272201400008C) travel and 
research program to St. Jude CEIRS, St. Jude 
Children's Research Hospital.

Abstract
Influenza A viruses (IAVs) and Newcastle disease viruses (NDVs) are major human and 
animal health threats with geographic differences in prevalence, characteristics and 
host populations. Currently, there is sparse information on IAVs and NDVs in avian 
species in South Africa. Because raptors feed on live wild birds which are the reser-
voir hosts of IAVs and NDVs, we considered them a good sentinel for surveillance. 
Therefore, in addition to other resident birds of prey, migratory Amur falcons (Falco 
amurensis) were screened for IAVs and NDVs. Oropharyngeal and cloacal samples 
were collected from raptor species at three sampling sites in KwaZulu-Natal Province 
and samples were screened for IAVs and NDVs using molecular and virus isolation 
methods. IAV-positive samples were further screened for the presence of H5, H7 and 
H9 viruses. A total of 14 samples from 11 birds (45.8% of all sampled birds) were IAV 
positive with Ct lower than 36 in duplicate tests. Five out of 24 birds (20.8%) were 
positive for IAV RNA in duplicate testing, albeit at low concentrations. Among raptor 
samples, three out of 24 birds (12.5%) were positive for IAVs with viral RNA detected 
in both cloacal and oropharyngeal swabs. One IAV-positive sample was also positive 
for H5 subtype (4.1%); all other samples were H5, H7 and H9 negative. Besides, all 
samples were NDV negative. Overall, our results support the development of more 
intensive and expanded influenza and other emerging virus studies in raptor species.
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1  | INTRODUC TION

Influenza A viruses (IAVs) are members of the genus Alphainfluenza 
virus, species IAVs in the family Orthomyxoviridae. Wild aquatic birds 
serve as the natural reservoirs of IAVs (Clark & Hall,  2006; Krauss 
& Webster, 2010; Munster et al., 2007). Newcastle disease viruses 
(NDVs) also known as avian paramyxoviruses type 1, are mem-
bers of the genus Orthoavulavirus, species Avian orthoavulavirus 
1 in the family Paramyxoviridae. Avian influenza (AI) and Newcastle 
disease (ND) are important viral diseases of wild birds and poultry 
(Jørgensen et al., 2004; Kaleta & Baldauf, 1988; Webster et al., 1992). 
AI and ND are ongoing risks to domestic, pet, exotic and wild bird 
populations. In addition, AI is an emerging viral disease of zoonotic 
potential and presents a continuous threat to human public health. 
Because of their feeding habits, birds of prey, also known as raptors, 
are particularly susceptible to IAV and NDV subsequent infections 
(Temple, 1987). Raptors have been known to prey upon shorebirds 
(Ward & Laybourne, 1985), which are known to harbour IAVs (Krauss 
& Webster,  2010). In addition, the unusually long flight paths of 
some raptors may provide a conduit for the intercontinental move-
ment of viruses. Viral diseases have been reported in raptors (Forbes 
et al., 1997); however, data are scarce due to laborious surveillance 
efforts, cost and limited interest. Nevertheless, IAV and NDV infec-
tions have been reported in raptors from different countries including 
the USA (Goyal et al., 2010; Jindal et al., 2010; Redig & Goyal, 2012; 
Shearn-Bochsler et al., 2019), Germany (Kohls et al., 2011; Schettler 
et  al.,  2003), Japan (Shivakoti et  al.,  2010), Saudi Arabia (Khan 
et  al.,  2009), the Republic of Korea (Choi et  al.,  2013), Belgium 
(Steensels et  al.,  2007; Van Borm et  al.,  2005), the Netherlands 
(Kleyheeg et al., 2017), the United Arab Emirates (Khan et al., 2009; 
Manvell et al., 2000; Marjuki et al., 2009; Naguib et al., 2015), Egypt 
(Aly et al., 2010) and Bulgaria (Marinova-Petkova et al., 2012). In ad-
dition to low-pathogenic IAV, raptors including Saker falcon (Falco 
cherrug), common kestrel (Falco tinunculus), peregrine falcon (Falco 
peregrinus), buzzards (family Accipitridae), sparrow hawk (Accipiter 
nisus), northern goshawk (Accipiter gentilis) and Hodgson's hawk eagle 
(Nisaetus nipalensis) have been reported to be infected with highly 
pathogenic IAV (Alexander,  2007; Capua & Alexander,  2007; J. G. 
Choi et al., 2013; Lierz et al., 2007; Shivakoti et al., 2010).

Amur falcons (Falco amurensis) are a small migratory raptor species 
which breed mainly in northern China but also in the east of Mongolia 
and Siberia (Meyburg & Meyburg, 2010; Meyburg et al., 2017; White 
et al., 1994) and overwinter in southern Africa during the months of 
November–December. Amur falcons migrate from northern China, 
Mongolia and eastern Russia (fewer birds come from Mongolia and 
eastern Russia) to the South African coasts. Amur Falcons cover more 
than 14,500 km in about two months as they travel between breed-
ing and wintering areas including a non-stop portion over the Indian 
Ocean (Meyburg & Meyburg, 2010; Meyburg et al., 2017).

IAV infection in wild birds and poultry was reported from dif-
ferent countries in Africa including Burkina Faso, Egypt, Niger, 
Cameroon, Nigeria, Cote d’Ivoire, Djibouti, Ghana, Kenya, Congo, 
Sudan and South Africa (Ducatez et  al.,  2007; Freidl et  al.,  2015; 

Ofula et al., 2013; Twabela et al., 2018; Wade et al., 2018). Although 
IAV infection was reported from an ostrich farm in Western Cape in 
South Africa (Venter et al., 2017), limited information is available on 
the ecology and prevalence of IAV in wild birds in South Africa. No 
data are available on the prevalence of IAVs in raptors from South 
Africa. Recently, we have reported the detection of low-pathogenic 
IAV in waterfowl in South Africa (Poen et al., 2019). We hypothe-
sized that Amur falcons, due to their expansive geographic range 
and predation, would be an ideal sentinel species for a pilot virus 
surveillance study. The scope of the present investigation was, thus, 
to screen Amur falcons for possible infection with IAVs and NDVs 
with the long-term goal of establishing surveillance to provide use-
ful insights for disease epidemiology, which is essential for making 
recommendations for wildlife disease management in South Africa.

2  | MATERIAL S AND METHODS

2.1 | Ethics and permits

Bird catch, ring and release permits were obtained from Ezemvelo 
KwaZulu-Natal Wildlife (Permit numbers OP40/2018). Ethical ap-
provals were obtained from the Animal Research Ethics Committee 
of the University of KwaZulu-Natal (Reference AREC 071/017 and 
AERC 014/018). The field sampling protocols, sample collection 
from animals, and the research were conducted in full compliance 
with Section 20 of the Animal Diseases Act of 1984 (Act No 35 
of 1984) and were approved by the South African Department of 
Agriculture, Forestry and Fisheries (Section 20 approval Reference. 
12/11/1/5). In addition, the research was conducted in compliance 
with the South African Council for Non-proliferation of Weapons of 
Mass Destruction (Ref number NPC018/416).

2.2 | Birds capture

Amur falcons roost in large aggregations on the wintering grounds, 
often many thousands of birds together. We trapped Amur falcons at 
the largest known roost in Newcastle (Figures 1 and 2) in KwaZulu-
Natal Province, South Africa, using high altitude mist nets.

2.3 | Virologic sampling

The samples were collected from birds captured at three sites in 
KwaZulu-Natal Province in South Africa in February, 2018, as shown 
in Figures 3 and 4. Additional samples were collected from wild raptors 
which were temporarily kept in captivity in Durban and Pietermaritzburg 
in KwaZulu-Natal Province between March and August 2018. Cloacal 
and oropharyngeal swab samples were collected using sterile poly-
propylene swabs (Puritan Medical Products) and immediately placed 
into 2 ml viral transport medium (VTM) containing brain-heart infu-
sion broth, streptomycin (10,000  µg/ml), penicillin (10,000  units/
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ml), amphotericin B (50,000 µg/ml) and gentamicin (5,000 µg/ml) (El 
Zowalaty et al., 2011). Samples were stored at −80°C until shipping. 
The cryovials were placed into a cryogenic container and transported 
to the Division of Virology, St. Jude Children's Research Hospital under 
cold chain for virologic analysis.

2.4 | RNA extraction

Total RNA was extracted using Qiagen RNeasy Mini Kit (Qiagen) 
according to manufacturer's instructions. The frozen cloacal and 

oropharyngeal samples were thawed on ice. The samples were 
briefly vortexed, then 200  µl of the sample was added to the 
350 µl of lysis buffer containing 2-mercaptoethanol. Equal volume 
of 70% ethanol was added to this solution, and the mixture was 
loaded to the RNeasy column. After washing steps with buffers 
RW1 and RPE, the RNA was eluted into 1.5  ml microcentrifuge 
tube using 50 µl of RNase free water. RNA was stored at −80°C for 
downstream processing.

2.5 | AIV real-time quantitative reverse 
transcription-PCR (RT-qPCR)

The RNA extracts obtained from the cloacal and oropharyngeal 
swab samples were screened for IAV using matrix-gene-based spe-
cific primers and TaqMan probe using real-time quantitative reverse 
transcription-polymerase chain reaction (RT-qPCR) as was previ-
ously described (Spackman et  al.,  2002) in a Quant Studio 5 real-
time PCR machine. TaqMan® Fast Virus 1-Step Master Mix (Applied 
Biosystems, Thermo Fisher Scientific) was used for the RT-qPCR 
assay. Briefly, 1 µl primer-probe mix was prepared for each reaction 
using 40 µM of primer, 10 µM of the TaqMan probe and nuclease-free 
water. Then, TaqMan Master Mix, primer-probe mixture, nuclease-
free water and RNA template were included in a 20 µl reaction for 
samples under investigation. A known RNA template was used as the 
positive control with cycle threshold (Ct) value of approximately 20. 
Nuclease-free water was used as the template for negative control. 
A Ct value of less than 36 was used to determine positivity (Agüero 
et al., 2007). Due to the high Ct values for some of the samples, a 
second RNA extraction was conducted on positive samples and sub-
jected to RT-qPCR using a second set of primer probes (US Centers 
for Disease Control and Prevention). Samples positive in both RT-
qPCR assays are reported as positive for IAV in this study.

F I G U R E  1   The known roosts of Amur falcons in Newcastle, 
KwaZulu-Natal Province, South Africa (photo was reproduced 
with permission from Bernd-Ulrich Meyburg)

F I G U R E  2   Migratory route of Amur falcons. (a) Map showing the first-ever recorded transoceanic migration route of an adult female 
Amur falcon in spring 2010 fitted with a 5 g solar-powered platform transmitting terminal (PTT 95773) manufactured by Microwave 
Telemetry Inc. from its wintering area in Newcastle, KwaZulu-Natal, South Africa, to its breeding area in northeast China. (b) The principal 
breeding (mainly northeast China) and wintering area (mainly South Africa) ranges are separated by both 70° of latitude and longitude 
(photos were modified and reproduced with permission from Bernd-Ulrich Meyburg)

(a) (b)
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2.6 | DNA Sequencing

Influenza A virus positive samples were submitted to Hartwell 
Sequencing Centre facility, St. Jude Children's Research Hospital, for 
sequencing using Illumina Techniques (Illumina). A multisegment re-
verse transcription-PCR (M-RTPCR) was performed using gene-specific 
primers according to the previously published protocol to amplify   
the whole influenza viral genome (Zhou et al., 2009). PCR products 
were then gel-extracted and purified using GE Healthcare illustra™ 
GFX PCR DNA and Gel Band Purification Kit (Sigma Aldrich). Library 
preparation of samples was performed using Illumina's Nextera XT 
DNA Sample Preparation kit (Illumina) according to the manufacturer's 
protocol. Amplicons were sequenced on the Illumina's MiSeq platform 
using the paired-end approach. Sequencing reads were demultiplexed, 
quality-trimmed and filtered prior to consensus sequence generation 
using the Pallas pipeline, developed by the Hartwell Genomics Centre 
at St. Jude Children's Research Hospital. Final analysis and the gen-
eration of consensus sequences were completed using CLC Genomics 
Workbench (v.11.0.1).

2.7 | Molecular subtyping using RT-qPCR for H5, 
H7 and H9 influenza A viruses

Samples that were IAV positive by matrix-gene specific primers were 
further screened for H5, H7 and H9 viruses using subtype-specific 

primers and TaqMan probes for one-step real-time RT-PCR 
(Spackman et al., 2002) in a Quant Studio 5 real-time PCR machine. 
TaqMan® Fast Virus One-Step Master Mix purchased from Applied 
Biosystems (Thermo Fisher  Scientific) was used for the real-time 
RT-PCR assay. Briefly, 1 µl primer-probe mix was prepared for each 
reaction using 20  µM of primer, 40  µM of the TaqMan probe and 
nuclease-free water, followed by a 20 µl reaction including primer-
probe mix, TaqMan Master Mix and nuclease-free water for the 
matrix-gene positive IAV confirmed samples of Amur falcons. Known 
RNA templates for IAVs, A/duck/Bangladesh/19097/2013(H5N1), A/
Netherlands/219/2003(H7N7) and A/Hong Kong/1073/99(H9N2) 
were used as positive controls. Nuclease-free water was used as the 
template for negative control.

2.8 | Molecular detection of Newcastle disease 
virus using conventional RT-PCR

All RNA samples were screened for NDV using two-step 
RT-nested PCR using as previously described primers (Kho 
et  al.,  2000) with modifications. First-strand cDNA was synthe-
sized using Superscript III (Invitrogen, Life Technologies). The re-
action mix was prepared using 2 μl RNA extracted using RNeasy 
Mini Kit (Qiagen), 5μl RNase free water, 1 μl (10 mM) dNTP, 1 μl 
(20 μM) FOP1 primer and 1 μl (20 μM) FOP2 primer. The mixture 
was incubated at 65°C for 5 min, then placed on ice for at least 

F I G U R E  3   Virologic sampling of Amur falcons in the present study a) Adult female Amur falcon fitted with a 5 g Platform Transmitter 
Terminal (PTT) (b) The ringing of birds and deployment of the PTTs. (c) Trapping of Amur falcons using mist nets. (d) Data capture of trapped 
birds (e) Sampling of Amur falcons for influenza A and Newcastle disease viruses (photos were reproduced with permission from Bernd-
Ulrich Meyburg and Mohamed Ezzat El Zowalaty)

(a)

(d) (e)

(b) (c)
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1 min. The cDNA synthesis mixture was prepared by adding the 
following reagents in the following order: 2 μl 10× RT Buffer, 4 μl 
(25 mM) MgCl2, 2 μl (0.1 M) DTT, 1 μl RNase OUT (40 U/μl), 1 μl 
Superscript III RT (200 U/μl). Ten μls of cDNA synthesis mixture 

was added to RNA/primer mixture and incubated as follows: 50°C 
for 50 min, reaction was terminated at 85°C for 5 min and chilled 
on ice for at least 1 min. Samples were briefly centrifuged to col-
lect the reactions at the bottom of the tube, and 1 μl RNase H was 

F I G U R E  4   Map of KwaZulu-Natal Province in South Africa showing the sampling sites in the current study
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added to each reaction and incubated at 37°C for 20  min. The 
cDNA was stored at −20°C for subsequent PCR reactions. For the 
first PCR amplification, 2 μl of cDNA was added to the following 
PCR mixture using the Phusion® High Fidelity PCR Master Mix 
with HF Buffer (New England Biolabs): 25 μl 2× Phusion MM w/
HF Buffer, 1 μl (20 μM) FOP1, 1 μl (20 μM) FOP2 and 21 μl water. 
The first-round amplification conditions were as follows: 94°C 
for 3 min, 94°C for 30 s (denaturation), 67°C for 30 s (annealing), 
72°C for 30 s (extension), cycle step 2 20×, 72°C for 7 min (pro-
longed extension), 4°C on hold and then samples were placed on 
ice for at least 1 min. The second PCR amplification was carried 
out in the same tube of the first PCR. An additional 30 μl reaction 
mixture consisting of 13 μl H20, 15 μl 2× Phusion Master mix with 
HF Buffer, 1 μl (20 μM FIP1), 1 μl (20 μM FIP2) was added to the 
previous PCR product. The second PCR reaction conditions were 
followed for an additional 30 cycles: 94°C for 30 s (denaturation), 
55°C for 30 s (annealing), 72°C for 30 s (extension), 72°C for 7 min 
(prolonged extension) and kept on hold at 4°C. The reaction was 
visualized using 1.5% agarose for the detection of band size of 
532 bp (FOP1/FOP2) and 280 bp (FIP1/FIP2). A positive control 
NDV RNA (P/Chicken/Bangladesh/23057/2014) was used as a 
positive control.

2.9 | Virus isolation in embryonated chicken eggs

Samples were cultured for virus isolation by inoculation in embryo-
nated chicken eggs (ECEs). A volume of 100 μl from each swab sam-
ple was injected into the allantoic fluid (AF) of three 10-day-old ECEs 
per sample and incubated at 35°C. After 72 hr, the AF was collected 
and tested for hemagglutination using 0.5% turkey erythrocytes. All 
the first passage in ECE (E1) AF samples were passaged in ECEs for a 
second (E2) passage. All E1 and E2 passages AF samples were tested 
using the Flu Detect® (Zoetis Inc.).

3  | RESULTS

The Amur falcons and other wild-caught birds of prey in this study 
were sampled at time of banding in 2017–2018. For IAV screening, 
48 cloacal and oropharyngeal samples from 24 birds (total number 
of sampled birds) were collected from birds of prey including 24 
samples from 12 migratory Amur falcons and two samples from one 
red-footed falcon. Other samples were collected from additional wild 
captive raptor species including brown snake eagle, African goshawk, 
African wood owl, black sparrow hawk, yellow-billed kite, spotted 
eagle owl and peregrine falcon (Table 1). All birds appeared healthy 
at the time of sampling except one brown snake eagle which was sick 
at the time of sampling. A total of 14 samples from 11 birds (45.8% 
of all sampled birds) were IAV positive with Ct lower than 36 in dupli-
cate tests. Among the Amur falcons, five (41.7%) out of the 12 birds 
were IAV positive with Ct values lower than 36. One Amur falcon was 
positive in both cloacal and oropharyngeal swabs. Two other birds (a 
yellow-billed kite and an African wood owl) were also positive for IAV 
in both cloacal and oropharyngeal swabs. The other positive samples 
came from a black sparrow hawk, a spotted eagle owl and an African 
goshawk. Due to the high Ct values of the positive samples, we re-
extracted viral RNA from 10 of the positive samples (insufficient ma-
terial was available for the remaining four samples). Seven of these 
samples (from five birds) were again positive after the additional 
freeze and thaw adding confidence to our determinations.

All IAV-positive samples were further screened for H5, H7 and 
H9 subtypes. One sample collected from a healthy female spotted 
eagle owl was found to be H5 positive using RT-qPCR. No samples 
were found to be H7 or H9 positive. Unfortunately, no virus isolates 
or sequence information could be retrieved from the samples. In 
addition, all samples were negative for NDV by RT-PCR. The two 
samples which were collected from a brown snake eagle, which was 
reported to be sick at the time of sampling, were negative for both 
IAV and NDV excluding these two aetiological agents.

TA B L E  1   Detection of influenza A viruses in nine species of captured birds of prey in South Africa in 2018

Bird species
No. of birds 
captured

No. of tested 
cloacal samples

No. of tested 
OP samples

No. IAV-positive 
samples by RT-qPCR

Location of 
collected Samples

African goshawk (Accipiter tachiro) 2 2 2 1 (OP) Ashburton

African wood owl (Strix woodfordii) 2 2 2 1 (OP)
2 (C)

Ashburton

Amur falcon (Falco amurensis) 12 12 12 2 (OP)
4 (C)

Newcastle

Brown snake eagle (Circaetus cinereus) 1 1 1 0 Durban

Black sparrow hawk (Accipiter melanoleucus) 2 2 2 1 (OP) Durban

Peregrine falcon (Falco peregrinus) 1 1 1 0 Ashburton

Red-footed falcon (Falco vespertinus) 1 1 1 0 (C) Newcastle

Spotted eagle owl (Bubo africanus) 2 2 2 1 (C) Ashburton

Yellow-billed kite (Milvus aegyptius) 1 1 1 1(OP)
1 (C)

Durban

Total 24 24 24 14 48
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4  | DISCUSSION

The title for undertaking the most arduous of all raptor migrations 
belongs certainly to the Amur falcon, which is a complete transcon-
tinental, transequatorial, long-distance flocking migrant (Meyburg 
& Meyburg, 2010; Meyburg et al., 2017). The principal breeding 
(mainly northeast China) and wintering (mainly South Africa) ranges 
are separated by 70° of both latitude and longitude. Several migra-
tory bird species, including Amur falcons, overwinter in the Southern 
hemisphere each year (Cade, 1982; Tarboton & Allan, 1984). With its 
migration route of over 14,500 kilometres, the Amur falcon has one 
of the longest migration routes of any raptor in the world (Meyburg 
& Meyburg, 2010; Meyburg et al., 2017), perhaps matched only by 
that of the Swainson's Hawk (Buteo swainsoni) in the New World and 
probably some peregrine falcon (F. peregrinus) populations.

We found one Amur falcon to be positive for IAV RNA in both 
cloacal and oropharyngeal swabs. With their arrival to Newcastle 
in South Africa (Figures 1 and 4), there is, thus, an elevated risk of 
introduction of IAVs into resident bird populations. IAV surveillance 
has long been a neglected area of research in South Africa despite 
repeated detections of the virus in ostrich and poultry populations 
(Venter et  al.,  2017). It was previously reported that IAVs spread 
rapidly from Qinghai Lake in China after the 2005 AI outbreak and 
were introduced into falcons in Saudi Arabia and Kuwait (Marjuki 
et al., 2009).

There are considerable knowledge gaps including the preva-
lence of IAVs in South African wild birds, the source of outbreaks 
in ostriches, and whether IAVs are transmitted from South Africa to 
other regions of the world. In this study, we sampled primarily Amur 
falcons, as examples of migratory birds of prey covering large geo-
graphic areas, piggybacking on banding activities. The population 
of birds we sampled breed in northeast Asian countries, including 
central Mongolia (Figure 2), where IAV detections have been re-
ported over the past decade (Li et al., 2004; Sakoda et al., 2010). In 
the present study, we investigated for the first time whether Amur 
falcons visiting the South African coasts were infected with IAVs. 
In addition, we screened wild birds of prey which were temporarily 
kept in captivity for the presence of IAVs before their release to the 
wild. It was found that 45.8% of the sampled birds (41.7% of Amur 
falcons) were positive for IAVs in two independent tests. Although 
the origin and likely source of IAVs infecting these birds was not 
determined in this study, the large percentage of positive birds 
strongly suggests that steps should be taken to minimize the inter-
action of migratory and captive wild-caught raptors with domestic 
or commercial birds including poultry to avoid the possible intro-
duction and spread of IAVs in other susceptible hosts. In the present 
study, no bird species was infected with NDVs when screened using 
RT-qPCR; however, raptor species have been infected with NDVs as 
was previously reported (K.-S. Choi et al., 2008; Haddas et al., 2014; 
Jindal et al., 2010; Schettler et al., 2003; Umali et al., 2016). Further 
investigation of raptors and other avian species in South Africa is 
warranted to further dissect the epidemiology of the disease in this 
country.
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